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Abstract
AF-CBA uses case-based argumentation to justify classifier
predictions by arguing about differences between cases. We
extend the mechanism by modelling which differences can
compensate for each other by constructing arguments using
domain knowledge. This involves a secondary argumentation
framework. To assist experts in defining the appropriate domain
knowledge, we use a rule-based classifier for semi-automated
knowledge induction. We use the resulting rule set to derive
arguments and demonstrate this with an evaluation procedure.

CCS Concepts
• Computing methodologies → Knowledge representation and
reasoning; Machine learning; • Applied computing → Law.
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1 Introduction
The ability to justify machine learning (ML) models has be-
come a critical area of interest with the rise of black-box models.
Understanding the rationale behind predictions is essential for
establishing trust, especially in high-stakes domains such as
finance, medicine, and security. This also fosters better domain
understanding, which can be a goal unto itself.

This paper is focussed on enhancing the explainable artifi-
cial intelligence (XAI [19]) approach called ‘a fortiori case-
based argumentation’ (AF-CBA [24]). AF-CBA justifies binary
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classification predictions using the theory of precedential con-
straint [12], referencing cases from a case base built from train-
ing (or historical [22]) data. This reasoning model thus follows
and is inspired by legal patterns of reasoning, where established
principles are paramount. Our aim is to extend this approach
by incorporating domain knowledge, acknowledging its im-
portance in decision-making and using established knowledge
to make justifications more understandable to domain experts.
The first part of this paper is based on preliminary work[20],
which we elaborate and extend in the current paper.

A ML classifier can be considered a black box due to its tech-
nical complexity or propietary nature [10, 15]. Neural networks,
for example, typically have improved predictive accuracy com-
pared to decision trees, at the expense of increased opacity.
With an opaque model, biases can remain hidden. Transparency
is often a legal requirement for decision-making processes [2],
both within and outside the legal domain. This is especially
concerning in high-stakes domains like law enforcement, where
decisions have significant consequences. One might argue that
such tasks preclude black-box models. However, if the alterna-
tive model does not perform well enough, a trade-off becomes
unavoidable. Post hoc approaches like AF-CBA address this by
justifying ML predictions without accessing the model itself,
making it model-agnostic.

Our research is concerned with a high-stakes and sensitive
domain, counter-terrorism, in which classifiers might predict
whether an incident is linked to a specific terrorist organisation
on the basis of its modus operandi, or whether law enforcement
should respond to it as a coordinated attack versus a ‘lone-wolf’
incident. In this paper, we use a scenario where officials use a
black-box classifier to predict whether an incident is an act of
terrorism or not. Such a prediction is then justified using AF-
CBA. We want AF-CBA to refer to expert domain knowledge
to justify its decisions. Our approach follows a tradition of
combining rule- and case-based reasoning, as demonstrated by
Golding & Rosenbloom [8] and Rissland & Skalak [25], who
integrated these methods to handle rule exceptions.

An important caveat is that the domain knowledge itself is
not necessarily available in a suitable form. Therefore, we ad-
dress the challenge of semi-automatically discovering domain
knowledge. Specifically, we focus on identifying preference
relations between sets of features (dimensions) in a dataset,
where one set is more crucial than another for predicting an
outcome. These relations are discovered within the dataset and
can be debated or modified by domain experts.

The rest of this paper is structured as follows. We describe
the preliminaries of AF-CBA in Section 2 and our extension
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Figure 1: A schematic depiction of our XAI approach. The
dashed line represents the scenario in which the case base
is created from training data, the dotted line in which it is
created from historical predictions.

using a secondary argument framework in Section 3. We then
look at possible knowledge induction approaches to inform this
extended approach in Section 4 with domain knowledge derived
from data and evaluate this approach in Section 5 and some
related literature in Section 6. Finally, we discuss conclusions
and future work in Section 7.

2 AF-CBA
Justifying binary class predictions made by a classifier is analo-
gous to court rulings based on legal precedents. Prakken and
Ratsma [24] introduced a top-level model, later named AF-
CBA, which draws from AI & Law research and employs case-
based argumentation influenced by Horty’s theory of preceden-
tial constraint reasoning [11]. AF-CBA builds on CATO [1]
and the work of Čyras et al. [5, 6]. AF-CBA is, however, not
a standalone classifier, but a post hoc approach designed to
justify the predictions of an existing ML model.

AF-CBA’s procedure is graphically depicted in Figure 1.
A random sample from the broader population is assigned
labels by annotators or decision-makers, and a classifier is
trained on this data (supervised ML). A focus case is a new,
individual random sample, with the classifier predicting an
outcome for it. However, this classifier is a black box and cannot
justify its decision. AF-CBA resolves this by using either the
labelled data or previous case predictions [22] as a case base,
and conducts an argument game between a proponent and an
opponent of the predicted outcome. Cases similar to the focus
case are invoked to argue that the focus case should receive
the same outcome, provided that any differences between the
two only serve to reinforce the outcome for the focus case
(precedential constraint). The game is based on Dung’s abstract
argumentation framework [7], using grounded semantics [23].
The proponent’s winning strategy is presented as a justification
for the predicted outcome as an argument graph.

An abstract argumentation framework (AF), as introduced
by Dung [7], is defined as a pair AF = ⟨A, attack⟩, where A is a
set of arguments, and attack is a binary relation on A. A subset
B of A is considered conflict-free if no argument in B attacks any
other argument in B, and admissible if it is both conflict-free
and able to defend itself against attacks. More specifically, if an
argument A1 belongs to B, and some argument A2 in A attacks
A1, then there must be an argument in B that counters A2. There
are various types of admissible sets, referred to as extensions.
This work focuses on the grounded extension, which has the
additional properties of containing all the arguments it defends
and being the minimal subset that satisfies these conditions.

