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ABSTRACT
AF-CBA is an example-based approach to XAI that draws on the

case-based argumentation tradition in AI & Law. It means to explain

binary classifications made by an opaque machine learning model

by presenting an argument graph to the user, which represents an

argument game about the classification of a case on the basis of

precedents derived from labelled data used in the training phase

of the classifier. We improve the robustness of this method by

modifying it to better handle inconsistent labelling and evaluate an

alternative setup that does not require access to the labelled data

by using earlier predictions instead.
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1 INTRODUCTION
The accuracy of some machine learning (ML) classifiers comes at

the cost of their transparency [19]. For certain purposes, transpar-

ent alternatives may not be able to achieve sufficient accuracy to

be a viable option. In many cases, perceived classifier opacity is

due to technical complexity, but this is relative to a person’s level

of understanding, so even very basic approaches would be consid-

ered opaque by some. Proprietary protection can be another cause

of opacity and renders even an otherwise highly interpretable ap-

proach opaque. Regardless of the underlying reason, highly opaque

classifiers are commonly known as ‘black boxes’ [13, 19].

A central concern with black box models is their trustworthiness.

There may be ethical concerns such as unfair treatment and biases

that remain hidden with an opaque model. Transparency is often a

legal requirement for (semi-)automatic decision-making processes

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ICAIL 2023, June 19–23, 2023, Braga, Portugal
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0197-9/23/06. . . $15.00

https://doi.org/10.1145/3594536.3595164

in practice [6], even if the decisions are not within the legal domain

themselves. For this reason, improving transparency is essential to

the AI & Law domain. Explainable Artificial Intelligence (XAI) is

aimed at increasing the transparency of black box models [20].

In this paper, we are concerned with example-based XAI, which

is one of the lines of research within XAI [4, 22]. XAI methods can

be categorised in various ways. One distinction is between methods

that generate local explanations (explaining individual instances)

and those that generate global explanations (explaining a whole

model). Some methods access the trained model itself, whilst others

are model agnostic. Approaches that generate explanations after
the fact are also known as ‘post hoc analyses [19]. We use the term

‘justifications’ for the subclass of explanations generated by XAI

methods which do not access the black-box model. Justifications do

not explain the actual behaviour of the model. Instead, they present

to a human user the assumptions under which the model’s decision

can be justified.

When one considers justifying binary class labels, the predic-

tions of the classifier (trained on labelled data in its training phase)

can be thought of as analogous to court decisions on the basis of ju-

dicial precedents. This is why, in order to explain predictions made

by such a classifier, Prakken & Ratsma [27] draw on AI & Law re-

search to propose a top-level model using case-based argumentation

(CBA) based on Horty’s model of a fortiori reasoning [16], hereafter
referred to as ‘A Fortiori Case-Based Argumentation’ (AF-CBA).

AF-CBA is inspired by CATO [2] and work by Čyras et al. [9, 10].

In the present work, we improve the usability of AF-CBA in two

respects, namely the ability to handle label inconsistency
1
and the

ability to explain predictions without having access to the actual

training data.

The context of AF-CBA is depicted in Figure 1. The labelled

dataset (or 𝑋 in most ML literature) is a random sample from the

overall population of a sufficient size to make it representative of

the population, labelled by annotators or decision makers.𝑋 is used

in the training phase of a classification approach to produce a black-

box binary classifier. A focus case is a single, random sample case

from the same population. It receives a predicted outcome (some

label 𝑠) from the classifier. Because the classifier is a black box, it

cannot provide an explanation for why it came to the decision to

predict outcome 𝑠 . AF-CBA justifies its outcome by initiating the

labelled set 𝑋 as a case base and using it to play an argument game

between a proponent and opponent of the outcome 𝑠 . A winning

1
This portion of the current paper is a further investigation based on preliminary

work [25], using additional datasets and performance metrics.
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strategy for the proponent is presented as a justification of the

predicted outcome 𝑠 in the form of an argument graph.

Label
data

Classifier
(black box)

Justification

Train
classifier

Instantiate
case base

Justify
prediction

Focus
case

Labelled
dataset

0..n

      1

Population
(unlabelled)

Case
base

Prediction

Figure 1: A schematic depiction of the context in which AF-
CBA is applied.

In this paper, we investigate two limitations of AF-CBA and

the extent to which we can circumvent them, thereby allowing

AF-CBA to be more widely usable. The first limitation is that, as

a consequence of its reliance on precedential constraint, label in-

consistency is a significant concern for AF-CBA [27]. The second

limitation is that AF-CBA presumes access to the labelled dataset

used in training the black-box classifier, which is often not the case,

i.e. it is not data-agnostic. We demonstrate a solution to the first

limitation by constraining AF-CBA’s selection of best precedents

and to the second by implementing a data-agnostic alternative.

The rest of this paper is structured as follows. We formally de-

scribe AF-CBA in Section 2. We address the problem of incon-

sistency in Section 3 and that of data-agnosticism in Section 4.

Subsequently, we experiment with these modifications in Section 5

and discuss the results and future work in Section 6. Finally, we

consider some related work in Section 7.

2 AF-CBA
AF-CBA justifies predictions by referring to highly similar cases

to one whose class is being predicted (the focus case), relying on

Horty’s notion of precedential constraint [15, 16] used to model a

fortiori reasoning as usedwith case law. This requires no knowledge

of ML to understand. It does, however, require a body of case law.

ML classification is a supervised approach, which means there is a

training set that was used to train the classifier. AF-CBA requires

that this set be accessible to be used as a case base. The underlying

a fortiori assumption is the following notion of precedential con-

straint: the focus case should have the same outcome (label) as a

precedent if differences between the two only make the focus case

stronger for that same outcome [27].

AF-CBA produces an argument graph through an argument

game, which has a fixed set of allowed moves inspired by HYPO [3]

and CATO [2]. These moves are modelled as an abstract argumen-

tation framework in the sense of Dung [11]. The argument game

is modelled as the game for grounded semantics of abstract argu-

mentation frameworks [26]. A proponent argues why the focus

case should receive the same outcome as a best precedent (a most

similar case) and the opponent argues against this. They both cite

precedents from the CB and make moves to set cases apart or to

downplay these differences. Deciding for a focus case is forced if

the precedent has no relevant differences with the focus case [27].

We will now formally introduce these and other concepts in-

volved in AF-CBA, largely identical to those found in [27], with

some differences in notation. As a running example, we rely on a

feature subset of the Telco Customer Churn dataset [17], which

describes the customers of a telecommunications provider and

whether they have churned, i.e. switched to an alternative provider.

This is valuable information, because the provider might wish to

take action when a customer is likely to churn, such as offering

a discount. If this occurs automatically, it is a case of automatic

decision-making, which implies that the transparency requirements

of the General Data Protection Regulation should apply [32].

