ASPIC Argumentation Engine

The ASPIC Argumentation Engine is a software implementation of the argument game algorithms for defining the status of arguments as defined in ASPIC D2.6. It provides a structure to capture defeasible knowledge and reason over the status of query matches (defeated or undefeated). The component allows a user to examine the yes (undefeated) or no (defeated) status of each match or to view a graph visualisation of the proof argument network associated with the reasoning argument game. It also provides a machine readable version of the proof and results via AIFXML.

The ASPIC Argumentation Engine is delivered in two different jars. The first jar, aspic-inference.[version].jar contains just the code written in this project. The second jar aspic-inference.[version].bundled.jar contains the code bundled with all dependent code for ease of use. Both jar files can be used at the command line, with a simple GUI (Graphical User Interface) or embedded in another java application. In addition to the executable code, the jar file also contains the src, javadocs and additional material including a copy of this file and a README file which sketches the known issues. The README file details where to find each of these resources and can be found in the root of the jar file directory.

The java component is implemented in java version 1.5. If you attempt to use it in an earlier version you will see an error message like:

Exception in thread "main" java.lang.UnsupportedClassVersionError:
org/aspic/inference/Engine (Unsupported major.minor version 49.0).

In this document, commands that you are expected to enter yourself are highlighted in bold and a different font. Anticipated results are highlighted in the different font, but not bold, as shown in the above Exception message. This document is written against version 0.4.7 of the component.

The command line

The command line interface has several options. To see the options (assuming you are in the same folder as the saved file, aspic-inference.0-4-7.bundled.jar), type the following:

java -cp aspic-inference.0-4-7.bundled.jar org.aspic.inference.Engine

You should see something like:

usage: java org.aspic.inference.Engine [-options] dKB query

 dKB - defeasible Knowledge Base

 Query - query expression.

 -f,--format aifxml or dot. If ommitted then the engine just

 outputs a list of matched expressions followed

 by 'yes' or 'no'.

 -h,--help Show this message

 -l,--logging turns on logging to stderr.

 -p,--pretty sets AIFXML pretty printing

 -s,--semantics controls semantics of reasoning. grounded

 (default) or

 preferred_credulous are available.

 -v,--version print product version and exit

There now follows three examples showing how you might use this tool. A more detailed explanation of the knowledge syntax is provided in a later section. In version 0-4-7 there is a new switch,-fp that allows you to use a file to represent your knowledge.

Example 1

The first example shows how you might query a defeasible knowledge base with an ungrounded query. The knowledge base is simple, it contains three facts: “test(a)” (“a” is a “test”), “test(b)”, and “~test(a)” (“a” is not a “test”). The query presented is “test(X)” (match all tests and the return their status). To run this query against this defeasible knowledge base you could run the following command:

java -cp aspic-inference.0-4-7.bundled.jar org.aspic.inference.Engine "test(a). test(b). ~test(a)." "test(X)."

From this input you should see the output

test(a). no

test(b). yes

The engine was able to develop two matching arguments, of which “test(a)” was defeated under grounded semantics and the “test(b)” survived.

Example 2

We can run a propositional query against the engine and see the results in AIFXML:

java -cp aspic-inference.0-4-7.bundled.jar org.aspic.inference.Engine –f aifxml –p "a.~a." "a."

which will query "a." based on the knowledge base "a. ~a." using grounded

semantics and output the result in prettyfied AIFXML:

<?xml version="1.0" encoding="UTF-8"?>

<aif xmlns="http://aif.org/draft" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <context xsi:type="inferenceContextType">

 <s-types>

 <s-type name="rbt">

 <description>Rebut</description>

 </s-type>

 <s-type name="uct">

 <description>Undercut</description>

 </s-type>

 <s-type name="dft">

 <description>Defeat</description>

 </s-type>

 <s-type name="dmp">

 <description>Defeasible Modus Ponens - top rule is defeasible</description>

 </s-type>

 <s-type name="mp">

 <description>Modus Ponens - top rule is strict</description>

 </s-type>

 </s-types>

 <provider name="JavaAS" version="0.4">

 <valuation>weakest_link</valuation>

 <transposition>false</transposition>

 <restricted_rebutting>false</restricted_rebutting>

 <semantics>grounded</semantics>

 </provider>

 <query expression="a.">

 <result expression="a." undefeated="false" />

 </query>

 <knowledge><![CDATA[~a.

