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Rūta Liepin, a
University of Bologna, CIRSFID/ALMA-AI

Italy
ruta.liepina@unibo.it

Abstract
We propose to model cause-in-fact in legal cases through fresh
argumentation-theoretic notions of explanation and support, meant
to capture the set of arguments that contribute to making a conclu-
sion justified. This novel argumentation-based approach to causal-
ity in law goes beyond the traditional idea of a cause as a necessary
antecedent condition (the conditio-sine-qua-non idea), to handle
concurrent causal processes leading to overdetermination and pre-
emption. It also provides sound analyses of cases involving omission
and ennoblement. Finally, by relying on defeasible argumentation
it can capture causal inferences based on defeasible generalisations,
which are very often used in judicial reasoning. Through the analy-
sis of causal puzzles in legal cases, we illustrate the framework’s
effectiveness in handling complex causal reasoning, and demon-
strate its potential to support legal reasoners with structured and
intuitive analysis.
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1 INTRODUCTION
Causal reasoning is important in the law in various ways. It can
address different problems concerning one or more antecedent facts
𝑃 and a subsequent fact 𝑄 . First, where both 𝑃 and 𝑄 are true, we
may want to know whether the causal rule ‘𝑃 causes 𝑄’ should
be part of our causal theory 𝑇 (e.g.: Is it true that 𝑃 causes disease
𝑄?). This is sometimes called causal discovery. Then, were𝑄 is true
and a causal theory 𝑇 is given, we may want to know which of the
𝑃 ′𝑠 that could cause 𝑄 according to 𝑇 is true. This is often called
abduction or inference to the best explanation (e.g.: Can we infer
from evidence 𝑄 that the unlawful action 𝑃 was accomplished by
the accused?). Next, where 𝑃 is true and a causal theory 𝑇 is given,
we may want to know what else will be true because of 𝑃 . This is
sometimes called causal prediction (e.g.: Is it true that the enactment
of legislative act 𝑃 will reduce unemployment, 𝑄?). Finally, where
both 𝑃 and 𝑄 are true and a causal theory 𝑇 is given, we may want
to knowwhether 𝑃 is a cause of𝑄 according to𝑇 . This is sometimes
called the problem of actual causation (e.g.: Given facts and causal
rules, can we conclude that action 𝑃 by the accused caused the
harmful event 𝑄?). This paper is about actual causation, which in
the law is often referred to as cause-in-fact.

Actual causation is highly relevant to law, in particular where
liability for a harmful event has to be attributed, though further
elements may be needed for liability to be established: (1) the harm
must have been caused in a way that is relevant to the law (2) the
liable agent must be in an appropriate relation to the harm-causing
event (being the originator of the event or being responsible for
the thing or person originating it), (3) there must be an appropriate
mental state in the agent, if required by the law (intention or negli-
gence, except for cases of strict liability), (4) there must not exist
circumstances that exclude liability (such as self defence).

Since legal liability is such a complex issue, it is necessary to
precisely circumscribe the scope of our contribution. We only con-
sider actual causality, without entering into the further conditions
of liability just listed from (1) to (4). We also refrain from investi-
gating any issues pertaining to the proof of causality. Finally, we
only address the core causality in law, namely the idea of actual
causality, to which we refer as cause-in-fact.

Following Richard W. Wright [32, 33], we indeed argue that clar-
ity and interdisciplinary insights in the analysis of legal causality
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(for a review, see [22]) could be obtained by carefully distinguishing
and separately theorising a basic and general cross-domain notion
of cause-in-fact and any further condition for the legal relevance
of a cause-in-fact. Thus, to address the legal significance of casual
connections, two steps are needed.

First, a notion of cause-in-fact is required, to precisely identify
causal relations. This notion must be subtle enough to correctly
and precisely address all instances of actual causality. In particular,
it must successfully address the following controversial aspects
pertaining to causation in law (but also to other domains): i) overde-
termination, when different causal paths independently lead to the
same effect; ii) preemption, where two causal paths interfere, one
preventing the other from achieving the effect; iii) omission, where
the effect is caused by the non-occurrence of an event; and iv) en-
noblement, where both the occurrence and non-occurrence of an
event would lead to an effect, through different causal paths (see
[34]) .

Secondly, conditions have to be specified which are required for
a cause-in fact to generate legal liability (e.g., a certain kind of ex
ante predictability), and, alternatively or additionally, exceptions
have to be specified under which a cause-in-fact fails to generate
such responsibility (e.g., the intervention of an extraordinary event
leading to unexpected effects). These conditions and exception may
differ in different legal systems.

We shall only consider the first step, i.e., the general idea of a
cause-in-fact. Thus we do not commit to whether the conditions
required for a cause-in fact are to be legally relevant and the ex-
ceptions excluding such relevance are to be included (in addition
to cause-in-fact) within the concept of a cause in law (e.g., in the
idea of a legally proximate or adequate cause) or are to be viewed
as separate requirements for liability (as in the third restatement of
the US law on torts, see [33, 464]). However, we will mention that
both perspectives could be captured within an argumentation-based
model.

Our model of cause-in-fact will be formulated within formal
argumentation. It is inspired by the NESS (Necessary Element of a
Sufficient Set) approach to causality, according to which a fact 𝐴
is a cause of an effect 𝐸 iff 𝐴 is a necessary component of a set 𝑆
of conditions which are jointly sufficient for the 𝐸 to be produced
(𝑆/{𝐴} will not be sufficient to produce the effect). This approach,
introduced in the seminal contribution by Hart and Honoré [16],
has been further developed by [33] and has recently been endorsed
in AI by, among others, Halpern [14] and Beckers [3]. A strong
point of NESS is that it overcomes the traditional idea that a cause
must be a necessary condition (a conditio sine qua non) of the effect,
an idea that does not fit cases in which multiple causal processes
concur or interact.

Our choice for an argumentation approach is motivated by struc-
tural similarities between the NESSmodel of causality and argumen-
tation. First, as NESS admits the coexistence of multiple different
sufficient sets of conditions, so in argumentation a conclusion may
be supported by multiple parallel arguments. Secondly, as NESS
requires that each element in a sufficient set is necessary, so in ar-
gumentation, arguments must be minimal, i.e., they cannot contain
redundant premises. Third, for the set of conditions to be sufficient,
all exceptions pre-empting the generation of the effect have to be

overcome. Similarly in argumentation, for an argument to be jus-
tified, it must be able to survive all attacks by being defended by
other arguments. Finally, each argument can have multiple ways of
being defended against attacks, and each of these ways can be, on
its own, sufficient to defend the argument against an attack, while
each element in such a defence is necessary for the defence to have
its effect.

We believe that an argumentation-based approach has some
advantages, in the legal domain, in comparison to other leading
approaches to actual causality, such as the approach with Structural
Causal Models of [15], which however has been a key inspiration for
our work. In particular, our approach, being based upon defeasible
argumentation, has the advantage of directly addressing defeasible
causality, which plays a key role in legal reasoning on matters
of fact (where common-sense and other defeasible generalisation
play a key role). Moreover, the argumentation approach directly
models arguments aimed at supporting causal claims or at rejecting
them. Thus it can be more easily mapped into real instances of legal
reasoning and understood by a legal audience. More specifically,
we will use a combination of the theory of abstract argumentation
frameworks [11] with the ASPIC+ framework for argumentation;
this combination provides the formal tools we need.

To demonstrate the effectiveness of our argumentation-based
approach –as a refinement and formalisation of the NESS idea–
and showcase its ability to address causal puzzles (involving over-
determination, pre-emption, omission and ennoblement) we pro-
vide various examples from judicial cases and from the literature.

The paper is structured as follows. First, in Section 2we introduce
the theory of abstract argumentation frameworks and the ASPIC+
approach to argumentation. In Section 3, we propose a formal
notion of relevance for abstract argumentation frameworks. In
Section 4, we embed this notion in ASPIC+ and use this embedding
to formalise an argumentation-based notion of cause-in-fact. In
section 5, we apply this notion to several legal cases, showing how
our formalisation successfully deals with the above-mentioned
issues (overdetermination, confounding, preemption and omission).
In Section 6, we formalise some of these examples in an alternatIve
way inspired by the Event Calculus, to capture temporal aspects
in a more general way. In Section 7, we discuss related work, after
which we conclude in Section 8.

2 FORMAL PRELIMINARIES
In this section we present our formal preliminaries, being the the-
ory of abstract argumentation frameworks [11] and the ASPIC+
framework for structured approaches to argumentation [21].