A case is a member of a case base (CB) and consists of an outcome
as well as a fact situation. The outcome of a case is simply a binary

label, 𝑜 or 𝑜′. The variables 𝑠 and 𝑠 denote the two sides, meaning

that 𝑠 = 𝑜 if 𝑠 = 𝑜′ and vice versa. A fact situation consists of

dimensions (features), with each dimension a tuple𝑑 = (𝑉 , ≤𝑜 , ≤𝑜 ′ ),
with value set 𝑉 and two partial orderings on 𝑉 , ≤𝑜 and ≤𝑜 ′ , such
that 𝑣 ≤𝑜 𝑣 ′ iff 𝑣 ′ ≤𝑜 ′ 𝑣 for 𝑣, 𝑣 ′ ∈ 𝑉 .

A dimension has a tendency, where a positive tendency means

a higher value assignment for that dimension is associated with

one outcome (e.g. 1 or ⊤) and vice versa for the other. Table 1

illustrates the dimensions in our running example, showing the

optional superscript plus or minus notation to reflect a dimension’s

tendency. Three of these dimensions have a negative tendency and

only a higher value assignment for ℎ𝑖𝑔ℎ 𝑐𝑜𝑠𝑡 is associated with a

customer churning.

Table 1: The dimensions used in the running example.

Dimension Name Description

𝑑−
1

Gift Whether the customer received a gift

𝑑−
2

Present Whether the customer was present dur-

ing a recent event

𝑑−
3

Website The number of times a customer logged

into their online profile

𝑑+
4

High

cost

Whether the customer has a subscrip-

tion in the high-cost category

A value assignment is denoted as a pair (𝑑, 𝑣) and the value 𝑥 of

dimension 𝑑 as 𝑣 (𝑑, 𝑐) = 𝑥 for case 𝑐 ∈ 𝐶𝐵. The value assignments

to all dimensions𝑑 of the non-empty set𝐷 constitute a fact situation

𝐹 . We presume that two fact situations refer to the same set 𝐷 . A

case is defined as 𝑐 = (𝐹, 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 (𝑐)) with 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 (𝑐) ∈ {𝑜, 𝑜′},
and we can denote the fact situation of case 𝑐 as 𝐹 (𝑐).
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In Table 2, Alice currently is and Bob used to be a customer

of the telecommunications provider, as is seen by the outcome.

Their fact situations are provided as well, with value assignments

to each of the four dimensions. Charlie (the focus case) is an addi-

tional customer and the provider has a classifier in place to predict

whether Charlie will churn. Say that the classifier predicts that he

will not. Our approach is then to explain that outcome on the basis

of Charlie’s case’s similarity to the other two cases.

Table 2: An example CB labelled with the outcome churn.

Customer 𝑑−
1

𝑑−
2

𝑑−
3

𝑑+
4

Outcome

Alice 1 1 3 0 0

Bob 1 0 1 1 1

Charlie (focus) 0 1 3 0 ?

Given two fact situations and the tendencies of their dimensions,

one fact situation may be ‘stronger’ for a particular outcome than

the other. The outcome of a focus case is forced if there exists a

precedent in the CBwith the same outcome for which all differences

between the focus case and that precedent merely make the focus

case an even stronger case for that very outcome [15].

Definition 1 (Preference relation for fact situations).

Given two fact situations 𝐹 and 𝐹 ′, 𝐹 ≤𝑠 𝐹 ′ iff 𝑣 ≤𝑠 𝑣 ′ for all
(𝑑, 𝑣) ∈ 𝐹 and (𝑑, 𝑣 ′) ∈ 𝐹 ′.

Definition 2 (Precedential constraint). Given case base 𝐶𝐵
and fact situation 𝐹 , deciding 𝐹 for 𝑠 is forced iff CB contains a case
𝑐 = (𝐹 ′, 𝑠) such that 𝐹 ′ ≤𝑠 𝐹 .

In Table 2, Alice’s case is stronger than Charlie’s for the outcome

not churning when it comes to 𝑑−
1
and 𝑑−

3
. Alice’s case therefore

does not force the focus case. If Alice were instead the focus case and

Charlie the precedent, Alice’s case would be stronger than Charlie’s

for churning in all dimensions and so Charlie would indeed force

the outcome. In other words, we would then say that if Charlie did

not churn, surely Alice must not churn either.

A fact situation could be forced for both 𝑠 and 𝑠 , which brings

us to Horty’s definition of CB consistency:

Definition 3 (Case base consistency). A case base 𝐶𝐵 is con-
sistent iff it does not contain two cases 𝑐 = (𝐹, 𝑠) and 𝑐′ = (𝐹 ′, 𝑠) such
that 𝐹 ≤𝑠 𝐹 ′. Otherwise it is inconsistent.

A best precedent and a focus case not only have the same out-

come, but also as few as possible relevant differences. Multiple cases

can meet these criteria. A lower number of best precedents is prefer-

able, because of computational reasons and because one could say

that a higher number of possible citations would make a single

explanation somewhat arbitrary.

Definition 4 (Differences between cases). Let
𝑐 = (𝐹 (𝑐), 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 (𝑐)) and 𝑓 = (𝐹 (𝑓 ), 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 (𝑓 )) be two cases.
The set 𝐷 (𝑐, 𝑓 ) of differences between 𝑐 and 𝑓 is
𝐷 (𝑐, 𝑓 ) = {(𝑑, 𝑣) ∈ 𝐹 (𝑐) | 𝑣 (𝑑, 𝑐) ≰𝑜𝑢𝑡𝑐𝑜𝑚𝑒 (𝑓 ) 𝑣 (𝑑, 𝑓 )}.

Definition 5 (Best precedent). Let 𝑐 = (𝐹 (𝑐), 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 (𝑐))
and 𝑓 = (𝐹 (𝑓 ), 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 (𝑓 )) be two cases, where 𝑐 ∈ 𝐶𝐵 and 𝑓 ∉ 𝐶𝐵.
𝑐 is a best precedent for 𝑓 iff:

• 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 (𝑐) = 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 (𝑓 ) and
• there is no 𝑐′ ∈ 𝐶𝐵 such that 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 (𝑐′) = 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 (𝑐) and
𝐷 (𝑐′, 𝑓 ) ⊂ 𝐷 (𝑐, 𝑓 ).

For instance, a relevant difference between Charlie and Alice in

Table 2 is dimension 𝑑1, where Alice received a gift and Charlie did

not, making her case better for staying rather than churning. Alice

would be selected as a best precedent, as Bob received the opposite

outcome. In reality, Alice’s case would be compared with additional

cases in the CB.

The opponent is looking to reply to the proponent’s initial cita-

tion, either by citing a counterexample or by playing a distinguish-

ing move. The distinguishing moves are𝑊𝑜𝑟𝑠𝑒 (𝑐, 𝑥) (the focus case
is worse than the precedent 𝑐 for dimensions𝑥 ),𝐶𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑒𝑠 (𝑐, 𝑥,𝑦)
(the dimensions 𝑦 compensate for the dimensions 𝑥 on which

the focus case is not at least as good as the precedent 𝑐) and

𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑒𝑑 (𝑐, 𝑐′) (the citation can be transformed by the dis-

tinguishing moves into a case for which 𝐷 (𝑐, 𝑓 ) = ∅). For the sake
of brevity, see [27] for formal motivations of these moves and the

need to allow the 𝐶𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑒𝑠 move to be empty in order to state

that the differences with the focus case do not matter. The propo-

nent is then able to reply in turn with these same moves, and so

on, until the opponent cannot make any further moves.