Formally, a case within the case base (CB) consists of an
outcome and a fact situation. The outcome is a binary label,
denoted by either o or o′. The variables s and s̄ represent the
two sides, with s = o if s̄ = o′, and vice versa. The fact situation
contains dimensions, where each dimension is a tuple d =
(V,≤o,≤o′). This tuple includes a value set V and two partial
orderings on V , ≤o and ≤o′ , such that v ≤o v′ if and only
if v′ ≤o′ v, where v,v′ ∈V . Each dimension has an associated
tendency, where a positive tendency indicates that higher values
are linked with one particular outcome (e.g., 1 or true), and
the reverse tendency applies for the opposing outcome. The
tendency can sometimes be explicitly given, for example as d+

i
or d−

i . In other words, a dimension is a feature with a tendency.
A value assignment, written as (d,v), specifies the value x of
dimension d in case c ∈ CB, represented as v(d,c) = x. The
collective set of value assignments for all dimensions d within
the non-empty set D constitutes a fact situation denoted by F .
It is assumed that two fact situations refer to the same set D.
A case is defined as c = (F,outcome(c)), where outcome(c) ∈
{o,o′}, and the fact situation for case c is expressed as F(c).
When comparing two fact situations, it is possible to determine
that one case is ‘stronger’ or ‘better’ for a particular outcome
than the other. As an example, Table 1 shows a precedent c
with a better value for dimension d−

weapon than the focus case f ,
but a worse value for d+

casualties. The outcome of a focus case is
considered forced if there is a precedent within the case base
(CB) with the same outcome, and all the differences between
the focus case and the precedent only reinforce the focus case’s
suitability for that outcome [12].

Table 1: Precedent case c and focus case f .

Case d+
casualties d−

weapon ... Outcome
c 5 low ... True
f 10 high ... True

DEFINITION 1 (PREFERENCE RELATION FOR FACT SITUA-
TIONS). Given two fact situations F and F ′, F ≤s F ′ iff v ≤s v′

for all (d,v) ∈ F and (d,v′) ∈ F ′.

DEFINITION 2 (PRECEDENTIAL CONSTRAINT). Given
case base CB and fact situation F, deciding F for s is forced iff
CB contains a case c = (F ′,s) such that F ′ ≤s F.
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DEFINITION 3 (CASE BASE CONSISTENCY). A case base
CB is consistent iff it does not contain two cases c = (F,s) and
c′ = (F ′, s̄) such that F ≤s F ′. Otherwise it is inconsistent.

A fact situation could be forced for both outcomes o and
o′ by different precedents, in which case we can speak of an
inconsistent CB (Definition 3). A best precedent (Definition 5)
has the same outcome as the focus case and as few as possible
relevant differences (Definition 4). Multiple cases can meet
these criteria.

DEFINITION 4 (DIFFERENCES BETWEEN CASES). Let
c = (F(c),outcome(c)) and
f = (F( f ),outcome( f )) be two cases. The set D(c, f )
of differences between c and f is D(c, f ) = {(d,v) ∈
F(c) | v(d,c)≰outcome( f ) v(d, f )}.

DEFINITION 5 (BEST PRECEDENT). Let c =
(F(c),outcome(c)) and f = (F( f ),outcome( f )) be two
cases, where c ∈CB and f /∈CB. c is a best precedent for f iff:

• outcome(c) = outcome( f ) and
• there is no c′ ∈CB such that outcome(c′) = outcome(c)

and D(c′, f )⊂ D(c, f ).

The two players debate differences between the focus case
and cited precedents. The proponent argues in favour of the pre-
dicted outcome; the opponent challenges it. The proponent ini-
tiates the argument by citing a best precedent. The opponent’s
objective is to respond either by presenting a counterexample or
by making a distinguishing move, Worse(c,x), indicating that
the focus case is weaker than precedent c in dimensions x. A dis-
tinguishing move can in turn be countered with a compensation
move, Compensates(c,y,x), where dimensions y offset the de-
ficiencies in dimensions x relative to precedent c. Additionally,
the transformation move, Trans f ormed(c,c′), indicates that
the cited case can be transformed into one where D(c, f ) = /0.
The proponent may use any of these moves to respond, after
which the opponent can reply, and this back-and-forth contin-
ues until the opponent is unable to make further moves. Note
that y in Compensates(c,y,x) may be the empty set, ensuring
the possibility of a compensation move. This guarantees the
existence of a winning strategy for the proponent, making AF-
CBA ‘explanation complete’ [24] and thus ensuring that the
predicted class can always be justified.

Definition 6 presents the argumentation framework. Com-
pensation relies on sc, which was deliberately left unspecified
by Prakken and Ratsma [24]. In its simplest form, it functions
as a partial ordering on dimensions, indicating when a strong
value for di compensates for a poor value for d j. This essen-
tially conveys domain knowledge. In this paper, we utilise sc
to incorporate domain knowledge into the framework.

DEFINITION 6 (CASE-BASED ARGUMENTATION FRAME-
WORK). Given a case base CB, a focus case f /∈CB, and defini-
tions of compensation sc, an abstract argumentation framework
AF is a pair < A ,attack >, where:

• A =CB∪M,
with M = {Worse(c,x) | c ∈CB, x ̸= /0 and

x = {(d,v) ∈ F( f ) | v(d, f )<outcome( f ) v(d,c)}} ∪
{Compensates(c,y,x) | c ∈CB,
y ⊆ {(d,v) ∈ F( f ) | v(d,c)<outcome( f ) v(d, f )},
x = {(d,v) ∈ F( f ) | v(d, f )<outcome( f ) v(d,c)} and y
compensates x according to sc} ∪
{Trans f ormed(c,c′) | c ∈CB and c can be transformed
into c′ and D(c′, f ) = /0}

• A attacks B iff:
– A,B ∈CB and outcome(A) ̸= outcome(B) and

D(B, f ) ̸⊂ D(A, f );
– B ∈CB with outcome(B) = outcome( f ) and A is of

the form Worse(B,x);
– B is of the form Worse(c,x) and A is of the form

Compensates(c,y,x);
– B ∈CB and outcome(B) ̸= outcome( f ) and A is of

the form Trans f ormed(c,c′).

