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Abstmct

This paper presents a formal theory aibout

prefem”ng the most specific argument. l%e theo~y is

applied to legal reasoning and used to formulate

requirements for legal knowledge-based systems

choosing between alternative arguments. It is based

on a proposal of Poole, but improves it in two

respects: firstly, default Iog”c is shown to be a

better underlying Io@”c for defensible reasoning than

standard first-order lo~-c; and secondly, specificity

is defined iteratively, in order to handle muhiple

conflicts and to characterize the set of prefk?red

knowledge. lle theory is an example of the fact

that Io@”c can be a tool in legal reasoning even if

deduction is not regarded as the right way to

model it,

1. Introduction

In response to “naive rule-based developments in

the field of AI and law there has been an increasing

interest in legal AI systems which can give and

Permission to copy widmn fcc df m part of this material is gcantcd provided that

the topic%? am not made or distributed for direct .ommercizl .dvamage, the ACM
copyright notice md the titIe of the publication and iw date appear, md ncxice is

given that ccpying is by pczmis.sion of the Assockim for Ccmtpucing Machinery.

To ccpy otherwise. or to republish, requires a fcc and/or ~ic _tim.

@ ACM O-89791 -399 -X/91 /06W/0165 $1.50

compare possibly conflicting

legal problem. Examples are

(Ashley and Rissland, 1987),

alternative solutions to a

the Hypo system

the system of

(1987) and the Prolexs system (Oskamp et

It might be argued that this development

shift from logical to other methods in

legal reasoning in this paper, however, I

Gardner

al., 1989).

implies a

modelling

will show

that, even if deduction is not regarded as

appropriate to model disagreement in law, logic can

still be useful as a tool in legal reasoning. I will do

so by investigating a logical tool in comparing

alternative solutionw preferring the most specific

argument.

In various respects a study of the specificity

principle can contribute to the field of Al and Law.

Firstly, this principle is, at least for continental

systems, generally accepted as legally valid for

regulational sources

therefore lawyers are

specitlc regulation, as

cases with alternative

them is based on a

of legal knowledge, and

expected to prefer the most

a consequence, in regarding

solutions as easy if one of

more specii3c aqyrnent, the

principle draws part of the boundary between “hard”

and “easy” questions, which is relevant for systems

for ‘issue spotting” (Gardner, 19~ Gordon, 1989),

Secondly, in solving legal problems it is ofien

necessary to assume of a ease that it is normal if

nothing is known about the existence of exceptions

(cf. Gardner, 198%55-9); using the specificity-
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principle is a way to make this assumption.

This last aspect makes the present study also

relevant for the general AI-study of so called

“nonmonotonic” or “common-sense” reasoning, which

is a kind of reasoning in which conclusions may

become invalid if further information is given.

Although formalisms for nonmonotonic reasoning are

generally motivated by referring to the problem of

handling exceptions, only some such systems actually

incorporate the principle that exceptions defeat

general rules. An example is the system of

Delgrande (1987), in which the principle is

incorporated into a possible-worlds approach to

defensible reasoning. Another approach is to use

some kind of consistency- or nonprovability-operator

in combination with exception clauses, either

formulated specifically, as e.g. in Etherington and

Reiter (1983) and McCarty (1988), or generally, as

eg+ in Routen (1989), containing a legal

implementation in PROLOG.

However, for philosophical reasons I will

concentrate on using the principle as a metarule for

choosing between competing arguments, since as

such it more naturally fits into the “modelling

disagreement” view on legal reasoning than the other

approaches, which do not aiiow competing

arguments. Examples of this approach in the general

AI-literature are Poole (1985) and Loui (1987). The

aim of this paper is to develop a formal theory

about preferring the most specific argument: rather

than giving a procedure to determine which

arguments are preferred, the theory will give

definitions of what it means if an argument is

preferred; thus it can be used as a touchstone for

implementations of “specific defeats generat”.