2.1 Abstract Argumentation Frameworks
An abstract argumentation framework [11] is a pair𝐴𝐹 = (A𝐴𝐹 ,D𝐴𝐹 ),
where A𝐴𝐹 is a set of arguments and D𝐴𝐹 ⊆ A𝐴𝐹 × A𝐴𝐹 is a re-
lation of defeat.1 We write 𝐴 ∈ 𝐴𝐹 as shorthand for 𝐴 ∈ A𝐴𝐹 and
we will omit the subscripts if there is no danger of confusion. We
will sometimes in text present an𝐴𝐹 as𝐴← 𝐵 ↔ 𝐶 , to denote that
A = {𝐴, 𝐵,𝐶} and D = {(𝐵,𝐴), (𝐵,𝐶), (𝐶, 𝐵)}. Let 𝑆 ⊆ 𝐴. Then
𝑆 is conflict-free if no member of 𝑆 defeats a member of 𝑆 and 𝑆

1Dung used the term ‘attack’ but since we want to instantiate it with the ASPIC+ defeat
relation, we rename it to ‘defeat’.
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(directly) defends 𝐴 ∈ A if for all 𝐵 ∈ A : if 𝐵 defeats 𝐴, then some
𝐶 ∈ 𝑆 defeats 𝐵.

A set 𝑆 ⊆ A is admissible if it is conflict-free and defends all its
members. A set 𝑆 ⊆ A is strongly admissible [10] if every 𝐴 ∈ 𝑆 is
defended by some 𝑆 ′ ⊆ 𝑆 \ {𝐴} which is strongly admissible. The
intuitive difference between the latter two notions is that for admis-
sibility an argument can defend itself while for strong admissibility
an argument has to be defended by another argument. For example,
in case of 𝐴↔ 𝐵, all of ∅, {𝐴} and {𝐵} are admissible while only ∅
is strongly admissible.

The semantics of 𝐴𝐹𝑠 [2, 11] identifies sets of arguments (called
extensions) which are internally conflict-free (no member attacks a
member) and defend themselves against all attackers. In this paper
we use labelling-style semantics. A labelling of a set A of a set of
arguments in an 𝐴𝐹 = (A,D) is any triple of non-overlapping
subsets (in,out,und) of A that satisfies the following constraints:

(1) an argument is in iff all arguments defeating it are out;
(2) an argument is out iff it is defeated by an argument that is

in;
(3) an argument is und (for ‘undecided’) iff it is neither in nor

out.

In this paper we focus on grounded semantics, leaving generalisa-
tion of our approach to other semantics for future research. The
grounded labelling of an 𝐴𝐹 minimises the set of arguments that
are labelled in and is always unique. A set 𝑆 ⊆ A is called the
grounded extension of 𝐴𝐹 iff 𝑆 is the set of all arguments labelled in
in the grounded labelling. We say that an argument 𝐴 is justified,
respectively, defensible, overruled if 𝐴 is in, respectively, und, out in
the grounded labelling.

To briefly illustrate these notions, in case of𝐴↔ 𝐵 all arguments
are undecided so defensible, so the grounded extension is the empty
set, while in case of 𝐴← 𝐵 ← 𝐶 arguments 𝐴 and 𝐶 are in while
𝐵 is out, so 𝐴 and 𝐶 are justified while 𝐵 is overruled, and the
grounded extension is {𝐴,𝐶}.

It is known that an argument 𝐴 is in the grounded extension of
𝐴𝐹 if and only if the proponent in the so-called grounded argument
game has a winning strategy for 𝐴 [23]. Briefly, in the grounded
argument game a proponent and an opponent of an argument 𝐴
exchange arguments, taking turns after each move and picking all
their arguments from𝐴𝐹 . The proponent starts with𝐴 and then the
opponent has to defeat the last argument of the proponent while
the proponent has to asymmetrically defeat the last argument of
the opponent. Moreover, the proponent is not allowed to repeat its
own moves. A game is won if the other player has no replies. So
a player has a winning strategy if that player can make the other
player run out of moves in whatever way the other player plays.
A winning strategy for player 𝑝 can be visualised as a tree with 𝐴
as root and in which all branches are terminated games won by 𝑝 ,
where 𝑝’s moves have as children all possible replies of the other
player, 𝑝 and where 𝑝’s moves have exactly one child.

Consider the example𝐴𝐹 in Figure 1, which shows the grounded
labelling. The grounded extension is {𝐴, 𝐷, 𝐹,𝐺}. To prove that 𝐴
is in the grounded extension, the proponent has just one winning
strategy, namely, 𝐴← 𝐵 ← 𝐷 , since if the proponent responds to
𝐵 with 𝐶 , then the opponent can win by moving 𝐹 .

Figure 1: (Ir)relevant arguments (1)

We finally recall how Borg & Bex [9] recursively define the set
of defenders (whether directly or indirectly) of an argument.

Definition 2.1. [Defenders [9]] Let 𝐴𝐹 = (A,D) and 𝐴, 𝐵 ∈ A.
Then 𝐵 is a direct defender of𝐴 iff (𝐵,𝐶) ∈ D for some𝐶 ∈ A such
that (𝐶,𝐴) ∈ D. And 𝐵 is an indirect defender of 𝐴 iff for some
𝐶 ∈ A it holds that𝐶 is a (direct or indirect) defender of 𝐴 and 𝐵 is
a (direct or indirect) defender of 𝐶 .

In Figure 1 arguments 𝐶 and 𝐷 directly defend 𝐴 while 𝐺 indi-
rectly defends 𝐴.

2.2 The ASPIC+ Framework
The ASPIC+ framework [20, 21, 25] defines abstract argumentation
systems as structures consisting of a logical language L and two
sets R𝑠 and R𝑑 of strict and defeasible inference rules defined over
L. Over the years, several variants of the framework have been
developed. The version we use is a special case of the framework
of [25], which sufficies for our purposes. See section 2.2 of [26] for
a discussion of other variants of ASPIC+.

In this paper we for simplicity assume that L contains ordinary
negation ¬ but all new definitions proposed in this paper can be
easily adapted to versions of ASPIC+ with asymmetric negation,
such as negation as failure. Arguments are constructed from a
knowledge base (a subset of L) by chaining inferences over L into
acyclic graphs.

Definition 2.2. [Argumentation System] an argumentation sys-
tem (AS) is a triple 𝐴𝑆 = (L,R, 𝑛) where:
• L is a logical language with a negation symbol ¬;
• R = R𝑠 ∪ R𝑑 is a finite set of strict (R𝑠 ) and defeasible (R𝑑 )
inference rules of the form {𝜑1, . . . ,𝜑𝑛}→𝜑 and {𝜑1, . . . ,𝜑𝑛}
⇒ 𝜑 respectively (where 𝜑𝑖 , 𝜑 are meta-variables ranging
over wff in L), such that R𝑠 ∩ R𝑑 = ∅. Here, 𝜑1, . . . , 𝜑𝑛 are
called the antecedents and 𝜑 the consequent of the rule.
• 𝑛 is a partial function such that 𝑛 : R𝑑 −→ L.

Informally, 𝑛(𝑟 ) is a well-formed formula (wff) in L which says
that the defeasible rule 𝑟 ∈ R is applicable, so that an argument
claiming ¬𝑛(𝑟 ) attacks an inference step in the argument using 𝑟 .
We write 𝜓 = −𝜑 just in case 𝜓 = ¬𝜑 or 𝜑 = ¬𝜓 . We use { as a
variable ranging over {→,⇒}. Since the order of antecedents of a
rule does not matter, we sometimes write 𝑆 { 𝜑 where 𝑆 is the set
of all antecedents of the rule.

Definition 2.3. [Knowledge bases] A knowledge base in an𝐴𝑆 =

(L,R, 𝑛) is a set K ⊆ L consisting of two disjoint subsets K𝑛 (the
axioms) and K𝑝 (the ordinary premises).
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Definition 2.4. [Argumentation theories] An argumentation
theory is a pair (𝐴𝑆,K) where 𝐴𝑆 is an argumentation system and
K a knowledge base in 𝐴𝑆 .

We introduce a running example to illustrate our framework.
We model it through a combination of exogenous facts (facts that
are not conclusions of rules) and causal rules according to which
certain facts cause other facts. Note that our causal rules are both
contextual and defeasible, as is usual for most common-sense causal
connections put forward in legal cases.

Example 2.5 (Suzy throws a stone). Suzy decides to throw a stone
at a window and implements her decision. The stone hits the win-
dow, which shatters into pieces. Her friend Billy is with her. He
could stop her (by blocking her arm) but does not do it.