P1: Cite
Alice (stayed)

02: Cite
Bob (churned)

O1: Worse
{gift, website}

P3: Worse
{high-cost}

P2: Compensates
{present}

O3: Compensates
{gift}

Figure 2: A fictional example of an explanation (dialogue
between proponent and opponent).

Returning to our example, Figure 2 presents the resulting ex-

planation as an argument game, which can be read as follows. P1:

Alice stayed and her case is similar to Charlie’s. O1: Charlie’s scores

for 𝑑−
1
and 𝑑−

3
make him worse for staying than Alice. P2: Charlie’s

score for 𝑑−
2
compensates for O1. O2: Bob churned and his case is

similar to Charlie’s. P3: Charlie’s score for 𝑑+
4
makes him worse

for churning than Bob. O3: Charlie’s score for 𝑑−
1
compensates for

P3. P2: Charlie’s score for 𝑑−
2
compensates for O3. After this, the

opponent has run out of possible moves to make and the propo-

nent wins. The similarity to Alice’s case has held up and acts as an

explanation for the prediction that Charlie will stay as well.

When the proponent cites a precedent for which there are no

relevant differences with the focus case, the opponent cannot in

any way distinguish the focus case from that particular precedent.

If the CB does not contain a case that has no relevant differences

with the focus case but with the opposite outcome (which would be
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a source of inconsistency), the argument game simply ends, since

the opponent cannot cite a counterexample. If the CB does contain

such a case, the opponent cites it as a counterexample which also

has no relevant differences, to which the proponent responds with

an empty downplaying move. In either scenario, we refer to this as

a trivial winning strategy (Definition 6) and to the corresponding

focus case as a trivial case, as opposed to a non-trivial winning

strategy and a non-trivial case.

Definition 6 (Trivial winning strategies). Given a case base
𝐶𝐵 and a focus case 𝑓 , 𝑓 has a trivial winning strategy iff there is a
best precedent 𝑐 ∈ 𝐶𝐵 for which 𝐷 (𝑐, 𝑓 ) = ∅. When 𝑓 has at least one
trivial winning strategy, it is considered to be a trivial case.

3 CB INCONSISTENCY
The labels in labelled training data are typically gathered through

annotation of unlabelled data. Although annotators (who label data

to this end) produce a labelled dataset specifically for the purpose

of training a model, they may not necessarily be fully consistent

when doing so [21]. Annotators might disagree or make an oc-

casional mistake, leading to label inconsistency. Labels may also

be produced by decision makers as part of some decision process.

Take for example judges who decide on court cases, with verdicts

being stored as case law, which can contain conflicting opinions

and interpretations. Finally, the feature vector may be but a subset

of relevant details that influenced a decision, thereby potentially

lacking necessary data to discriminate between seemingly similar

cases [12]. These sources of noise may make the labelling inconsis-

tent. The exact same feature vector may be labelled with class label

0 in one instance and class label 1 in another.

Some label inconsistency is to be expected in many situations in

practice. If a CB corresponds to the training data, as in AF-CBA, it

follows that the CB is likewise expected to contain inconsistencies.

CB inconsistency is however not limited to the conflict between

identical feature vectors with opposing labels. Given Horty’s a

fortiori assumption [16], a case which is at least as good as another

yet receives the opposite outcome is a source of inconsistency. If

feature vector 𝐴 can be said to be more strongly associated with

outcome 1 than feature vector 𝐵, which is indeed labelled as 1, it

would be inconsistent with this assumption if 𝐴 received outcome

0 instead. Thus, CB inconsistency is a broader notion than label

inconsistency and is all the more to be expected.

AF-CBA does not strictly require that the CB be consistent, but it

is not entirely robust in its handling of CB inconsistency. A source

of inconsistency is typically a somewhat exceptional case with a

surprising outcome, such as when one case 𝑐1 ∈ 𝐶𝐵 is at least

as good in all dimensions for outcome 𝑠 as another case 𝑐2 ∈ 𝐶𝐵,

yet received outcome 𝑠 . We call this an inconsistent forcing. Citing
such a case as a precedent can lead to the focus case being forced

for both outcomes. This results in an explanation that hinges on

the acknowledgement of the CB’s inconsistency. It can be argued

that this is unsatisfactory and not ideal when attempting to raise

the transparency of a black box model. The larger the number of

inconsistent forcings (𝑁𝑖𝑛𝑐 ), the larger the number of explanations

where this problem occurs.

In experiments by Prakken & Ratsma [27], significant portions

of a CB had to be ignored (by removing a minimal number of

cases when instantiating the CB) in order to make them consis-

tent—namely 0.32%, 11.35% and 3.20% for three different incon-

sistent datasets. This is unfortunate, as it weakens the merit of

justifications and makes the whole approach less transparent. We

would prefer to use the whole training set as a CB. This problem is

exasperated by feature selection techniques, which would other-

wise help keep explanations simple. In conclusion, CB consistency

forms a problematic constraint for AF-CBA.

We present a modification of AF-CBA that takes into account

the degree to which the CB consistently supports a precedent. We

refer to this measure as the ‘authoritativeness’ of a precedent. Us-

ing authoritativeness prevents inconsistent forcing by modifying

the selection of best precedents to cite. We experiment with sev-

eral possible alternatives of quantifying the authoritativeness and

demonstrate that it has a positive effect on AF-CBA without ad-

versely affecting its explanations.

Instead of mitigating the problem through case deletion [27],

we explicitly take inconsistencies into account. Informally, one

might say that when there is consistency, a precedential case has a

strong backing when cited and should indeed immediately force

the outcome; if there is inconsistency, it has less backing and thus

should not. We therefore introduce the concept of precedential
authoritativeness, bywhichwemean that, given any case 𝑐 ∈ 𝐶𝐵, the

authoritativeness 𝛼 (𝑐) numerically expresses (normalised between

0 and 1) the degree to which the rest of the CB supports the citing

of 𝑐 for 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 (𝑐). We subsequently use 𝛼 (𝑐) as an additional

criterion in the selection of best precedents. The intuition behind

authoritativeness is that whereas the a fortiori rule applied to a

consistent CB can be expressed as the phrase ‘cases like this always

receive outcome𝑜 ,’ our idea of authoritativeness changes this phrase

to ‘cases like this usually receive outcome 𝑜’—where ‘usually’ has

to be quantified in some manner which expresses the inconsistency

of the CB with regards to the focus case. Since 𝛼 (𝑐) is a number,

we can have a total ordering ≤ on the authoritativeness of cases.

Table 3 is another instance of our Churn example. Depending on

how one chooses to define 𝛼 (𝑐), 𝑐1 and 𝑐2 should arguably receive a

higher value for 𝛼 (𝑐) than 𝑐3 due to 𝑐4 having the opposite outcome.

Table 3: Example of a CB with two identical cases that are
consistent with each other and two identical cases which
contradict each other.