3 Compensation Moves and Preference
Relations

In Definition 6, the set sc represents any construct that encom-
passes some form of domain knowledge. This could include hi-
erarchical relationships akin to CATO [1, 26] or ontologies [21].
The interpretation of the phrase “...y compensates x according
to sc...” varies based on context. We aim to develop arguments
with conclusions of the type compensates(c,y,x) derived from
domain knowledge. The relevant domain knowledge does not
have to be uncontested—a specific insight might have excep-
tions, for instance. We conceptualise sc as an argumentation
framework denoted by AFsc = ⟨A,attack⟩, which consists of ar-
guments formed by instantiating argumentation schemes based
on domain knowledge [27]. Utilising AFsc, we ascertain the
available compensation moves by determining which conclu-
sions are in the grounded extension.

3.1 Compensation as an Argument Scheme
Domain knowledge can be used as in Scheme 1: a conclusion
drawn from premises indicating that the fact situation is less
favourable for f in dimensions Dw (premise w), while being
more favourable in dimensions Db (premise b), coupled with
the condition that Db is preferred over Dw (premise p), accord-
ing to the preference relation Dw ≺ Db. The worse values of f
in relation to c regarding Dw can be compensated by the better
values of f in Db, and these dimensions are regarded as more
significant for the outcome. Note that the terms ‘worse’ and
‘better’ are contextual and do not necessarily equate to lower
and higher values, respectively.

ARGUMENTATION SCHEME 1 (COMPENSATION). Let c ∈
CB be a precedent, f be a focus case, and Db,Dw ⊆ D two
sets of dimensions where Db ∩Dw = /0, then the compensa-
tion scheme COMP( f ,c,Db,Dw) is defined as the following
reasoning pattern:

w: Dw = {d ∈ D | d( f )<outcome( f ) d(c)}
b: Db = {d ∈ D | d( f )>outcome( f ) d(c)}
p: Dw ≺ Db
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———————————
Conc: compensates(c,{(d,v) ∈ F( f ) | d ∈ Db},

{(d,v) ∈ F( f ) | d ∈ Dw})

In Table 1, f has a higher weapon sophistication (dweapon)
than c, which is associated with non-terrorist incidents, ren-
dering f less favourable on this dimension. However, f also
records a higher number of casualties (dcasualties), an indicator
of a terrorist incident. By employing the domain knowledge
that a greater number of casualties offsets a higher weapon
sophistication, we derive the following argument:

COMP( f , c, Db, Dw):
w: Dw = {dweapon}
b: Db = {dcasualties}
p: {dweapon} ≺ {dcasualties}

———————————
Conc: compensates(c,{(dcasualties,10)},

{(dweapon,high)})
In this scenario, the argument asserts that while f possesses

a higher (‘worse’) level of weapon sophistication than c, the
higher (‘better’) casualties figure associated with f counterbal-
ances this, justifying the predicted outcome of true for f . We
presume that the fact situations of both the precedents from
the CB and the focus case are known, preventing any chal-
lenge to the first two premises of this scheme. Moreover, this
scheme is strict in that the conclusion cannot be attacked if all
its premises are satisfied. However, we must ascertain the truth
of premise p (the preference relation that supports the compen-
sation move). In practice, various conditions may influence a
preference relation, which we will now examine in detail.

3.2 Conditional Preference Relations
A threshold must be satisfied for a preference relation to hold,
as per Scheme 2. For example, the aforementioned relation
{dweapon} ≺ {dcasualties} might only be applicable when the
number of casualties is sufficiently high, say at least 4. A lower
casualty count may not be regarded as sufficient justification
to offset the fact that the sophisticated weapon involved in
this incident is atypical. Thus, the validity of premise p for
this particular instance of Scheme 2 relies on the condition
that dcasualties ≥ 4. While additional conditions will be consid-
ered later, we will first summarise the sets of conditions for a
preference relation Dw ≺ Db under an abstract premise Ψ.

ARGUMENTATION SCHEME 2 (PREFERENCE). Let f be a
focus case, s ∈ {o,o′}, Db,Dw ⊆ D be two sets of dimensions
where Db ∩Dw = /0, Ψ be an abstract placeholder whose truth
value represents whether the preference conditions are fulfilled.
Then the preference scheme PREF( f ,Db,Dw,D) is defined as
the following reasoning pattern:

ψ: Ψ (preference conditions fulfilled)
===================

Conc: Dw ≺ Db

Scheme 2 assesses whether Ψ holds in a given instance. If
it does, the corresponding preference relation can be inferred
and subsequently employed as premise p in the instantiation

of Scheme 1. In Table 1, the focus case f exhibits a ‘worse’
level of weapon sophistication (dweapon) alongside a ‘better’
count of casualties (dcasualties). By instantiating Schemes 2
(PREF( f ,Db,Dw,D)) and 1 (COMP( f ,c,Db,Dw)), we can
formulate the following argument:

PREF( f , Db, Dw, D):
ψ: dcasualties( f )≥ 4

===================
Conc: {dweapon} ≺ {dcasualties}

COMP( f , c, Db, Dw):
w: Dw = {dweapon}
b: Db = {dcasualties}
p: {dcasualties} ≺ {dweapon}