a.]]></knowledge>

 </context>

 <i-nodes>

 <i-node id="i1" status="defeated" xsi:type="inferenceI-nodeType" type="fact">

 <text>a</text>

 <qualifier dos="1.0" />

 </i-node>

 <i-node id="i2" status="undefeated" xsi:type="inferenceI-nodeType" type="fact">

 <text>~a</text>

 <qualifier dos="1.0" />

 </i-node>

 <i-node id="i3" xsi:type="inferenceI-nodeType" type="fact">

 <text>a</text>

 <qualifier dos="1.0" />

 </i-node>

 </i-nodes>

 <s-nodes>

 <s-node id="ru1" type="rbt" />

 <s-node id="d1" type="dft" />

 <s-node id="ru2" type="rbt" />

 <s-node id="d2" type="dft" />

 </s-nodes>

 <edges>

 <edge to-node="ru1" from-node="i2" />

 <edge to-node="i1" from-node="ru1" />

 <edge to-node="d1" from-node="i2" />

 <edge to-node="i1" from-node="d1" />

 <edge to-node="ru2" from-node="i3" />

 <edge to-node="i2" from-node="ru2" />

 <edge to-node="d2" from-node="i3" />

 <edge to-node="i2" from-node="d2" />

 </edges>

</aif>

[image: image1.png]Argl | 10

DEFEATED
1
rel

~a

Arg2 | 10

UNDEFEATED

e

Arg3 | 10

Arg3

Figure 1 - graphviz graph from output in commandline example 3.

Example 3

Finally, we can run the same query and visualise the proof of that query using graphviz (http://www.graphviz.org).

java -cp ArgumentationEngine.0-4-7.Bundled.jar org.aspic.inference.Engine –s preferred_credulous –f dot "a.~a." "a."

which runs the same query as Example 2. The resulting output is a valid graphviz graph:

digraph G {

 graph [

 rankdir = "BT"

];

 subgraph cluster1 {

 label = "Arg1"

 Arg1 [shape="record",label="{a|{Arg1|1.0}|{DEFEATED}}",group=cluster1];

 } // end of Arg1

 Arg2 -> Arg1 [color=red];

 Arg2 -> Arg1 [color=darkorange];

 subgraph cluster2 {

 label = "Arg2"

 Arg2 [shape="record",label="{~a|{Arg2|1.0}|{UNDEFEATED}}",group=cluster2];

 } // end of Arg2

 Arg3 -> Arg2 [color=red];

 Arg3 -> Arg2 [color=darkorange];

 subgraph cluster3 {

 label = "Arg3"

 Arg3 [shape="record",label="{a|{Arg3|1.0}}",group=cluster3];

 } // end of Arg3

}

This graph can then be processed by graphviz to create the graph shown in Figure 1. Red arrows indicate defeats, orange arrows indicate rebuts, blue arrows indicate undercuts, and black arrows are associated with inference scheme applications.

The GUI

The GUI (Graphical User Interface) is very rough. It allows you specify a knowledge base and a query, view the query matches and their status, see the AIFXML and dot output and also visualise the proof network as three different kinds of graph. To run the GUI you can simply run the jar: “java -jar aspic-inference.0-4-7.bundled.jar” at the command line. You should see something like the following screen shot.

[image: image2.png]Edit_Options

Help

AIFXML

Dot | Graph

Graph2

Graph3

Figure 2 - A screenshot of the Engine GUI

The idea behind the GUI is that it allows you to edit a non-trivial defeasible knowledge base in the main text area and then query that knowledge using the query text box. Then main text area acts like a text editor – you can load and save text files. The small grey-ed out text area in the bottom right shows results and the tabs provide access to the aifxml and dot views. You can select the all engine options (semantics, valuation, transposition and restricted rebutting) and toggle logging using the Options menu. Figure 3 shows a screenshot of the GUI being used to query the treatment example.

[image: image3.png]le Edit Options Help

AS|Inference Engine Tester - treatment.

g o/x

Input | AIFXML | Dot | Graph | Graph2

Graph |

intervention(patient 1, tamoxiren)

intervention(patient 1, tamoxiren)

Ading(3, paper2, Patien)] ~outcome(Patien, redu

ce_mortaiity) <~ atirbute(Patient, diagnosis, stage.i_breast cancen), altribute(Patient, presents, er_negat

outcome(patient, reduce_mortality)

breast

ancen.

F_negative), intervention(Fatient, tamoxifen)

|

intervention(patient 1, tamoxiren)

[rosis, stage_ii_breast_cancen

intervention(patient 1, tamoxiren)

atiribute(patient L, diagnosis, stage.ii_breast_cancen)

atiribute(patientl, presents, er_negative)

atirbute(patient L, diagnosis, stage.ii_breast_cancen)

Figure 3 - A screen shot of the Engine GUI showing one of the new graph visualisation tabs in this version.

Argumentation Syntax

The Argumentation Syntax is based on prolog, thus you can define facts,

e.g.

parent(james, sally).

(which would normally be interpreted as james is sally’s parent) and rules

e.g.

grandparent(X, Z) <- parent(X, Y), parent(Y, Z).

(which allows one to infer grandparents based on parent facts) with two extra features, degree of belief and rule naming.