Let us use the following atoms: 𝑆𝑢𝐷𝑒 = Suzy decides to throw the
stone; 𝑆𝑢𝑇ℎ = Suzy throws the stone; 𝑆𝑢𝐻𝑖 = Suzy hits the window;
𝑊𝑖𝑆ℎ = the window is shattered; 𝐵𝑖𝑆𝑡 = Billy stops Suzy. We can
model our example through an argumentation theory 𝐴𝑇1 with

R1 = { 𝑟1 : 𝑆𝑢𝐷𝑒 ⇒ 𝑆𝑢𝑇ℎ; 𝑟2 : 𝑆𝑢𝑇ℎ ⇒ 𝑆𝑢𝐻𝑖;
𝑟3 : 𝑆𝑢𝐻𝑖 ⇒𝑊𝑖𝑆ℎ; 𝑟4 : 𝐵𝑖𝑆𝑡 ⇒ ¬𝑟1}

K1 = { 𝑆𝑢𝐷𝑒}

Our knowledge base says the following: Suzy decides to throw the
stone (𝑆𝑢𝐷𝑒), by 𝑟1 if she decides to throw she does it (𝑆𝑢𝑇ℎ), by
𝑟2 if she throws she hits the window (𝑆𝑢𝐻𝑖), by 𝑟3 if she hits the
window the window is shattered (𝑊𝑖𝑆ℎ), by 𝑟4 if Billy stops Suzy
(𝐵𝑖𝑆𝑡 ) then it is not the case that by if Suzy decides to throw she
does it (𝑟1 does not apply).

Definition 2.6. [Arguments] An argument 𝐴 on the basis of an
argumentation theory 𝐴𝑇 is a structure obtainable by applying one
or more of the following steps finitely many times:

(1) 𝜑 if 𝜑 ∈ K with: Prem(𝐴) = {𝜑}; Conc(𝐴) = 𝜑 ; Sub(𝐴) =
{𝜑}; Rules(𝐴) = ∅; DefRules(𝐴) = ∅; TopRule(𝐴) = unde-
fined.

(2) 𝐴1, . . . , 𝐴𝑛 { 𝜓 if 𝐴1, . . . , 𝐴𝑛 are arguments such that 𝜓 ∉

Conc({𝐴1, . . . , 𝐴𝑛}) and Conc(𝐴1), . . . , Conc(𝐴𝑛) { 𝜓 ∈ R
with:
Prem(𝐴) = Prem(𝐴1) ∪ . . . ∪ Prem(𝐴𝑛);
Conc(𝐴) = 𝜓 ;
Sub(𝐴) = Sub(𝐴1) ∪ . . . ∪ Sub(𝐴𝑛) ∪ {𝐴};
Rules(𝐴) = Rules(𝐴1) ∪ . . . ∪ Rules(𝐴𝑛) ∪
{Conc(𝐴1), . . . , Conc(𝐴𝑛) { 𝜓 };
DefRules(𝐴) = Rules(𝐴) ∩ R𝑑 ;
TopRule(𝐴) = Conc(𝐴1), . . . , Conc(𝐴𝑛) { 𝜓 .

Prem𝑛 (𝐴) = Prem(𝐴) ∩ K𝑛 and Prem𝑝 (𝐴) = Prem(𝐴) ∩ K𝑝 . Fur-
thermore, argument 𝐴 is strict if DefRules(𝐴) = ∅ and defeasible
otherwise, and 𝐴 is firm if Prem𝑝 (𝐴) = ∅, otherwise 𝐴 is plausible.

The set of all arguments on the basis of 𝐴𝑇 is denoted by A𝐴𝑇 .

Each function Func in this definition is also defined on sets of
arguments 𝑆 = {𝐴1, . . . , 𝐴𝑛} as follows: Func(𝑆) = Func(𝐴1) ∪
. . . ∪ Func(𝐴𝑛). Note that the→ and⇒ symbols are overloaded to
denote both inference rules and arguments.

Example 2.7 (Suzy throws a stone - Arguments). Given the argu-
mentation theory 𝐴𝑇1 of Example 2.5 we can build the following

arguments (also displayed on the left side of Figure 2).

𝐴1 = 𝑆𝑢𝐷𝑒; 𝐴2 = 𝐴1 ⇒𝑟1 𝑆𝑢𝑇ℎ;
𝐴3 = 𝐴2 ⇒𝑟2 𝑆𝑢𝐻𝑖; 𝐴4 = 𝐴3 ⇒𝑟3 𝑊𝑖𝑆ℎ

Definition 2.8. [Attack] Argument 𝐴 attacks argument 𝐵 iff 𝐴
undercuts or rebuts or undermines 𝐵, where:
• 𝐴 undercuts 𝐵 (on 𝐵′) iff Conc(𝐴) = −𝑛(𝑟 ) and 𝐵′ ∈ Sub(𝐵)
such that 𝐵′’s top rule 𝑟 is defeasible.
• 𝐴 rebuts 𝐵 (on 𝐵′) iff Conc(𝐴) = −𝜑 for some 𝐵′ ∈ Sub(𝐵) of
the form 𝐵′′1 , . . . , 𝐵

′′
𝑛 ⇒ 𝜑 .

• 𝐴 undermines 𝐵 (on 𝜑) iff Conc(𝐴) = −𝜑 for some 𝜑 ∈
Prem(𝐵) ∩ K𝑝 .

Example 2.9 (Suzy throws a stone and Billy blocks her). Consider
an argumentation theory with R2 = R1 and K2 = K1 ∪ {𝐵𝑖𝑆𝑡}.
Then, in addition to the arguments in Example 2.7, we have argu-
ments 𝐴5 = 𝐵𝑖𝑆𝑡 and 𝐴6 = 𝐴5 ⇒𝑟4 ¬𝑟1 (also displayed in Figure 2).
Argument 𝐴6 undercuts 𝐴2, 𝐴3 and 𝐴4—i.e., since Billy stops Suzy
from throwing, she does not hit and, consequently, the window
does not shatter.

Figure 2: Undercutting attack

The notion of defeat is now defined as follows. Undercutting
attacks succeed as defeats independently of preferences over argu-
ments, since they express exceptions to defeasible rules. Rebutting
and undermining attacks succeed only if the attacked argument is
not stronger than the attacking argument, where 𝐴 ≺ 𝐵 is defined
as usual as𝐴 ⪯ 𝐵 and 𝐵 ⪯̸ 𝐴 and𝐴 ≈ 𝐵 as𝐴 ⪯ 𝐵 and 𝐵 ⪯ 𝐴. Below
we assume the so-called basic argument ordering, according to
which if 𝐴 is strict and firm while 𝐵 is either defeasible or plausible,
then 𝐴 ≺ 𝐵 does not hold, so a rebutting attack of 𝐴 on 𝐵 always
succeeds as defeat. For present purposes this is all we need.

Definition 2.10. [Defeat] Argument 𝐴 defeats argument 𝐵 iff
either 𝐴 undercuts 𝐵; or 𝐴 rebuts 𝐵 on 𝐵′ and 𝐴 ⊀ 𝐵′.

Definition 2.11. [Structured Argumentation Frameworks]
A structured argumentation framework (SAF) defined by an argu-
mentation theory 𝐴𝑇 is a triple (A, C, ⪯) where A is the set of
all arguments on the basis of 𝐴𝑇 , ⪯ is the basic ordering on A, i.e.,
𝐴 ≺ 𝐵 iff 𝐴 is defeasible or plausible and 𝐵 is strict and firm, and
(𝑋,𝑌 ) ∈ C iff 𝑋 attacks 𝑌 .

Abstract argumentation frameworks are then generated from
SAFs as follows:
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Definition 2.12. [Argumentation frameworks] An abstract
argumentation framework (AF) corresponding to a SAF = (A, C, ⪯)
is a pair (A,D) such thatD is the defeat relation onA determined
by SAF .

Example 2.13 (Suzy throws a stone and Billy stops her - Argumen-
tation framework). Given the SAF defined by 𝐴𝑇2 from Example
2.9 and the basic argument ordering, the argumentation framework
𝐴𝐹𝐴𝑇 2

2 is shown in Figure 3.

Figure 3: Argumentation framework from Example 2.9.

Finally, we say that 𝜑 ∈ L is justified on the basis of a SAF if
𝜑 is the conclusion of a justified argument on the basis of the 𝐴𝐹
corresponding to the SAF under semantics 𝑇 , and defensible if 𝜑 is
not justified and is the conclusion of a defensible argument.