———————————
Conc: compensates(c,{(dcasualties,10)},

{(dweapon,high)})
Multiple thresholds can exist within Ψ. For instance, a prefer-

ence relation might assert that dcasualties, combined with d f ear
(a numerical measure of public fear), takes precedence over
dweapon when both dimensions exceed their respective thresh-
olds. In such a case, Scheme 2 would be instantiated as:

PREF( f , Db, Dw, D):
ψ: dcasualties( f )≥ 4∧d f ear( f )≥ 10

===================
Conc: {dweapon} ≺ {dcasualties,d f ear}

Whether certain dimensions exceed particular thresholds rep-
resents a condition where each dimension must independently
satisfy a sub-condition. Alternatively, a preference relation
might depend on a combination of dimensions, where an evalu-
ation function surpasses a single threshold. For instance, con-
sider a preference relation {dweapon} ≺ {dcasualties,dwounded}
with the condition that dcasualties( f )+dwounded( f )≥ 10. In this
case, the evaluation function is the sum of fatal and non-fatal
casualties, which compensates for a high level of weapon so-
phistication. In other words, the distinction between fatally and
non-fatally harmed victims is irrelevant within this domain.

PREF( f , Db, Dw, D):
ψ: dcasualties( f )+dwounded( f )≥ 10

===================
Conc: {dweapon} ≺ {dcasualties,dwounded}

Alternatively, one could envision expert knowledge where
the difference between the number of perpetrators and victims
helps to differentiate terrorist incidents from assassinations,
for example. Likewise, the ratio of wounded to deceased vic-
tims might influence the impact of weapon sophistication in
some hypothetical domain-specific insight. A weighted mean
of several dimensions may need to exceed a certain value. Do-
main experts might develop dozens of such expressions of very
specific domain knowledge in areas that are well understood
and rich in descriptive dimensions, potentially aided by statisti-
cal analysis or knowledge induction methods. More complex
functions are also conceivable. One might argue that at least
some of these evaluations should be incorporated during the
feature engineering phase, before model training, rather than
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in post-hoc justifications. It is important to note, however, that
our approach remains model- and data-agnostic, so we should
generally support such evaluations.

Consider the following scenario: an attack involving a sophis-
ticated bomb (dweapon) that does not result in a large number of
casualties (dcasualties). Under typical circumstances, the sophis-
tication of the weapon might suggest a targeted assassination
rather than a terrorist act. However, if the event generates an
exceptionally high level of public fear (d f ear), this could com-
pensate for the casualty count, as terrorists aim to instil fear
and disrupt society. In this case, the evaluation function might
assign significant weight to d f ear, such that a weighted sum of
d f ear and dcasualties is compared against a threshold value.

PREF( f , Db, Dw, D):
ψ: 0.3 ·dcasualties( f )+0.7 ·d f ear( f )≥ 10

===================
Conc: {dweapon} ≺ {dcasualties,d f ear}

Aforementioned thresholds establish conditions on the di-
mensions within the preference relation, Dw and Db. However,
contextual factors may also influence the applicability of a pref-
erence relation. For instance, an additional dimension dmeasures
(the number of security measures in place) might modulate
the impact of the casualty count in compensating for weapon
sophistication. In this scenario, the threshold relates to a dimen-
sion that is not part of the preference relation itself.

Moreover, conditions for a preference relation can encom-
pass spatiotemporal factors. For example, the same set of di-
mensions might have different thresholds or weights depending
on whether the event occurs in a region currently experienc-
ing political instability. This adaptability is crucial in domains
like counter-terrorism, where the nature of threats and their
societal impact can change rapidly. When attributing historical
incidents to terrorist organisations, it is essential to consider
that an organisation was founded at a specific moment in time
or was only active in a particular geographical area. For in-
stance, ISIS (ISIL) did not rise to prominence until 2014 in
regions of Syria and Iraq. Any piece of domain knowledge
concerning characteristics of ISIS incidents or public claims
made by this organisation is likely to be specific to the relevant
time and location. The same concerns apply to the Taliban in
Afghanistan, both before the American invasion in 2001 and
after America’s departure in 2021, or to the Troubles in Ireland
and Great Britain from 1966 to 1998.

For a simplified example, consider the following: the occur-
rence of an incident during the Troubles in Belfast implies that
{dwounded} compensates for {dcasualties,dweapon}.

PREF( f , Db, Dw, D):
ψ: dyear( f )= 1969∧dlocation( f )=Belfast

===================
Conc: {dcasualties,dweapon} ≺ {dwounded}

Alternatively, this particular insight from the domain expert
could be employed to construct an empty compensation move
based on domain knowledge. It is important to note that if
Db = /0, Scheme 1 represents the special case of empty com-
pensation. In AF-CBA, we permit compensation moves with

Db = /0 to ensure a winning strategy (see Section 2), serving as
a somewhat unsatisfactory but necessary default that substitutes
for a more informative justification. With an argument such as
the following, we can provide expert-informed justifications for
why the values in Db are not relevant to the outcome of the fo-
cus case, despite the absence of any compensating dimensions.
This makes an empty compensation move more informative
than it would otherwise be:

PREF( f , Db, Dw, D):
ψ: dyear( f )= 1969∧dlocation( f )=Belfast

===================
Conc: {dcasualties,dweapon} ≺ /0

COMP( f , c, Db, Dw):
w: Dw = {dcasualties,dweapon}
b: Db = /0
p: {dcasualties,dweapon} ≺ /0

———————————
Conc: compensates(c, /0,{(dcasualties,10),

(dweapon,high)})
Transitivity (where {d1} ≺ {d2} and {d2} ≺ {d3} imply

{d1} ≺ {d3}) and antisymmetry (where {d1} ≺ {d2} im-
plies {d2} ̸≺ {d1}) cannot be universally presumed, but de-
pend on the domain. Symmetric preference relations, such as
{dcasualties}≺ {dweapon} and {dweapon}≺ {dcasualties}, can co-
exist for the same focus case, suggesting that a superior value in
one dimension can compensate for an inferior value in another.
For example, a high number of casualties (dcasualties) may off-
set high weapon sophistication (dweapon) and vice versa. This
symmetry may indicate that the dimensions are equivalent in
their influence on an outcome, functioning as proxies for a more
abstract concept. For instance, dalert (security alert status) and
dmeasures (number of security measures) could be subcategories
of a broader dimension dsecurity (overall security preparedness),
suggesting a certain equivalence. Consequently, our approach
implicitly permits the drawing of abstract parallels similar to
the factor hierarchies in CATO [1].