Customer 𝑑−
1

𝑑−
2

𝑑−
3

𝑑+
4

𝑜𝑢𝑡𝑐𝑜𝑚𝑒

𝑐1 1 1 0 0 𝑠

𝑐2 1 1 0 0 𝑠

𝑐3 1 1 5 0 𝑠

𝑐4 1 1 5 0 𝑠

First of all, the definition of best precedent has to be modified to

reflect the additional criterion of maximising the authoritativeness:

Definition 7. (Best authoritative precedent) Let 𝐶𝐵 be a case
base and let 𝑐 = (𝐹 (𝑐), 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 (𝑐)) and 𝑓 = (𝐹 (𝑓 ), 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 (𝑓 )) be
two cases, where 𝑐 ∈ 𝐶𝐵 and 𝑓 ∉ 𝐶𝐵. 𝑐 is a best precedent for 𝑓 iff:

• 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 (𝑐) = 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 (𝑓 ),
• there is no 𝑐′ ∈ 𝐶𝐵 such that 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 (𝑐′) = 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 (𝑐)
while 𝐷 (𝑐′, 𝑓 ) ⊂ 𝐷 (𝑐, 𝑓 ) and 𝛼 (𝑐′) ≥ 𝛼 (𝑐).
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To quantify authoritativeness, we require expressions of agree-

ment and disagreement between a precedent and the rest of the

CB:

Definition 8. (Agreement) Let 𝐶𝐵 be a case base. Given 𝑐 ∈ 𝐶𝐵,
the agreement 𝑛𝑎 (𝑐) is defined as:
𝑛𝑎 (𝑐) = | {𝑐′ ∈ 𝐶𝐵 | 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 (𝑐′) = 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 (𝑐) and 𝐷 (𝑐, 𝑐′) = ∅} |

Definition 9. (Disagreement) Let 𝐶𝐵 be a case base. Given 𝑐 ∈
𝐶𝐵, the disagreement 𝑛𝑑 (𝑐) is defined as:
𝑛𝑑 (𝑐) = | {𝑐′ ∈ 𝐶𝐵 | 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 (𝑐′) ≠ 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 (𝑐) and 𝐷 (𝑐, 𝑐′) = ∅} |

We understand 𝑛𝑎 (𝑐) as the number of cases which have the

same outcome as the precedent case and are at least as good for that

outcome as 𝑐 (thereby lending support to 𝑐). Similarly, 𝑛𝑑 (𝑐) is the
number of cases which have the opposite outcome yet are at least

as good for 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 (𝑐). The agreement 𝑛𝑎 (𝑐) has at least a value
of 1 due to 𝑐 itself being a member of the CB. The disagreement

𝑛𝑑 (𝑐) can have a value of 0.

Exactly how the level of agreement relates to authoritativeness

is not self-evident, as various expressions may have equal merit. For

example, given a case 𝑐 ∈ 𝐶𝐵, we could express the authoritative-

ness 𝛼 (𝑐) as the relative number of cases which lend further support

to 𝑐 (1). In Table 3, 𝑐3 is supported by (other than itself) 𝑐1 and 𝑐2,

but opposed by 𝑐4. So in that situation, 𝛼 (𝑐3) = 3/(3 + 1) = 0.75.

𝛼 (𝑐) = 𝑛𝑎 (𝑐)
𝑛𝑎 (𝑐) + 𝑛𝑑 (𝑐)

(1)

However, this overlooks any intuitive understanding of authori-

tativeness which stems from the absolute number of cases that can

act as precedents (2). Intuitively, obscure cases are less authoritative

than common ones. In Table 4, 𝑐1 is supported by two other cases

(again, other than itself), namely 𝑐2 and 𝑐3, while 𝑐5 is supported

by 𝑐1 through 𝑐4. We divide by | 𝐶𝐵 | to normalise the expression

between 0 and 1. So for example 𝛼 (𝑐1) = 3/(3 + 0) = 1 according

to (1) but 𝛼 (𝑐1) = 3/7 ≈ 0.429 according to (2).

𝛼 (𝑐) = 𝑛𝑎 (𝑐)
| 𝐶𝐵 | (2)

Table 4: Example of an inconsistent CB showcasing different
levels of support.

Customer 𝑑−
1

𝑑−
2

𝑑−
3

𝑑+
4

𝑜𝑢𝑡𝑐𝑜𝑚𝑒

𝑐1 1 1 0 0 𝑠

𝑐2 1 1 0 0 𝑠

𝑐3 1 1 0 0 𝑠

𝑐4 1 1 2 0 𝑠

𝑐5 1 1 2 0 𝑠

𝑐6 1 1 2 0 𝑠

𝑐7 1 1 15 0 𝑠

Both relative authoritativeness (1) and absolute authoritativeness
(2) would appear to have some merit intuitively. Using a combina-

tion of the two seems even more intuitive. One option is to create

a product authoritativeness (3) by taking the product of (1) and (2),

essentially using (1) as a weight factor for (2).

𝛼 (𝑐) = 𝑛𝑎 (𝑐)
𝑛𝑎 (𝑐) + 𝑛𝑑 (𝑐)

· 𝑛𝑎 (𝑐)| 𝐶𝐵 | (3)

Alternatively, (1) and (2) can be combined as a weighted har-

monic mean (4). This harmonic authoritativeness introduces a pa-
rameter 𝛽 , the relative importance of one expression over the other.

The added advantage of this is that (1) could be considered twice as

important as (2), for instance. At a value of 𝛽 = 1 (the unweighted

harmonic mean), the two are equally important.

𝛼 (𝑐) = (1 + 𝛽2) ·
𝑛𝑎 (𝑐 )

𝑛𝑎 (𝑐 )+𝑛𝑑 (𝑐 ) ·
𝑛𝑎 (𝑐 )
|𝐶𝐵 |(

𝛽2 · 𝑛𝑎 (𝑐 )
𝑛𝑎 (𝑐 )+𝑛𝑑 (𝑐 )

)
+ 𝑛𝑎 (𝑐 )

|𝐶𝐵 |

(4)

4 DATA-AGNOSTICISM
One point of criticism typically aimed at approaches such as AF-

CBA is that it is limited to a very particular set of circumstances,

namely that of a black-box classifier in combination with an acces-

sible labelled dataset. This situation does indeed occur in practice.

In fact, we encounter such situations in practice at the Netherlands

National Police when data scientists have trained a complex clas-

sifier (e.g. a neural network) to be used by colleagues, in which

case the labelled data is readily available to be used by AF-CBA.

However, classifiers can also be considered black boxes because of

proprietary protection rather than intrinsic complexity, in which

case the labelled data is frequently also kept from clients. Further-

more, classifiers may have been trained a long time ago, making it

all the more likely that the data is no longer available. In practice,

we have previously encountered situations where the labelled data

was inaccessible to non-data scientist employees due to privacy

concerns, whilst a classifier trained on this data could be still be

applied to make predictions. By requiring access to the labelled

data used to train a black-box classifier, AF-CBA belongs to a very

particular category of XAI approaches which are clearly not always

applicable.