3 RELEVANCE IN ARGUMENTATION
To exploit the structural similarity between argumentation-theoretic
notions of relevance and the notion of actual causation, we next
discuss what is a suitable way to formalise argumentation-theoretic
notions of relevance. Borg & Bex [9] give definitions that, when
applied to grounded semantics, essentially define the set of all ar-
guments relevant to 𝐴 in the grounded extension E (which we will
call the support set of 𝐴 relative to E) as the set of all arguments in
E that are (direct or indirect) defenders of 𝐴. However, this defini-
tion is too broad for our purposes, as the following examples show.
The following example (taken from [24]) shows that defeating a
defender of 𝐴 does not necessarily change the justification status
of 𝐴.

Example 3.1. In the 𝐴𝐹 in Figure 1, the grounded extension is
{𝐴, 𝐷, 𝐹,𝐺}. Note that 𝐶 and 𝐺 are defenders of 𝐴 but defeating
either of them does not lower the status of 𝐴; this only happens
if either 𝐴 or 𝐷 is defeated. So intuitively 𝐶 and 𝐺 should not be
regarded as relevant to𝐴. Yet they both are in the sense of relevance
defined by [9].

Fan & Toni [12] define notions of an explanation in terms of so-
called related admissible sets. Given an𝐴𝐹 = (A,D), a set 𝑆 ⊆ A is
related admissible if there exists an𝐴 ∈ 𝑆 such that 𝑆 ‘defends’𝐴 and
𝑆 is admissible. Here 𝑆 ‘defends’𝐴 iff for all 𝐵 ∈ 𝑆 it holds that either
𝐵 = 𝐴 or 𝐵 is a defender of 𝐴 as defined in Definition 2.1 above.
Then any related admissible set containing 𝐴 is an explanation
of 𝐴, while any subset-minimal related admissible set containing
𝐴 is a compact explanation of 𝐴. These notions may be suitable
for preferred semantics, since it is known that every admissible
set is contained in a preferred extension. However, for grounded
semantics they are too broad, as the following example shows.
2This notation stands for the𝐴𝐹 corresponding to the SAF defined by𝐴𝑇 2 and the
basic argument ordering.

Example 3.2. Consider the 𝐴𝐹 in Figure 4. The grounded exten-

Figure 4: (Ir)relevant arguments (2)

sion is {𝐴,𝐶, 𝐷}. We have that {𝐴,𝐶} is a compact explanation of
𝐴 and a subset of the grounded extension. Yet intuitively, 𝐶 should
not be in the support set of 𝐴 since 𝐴 is in the grounded exten-
sion because of 𝐷 : if 𝐷 is deleted from the 𝐴𝐹 then 𝐴 is not in the
grounded extension any more.

For finite 𝐴𝐹 a satisfactory solution to this problem is to define
the support set of 𝐴 ∈ E relative to the grounded extension E as
the set of all arguments that are in any subset-minimal strongly ad-
missible subset of E containing 𝐴, since for finite 𝐴𝐹 the grounded
extension is equal to the unique maximal strongly admissible sub-
set of A [10]. Note that in Example 3.2, {𝐴, 𝐷} is the only subset-
minimal strongly admissible subset of E containing𝐴. However, for
infinite 𝐴𝐹 this solution does not work, since for the infinite case
the grounded extension is not always equal to the subset-maximal
strongly admissible set. A fully general solution is to define support
sets of an argument 𝐴 for grounded semantics in terms of minimal
winning strategies for𝐴 in the grounded game (minimal in that the
set of proponent arguments in the winning strategy is not a strict
superset of the set of proponent arguments in any other winning
strategy for 𝐴). Henceforth we will call any such set an explanation
of 𝐴. Formally:

Definition 3.3. [Explanations, support sets, and relevance]
An explanation for an argument 𝐴 being in the grounded extension
E of an argumentation framework 𝐴𝐹 = (A,D) is the set of all
proponent arguments in any minimal winning strategy for𝐴 in the
grounded argument game.

The support set 𝑆𝑢𝑝𝑝 (𝐴, E) of argument 𝐴 relative to extension
E is the union of all explanations of 𝐴 being in E. For any for-
mula𝜓 which is the conclusion of an argument in E, the support
set 𝑆𝑢𝑝𝑝 (𝜓, E) of 𝜓 relative to E is the union of all support sets
𝑆𝑢𝑝𝑝 (𝐴, E) of any argument 𝐴 ∈ E with conclusion𝜓 .

An argument 𝐵 is positively relevant to argument 𝐴 with regard
to E iff 𝐵 ∈ 𝑆𝑢𝑝𝑝 (𝐴, E), and 𝐵 is positively relevant to formula𝜓
with regard to E iff 𝐵 ∈ 𝑆𝑢𝑝𝑝 (𝜓, E).

That winning strategies must be minimal ensures that any suc-
cessful attack on an argument positively relevant to 𝐴 makes the
proponent lose at least one way to show that 𝐴 is justified.

4 AN ARGUMENTATION-THEORETIC
DEFINITION OF CAUSE-IN-FACT

In this section, we combine our concept of relevance in abstract ar-
gumentation frameworkswithASPIC+ in order to give an argumentation-
theoretic definition of cause-in-fact. Our definition assumes that we
represent causal relations as defeasible rules and facts as ordinary
premises. Suppose𝜓 is justified and let 𝑆 be the support set of𝜓 (so
the union of all support sets of all justified arguments for 𝜓 ). We
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then want to define the causes of𝜓 . We use the following example
to illustrate our definitions.

Example 4.1 (Cause). Consider an argumentation theory where
rules R and facts K = K𝑝 are:

R= {𝑟1 : 𝑝 ⇒ 𝑞, 𝑟2 : 𝑟 ⇒ ¬𝑟1, 𝑟3 :⇒ ¬𝑟2, 𝑟4 : 𝑡 ⇒ ¬𝑟3}
K= {𝑝, 𝑟, 𝑠,¬𝑡}

Then 𝑞 is justified on the basis of 𝐴𝐹𝐴𝑇 . The arguments in 𝐴𝐹
‘about’ 𝑞 are 𝐴 = 𝑝 ⇒ 𝑞, 𝐵 = 𝑟 ⇒ ¬𝑟1 and 𝐶 = 𝑠 ⇒ ¬𝑟2. The
support set of 𝑞 is the support set of 𝐴 = {𝐴,𝐶}.

Now the causes of𝜓 should surely include all formulas in any
justified argument for𝜓 . Note that these are exactly all conclusions
of arguments in the support set of 𝜓 , namely all conclusions of
arguments that are positively relevant to𝜓 (see Definition 3.3). So
in Example 4.1 we want that 𝑝 is a cause of 𝑞. We also want that
any formula in any (direct or indirect) defender of any argument
for 𝜓 is a cause. So in Example 4.1 we want that 𝑠 is a cause of
𝑞. However, our notion of a cause goes beyond what is positively
relevant. We also need to capture what is ‘negatively’ relevant, i.e.,
those propositions such that their complement would contribute to
a counterargument that would prevent an argument in the support
set from being justified. In other terms, if proposition 𝜑 would
contribute to (would be included in) a counterargument that would
defeat an argument in the support set for𝜓 , then −𝜑 is a cause of𝜓 .
So in Example 4.1 we want that ¬𝑡 is a cause of 𝑞 since adding 𝑡 to
K would create a new undefeated undercutter of argument𝐶 . Note
that the negations of some of these potential undercutters may be
in the current𝐴𝑇 , either as an ordinary premises or as a conclusion
of a defeasible-rule application (in our example ¬𝑡 is in K𝑝 ). For
this reason the additions to K should be necessary premises, so
that they can be used to strictly defeat both ordinary premises and
defeasible conclusions. So in Example 4.1, since ¬𝑡 is in K𝑝 , we
want to add 𝑡 to K𝑛 .

Accordingly, we define an axiom-expansion of an 𝐴𝑇 as follows.

Definition 4.2. [Axiom-expansions] The axiom-expansionK+𝐿
of a knowledge base K = K𝑝 ∪ K𝑛 is defined as K + 𝐿 = K𝑝 ∪
(K𝑛 ∪ 𝐿), where 𝐿 ⊆ L is a set of axioms. The axiom expansion
of an argumentation theory 𝐴𝑇 = (𝐴𝑆,K) with 𝐿 is defined as
𝐴𝑇 + 𝐿 = (𝐴𝑆,K + 𝐿).

The axiom-expansion of K with 𝐿 provides indefeasible argu-
ments for all atoms in 𝐿 (since the elements of 𝐿 are considered
necessary premises), defeating (and thus making irrelevant) all
arguments that contain −𝐿 as a premise or conclusion. Thus, it cor-
responds, within our argumentation framework, to an intervention
as defined by [15, 487], which consists in modifying a causal model
by setting the values of certain variables and removing all their
dependencies from other variables.

We can now give our formal definition of a cause. As for notation,
G(𝐴𝐹 ) denotes the grounded extension of 𝐴𝐹 .