3.3 Arguing About Preference Relations
As previously noted, we do not assume the body of domain
knowledge to be uncontested. While Schemes 1 and 2 offer
a framework for evaluating whether the conditions of a com-
pensation move have been satisfied, exceptions may exist, and
the premises can be challenged. The specific types of attacks
that may arise depend on the domain; however, in general, at-
tacks between arguments could be modelled within a structured
argumentation framework, such as ASPIC+ [17] or ABA [3].

For instance, a domain expert may identify an additional
caveat for the preference relation {dcasualties} ≺ {dweapon} be-
yond the condition dcasualties( f ) ≥ 4; specifically, this prefer-
ence may not hold if the weapon sophistication is exceedingly
high. The abstract placeholder Ψ could then refer to two distinct
thresholds for this instance of PREF( f ,Db,Dw,D):

PREF( f , Db, Dw, D):
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compensates(c, {dcasualties}, {dweapon})

Dw = {dcasualties} Db = {dweapon}

COMP(f,Db,Dw)

{dcasualties} ≺
{dweapon}

EXCEPTION:
dweapon(f) ≮ ‘Extremely high’

EXCEPTION:
dcasualties(f) ≥ 30

PREF(f,Db,Dw,D)

dcasualties(f) ≥ 4

Figure 2: An illustration an exception to an exception de-
fending a preference relation. The shaded box is not in the
grounded extension, attacks are indicated by arrows.

ψ: dcasualties( f ) > 4 ∧ dweapon( f ) <
‘Extremely high’
===================

Conc: {dcasualties} ≺ {dweapon}
However, one might contend that it is more informa-

tive to model exceptions explicitly as separate arguments.
The preference relation {dcasualties} ≺ {dweapon} would
then be challenged by an exception argument that asserts
{dcasualties} ≺ {dweapon} does not hold for f due to the
condition dweapon( f ) ≮ ‘Extremely high’. For {dcasualties} ≺
{dweapon} to be applicable in Scheme 1, this exception argu-
ment must be successfully countered, possibly by introducing
an exception to the exception.

For instance, the exception dweapon( f ) ≮ ‘Extremely high’
might be deemed irrelevant if the number of casualties is suf-
ficiently high, such as dcasualties ≥ 30. This second exception
would attack the first exception, thereby defending the prefer-
ence relation from Scheme 2 and reinstating the compensation
move from Scheme 1. This process can continue for any addi-
tional exceptions. This concept is illustrated in the argument
graph shown in Figure 2.

We permit chains of arguments regarding preference rela-
tions. Whether lengthy, complex arguments are always benefi-
cial depends on the domain experts, who can determine what
is suitable for the intended user. Our approach enables them
to decide how thoroughly to justify the domain knowledge
employed to support ML predictions, according to their prefer-
ences. The objective is always to justify compensation moves
from the perspective of the user, who may or may not possess
domain expertise, ensuring an appropriate level of justification.

Other types of arguments could be valuable, such as expert
opinions (following Walton et al. [27]) based on professional
experience, domain literature, or statistics. Naturally, there are
domain-specific reasons for the inclusion of a preference rela-
tion in the first place, which implies that conflicting opinions
may arise. Just as we can permit chains of exceptions to pref-
erence relations, experts might find it equally informative to

explicitly model dissent. This approach could illustrate how the
most recent analysis, literature review, or the input of the most
senior expert resolves the debate.

For example, the preference relation {dcasualties} ≺
{dweapon} could be challenged by an opinion asserting that
it does not hold, drawing on the expert’s experience. This as-
sertion could itself be countered by another opinion based on
statistical analysis, which indicates that even in cases of ex-
tremely high weapon sophistication, the number of casualties
had a more significant impact on outcomes. In this scenario, the
argument stemming from statistical analysis would successfully
defend the original preference relation.

4 Knowledge Induction
Preference relations and their conditions (Scheme 2) may be
provided by experts, but could also be discovered from data
by some means. In this section, we look into ways of discov-
ering them through knowledge induction techniques, that is,
using rule-based classifiers. Rule-based classifiers do not typi-
cally yield domain knowledge directly in the form required for
generating such conditional preference relations. We therefore
combine a rule-based classifier with feature importance scoring,
in order to arrive at possible instances of Scheme 2. We use
terms like “feature importance” alongside “dimension” in this
section, since “feature” is the preferred term in ML literature.

Importance scores lack explicit conditions that specify when
one dimension should be prioritised over another. Rule-based
classifiers, conversely, offer explicit, interpretable decision
rules, which link dimensions to outcomes. The decision rules in
such a decision rule set can be viewed as domain knowledge for
how to classify cases; they are not the same as our preference
relations on dimension sets. Decision rules do not directly rank
feature importance across the dataset, as they are typically just
a set of conditions and an outcome. For example, a rule-based
classifier might generate decision rules like r1 : IF dlocation =
urban AND dweapon =Bombing THEN Outcome = true. When
the fact situation (dimension-value pairs) of a case meets all
the conditions of a decision rule, we say that that case satisfies
those conditions. For instance, given rule r1, if we find that
dlocation has consistently higher importance scores than some
other dimension dx for cases satisfying Ψ1 (r1’s conditions),
we can derive a preference relation {dx} ≺ {dlocation} when
urban bombings are involved.