My investigations will be formal in nature; the

reader is assumed to be familiar with fwst-order

predicate logic and not totally unfamiliar with the

study of nonmonotonic reasoning. The starting point

of my research is the approach of Poole (1985). In

section 2, following an overview of his ideas, some

problems are identified which motivate an irrqxoved

and extended definition of the specificity principle,

given in secton 3, and applied to some examples in

section 4; section 5 is about implementation.

2. Poole: preferring the most specific

explanation

2.1. Poole’s theory comparator

Poole (1985) presents a formalization of the “Specific

defeats general” principle against the background of

a general view on default reasoning presented in

detail in Poole (1988). Essentially, this view is that if

defaults are regarded as possible hypotheses with

which theories can be constructed to explain certain

facts, there is no need to change the logic but only

the way the logic is used. Accordingly, the semantics

and proof theory of Poole’s “logical framework for

default reasoning” are simply those of f~st order

predicate logic. The basis of this framework are the

sets F and & F is a set of closed first-order

formulas, the _ assumed consistent; and 8 is a

set of possibly inconsistent first-order formulas, the

defaults or possible hypotheses. A scenario of a pair

(F,ti) is a consistent set F U D, where D is a set of

ground instances of defaults of 5. A explanation of

a closed formula is a scenario implying it. Theory

formation consists of constructing an explanation for

a given formula. These definitions say that in

constructing an explanation the facts must be obeyed

but that the use of any default is free, as long as,

when taken together, they are consistent with the

facts. Conflicting explanations can be compared with

respect to any criterion, one of which is specificity.

What is striking in Poole’s view on default

reasoning is its similarity to the “modeiling

disagreement” view on legal reasoning (cf. Gordon,

1989); the legal counterpart of explanations are

arguments for a desired solution of a case: certain

facts must be obeyed by such arguments: for

example, facts about the case at hand or necessary

truths such as “a man is a person” or “a rent

contract is a contract”, but for the rest a lawyer has

available a large body of conflict~g opinions, rules,

precedents etc.. from which to choose a coherent set

of premises which best serve the client’s interests.

Also viewing “specific defeats general” as a choice

between competing explanations nicely fits into the

“modelling disagreement” view on legal reasoning,

Although Poole (1985) is mainly concerned with

inheritance networks, he does not restrict his

specificity principle to such networks, but defines it
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on the semantics of full first-order predicate logic.

Consider explanations Ai = F U Di for u and Aj

= F U Dj for f.1 (Greek letters cs,fl and ~, as well

as letters a,b,c, etc., are used in this paper as

metavariables for arbitrary fwst-order formulas). The

facts of Ai and Aj can be divided into necessary

facts Fn, true in all explanations based on (F,8), and

contingent facts Fc, the “input facts”. In determining

spectlcity only the necessary facts are taken into

account. The reason will be explained below in the

discussion of the “loose bricks” example. Now Ai is

more s~ecific than Aj iff there is a possible fact Fp

which makes Aj explain B without making Ai explain

cz or B (without this last requirement for Ai and t3,

Fp = f3 would always make Ai more specific than

Aj if w # 8). In formal notation, iff

Aj={Fp}UFn UDjl$f3

Ai = {Fp} U Fn U Di not 1+ et and not 1+ 13.

(l: denotes first-order entailment).

If, in addition, Aj is not more specific than Ai, Ai

is strictly more sr)ecific than Aj.

A few examples illustrate the definitions (which are

slightly different than those of Poole). Consider first

a pair of rules stating that anyone who has

borrowed money must pay it back, unless another

person has payed it back for him or her. Let us

assume that this is the case with Bob, who has

borrowed 50 pounds: in predicate logic this may be

formalized as

1. Borrowed(Bob,f 50) -> Mustflay_back(Bob,f 50)

2, [(Borrowed(Bob,f 50) & Payed_by_third(f 50)]

-> = Must~ay_back(Bob,f 50)]

Fc = {Borrowed(bob,f 50), Payed_by_third(f 50)}

8 = { 1’,2’ } where 1’,2’ are 1,2 with the constants

replaced by variables. In the following examples 8

will be left implicit.