To improve the applicability of AF-CBA and place it both the

model-agnostic and ‘data-agnostic’ category of XAI, we could in-

stead instantiate the CB on the basis of a set of earlier focus cases.

The predicted outcome of a new focus case 𝑓 would then be based

on the CB as usual. The caveat with this modification is that the

outcomes in the CB are now derived from the classifier instead

of annotators or decision makers. Its labels are inferred instead of

observed and so no longer represent the ground truth. Nevertheless,

whether justifications are based on the classifier’s output rather

than input labels does not change the fact that they refer to an

approximation of what the classifier has learnt. This alternative

approach is graphically depicted in Figure 3. The data-agnostic

approach presumes that there are at least some precedents for ei-

ther outcome in the CB on which to base justifications. This is

a small limitation and only relevant when the approach is first

implemented, and should therefore not be a serious concern.

We would normally construct training set 𝑋 by labelling a set

sampled from the overall population 𝑃 . The classifier thus trained

is then able to predict the outcome of an unseen instance from 𝑃

(a focus case) to some degree of accuracy. We call the set of all

focus cases 𝑄 . AF-CBA would normally base its justifications for

any 𝑓 ∈ 𝑄 on the CB constructed from 𝑋 . If instead the CB were to
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Figure 3: A schematic depiction of the context in which
AF-CBA is applied without requiring access to the labelled
dataset (𝑋 ).

equal the set 𝑄 , AF-CBA would still construct justifications based

on precedents. The distribution of frequent and infrequent fact

situations in 𝑋 and 𝑄 may be very different. However, if we can

assume that 𝑋 is a representative sample of 𝑃 (as good training

data is supposed to be), this concern diminishes as 𝑄 grows and

becomes a more representative sample of 𝑃 itself.

With this modification, the outcomes in 𝑄 become predicted

outcomes rather than training labels. This means that justifications

generated from 𝑄 refer to the labelling that the classifier has learnt

to apply and not, as previously, to the labelling that the classifier was

expected to learn. The labelled dataset represents a ground truth

from which the classifier has learnt to make predictions and which

we use to justify those predictions, but the benefit of this ground

truth can be questioned. We have already stated that annotators

and decision-makers are not infallible, which explains at least some

inconsistency in some datasets. Furthermore, we know that the

classifier is not infallible. Even a state-of-the-art ML classifier is

likely not to achieve perfect performance metrics and thus some

misclassification is to be expected. With the standard (i.e. not data-

agnostic) approach, those misclassifications are justified on the

basis of precedents which, being the ground truth, do not contain

that misclassification. With the data-agnostic approach, however,

that misclassification is carried over into the CB used to make

justifications. In a sense, that brings justifications closer to the black-

box classifier whose predictions we wish to justify. We believe this

to be an advantage of our data-agnostic modification.

5 EXPERIMENTS
The present work contributes to AF-CBA in two ways and so this

paper’s evaluation consists of two experiments. First, we compare

alternative expressions for the authoritativeness of precedents on

multiple datasets. From these results, we take the most promising

expression and use it in a second experiment to study the applica-

bility of our proposed solution to the problem of data-agnosticism.

In the latter case, the evaluation involves the usage of a trained

classifier to be treated as a black box. In order to actually obtain a

black box, we train a classifier, but its performance is not the true

concern of the experiment.

5.1 Expressions of authoritativeness
The evaluation approach is schematically depicted in Figure 4,

whereby the usability of AF-CBA is evaluated using a series of

metrics (descriptive statistics). Whilst 𝜇 (𝐶𝐵,𝑄) represents the total
mean number of best precedents (Definition 10), we use 𝜇𝑛 (𝐶𝐵,𝑄)
to represent the mean number of best precedents for non-trivial

cases only (Definition 11). The number of inconsistent forcings

(Definition 12) is represented as 𝑁𝑖𝑛𝑐 (𝐶𝐵) and 𝑁𝑑𝑒𝑙 (𝐶𝐵) denotes
the number of case deletions required to obtain a consistent subset

(Definition 13). In the rest of this paper, we denote these metrics

simply as 𝜇, 𝜇𝑛 , 𝑁𝑖𝑛𝑐 and 𝑁𝑑𝑒𝑙 if there is no risk of confusion.

Definition 10 (Number of best precedents). Given a case
base 𝐶𝐵 and a set of focus cases 𝑄 , 𝜇 (𝐶𝐵,𝑄) is the mean number of
best precedents in 𝐶𝐵 for each focus case 𝑓 ∈ 𝑄 .

Definition 11 (Number of best precedents for non-trivial

cases). Given a case base𝐶𝐵 and a set of focus cases𝑄 , 𝜇𝑛 (𝐶𝐵,𝑄) is
the mean number of best precedents in 𝐶𝐵 for each focus case 𝑓 ∈ 𝑄

where 𝑓 is not a trivial case.

Definition 12 (Number of inconsistent forcings). Given a
case base 𝐶𝐵 and a set of focus cases 𝑄 with predicted outcome 𝑠 , the
number of inconsistent forcings 𝑁𝑖𝑛𝑐 (𝐶𝐵,𝑄) is equal to the number
of best precedents𝐶𝐵 which force the decision for 𝑓 ∈ 𝑄 for 𝑠 summed
over all focus cases in 𝑄 .

Definition 13 (Number of case deletions). Given a case base
𝐶𝐵, the number of case deletions 𝑁𝑑𝑒𝑙 (𝐶𝐵) is equal to the minimal
number of cases 𝑐 ∈ 𝐶𝐵 that must be removed from 𝐶𝐵 in order to be
left with a consistent case base.

Higher values of 𝜇 and/or 𝜇𝑛 suggests a larger number of po-

tential winning strategies, making the selected justification more

arbitrary. We therefore aim for low values for 𝜇 and 𝜇𝑛 . Inconsis-

tent forcings decrease the usability of AF-CBA’s justifications, as

they tell the user that Horty’s precedential constraint does not

consistently explain the predicted outcome given the CB. As such,

we would prefer 𝑁𝑖𝑛𝑐 to stay as low as possible. The same goes

for 𝑁𝑑𝑒𝑙 , for which a value of 0 shows that we have circumvented

the problem of inconsistency without case deletion (as was done

in [27]).

We use the following datasets in our experiments: Admission [1]

(applicants to a master’s programme and whether they were ac-

cepted), Churn [17] (customers of a telecommunications provider

and whether they switched providers), SCOTUS [29] (US Supreme

Court cases and their decisions), No-shows [14] (medical patients

and whether they showed up to an appointment), COMPAS [24]

(convicted criminals andwhether they are recidivists) and Fraud [28]

(online payment details and whether they were fraudulent). The

tendencies of all dimensions are determined using the Pearson cor-

relation coefficient. We ignored unsubstantive features and for the
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Figure 4: An informal depiction of the evaluation setup, in
which each case in the labelled set is used in turn as a focus
case to determine total descriptive statistics.

Table 5: The datasets used in the first experiment.