Using a transparent knowledge induction technique is crucial
in XAI, as the goal is to make model decisions understandable
to users. Rule-based classifiers provide clear, human-readable
decision rules that can be scrutinised and validated. However,
excessively complex decision rules risk losing interpretability.
We have also argued that the notion of black-box models can
be a function of someone’s expertise, rather than simply an
inherent function of the model itself. As such, we should strike a
balance when selecting an appropriate rule-based classifier with
which to induce a decision rule set (that is, domain knowledge
used to classify data).
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Several approaches exist for generating decision sets with
rule-based classifiers. RIPPER (Repeated Incremental Pruning
to Produce Error Reduction)[4] appears well-suited for our pur-
poses. It generates decision rules through a sequential covering
process, where decision rules are iteratively learned and refined
to cover remaining positive examples while excluding negative
ones. Like decision trees, RIPPER employs pruning techniques
to handle noisy data and prevent overfitting. However, RIPPER
typically produces more compact and generalisable decision
rule sets compared to decision trees. RIPPER’s focus on pro-
ducing concise, accurate decision rules while maintaining in-
terpretability makes it an good choice for deriving conditional
preference relations. It is, however, worth noting that rule-based
classifiers like RIPPER are typically limited to fairly straight-
forward decision rules. More sophisticated conditions like the
function-based thresholds we described in Section 3.2 wil not
result from such a classifier.

4.1 Determining Feature Importance Scores
Feature importance scores obtained through methods such as
SHAP [16] offer a means of assessing the influence of individual
features on model outputs. SHAP calculates the average con-
tribution of each feature across all possible subsets of features,
providing a globally consistent measure of feature importance.
We can interpret this as a preference relation. For instance, if
dimension d1 has a higher importance score than dimension d2,
this could imply a preference relation {d2} ≺ {d1}, suggesting
that d1 is more influential in driving classification decisions.
Given a decision rule k from a decision rule set with a condition
set Ψk, let CBk ⊆ CB be the subset of cases that satisfy that
condition. For any set of dimensions D′ ⊆ D, let φ k

d represent
the squared mean SHAP value of d given CBk and Ψk. This
provides a single score representing the collective importance
of the dimensions in D′ under Ψk. We can then define a prefer-
ence relation between two disjoint sets of dimensions D′

i and
D′

j under condition Ψk if:

φ̄ k
D′

i
− φ̄ k

D′
j

φ̄ k
D′

j

> δ (1)

where δ is a relative significance threshold, expressing the
difference between the squared importances of the two dimen-
sion sets relative to one another. If this condition holds, then
Scheme 2 can be instantiated with Db = D′

i, Dw = D′
j given a

focus case f that meets the condtions in Ψk.
It is not trivial to derive feature importance scores from a

decision rule set, but notions like support and coverage could
possibly be used in this regard. We instead opt for using the
black-box classifier (whose predictions AF-CBA is meant to
justify) to calculate them. Not only is this less ambiguous, it
means we are tying our justification approach more closely
to the classifier—using somewhat dubious feature importance
scores from our rule-based classifier would widen the gap be-
tween the black-box classifier and our justification. In this com-
bined approach, we can infer conditional preference relations

that are both interpretable and relevant to specific decision-
making contexts. The process involves three main steps:

DEFINITION 7 (PREFERENCE RELATION INDUCTION).
Let CB be a case base, D its set of dimensions, and ClasB
and ClasR two classifiers that make predictions on cases from
CB, where ClasB is a statistical classifier (black box) and ClasR
a rule-based classifier that produces a decision rule set. For
any case c ∈ CB and dimension d ∈ D, let φd(c) denote the
squared feature importance score of dimension d for case c
as computed by an XAI method (e.g., SHAP, LIME) applied to
ClasB. The process of deriving conditional preference relations
proceeds as follows:

• Induction of Classification Rules:
Using ClasR, identify a set of decision rules R =
{r1, ...,rK}, where each rule rk ∈ R is of the form:

rk : IF Ψk THEN outcome = sk,

where Ψk is the context of the decision rule, defined as a
conjunction of conditions on dimension-value pairs (e.g.,
d1 < t ∧d2 > t ′), and sk ∈ {0,1} is the binary outcome
predicted by the decision rule.

• Aggregation of Importance Scores:
For each decision rule rk, let CBk ⊆CB be the subset of
cases satisfying Ψk. For any set of dimensions D′ ⊆ D,
compute the conditional mean feature importance from
the individual importance scores derived from ClasB:

φ̄
k
D′ =

1
|CBk| ∑

d∈D′
∑

c∈CBk

φd(c).

This computes the importance of the entire set of dimen-
sions within the context Ψk.

• Recognition of Preference Relations:
For any two sets of dimensions D′

i,D
′
j ⊆ D, where D′

i ∩
D′

j = /0, define a conditional preference relation under
Ψk if:

φ̄ k
D′

i
− φ̄ k

D′
j

φ̄ k
D′

j

> δ ,

where δ is a relative significance threshold to determine
of Scheme 2 can be instantiated with Db = D′

i, Dw = D′
j

given a focus case f that meets the condtions in Ψk. We
write the set of instantiations made possible in this way
as the set P , where:

P =
K⋃

k=1

{ (Ψk, D′
j ≺ D′

i) }.

For each decision rule rk, the importance of each possible set
of dimensions D′ is aggregated as the mean importance score
across cases satisfying the decision rule. Preference relations
between non-overlapping dimension sets are then recognised by
comparing these aggregated scores. For example, if (φ̄ r1

dlocation
−

φ̄
r1
dcasualties

)/φ̄
r1
dcasualties

> δ under the condition that dcasualties < 10,
a preference relation {dlocation} ≺ {dcasualties} is established
for a focus case for which dcasualties( f )< 10 is true.
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Originally ([24]), AF-CBA was made ‘explanation complete’
by guaranteeing a winning strategy through empty compensa-
tion moves. Now that we have made the derivation of preference
relations explicit, we can likewise guarantee that AF-CBA can
justify any outcome by explicitly adding preference relations
with Db = /0 without any conditions in Ψk to the set P .