Definition 4.3. [Cause] Literal 𝜑 is a cause of literal 𝜓 relative
to 𝐴𝐹𝐴𝑇 iff there exist a subset-minimal set of literals 𝐿 and an
explanation 𝐸 for argument 𝐴 ∈ G(𝐴𝐹𝐴𝑇 ) with Conc(𝐴) = 𝜓 such
that
• −𝜑 ∈ 𝐿,

• 𝐸 ⊈ G(𝐴𝐹𝐴𝑇+𝐿)

In other words, for 𝜑 to be a cause of 𝜓 it is required that by
adding literals 𝐿 to the knowledge base we obtain a non-overruled
defeater (containing −𝜑) of an explanation of𝜓 . Thus, the test for
whether 𝜑 is a cause of𝜓 amounts to adding its contradictory −𝜑
as a necessary premise (which thus overrides any incompatible
ordinary fact or defeasible conclusion) and then checking whether
we have lost an explanation for𝜓 . According to this definition we
can indeed distinguish three ways in which –given an explanation
𝐸 for an argument𝐴 having conclusion𝜓– a literal𝜑 can be a cause
of𝜓 :

(1) 𝜑 is the conclusion of a subargument of 𝐴. In this case, −𝜑 ∈
𝐿 leads to𝐴 being rebutted or undermined by −𝜑 in𝐴𝐹𝐴𝑇+𝐿 .
This attack succeeds as an undefeated defeat, since −𝜑 ∈ K𝑛 ,
so 𝐴 ∉ G(𝐴𝐹𝐴𝑇+𝐿), and 𝐸 is no explanation of 𝐴 relative to
𝐴𝐹𝐴𝑇+𝐿 ;

(2) 𝜑 is included in a justified argument 𝐶 ∈ 𝐸 defending an
argument 𝐴 for 𝜓 . Then −𝜑 ∈ 𝐿 leads to 𝐶 being excluded
from G(𝐴𝐹𝐴𝑇+𝐿) for the same reason, so 𝐸 is no explanation
of 𝐴 relative to 𝐴𝐹𝐴𝑇+𝐿 ;

(3) −𝜑 ∈ 𝐿 enables or defends a new argument 𝐵 ∈ 𝐴𝐹𝐴𝑇+𝐿 that
defeats an argument 𝐶 ∈ 𝐸 such that 𝐶 ∉ G(𝐴𝐹𝐴𝑇+𝐿). Then,
too, 𝐸 is no explanation of 𝐴 relative to 𝐴𝐹𝐴𝑇+𝐿 .

In Example 4.1 we have that 𝑝 is a cause under (1); 𝑠 is a cause
under (2) and ¬𝑡 is a cause under (3). Note that ¬𝑡 would also be
a cause under (3) if ¬𝑡 were not in K . Note also that according to
Definition 4.3 also certain undercutting conclusions (i.e., negations
of rule names) would count as causes. For instance, in example 4.1
¬𝑟2 would count as a cause. Such conclusions play a technical role
in our model of argument (since they lead to undercutting other
arguments), but it may be less natural to include them among the
causes-in-fact. They can be filtered out if desired, for instance, by
requiring that causes appear in the antecedents of rules.

Our notion of a cause can be directly connected to the basic
concept of NESS, namely, the idea that a cause is a necessary ele-
ment of a set of elements that is sufficient for the effect to happen.
Remember that the support set for a proposition is the union of
all explanations for that proposition, and that the explanations of
an argument 𝐴 are minimal sets of arguments that ensure that 𝐴
is justified. Thus any cause 𝜙 of𝜓 is necessary for one particular
explanation (justification) 𝐸 of𝜓 to hold:

• 𝜙 could be a conclusion of an argument in an explanation 𝐸
for𝜓 , and would therefore be necessary for 𝐸 to exist (cases
(1) and (2) above), or
• −𝜙 could lead to a successful new challenge against an argu-
ment in 𝐸, so that 𝐸 no longer explains (justifies)𝜓 (case (3)
above). Thus 𝜙 is necessary for 𝐸 to explain 𝜙 because it is
needed to repel that challenge.

It may seem that this concept of causation leads to too many an-
tecedent facts being qualified as causes of the effect at stake. How-
ever, the problem context will always yield just a small set of legally
relevant potential causes (typically, the actions/omissions of the
person whose responsibility is being considered, or the outcome of
such an action).
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5 CAUSE-IN-FACT IN LEGAL CASES
In this section, we apply our framework to analyse cause-in-fact in
six legal cases. Each scenario consists of a description of the case,
the variables, and the causal model.

Asbestos and Lung Cancer (Overdetermination): Fairchild v Glen-
haven (2002). 3

Mr. Fairchild had worked for three construction companies dur-
ing the 1960s, where he frequently handled asbestos materials. He
passed away from lung cancer in 1996. Expert testimony confirmed
that asbestos exposure from at least two of these companies was
enough to cause his cancer. Consequently, all three companies were
found liable for his death.

The atoms of the scenario: Fairchild was exposed to asbestos in
𝑖 (𝐸𝑥𝑖 ); Fairchild contracted lung cancer (𝐶𝑎); Fairchild died (𝐷𝑖).

R = { 𝑟0 : 𝐶𝑎 ⇒ 𝐷𝑖, 𝑟1 : 𝐸𝑥1, 𝐸𝑥2 ⇒ 𝐶𝑎,

𝑟2 : 𝐸𝑥2, 𝐸𝑥3 ⇒ 𝐶𝑎, 𝑟3 : 𝐸𝑥1, 𝐸𝑥3 ⇒ 𝐶𝑎}
K = { 𝐸𝑥1, 𝐸𝑥2, 𝐸𝑥3}

Each 𝐸𝑥𝑖 (with 𝑖 = 1, 2, 3), i.e., the exposure while working in com-
pany 𝑖 , is a cause of 𝐷𝑖 , since each 𝐸𝑥𝑖 is included in an explanation
for 𝐷𝑖 . Just take any argument for 𝐷𝑖 which includes subargument
𝐸𝑥𝑖 , for instance, 𝐸𝑥1, 𝐸𝑥2 ⇒ 𝐶𝑎 is such an argument.

Double Shooting, Attempted Crime (Preemption): People v. Dlugash
(1997). 4 In 1973, Mr. Geller was found shot to death in his Brooklyn
apartment. Bush, had shot first and fatally wounded the victim
whereas Dlugash had fired his shots after Geller was dead. Bush was
considered to have caused the death and consequently convicted
for murder, Dlugash was only convicted for attempted murder,
since he tried to kill Geller but failed to do so. We provide two
models of this example. The first simpler one, does not include a
representation of time, which is used in the second, in Section 6
below. Here are non-temporalised atoms: Bush/Dlugash shoots
(𝐵𝑢𝑆ℎ/𝐷𝑙𝑆ℎ); Bush/Dlugash kills Geller (𝐵𝑢𝐾𝑖/𝐷𝑙𝐾𝑖); Geller dies
(𝐺𝑒𝐷𝑖). This model deals with preemption, by explicitly stating that
if Bush has killed Geller, then Dlugash shot cannot have this effect.

R = { 𝑟0 : 𝐵𝑢𝑆ℎ ⇒ 𝐵𝑢𝐾𝑖, 𝑟1 : 𝐷𝑙𝑆ℎ ⇒ 𝐷𝑙𝐾𝑖,

𝑟2 : 𝐵𝑢𝐾𝑖 ⇒ 𝐺𝑒𝐷𝑖, 𝑟3 : 𝐷𝑙𝐾𝑖 ⇒ 𝐺𝑒𝐷𝑖,

𝑟4 : 𝐵𝑢𝐾𝑖 ⇒ ¬𝑟1}
K = { 𝐵𝑢𝑆ℎ, 𝐷𝑙𝑆ℎ}

It is easy to see that Bush shooting (𝐵𝑢𝑆ℎ) is a cause of Geller’s
dying (𝐺𝑒𝐷𝑖) since it is included in a justified argument leading to
that effect. Dlugash’s shooting (𝐷𝑙𝑆ℎ) is not since the argument for
𝐺𝑒𝐷𝑖 including 𝐷𝑙𝑆ℎ is undercut according to rule 𝑟4, i.e., by the
justified argument [𝐵𝑢𝑆ℎ ⇒ 𝐵𝑢𝐾𝑖] ⇒ ¬𝑟15

Childhood Leukaemia (Omission): Cassazione penale (2023). 6

This Italian case concerns parents’ responsibility for the death of
their child, who was diagnosed with acute lymphoblastic leukaemia.
Doctors strongly recommended chemotherapy, but the parents re-
fused the treatment and the child was not treated and died soon
after. The parents were held responsible under civil law for causing
the death of the child. Here are the atoms: child has leukaemia
3Fairchild v Glenhaven Funeral Services Ltd [2002] UKHL 22.
4Dlugash v. People of State of NY , 476 F. Supp. 921 (E.D.N.Y. 1979).
5The square brackets here indicate to which subargument 𝑟4 is applied.
6Case 12124/2023, Cassazione Penale.