CB size Inconsistent cases

Admission 500 3.20%

Churn 7032 8.43%

SCOTUS 6000 16.83%

No-shows 6000 14.90%

COMPAS 6000 21.13%

Fraud 6000 0%

larger datasets, we took random (fixed seed) samples. See Table 5

for an overview of the sample sizes and the percentage of cases

responsible for inconsistent forcings.
2

We report the results for the four different metrics in Table 6 for

the varying versions of authoritativeness together with the default

usage (where authoritativeness is not used) with which we compare

them. For the harmonic expression (4), we use 𝛽 = 1, which yielded

the best results for each dataset.

Whereas a higher value for 𝑁𝑑𝑒𝑙 often corresponds to a higher

value for 𝑁𝑖𝑛𝑐 in Table 6, No-shows has a particularly high value for

𝑁𝑖𝑛𝑐 for the default approach (suggesting some surprising outliers).

The number of inconsistent forcings 𝑁𝑖𝑛𝑐 drops significantly com-

pared to the default AF-CBA. For relative, product and harmonic

authoritativeness, 𝑁𝑖𝑛𝑐 is 0 for all but Churn and SCOTUS. Abso-

lute authoritativeness still has a few inconsistent forcings for all

but Admission and Fraud. Those results for absolute authoritative-

ness, however, are still significantly lower than for the default. We

observe that 𝑁𝑑𝑒𝑙 likewise drops drastically with all expressions,

suggesting that remaining occurrences of inconsistent forcing are

typically caused by a very small number of cases.

We see that the impact of authoritativeness on 𝜇 and 𝜇𝑛 is quite

limited for most versions of authoritativeness (except relative au-

thoritativeness), suggesting that explanations should not become

more arbitrary by using authoritativeness in the identification of

2
For a detailed account of the features used and the data-preprocessing steps taken, as

well as the source code of the experiments, see: https://github.com/JGTP/ICAIL.

Table 6: Results per dataset and per expression of authori-
tativeness, including the default approach where authorita-
tiveness is not used.

Default Relative 𝛼 Absolute 𝛼 Product 𝛼 Harmonic 𝛼

A
d
m
i
s
s
i
o
n 𝜇 = 105.67

𝜇𝑛 = 6.12

𝑁𝑖𝑛𝑐 = 496

𝑁𝑑𝑒𝑙 = 16

𝜇 = 112.1

𝜇𝑛 = 22.59

𝑁𝑖𝑛𝑐 = 0

𝑁𝑑𝑒𝑙 = 0

𝜇 = 105.95

𝜇𝑛 = 7.34

𝑁𝑖𝑛𝑐 = 0

𝑁𝑑𝑒𝑙 = 0

𝜇 = 106.0

𝜇𝑛 = 7.61

𝑁𝑖𝑛𝑐 = 0

𝑁𝑑𝑒𝑙 = 0

𝜇 = 105.97

𝜇𝑛 = 7.44

𝑁𝑖𝑛𝑐 = 0

𝑁𝑑𝑒𝑙 = 0

C
h
u
r
n

𝜇 = 33.71

𝜇𝑛 = 26.13

𝑁𝑖𝑛𝑐 = 19484

𝑁𝑑𝑒𝑙 = 593

𝜇 = 83.8

𝜇𝑛 = 109.86

𝑁𝑖𝑛𝑐 = 6

𝑁𝑑𝑒𝑙 = 3

𝜇 = 43.21

𝜇𝑛 = 37.24

𝑁𝑖𝑛𝑐 = 42

𝑁𝑑𝑒𝑙 = 20

𝜇 = 43.68

𝜇𝑛 = 38.28

𝑁𝑖𝑛𝑐 = 4

𝑁𝑑𝑒𝑙 = 2

𝜇 = 43.32

𝜇𝑛 = 37.56

𝑁𝑖𝑛𝑐 = 4

𝑁𝑑𝑒𝑙 = 2

S
C
O
T
U
S

𝜇 = 28.96

𝜇𝑛 = 27.28

𝑁𝑖𝑛𝑐 = 62600

𝑁𝑑𝑒𝑙 = 1010

𝜇 = 345.42

𝜇𝑛 = 411.82

𝑁𝑖𝑛𝑐 = 52

𝑁𝑑𝑒𝑙 = 23

𝜇 = 44.1

𝜇𝑛 = 40.89

𝑁𝑖𝑛𝑐 = 262

𝑁𝑑𝑒𝑙 = 66

𝜇 = 43.52

𝜇𝑛 = 40.72

𝑁𝑖𝑛𝑐 = 16

𝑁𝑑𝑒𝑙 = 7

𝜇 = 44.2

𝜇𝑛 = 41.1

𝑁𝑖𝑛𝑐 = 16

𝑁𝑑𝑒𝑙 = 7

N
o
-
s
h
o
w
s 𝜇 = 235.98

𝜇𝑛 = 60.29

𝑁𝑖𝑛𝑐 = 333584

𝑁𝑑𝑒𝑙 = 894

𝜇 = 556.16

𝜇𝑛 = 379.85

𝑁𝑖𝑛𝑐 = 0

𝑁𝑑𝑒𝑙 = 0

𝜇 = 246.51

𝜇𝑛 = 62.59

𝑁𝑖𝑛𝑐 = 86

𝑁𝑑𝑒𝑙 = 34

𝜇 = 246.74

𝜇𝑛 = 62.7

𝑁𝑖𝑛𝑐 = 0

𝑁𝑑𝑒𝑙 = 0

𝜇 = 246.62

𝜇𝑛 = 62.65

𝑁𝑖𝑛𝑐 = 0

𝑁𝑑𝑒𝑙 = 0

C
O
M
P
A
S 𝜇 = 284.43

𝜇𝑛 = 36.68

𝑁𝑖𝑛𝑐 = 492176

𝑁𝑑𝑒𝑙 = 1268

𝜇 = 480.4

𝜇𝑛 = 306.84

𝑁𝑖𝑛𝑐 = 0

𝑁𝑑𝑒𝑙 = 0

𝜇 = 286.4

𝜇𝑛 = 40.97

𝑁𝑖𝑛𝑐 = 256

𝑁𝑑𝑒𝑙 = 73

𝜇 = 287.13

𝜇𝑛 = 42.33

𝑁𝑖𝑛𝑐 = 0

𝑁𝑑𝑒𝑙 = 0

𝜇 = 286.77

𝜇𝑛 = 41.81

𝑁𝑖𝑛𝑐 = 0

𝑁𝑑𝑒𝑙 = 0
F
r
a
u
d

𝜇 = 62.5

𝜇𝑛 = 63.03

𝑁𝑖𝑛𝑐 = 0

𝑁𝑑𝑒𝑙 = 0

𝜇 = 62.5

𝜇𝑛 = 63.03

𝑁𝑖𝑛𝑐 = 0

𝑁𝑑𝑒𝑙 = 0

𝜇 = 67.96

𝜇𝑛 = 68.61

𝑁𝑖𝑛𝑐 = 0

𝑁𝑑𝑒𝑙 = 0

𝜇 = 67.96

𝜇𝑛 = 68.61

𝑁𝑖𝑛𝑐 = 0

𝑁𝑑𝑒𝑙 = 0

𝜇 = 67.96

𝜇𝑛 = 68.61

𝑁𝑖𝑛𝑐 = 0

𝑁𝑑𝑒𝑙 = 0

best precedents in most scenarios. They rise slightly if inconsis-

tency is not completely reduced. Since Fraud is an entirely con-

sistent dataset, 𝑁𝑖𝑛𝑐 and 𝑁𝑑𝑒𝑙 remain zero for all expressions of

authoritativeness. We see in Table 6 that in this scenario, 𝜇 and 𝜇𝑛
are hardly affected. This suggests that authoritativeness could be

safely applied without checking for the degree of inconsistency.