When we determine feature importance scores for dimension
sets by summing (and normalising) individual feature impor-
tance scores, we are assuming these dimensions are not highly
correlated. This assumption is often unrealistic, as many real-
world datasets contain dimensions that are either redundant or
highly correlated. Such correlations can lead to an inflation of
feature importance for dimension subsets that include corre-
lated dimensions, as their individual SHAP values may reflect
overlapping contributions.

One could argue that highly correlated dimensions should
already be minimised within the context of our XAI framework,
especially if we assume we are justifying a well-performing
ML model. For a model to perform well, ideally, it should
avoid reliance on redundant, highly correlated dimensions. This
assumption would simplify our task, allowing us to compute
aggregated feature importance scores without adjusting for high
dimension correlations.

We can compromise by introducing a final argument scheme,
which attacks PREF( f ,Db,Dw,D) (Scheme 2) if Db contains
highly correlated dimensions. Scheme 3 describes how, when
the correlation between two dimensions within either dimen-
sion set exceeds a given value, the preference relation cannot
be said to hold. This could potentially be elaborated for mixed
dimension types, but we keep this scheme simple for now. An
instance of this scheme attacks the corresponding instance of
the preference scheme, thereby preventing that preference rela-
tion from being used in a compensation move and informing
the user of the reason why.

ARGUMENTATION SCHEME 3 (CORRELATION). Let
Db,Dw ⊆ D be two sets of dimensions where Db ∩Dw = /0, the
Pearson correlation coefficient ρ(di,d j), and a corresponding
threshold value ε . Then the correlation scheme CORR(Db,Dw)
is defined as the following reasoning pattern:

max(ρ(di,d j))> ε

===================
Conc: ¬(Dw ≺ Db),

where di,d j ∈ Db.

5 Example & Evaluation
In this section, we demonstrate our approach using a real-
world dataset: the Global Terrorism Database [13] (GTD). This
dataset contains data of a very serious nature and serves as a
proxy for similar such datasets within the law-enforcement do-
main, for which the unfortunate trade-off between performance
and justifiability warrants the use of a post-hoc approach in
our estimation. We use parameters δ (the minimum required
relative difference in aggregated feature importance scores) and
ε (the maximum allowed correlation coefficient). This experi-
ment showcases how our approach can be used in practice to

derive preference relations from data for AF-CBA’s justifica-
tions of classification predictions.1

Applying our approach within AF-CBA is not computation-
ally expensive, but evaluating all preference relations given a
large number of features can be. As higher-level parameters, we
have two integers to restrict the procedure’s search space: the
maximum set size and the n most important dimensions (3 and
8, resp.). The intuition is that preference relations with overly
large dimension sets are both unrealistic and uninterpretable for
experts, and that preference relations with important features
are more likely to be relevant. These parameters can be set to
higher values if sufficient computational resources are available
to handle the resulting combinatorial explosion.

The GTD is a comprehensive dataset documenting terrorist
incidents globally, spanning the period from 1970 to 2017 [13].
In this work, we restrict our analysis to the post-1997 segment
of the dataset. As our outcome label (the target feature), we
take suicide—whether or not the terrorist incident constitutes a
suicide attack. This is relevant in practice in the direct aftermath
of an incident, because there can be doubts as to whether a sec-
ond attack is likely to take place and this affects the appropriate
response from the authorities. For the sake of realism, we use
only those features which are likely to be known shortly after
an incident, namely numerical data and the attack type (see
appendix for other combinations).

Our pipeline includes a data preprocessing class that per-
forms data filtering, missing value handling (whereby we map
various missing value codes to a single value for all features),
caching and optional encoding of categorical values as defined
per feature in a single configuration file (see our code appendix).
After data preprocessing, we train (F1 = 0.80, Acc= 0.98) a
classifier as a representative stand-in for black-box classifiers
in general, including neural network approaches. Because of its
ease of use, we choose HistGradientBoosting from the Scikit-
learn package. We also train our rule-based classifier (RIPPER
from the Wittgenstein package using default parameters) and
use 5-fold cross-validation to derive a final decision rule set,
where we dismiss decision rules that only appear in one fold.
We then determine and aggregate feature importance scores as
described, given each rule in the decision rule set. This gives
us the desired conditional preference relations. We repeat this
process while varying the parameters δ and ε in order to study
the effects on the generated rule set, as a demonstration of our
evaluation procedure. The effect of these two parameters is
expressed using the following metrics:

• The total number of preference relations (total and
unique): We want a sufficient number of of preference
relations to be available in order to construct compen-
sation moves, but an excessively large set is unlikely
to be very applicable, maintainable and interpretable.
Because different decision rules can result in the same
preference relations (albeit with different conditions),
we also report the deduplicated number.

1The code repository is available at https://github.com/JGTP/preference-mining/
tree/6f5903354ee1f1fa200b5366b304776775c9552d.

https://github.com/JGTP/preference-mining/tree/6f5903354ee1f1fa200b5366b304776775c9552d
https://github.com/JGTP/preference-mining/tree/6f5903354ee1f1fa200b5366b304776775c9552d
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Figure 3: Total (blue circles) and unique (orange squares)
preference relations generated as δ increases, shown for
two values of ε (0.30 and 0.70). The analysis produced 56
stable rules.

• The mean number of dimensions in Dw and Db per
preference relation: Preference relations containing
fewer dimensions are generally more widely applicable
and thus more useful. They are also more interpretable.