(𝐶ℎ𝐿𝑒); child dies (𝐶ℎ𝐷𝑖); child receives chemotherapy (𝐶ℎ𝑒𝑚); par-
ents consent (𝑃𝑎𝐶𝑜).

R = { 𝑟0 : 𝐶ℎ𝐿𝑒 ⇒ 𝐶ℎ𝐷𝑖, 𝑟1 : 𝑃𝑎𝐶𝑜 ⇒ 𝐶ℎ𝑒𝑚,

𝑟2 : 𝐶ℎ𝑒𝑚 ⇒ ¬𝑟0},
K = { 𝐶ℎ𝐿𝑒,¬𝑃𝑎𝐶𝑜}

Leukaemia (𝐶ℎ𝐿𝑒) is a cause of 𝐶ℎ𝐷𝑖 but ¬𝑃𝑎𝐶𝑜 also is a cause. In
fact, we can build a refutation of𝐶ℎ𝐷𝑖 by adding the complement of
¬𝑃𝑎𝐶𝑜 , i.e., 𝑃𝑎𝐶𝑜 to the knowledge base. This intervention enables
the following justified argument : [𝑃𝑎𝐶𝑜 ⇒ 𝐶ℎ𝑒𝑚] ⇒ ¬𝑟0. This
counterfactual argument says that if the parents had consented
then causal rule 𝑟0 (according to which leukaemia will lead to the
child’s death) would not not have applied.

Car Accident (Preemptive Negative Causation): Saunders v Adams
(1928). 7 A car ran into a motorist. The car driver did not press
the brake pedal, but the brakes were defective so even if the dri-
ver had tried to brake, the accident would have happened anyway.
According to the causal model endorsed by judges [32], the driver
was considered to have caused the crash. Atoms are: accident hap-
pens (𝐴𝑐𝐻𝑎); brakes fail (𝐵𝑟𝐹𝑎); driver presses brake pedal (𝐷𝑟𝑃𝑢);
brakes malfunction (𝐵𝑟𝑀𝑎).

R = { 𝑟0 : 𝐵𝑟𝐹𝑎 ⇒ 𝐴𝑐𝐻𝑎, 𝑟1 : ¬𝐷𝑟𝑃𝑢 ⇒ 𝐴𝑐𝐻𝑎,

𝑟2 : 𝐵𝑟𝑀𝑎 ⇒ 𝐵𝑟𝐹𝑎, 𝑟3 : ¬𝐷𝑟𝑃𝑢 ⇒ ¬𝑟2},
K = { 𝐵𝑟𝑀𝑎,¬𝐷𝑟𝑃𝑢}.

The driver’s omission to push the brakes (¬𝐷𝑟𝑃𝑢) is a cause of the
accident 𝐴𝑐𝐻𝑎 (there exists a justified arguement for 𝐴𝑐𝐻𝑎 based
on ¬𝐷𝑟𝑃𝑢: ¬𝐷𝑟𝑃𝑢 ⇒ 𝐴𝑐𝐻𝑎). Brake malfunctioning 𝐵𝑟𝑀𝑎 is not a
cause: the brake pedal was not pushed so that the brake malfunction
could not determine their failure, by argument ¬𝐷𝑟𝑃𝑢 ⇒ ¬𝑟2.

War Crime (Necessary Causation or Ennoblement). In the fol-
lowing, we consider a war crime discussed in the literature [3]
in which both a proposition and its negation can produce the ef-
fect. The sergeant requests the soldier to shoot a prisoner, and tells
the soldier: “if you do not shoot the prisoner, I will do it”. The
soldier complies. We formalise it as follows: prisoner dies (𝑃𝑟𝐷𝑖);
soldier/sergeant shoots prisoner (𝑆𝑜𝑆ℎ/𝑆𝑒𝑆ℎ).

R = {𝑟0 : 𝑆𝑜𝑆ℎ ⇒ 𝑃𝑟𝐷𝑖, 𝑟1 : 𝑆𝑒𝑆ℎ ⇒ 𝑃𝑟𝐷𝑖, 𝑟2 : ¬𝑆𝑜𝑆ℎ ⇒ 𝑆𝑒𝑆ℎ},
K = {𝑆𝑜𝑆ℎ}

Shooting by the soldier 𝑆𝑜𝑆ℎ causes 𝑃𝑟𝐷𝑖 , according to argument
𝑆𝑜𝑆ℎ ⇒ 𝑃𝑟𝐷𝑖 . Note ¬𝑆𝑜𝑆ℎ would also cause 𝑃𝑟𝐷𝑖 . In a context in
which the soldier does not shoot the prisoner (givenK = {¬𝑆𝑜𝑆ℎ}),
the following argument is justified: [¬𝑆𝑜𝑆ℎ ⇒ 𝑆𝑒𝑆ℎ] ⇒ 𝑃𝑟𝐷𝑖

Therefore this example is an instance of ennoblement in a strict
sense [34]: by shooting the soldier directly causes the death, and by
not shooting he would indirectly cause the same outcome, inducing
(ennobling) causation by the sergeant.

6 PREEMPTIONWITH EVENT
CALCULUS-STYLE MODELLINGS

We next formalise some of the above examples in a more refined
way inspired by the event calculus, especially as used by Shanahan
[27], to capture the temporal aspects of preemption scenarios in a
more general way. In the approach of this section the defeasibility
7Saunders System Birmingham Co. v. Adams, 61 A.L.R. 1333 (Ala. 1928).
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of causal laws is, unlike in Section 5, not directly expressed as
defeasible rules cause⇒ consequence. Instead, causal laws are now
‘reified’ as first-order expressions of the form Causes(𝑎, 𝑓 , 𝑡, 𝑡 ′).
In this notation variables 𝑎, 𝑎′, . . . are used for actions (following
[28], we use the term action in a generic sense, as a synonym of
event), 𝑓 , 𝑓 ′, . . . for states of affair (called ‘fluents’ in the literature
on the event calculus), and 𝑡, 𝑡 ′, . . . for time points. To capture the
defeasible nature of causal laws, we model them as consequents of
defeasible rules of the form Conditions⇒ Causes(𝑎, 𝑓 , 𝑡, 𝑡 ′) (where
the condition part may be empty) .

The modelling below assumes discrete linear time plus a naming
function for defeasible rules that for every rule 𝑟 with free variables
𝑥1, . . . , 𝑥𝑛 returns the name Applicable(𝑟 (𝑥1, . . . , 𝑥𝑛)). When the
rule is instantiated, the variables are replaced by constants or func-
tion expressions with constants.

Rule 𝑟1 addresses action-to-fluent causation: it says that if an
action causes a fluent to happen, then the fluent holds after the
action is executed. Rule 𝑟2 addresses action-to-action causation: it
says the same for when an action causes another actions to happen.
Rule 𝑟3 undercuts the action-to-fluent causation: it says that an
action cannot cause a fluent to hold if the fluent already holds. This
is a general way to model preemption for 𝑟1. For 𝑟2 and 𝑟3 more
specific undercutters must be given.

𝑟1 (𝑎, 𝑓 , 𝑡, 𝑡 ′): Happens(𝑎, 𝑡), Causes(𝑎, 𝑓 , 𝑡, 𝑡 ′)
⇒ HoldsAt(𝑓 , 𝑡 ′)

𝑟2 (𝑎, 𝑎′, 𝑡, 𝑡 ′): Happens(𝑎, 𝑡), Causes(𝑎, 𝑎′, 𝑡, 𝑡 ′)
⇒ Happens(𝑎′, 𝑡 ′)

𝑟3 (𝑟1 (𝑎, 𝑓 , 𝑡, 𝑡 ′)) HoldsAt(𝑓 , 𝑡 ′ − 1)
⇒ ¬Applicable(𝑟1 (𝑎, 𝑓 , 𝑡, 𝑡 ′))

The following rule scheme formalises temporal persistence: if a
fluent holds at a certain point in time, it is presumed to hold in the
future.