From these results we conclude that our modification success-

fully deals with the problem of CB inconsistency, that our modifi-

cation is therefore preferable to the default identification of best

precedents and that the harmonic expression of authoritativeness (4)

with 𝛽 = 1 is typically preferable (although it differs little from the

product expression of authoritativeness (3)).

5.2 Data-agnostic approach
We conduct a second experiment to investigate the consequences of

the modification described in Section 4 allowing for a data-agnostic

version of AF-CBA. In order to evaluate this modification of the

approach, we randomly split the complete Churn dataset of size

7032 evenly into 𝑋 (including the labels) and 𝑄 (excluding the

labels). Dataset 𝑋 is used to train a classifier
3
and the cases from 𝑄

are incrementally used as focus cases and appended to the CB after

receiving a prediction from the classifier. The evaluationmetrics can

thus be recalculated as the CB grows. This process (including the

random split) is repeated three times and the metrics are averaged,

to make the results more generalisable. See Figure 5 for a depiction

of this setup.

3
We follow the same strategy using XGBoost as a popular notebook (reported accuracy:

0.83 [5]) found on the data science website Kaggle for the Churn dataset. With our

smaller training set, this reaches an average accuracy of 0.77.

https://github.com/JGTP/ICAIL
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Figure 5: A schematic depiction of the evaluation setup for
the data-agnostic approach.

The data-agnostic approach is evaluated using in part the same

metrics as before, to see if these behave in an unexpected way. We

expect 𝜇 and 𝜇𝑛 to grow steadily with |𝐶𝐵 | and eventually level off,

showing that the CB is becoming more similar to 𝑋 (presumably

because it is becoming more representative of the population 𝑃 ).

We expect 𝑁𝑖𝑛𝑐 to grow much more slowly, as inconsistent forcings

are often caused by exceptional cases (outliers), which are likely

to be misclassified by the classifier and thus receive the opposite

(consistent) outcome in the CB. We expect the same for 𝑁𝑑𝑒𝑙 .

In addition to these previous four metrics, we introduce two

metrics that were unaffected by authoritativeness but can vary here,

namely the number of trivial and non-trivial winning strategies.

This distinction was also used by Prakken & Ratsma [27]. Trivial

winning strategies do not play to the full the strength of AF-CBA, as

theymake for very simple justifications.Wewould prefer them to be

relatively rare. We measure the number of trivial winning strategies

by the metric 𝑁𝑡𝑤𝑠 (𝐶𝐵,𝑄) (Definition 14) and the number of non-

trivial winning strategies as 𝑁𝑛 (𝐶𝐵,𝑄) (Definition 15), hereafter

denoted as 𝑁𝑡𝑤𝑠 and 𝑁𝑛 .

Definition 14 (Number of caseswith trivialwinning strate-

gies). Given a case base𝐶𝐵 and a set of focus cases𝑄 , the number of
trivial winning strategies𝑁𝑡𝑤𝑠 (𝐶𝐵,𝑄) is equal to the number of focus
cases 𝑓 ∈ 𝑄 for which there is a case 𝑐 ∈ 𝐶𝐵 for which 𝐷 (𝑓 , 𝑐) = 0.

Definition 15 (Number of cases with non-trivial winning

strategies). Given a case base 𝐶𝐵 and a set of focus cases 𝑄 , the
number of non-trivial winning strategies 𝑁𝑛 (𝐶𝐵,𝑄) is equal to the
number of focus cases 𝑓 ∈ 𝑄 for which there is no case 𝑐 ∈ 𝐶𝐵 for
which 𝐷 (𝑓 , 𝑐) = 0.

We want to compare the evaluation metrics for the growing CB

using predicted outcome labels to what the metrics would have

been if we had used the original labels (|𝐶𝐵 | = 7032/2 = 3516)

instead (default (mean): 𝜇 = 20.49, 𝜇𝑛 = 21.56, 𝑁𝑖𝑛𝑐 = 4906.67,
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Figure 6: The various metrics as a function of the size of the
CB in the data-agnostic approach for the churn dataset, aver-
aged over three iterations for the default approach (top) and
the harmonic (𝛽 = 1) authoritativeness approach (bottom) to
best precedent identification.

𝑁𝑑𝑒𝑙 = 240.33, 𝑁𝑡𝑤𝑠 = 2435.33, 𝑁𝑛 = 1080.67; harmonic (mean):

𝜇 = 26.17, 𝜇𝑛 = 29.46, 𝑁𝑖𝑛𝑐 = 0, 𝑁𝑑𝑒𝑙 = 0, 𝑁𝑡𝑤𝑠 = 2529, 𝑁𝑛 = 987).

We want to see if the values using the predicted labels converge on

those using the original labels.

The performance is presented in Figure 6. We see that all metrics

grow steadily with |𝐶𝐵 |, albeit not at the same rate. As was to be

expected given our earlier results, both 𝑁𝑖𝑛𝑐 and 𝑁𝑑𝑒𝑙 are nearly

absent in the bottom plot, re-emphasising the usefulness of authori-

tativeness. Both metrics are lowered in the top plot too compared to

the means using the original labels, suggesting that the classifier is

misclassifying cases that were originally the cause of inconsistent

forcing relations to now be consistent with the CB. In both plots,

both 𝑁𝑡𝑤𝑠 and 𝑁𝑛 do not deviate much from their values using the

original labels, we only see a small tilt towards 𝑁𝑛 .
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The mean number of precedents 𝜇 and 𝜇𝑛 do not deviate much

from their values with the original labels, except that 𝜇𝑛 is slightly

higher for harmonic authoritativeness. This difference is not large

enough to cause concern and nothing else suggests that using au-

thoritativeness provides any disadvantage for the data-agnostic

approach. Overall, these results suggest that the data-agnostic ap-

proach produces no significant adverse effects.

6 DISCUSSION AND FUTUREWORK
The results for Churn and SCOTUS in Table 6 suggest that 𝜇 and

𝜇𝑛 can show a small increase when using harmonic authoritative-

ness (4) for datasets where 𝑁𝑖𝑛𝑐 and 𝑁𝑑𝑒𝑙 are not completely re-

duced to zero, although it does still largely mitigate the problem

of inconsistency. This could imply that a comparison between the

default approach and harmonic authoritativeness could sometimes

be warranted when implementing AF-CBA. However, the reduction

in 𝑁𝑖𝑛𝑐 and 𝑁𝑑𝑒𝑙 is so strong that it does not seem very likely that

the default approach should ever be preferable because of a small

rise in 𝜇 and 𝜇𝑛 .