Degree of belief

Every rule or fact can be proceeded by a number greater than 0 and less than or equal to 1 that indicates the degree of belief of the fact or rule. Thus if you wanted to say that you thought james was sally’s father, but you weren’t quite sure, you could write:

parent(james, sally) 0.8.

Degree of belief is used to evaluate the strength of arguments and in turn to determine which arguments defeat other arguments.

Rule naming

Another difference is that you can explicitly name rules and then refer to those rule names in other expressions. This allows you to undercut rules. An example of a named rule would be:

[appearance(Object, Colour)] colour(Object, Colour) <- looks(Object, Colour) 0.9.

This rule states that something that looks a particular colour usually is that colour.

This rule could be undercut in another fact or rule, e.g.

~appearance(Object, Colour) <- illuminated(Object, Colour).

This new rule states that the appearance rule is invalid if the Object is illuminated by the observed colour. These two rules, combined with following facts:

looks(ball, red).

looks(frisbee, green).

illuminated(ball, red).

illuminated(frisbee, white).

would yield following query results:

colour(ball, red) – no

colour(frisbee, green) – yes

Where a graph showing the undercut can be see below in Figure 4. Note that facts cannot be named. Also note that the nomenclature for rule naming in version 0.4 has changed since version 0.3. Rule names must now be enclosed in square brackets at the start of a rule. Rule names in version 0.4 can include any or all of the variables used in the rule. Rule names cannot include a new variable.

[image: image4.png]colour(ball, red)

Ags6

09

'y

(@MP

looks(ball,red) [appearance(Object, Golour)] colour(Object, Colour) < looks(Object, Golour) ~appearance(ball, red)
Argss | 1.0 Args4 0 Arg59 10
[y
Arg56
@MP

iluminated(ball, red)

[r1] ~appearance(Object, Colour) <- lluminated(Object, Colour)

Agss 10

Ags7

10

Arg59

Figure 4 - graph showing an undercut based on an ungrounded rule name, generated by graphviz.

Built-in predicates

In this version of the Engine some built-in predicates have been defined. These are shown in Table 1.

Table 1 - Built in predicates. The predicate\arity nomenclature indicates that nonvar expects 1 operand and the other peredicates expect 2.

Predicate
Description
Example queries

nonvar\1
Unary predicate that succeeds, i.e. develops an argument, if it’s operand isnt a variable.
nonvar(test(a)) generates an argument.

nonvar(X) – doesn’t succeed.

nonvar(test(X)) – generates an argument (even though it contains an argument).

is\2
Binary predicate that can be used to unify a variable in it’s first operator with a numeric expression in it’s second.
is(X, 1+2) generates an Argument with claim “3 is 3”, substitution X=3 and no sub arguments.

=:=\2, =\=\2
Arithmetic Equals and not equals.
=:=(3, 3) generates an argument

=\=(3, 4) generates an argument

+\2, *\2, -\2, /\2
Arithmetic predicates. These must be used in conjunction with is, because they evaluate down to a single numeric constant.
The sum predicate can be defined as three rules (following prolog):

sum(X, Y, Z) <- nonvar(X), nonvar(Y), is(Z, +(X,Y)).

sum(X, Y, Z) <- nonvar(X), nonvar(Z), is(Y, -(Z,X)).

sum(X, Y, Z) <- nonvar(Z), nonvar(Y), is(X, -(Z,Y)).

This is very useful.

Note that “+(1,2)” raises an error.

>\2, >=\2, <\2, =<\2
Numeric comparison predicates. Returns an argument if both operands are numbers that have the implied relation to each other.
“is(Z, 2), is(Y, 3), >(Y, Z)” generates an argument.

“=<(3.0, 3).” generates an argument.

==\2, \==\2
Equals and Not equals
==('a', 'a') generates an argument.

Embedding the Engine in another Java project

To embed this component within another component you'll need to add the engine

jar into the project's classpath and then use code such as:

Engine eng = new Engine("a 0.5.~a 0.5.");

eng.setProperty(Property.SEMANTICS, Reasoner.GROUNDED);

Query query = eng.createQuery("a.");

Iterator<Result> resultIterator = query.getResults().iterator;

while (resultIterator.hasNext()) {

 System.out.println(resultIterator.next().inspect());

}

(This code snippet is used to mimic the default output of the Command Line Interface). Full details of the available classes and methods are provided in the Javadoc API documentation.

The Engine properties are enumerable through the Engine.Property enumeration and you can further enumerate the available values for a property using the getSupportedValues(Property) method.

Hand rolling knowledge base expressions.

You can use the surface syntax to define your knowledge and queries, as shown in the previous section, or you can build the expressions by hand. Examples of this process can be seen in the knowledge package unit tests, which are defined in TestKnowledge.java.