𝑟4 (𝑓 , 𝑡, 𝑡 ′): 𝑡 < 𝑡 ′, HoldsAt(𝑓 , 𝑡) ⇒ HoldsAt(𝑓 , 𝑡 ′)

Rule 𝑟4 has the undercutter 𝑟5: persistence of 𝑓 from 𝑡 to 𝑡 ′ is no
longer presumed if a new event causes the complement −𝑓 of 𝑓 at
a 𝑡2 between 𝑡 and 𝑡 ′.

𝑟5 (𝑟4 (𝑓 , 𝑡, 𝑡 ′), 𝑡1, 𝑡2): Happens(𝑎, 𝑡1), Causes(𝑎,−𝑓 , 𝑡1, 𝑡2),
𝑡 < 𝑡2 ≤ 𝑡 ′ ⇒ ¬Applicable(𝑟4 (𝑓 , 𝑡, 𝑡 ′))

This rule assumes a definition of the function symbol for nega-
tion, which can be formalised as a strict rule HoldsAt(𝑓 , 𝑡) →
¬HoldsAt(−𝑓 , 𝑡) and its transposition, which we leave implicit
below in all examples.

6.1 Late Preemption: the Asynchronous
Shooting

We now model the shooting case using the following predicates:
𝑇𝑟 (𝑥,𝑦), meaning that 𝑥 tries to shoot 𝑦; 𝑆ℎ(𝑥,𝑦), meaning that 𝑥
shoots 𝑦; 𝐷𝑒𝑎𝑑 (𝑦), meaning that 𝑦 is dead. The knowledge base
contains the facts that Bush tries to shoot Geller at time 1 and
Dlugash at time 10.

K = {Happens(𝑇𝑟 (𝐵𝑢,𝐺𝑒), 1), Happens(𝑇𝑟 (𝐷𝑙,𝐺𝑒), 10)}
R = {𝑐1 (𝑥,𝑦, 𝑡) :⇒ Causes(𝑇𝑟 (𝑥,𝑦), 𝑆ℎ(𝑥,𝑦), 𝑡, 𝑡 + 1),

𝑐2 (𝑥,𝑦, 𝑡) :⇒ Causes(𝑆ℎ(𝑥,𝑦), 𝐷𝑒𝑎𝑑 (𝑦), 𝑡, 𝑡 + 1)}

The knowledge base provides argument 𝐵1 =
Happens(𝑇𝑟 (𝐵𝑢,𝐺𝑒), 1) while the instantiation of rule 𝑐1
provides argument 𝐵2 =⇒𝑐1 Causes(𝑇𝑟 (𝐵𝑢,𝐺𝑒), 𝑆ℎ(𝐵𝑢,𝐺𝑒), 1, 2).
By applying the appropriate instantiation of rule 𝑟1, we
obtain 𝐵3 = 𝐵1, 𝐵2 ⇒𝑟2 Happens(𝑆ℎ(𝐵𝑢,𝐺𝑒), 2). The cor-
responding instantiation of rule 𝑟2 provides argument
𝐵4 =⇒𝑐2 Causes(𝑆ℎ(𝐵𝑢,𝐺𝑒), 𝐷𝑒𝑎𝑑 (𝐺𝑒), 2, 3). Through rule
𝑟1, we get 𝐵5 = 𝐵3, 𝐵4 ⇒𝑟1 Holdsat(𝐷𝑒𝑎𝑑 (𝐺𝑒), 3).

Argument 𝐵5 for HoldsAt(𝐷𝑒𝑎𝑑 (𝐺𝑒), 3) is justified, hav-
ing no defeaters, and it includes subargument 𝐵3 for
Happens(𝑆ℎ(𝐵𝑢,𝐺𝑒), 2). Therefore, we can say that Bush’s
shooting is a cause of Geller being dead.

In a similar way, we can build arguments for Dlugash

𝐷1 = Happens(𝑇𝑟 (𝐷𝑙,𝐺𝑒), 10)
𝐷2 =⇒𝑐1 Causes(𝑇𝑟 (𝐷𝑙,𝐺𝑒), 𝑆ℎ(𝐷𝑙,𝐺𝑒), 10, 11)
𝐷3 = 𝐷1, 𝐷2 ⇒𝑟2 Happens(𝑆ℎ(𝐷𝑙,𝐺𝑒), 11)
𝐷4 =⇒𝑐2 Causes(𝑆ℎ(𝐷𝑙,𝐺𝑒), 𝐷𝑒𝑎𝑑 (𝐺𝑒), 11, 12)
𝐷5 = 𝐵3, 𝐵4 ⇒𝑟1 HoldsAt(𝐷𝑒𝑎𝑑 (𝐺𝑒), 12)

with also 𝐷5 concluding for the death of Geller.
However, 𝐷5 is not justified (and thus Dlugash’s shot is not

a cause of Geller’s death), since we can build a defeater of
it. Indeed, by applying persistence rule 𝑟4 we obtain an argu-
ment 𝐵6 for Holdsat(𝐷𝑒𝑎𝑑 (𝐺𝑒), 11). Argument 𝐵6 can be used
to instantiate undercutter 𝑟3, and thus obtain 𝐵7 = 𝐵6 ⇒
−Applicable(𝑟1 (𝑆ℎ(𝐷𝑙,𝐺𝑒), 𝐷𝑒𝑎𝑑 (𝐺𝑒), 11, 12). 𝐵7 defeats, and in-
deed overrules 𝐷5, so that 𝐷5 is no explanation of the death of
Geller, and consequently the shot by Dlugash is no cause of it.

6.2 Symmetric Overdetermination: the
Synchronous Shooting

We next illustrate with a minor modification of the above example
that the above rules naturally deal with cases of overdetermination.
Suppose now that Dlugash does not pull the trigger at time 10, so
after Bush pulls his trigger, but at time 1, so at the same time as
Bush. Then rules 𝑟1 and 𝑟2 are instantiated for Dlugash with the
same time constants as for Bush, so the undercutter rule 𝑟3 cannot
be used, and the argument that Geller is shot dead by Dlugash is
also undefeated. Then we have two explanations why Geller died,
so both Bush and Dlugash caused Geller to die.

6.3 Early Preemption: the Non-Poisoned Bottle
The event-calculus based approach has the advantage of providing
the tools to capture temporal inertia. This is suitable for modelling
cases in which change happens through time, such as the following
one (from [32]), where a full (non-empty bottle) is emptied.

C is a traveller in the desert, whose only source of
water is a keg full of water. A adds a fatal dose of
undetectable poison to the water in the keg, for which
there is no antidote. C remains unaware of the poison
in the water. Subsequently, before C drinks any of
the poisoned water, B dumps the poisoned water out
of the keg. When C attempts to drink water from
the keg, she discovers that it is empty. C dies due to
dehydration.
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Wright [32] argues that only B’s emptying the keg is the cause
of C’s death, since the causal law for death by poisoning has as a
condition ‘poisoned water is in the keg’, which is not satisfied.

The knowledge base and rule base are as follows.

K = {HoldsAt(−𝐸𝑚𝑝𝑡𝑦, 0), Happens(𝑃𝑜𝑖𝑠𝑜𝑛𝑠, 1),
Happens(𝐸𝑚𝑝𝑡𝑖𝑒𝑠, 2), Happens(𝑇ℎ𝑖𝑟𝑠𝑡, 10)}

R = {𝑐1 (𝑡) :⇒ Causes(𝐸𝑚𝑝𝑡𝑖𝑒𝑠, 𝐸𝑚𝑝𝑡𝑦, 𝑡, 𝑡 + 1),
𝑐2 (𝑡) :⇒ Causes(𝑃𝑜𝑖𝑠𝑜𝑛𝑠, 𝑃𝑜𝑖𝑠𝑜𝑛𝑒𝑑, 𝑡, 𝑡 + 1),
𝑐3 (𝑡) : HoldsAt(−𝐸𝑚𝑝𝑡𝑦, 𝑡), Holdsat(𝑃𝑜𝑖𝑠𝑜𝑛𝑒𝑑, 𝑡)
⇒ Causes(𝑇ℎ𝑖𝑟𝑠𝑡, 𝐷𝑟𝑖𝑛𝑘𝑠𝑃𝑜𝑖𝑠𝑜𝑛, 𝑡, 𝑡 + 1),
𝑐4 (𝑡) : HoldsAt(𝐸𝑚𝑝𝑡𝑦, 𝑡)
⇒ Causes(𝑇ℎ𝑖𝑟𝑠𝑡, 𝐷𝑒ℎ𝑦𝑑𝑟𝑎𝑡𝑎𝑡𝑖𝑜𝑛, 𝑡, 𝑡 + 1),
𝑐5 (𝑡) :⇒ Causes(𝐷𝑟𝑖𝑛𝑘𝑠𝑃𝑜𝑖𝑠𝑜𝑛, 𝐷𝑒𝑎𝑑, 𝑡, 𝑡 + 1),
𝑐6 (𝑡) :⇒ Causes(𝐷𝑒ℎ𝑦𝑑𝑟𝑎𝑡𝑎𝑡𝑖𝑜𝑛, 𝐷𝑒𝑎𝑑, 𝑡, 𝑡 + 1)}