The complexity and applicability of the decision rules them-
selves (including the complexity of their conditions) are rel-
evant factors. However, those notions are a function of the
decision rule set generated by the rule-based classifier, not of
our subsequent approach of generating preference relations.
Therefore, the usual evaluation procedure of decision rule sets
applies there. What we aim to show here, is how our generation
of preference relations can be evaluated so that parameters can
be set and our approach used.

Consider the following decision rule obtained from RIPPER,
which predicts incidents with fewer than two perpetrators, of
attack type 3 (bombing/explosion), occurring between 2013
and 2014, to be suicide attacks.

Listing 1: Example decision rule from RIPPER
1 "conditions ": [
2 {" feature ": "nperps", "operator ": "==", "value":

"<2.0"},
3 {" feature ": "attacktype1_3", "operator ": "==", "

value": 1.0},
4 {" feature ": "iyear", "operator ": "==", "value": "

2013.0 - 2014.0"}],
5 "outcome ": "suicide"

Listing 2: Example preference relation
1 "set1": [" nkillter", "iyear"],
2 "set2": [" nwound", "ransomamtus "],
3 "set1_importance ": 5.85,
4 "set2_importance ": 0.34,

Above is a resulting preference relation indicating that the
combination of terrorists killed and year has substantially
higher importance (5.85 vs. 0.34) than the combination of
wounded casualties and ransom amounts in US dollars.

0.5
0
0.7

5
1.0

0
1.2

5
1.5

0
1.7

5
2.0

0
2.2

5
2.5

0
2.7

5
3.0

0
3.2

5
3.5

0
3.7

5
4.0

0
4.2

5
4.5

0
4.7

5
5.0

0

d

(1,1)

(1,2)

(1,3)

(2,1)

(2,2)

(2,3)

(3,1)

(3,2)

(3,3)

Se
t S

ize
s (

|D
w|

, |
Db

|)

e = 0.30

0.5
0
0.7

5
1.0

0
1.2

5
1.5

0
1.7

5
2.0

0
2.2

5
2.5

0
2.7

5
3.0

0
3.2

5
3.5

0
3.7

5
4.0

0
4.2

5
4.5

0
4.7

5
5.0

0

d

(1,1)

(1,2)

(1,3)

(2,1)

(2,2)

(2,3)

(3,1)

(3,2)

(3,3)

Se
t S

ize
s (

|D
w|

, |
Db

|)

e = 0.70

10

20

30

40

50

Pe
rc

en
ta

ge
 o

f R
el

at
io

ns

10

20

30

40

50

Pe
rc

en
ta

ge
 o

f R
el

at
io

ns

Figure 4: Distribution of set sizes (|Dw|, |Db|) across differ-
ent values of δ for ε = 0.30, with ε = 0.70 having similar
results. The distribution seems to vary little for this config-
uration. Regardless, this plot should be of use to domain
experts evaluating the set of preference relations.
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Figure 5: Mean size of Dw (lower) and Db for ε = 0.30, with
ε = 0.70 having similar results. These show little variation
for the current configuration of parameters and features.

Figure 3 illustrates how increasing δ reduces the number of
relations generated. Figure 4 shows that most relations involve
feature sets of size 2, particularly when both Dw and Db are of
size 2. Figure 5 reveals that the average size of both feature sets
remains relatively stable across different thresholds.

This shows that our approach succesfully generates prefer-
ence relations from decision rules. How many decision rules
and preference relations to allow is something for domain ex-
perts to decide. Inspecting each decision rule is quite realistic,
inspecting the strongest preference relations is realistic and
creating sufficient preference relations is realistic; inspecting
every single preference relation generated in this way is clearly
not realistic. This would call for an early pruning solution,
alongside additional optimisation we reserve for future work.

6 Related Literature
Argument-Based Machine Learning [18] has been realised as
an extension of the CN2 rule induction algorithm to ensure
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induced rules align with expert-provided arguments. The ap-
proach identifies critical examples through an interactive pro-
cess, improving both classification accuracy and model trans-
parency.

PADUA [28] is a protocol to enable agents to engage in
classification dialogues using arguments from association rules.
This addresses classification errors by allowing agents to cite
evidence rather than relying on predefined rules.

Value Judgment-based Argumentative Prediction (VJAP)
predicts outcomes of trade secret misappropriation cases [9]
using argument schemes and value-based legal reasoning, draw-
ing on the Value Judgment Formalism to generate argument
graphs. These incorporate the effects of specific facts on ab-
stract legal values such as property interest, confidentiality
and competition. The approach quantifies these effects using
learned weights derived from past cases. Through analogy and
distinction, VJAP grounds its predictions in legal norms.

7 Conclusion
We have extended the AF-CBA framework with a mechanism
to determine the justifications for compensation moves based
on domain knowledge. This presents the justifications in a
manner that aligns with concepts familiar to domain experts.
Our extension builds on argumentation schemes to capture
defeasible reasoning patterns, offering a foundation for more
persuasive justifications. Expanding these patterns within a
formal argumentation framework could further enhance the
complexity of the reasoning process, enabling arguments to
address underlying premises or the inferred implications of
preference relations.

The knowledge induction approach introduced in this paper
extends the capability of the framework to infer preference
relations between dimensions in binary classification tasks. By
combining rule-based learning with the quantifiable impact
of feature importance, we can derive preference relations. We
demonstrate this as a possible evaluation procedure.

Finally, if we abandon the possibility of empty compensa-
tion moves, precedential constraint can be used as a reasoning
model for classification unto itself, as opposed an XAI mech-
anism. Such as an approach is conceptually comparable to
retrieval-augmented generation (RAG [14]) in its emphasis on
domain knowledge. A comparison between RAG and preceden-
tial constraint is therefore a possible future work direction.
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