None of our four expressions for authoritativeness (1)-(4) ever

reach a value of 0 for any case in the CB. This seems intuitive,

since any case should have at least some authoritativeness simply

due to its being a precedent. A value of 𝛼 (𝑐) = 1 is only realistic

when using our relative expression of authoritativeness (1). This

would only be a problem if values due to different expressions of

authoritativeness would have to be compared to each other, which

is not currently part of our approach. If multiple explanations are

ever to be compared as part of some overarching approach, these

(and possibly other) characteristics of alternative authoritativeness

expressions would have to be taken into account.

Our data-agnostic modification raises a rather difficult ques-

tion to answer: is it preferable to justify a misclassification using

precedents which are (presumably) correctly labelled, or to justify

them using precedents which are labelled by the same classifier

which made that misclassification and thus may themselves be mis-

classified? In both cases, AF-CBA provides justifications for the

outcome and the debate is therefore related to the debate surround-

ing explainability through justifications [6]: is it better to attempt to

provide an interpretable representation of an abstract mathematical

formula or to provide a train of thought that makes a decision mean-

ingful to the user? The number of inconsistent forcings may be

smoothed out in the data-agnostic approach, but misclassifications

are justified to the user in both circumstances. Furthermore, we

have argued for the data-agnostic approach by stating that training

data is often not available in practice, thus eliminating the standard

approach as a possibility. Most importantly, this decision to use the

data-agnostic approach should be transparent and made apparent

to the users of AF-CBA at all times.

Our modification of AF-CBA relies on the intuition that one

precedent can be more authoritative than another. We have demon-

strated its consequences, given that higher or lower metric scores in-

dicate better explanations (as was argued in the original paper [27]).

However, it could be argued that these metrics offer a limited insight

into the quality of AF-CBA’s explanations. As AF-CBA is intended

to justify predictions to human users and since the effectiveness

of justifications can be surprising in practice (e.g. [7]), testing its

performance thoroughly requires a usability study. Any alterna-

tive modifications and additional metrics could then be compared

to study the effect in a real-world setting. This could also allow

us to investigate the relation between the nature of a dataset and

the perceived applicability of a fortiori reasoning, as the notion of

precedential constraint may be more suitable for those contexts in

which internal consistency plays a large role.

There may be qualitative reasons for ranking precedents as well,

and there may be added value in using these alongside quantitative

reasons in future work. One might rank decisions of a supreme

court higher than those of lower courts, for instance. Furthermore,

additional modifications to AF-CBA could include incorporating

complex arguments in the explanations (AF-CBA is qualified as

a ‘top-level’ model due to the possibility of providing it with a

set of definitions as to why specific downplaying moves can be

played) or accounting for dimensions which are highly dependent.

Another possibility is an alteration that allows dimensions to have a

more complex effect on predictions than the tendencies used in this

paper. There exist binary classification tasks for which this would

be desirable. For example, a dimension such as blood pressure could

be a predictor for illness both at very low and very high values,

with a value in the intermediate range being a predictor for the

patient not being ill. We intend to include this in our future work.

7 RELATEDWORK
The problem of (factor-based) reasoning with an inconsistent CB is

studied from a different perspective by Canavotto [8]. A generalised

notion of precedential constraint allows for a conflict-free deontic

logic that allows a court using an inconsistent CB to be either

required to decide for one side or the other, or permitted to decide

for either side. Rather than requiring the court to preserve the

consistency of a consistent CB, courts are required to avoid new

inconsistencies when extending an existing (possibly inconsistent)

CB.

AF-CBA is emphatically not used to classify cases, but Horty’s

underlying a fortiori reasoning can be used as such. One example

is by Odekerken & Bex [23], who use precedential constraint in a

transparent classification system of fraudulent web shops. Within

their legal case-based reasoning module, the factors of a web shop

are compared to labelled precedents to determine whether it should

receive the label mala fide, bona fide or neither. The result, includ-
ing the precedent for which precedential constraint applies, are

presented to a human user for further analysis. If the user disagrees

with the received label, they can add factors to the case along with

the corrected label. As such, the CB grows more elaborate and class

predictions gradually improve.

The original top-level model [27] is rephrased by Van Woerkom

et al. [30] in terms of justification and citation relations. The expla-

nation model is thus shown to be equivalent to adding an extension

of the forcing relation to the theory of precedential constraint. In

a related paper [31], Van Woerkom et al. introduce a notion of

‘landmark cases’ and use it to characterise applicable datasets.

Consistency plays perhaps a larger role in case-based reasoning

specifically than it does in ML at large, due to the notion of inconsis-

tent forcing resulting from precedential constraint. However, there

is recent work on notions of consistency within the ML literature.
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For example, various types of label noise and its sources are inves-

tigated by Frénay & Verleysen [12]. Furthermore, various types of

consistency are considered in work by Li et al. [18]. They argue that

optimising a classifier for accuracy only has its downsides, such as

neglecting a need for internal consistency across examples. They

present a learning framework in which logic rules allow models to

be regularised away from inconsistencies by relaxing those rules

using t-norms, thereby producing differentiable functions which

can be used as loss terms. It is shown how annotation consistency

simply results in standard cross-entropy loss when converted with

product t-norms and transformed to the negative log space, thereby

giving credence to their approach. By combining several constraints

in the overall loss function, they show that one does not have to

come at the cost of another and that the interplay between loss

terms can even be beneficial. One could perhaps view their no-

tion of additional consistencies as the application of domain rules,

which raises the question whether that could have a role to play in

example-based XAI as well.

CONCLUSION
AF-CBA is an approach from the example-based XAI tradition [4]

inspired by work in AI & Law [2, 9, 10]. AF-CBA uses case-based

argumentation to provide post hoc justifications for label predictions
by an opaque (black box) machine learning classifier. This paper

presents intuitive graphical clarifications of the processes in AF-

CBA, and furthermore extends AF-CBA in two novel ways:

• We have presented the notion of precedential authoritative-

ness to mitigate the problem of case base inconsistency.

• We have presented a data-agnostic version of AF-CBAwhich

does not rely on the original training data.

We initially modelled AF-CBA’s criteria for best precedents by

adding a quantified expression of how authoritative a precedent is in

light of the degree to which that case base consistently supports the

conclusion of that precedent’s outcome (label). We experimented

with alternative quantifications of this criterion to study which ex-

pression is the most fruitful regarding the handling of inconsistency

without adversely affecting the explanations. This was determined

to be the harmonic expression of authoritativeness.

We subsequently replaced the case base (previously equated with

the labelled data used to train the classifier) with one constructed

from earlier predictions. We have shown that this does not have any

serious adverse effects on the evaluation metrics used for AF-CBA

and that the advantages of using our authoritativeness criterion

translate to this data-agnostic approach, thus allowing AF-CBA to

be used without access to the original labelled data.
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