We can build an argument for 𝐶’s death by poisoning:

𝑃1 = HoldsAt(−𝐸𝑚𝑝𝑡𝑦, 0) (from K)
𝑃2 = Happens(𝑃𝑜𝑖𝑠𝑜𝑛𝑠, 1) (from K)
𝑃3 =⇒𝑐2 Causes(𝑃𝑜𝑖𝑠𝑜𝑛𝑠, 𝑃𝑜𝑖𝑠𝑜𝑛𝑒𝑑, 1, 2) (from R)
𝑃4 = 𝑃2, 𝑃3 ⇒𝑟1 HoldsAt(𝑃𝑜𝑖𝑠𝑜𝑛𝑒𝑑, 2) (fluent causation)
𝑃5 = 𝑃4 ⇒𝑟4 HoldsAt(𝑃𝑜𝑖𝑠𝑜𝑛𝑒𝑑, 10) (temporal persistence)
𝑃6 = 𝑃1⇒𝑟4 HoldsAt(−𝐸𝑚𝑝𝑡𝑦, 10) (temporal persistence)
𝑃7 = 𝑃6, 𝑃5 ⇒𝑐3 Causes(𝑇ℎ𝑖𝑟𝑠𝑡, 𝐷𝑟𝑖𝑛𝑘𝑠𝑃𝑜𝑖𝑠𝑜𝑛, 10, 11) (from R)
𝑃8 = Happens(𝑇ℎ𝑖𝑟𝑠𝑡, 10) (from K)
𝑃9 = 𝑃8, 𝑃7 ⇒𝑟2 Happens(𝐷𝑟𝑖𝑛𝑘𝑠𝑃𝑜𝑖𝑠𝑜𝑛, 11)
(from event causation)
𝑃10 =⇒𝑐5 Causes(𝐷𝑟𝑖𝑛𝑘𝑠𝑃𝑜𝑖𝑠𝑜𝑛, 𝐷𝑒𝑎𝑑, 11, 12)
𝑃11 = 𝑃9, 𝑃10 ⇒𝑟1 𝐻𝑜𝑙𝑑𝑠𝐴𝑡 (𝐷𝑒𝑎𝑑, 12) (from fluent causation)

Yet 𝑃11 is no explanation of the death (and thus the poisoning is no
cause of it) since the following justified argument defeats 𝑃11:

𝐷1 = Happens(𝐸𝑚𝑝𝑡𝑖𝑒𝑠, 2) (from K)
𝐷2 =⇒𝑐1 Causes(𝐸𝑚𝑝𝑡𝑖𝑒𝑠, 𝐸𝑚𝑝𝑡𝑦, 2, 3) (from R)
𝐷3 = 𝐷1, 𝐷2 ⇒𝑟 ′4

¬Applicable(𝑟4 (−𝐸𝑚𝑝𝑡𝑦, 0, 10))

Argument 𝐷3 defeats argument 𝑃11 by undercutting its subargu-
ment 𝑃6, i.e., by excluding that from the keg being non-empty at
time 0 we can infer that it is still non-empty at time 10.

On the other hand we can build a justified argument for the
death of C by using the fact that the keg is emptied at time 2, so
that thirst causes dehydration and consequently death. Therefore,
emptying the keg (Happens(𝐸𝑚𝑝𝑡𝑖𝑒𝑠, 2)) can be considered a cause
of 𝐶’s death.

7 RELATED RESEARCH
7.1 Relevance in Argumentation
Above we already explained how our notion of an explanation
improves on similar notions defined by [9] and [12]. Liao & van
der Torre [18] propose and study principles for explanations of
arguments in an abstract setting. We aim to study in future work
to which extent our notions of an explanation satisfy their princi-
ples. For now we can already remark that we do not satisfy their
assumption that all arguments have a unique explanation. Indeed,

not satisfying this assumption is the main reason why we can apply
our notions of relevance to NESS.

7.2 Causal Reasoning in Argumentation and AI
& Law

The AI literature on causation is vast, so we cannot do more than
briefly discuss some of the most important work, focusing on its
connection to argumentation. The Halpern-Pearl account in terms
of structural causal models [14] is seminal and takes some inspira-
tion from NESS. However, their account essentially regards causal
laws as deductive, with uncertainty modelled in probability dis-
tributions. One of our motivations for taking an argumentation
approach is to model the defeasibility of reasoning with causal
laws without using explicit probabilities. This fits the way in which
causal generalisations are used in legal reasoning, where defeasible
causal claims are often made and possibly attacked through coun-
terarguments (for a defeasible cause-to-effect reasoning scheme see
[29, Ch. 3], and for of defeasible causality in evidence, see [30]).

In [8] a detailed overview is given of applications of argumenta-
tion to causal reasoning, with as starting point the causal calculus
of [7], which models causal rules as indefeasible. In their conclusion,
the authors list the adaptation of [7]’s calculus with defeasible rules
and exceptions as a topic for future research. As just noted, this
was also a main motivation of our argumentation approach.

Of the work described in [8] that models actual causation, [4]
too regards causal laws as indefeasible, since they encode struc-
tural causal models as preferred subtheories in assumption-based
argumentation. The work of [5] and [6] models inference to the
best explanation while [31] models its combination with causal pre-
diction. Defeasible causal reasoning has also been studied within a
logic programming approach (see recently [13]).

We know of no work on argumentation and causation that ex-
ploits the similarity between argumentation-based notions of rele-
vance and NESS, although [9] note more generally that the notions
of argumentation-based and causal relevance are similar.

Of other work in AI & law, the argumentation-scheme ap-
proach of [19] was a source of inspiration for our present approach.
Lehmann & Gangemi [17] propose a formal ontology of concepts
related to cause-in-fact, but do not model causal reasoning. Andreas
et al. [1] aim to model overdetermination within a counterfactual
approach to causation. However, they do not discuss how their
approach relates to NESS (which was indeed motivated by the
need to address overdetermination) but instead compare it to the
Halpern-Pearl approach to actual causality [14]. Their formalism
applies possible-worlds semantics and relies on the idea of ‘norma-
tively ideal worlds’, which are worlds in which agents act according
to their legal duties. They use this concept to model a notion of
causal responsibility. Thus Andreas et al. do, unlike us, not separate
cause-in-fact from legal responsibility. Another difference with our
approach is that we take an argumentation approach while they
take a modal-logic approach.

8 Conclusion
This paper has provided a novel formalisation, based on argumen-
tation, of cause-in-fact in legal cases. Our formalisation includes a
general approach to actual causation, which provides the central
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aspect of causation in law. While this approach is inspired by lead-
ing approaches to actual causality [14] and the NESS framework of
[32], it is distinctive in explicitly modelling defeasible causal rules
and exceptions to them. Our causation-in-fact model successfully
addresses various conundrums that have troubled legal analyses of
causation, still bound to the idea of condition-sine-qua non (such
as overdetermination and preemption).

The argumentation-based approach presented here can be fur-
ther expanded in various directions, for instance by allowing argu-
mentation frameworks with:

• Arguments for supporting or rejecting a causal rule, so that
the acceptance of such rules can be justified through argu-
mentation, according to the available knowledge and evi-
dence:
• Arguments specifying the conditions for, or exceptions to,
the legal relevance of causes-in-fact.

By relying on argumentation, our notion of a cause-in-fact can
be integrated into more specific notions of legal causality (as pro-
posed by doctrines of proximate or adequate causality) or with
further conditions for legal responsibility (if we follow doctrines
according to which the concept of causality should be restricted
to causation-in fact). Moreover, by relying on argumentation the
legal relevance or causes in fact may be excluded under general
conditions (e.g., causation through omission is usually legally rele-
vant only where there is an obligation to act), or blocked by legally
specific exceptions (such as unforseeable actus novi leading to un-
expected outcomes). While leaving this modelling to further work,
we argue that an argumentation approach has the advantage of
facilitating the integration of all such aspects within a unifying
framework. A tool for the automatic evaluation of causation based
on the presented formalisation is currently under development.

Finally, though we have here only focused on empirical causal
connections (in order to specifically address causation-in-fact), our
formalisation of a cause can have a broader significance, providing
a concept of a reason or determinant of a defeasible conclusion,
whichmay have applications in other domains, such as in normative
and practical reasoning.
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