Al = Fc U {1} is an argument for

Must_pay_back(Bob,f 50), while A2 = Fc U {2} is

an argument for the opposite. A2 defeats Al since

the antecedent of (2) logically implies the antecedent

of (1) while the reverse does not hold, thk means

that, on the one hand, every fact which makes A2

explain = Must_pay_back(Bob,f 50) makes Al

explain the opposite while, on the other hand, there

is a fact, Borrowed(Bob,f 50), which makes Al

explain Must~ay_back(Bob,f 50) without making A2

explain its negation. Therefore, the argument for

T Must~ay_back(Bob,f 50) takes precedence.

Another typical case of specificity occurs when one

antecedent implies another merely as a matter of

fact. Consider the example of a rule stating that

contracts bind only the parties involved, and another

rule saying that rent contracts of houses also bind

new owners of the house, For a given contract c

this is formalized as

3. Contract(c) -> Binds_ordyflarties(c)

4. HouserentContract(c) ->

(= Binds_onlyflarties(c) & Binds_all_owners(c))

Fn = {(x)[HouserentContract(x) -> Contract(x)]}

Fc = {HouserentContract(c)}

The argument A3 = Fn U Fc U {3} explains

Binds_only~arties(c), while A4 = Fn U Fc U {4}

explains =Binds_only_partie s(c) &

Binds_all_owners(c). A4 is strictly more specific than

A3: Contract(c) is a possible fact which makes A3

explain Binds_only~arties(c) without making A4

explain (~ Binds_ only _parties(c) &

Binds_all_owners(c)) or Binds_only~arties(c), and

therefore A4 is more specitic than 0, on the other

hand, A3 is not more specific than A4, because

every fact which impfies HouserentContract(c) and

thus makes A4 apply, because of Fn also implies

Contract(c), which makes A3 apply.

A more complicated type of examples is of the

following logical form

D5={a->b, b->c}

D6={(a&e)->d, d->=c}

Fc = {a,e}

According to Poole the explanations A5 = D5 U

Fc for c and A6 = D6 U Fc for 1 c are both

more speciilc than each othe~ b is a possible fact

which makes A5 applicable and not A6, and d is a

fact which makes A6 applicable and not A5 (recall

that in determining specificity Fc is ignored). At f~st

sight, however, it seems that there is a reason to

prefer A6, viz. the fact that it is based on the fact

situation (a & e), which is a specitlc instance of the

fact situation a on which A5 is based. Loui (1987),
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calling this a case of “superior evidence”, does

indeed define “specific defeats general” in such a

way that it prefers A6. A legal example:

5. If a wall has loose bricks, there is a

maintenance deficiency.

6. If a wall near a road has loose bricks, there is

a dangerous situation.

7. In case of a maintenance deficiency the

landlord, not the tenant, must act.

8. In case of a dangerous situation the tenant, not

the landlord, must act.

Fc = A wall has loose bricks and is near a road.

Whereas Loui’s definitions prefer the explanation

Fc U {6,8} for “the tenant must act”, according to

Poole’s definition the case is ambiguous, which does

indeed seem to be the best solution, for the

following reasons. In preferring the most specific

argument two phases can be distinguished: firstly,

determining which argument is the most specifi~ and

secondly, deriving new facts with the preferred

argument. In my view Fc only plays a role in the

second phase, in determining what may be held on

the basis of the facts of the case at hand. On the

other hand, specificity is determined with respect to

all possible situations; for an argument to be

preferred it is not enough to be more specific only

under the contingent facts of the case at hand. It is

the latter situation which occurs in the “loose bricks”

example: the norm (8) itself is, witness its

formulation, not meant for a specific kind of

maintenance deficiencies but for dangerous situations

in general, irrespective of whether they are

maintenance deficiencies; therefore in other situations

the competing arguments could be ambiguous and,

as a consequence, it cannot be said that the

normgiver has meant (8) as an exception to (7).

2.2. Problems

Despite their intuitive attractiveness, Poole’s ideas do

not always give satisfactory results: f~stly, his

definition of specificity ignores the possibility of

multiple conflicts; and secondly, the fact that in his

framework for default reasoning defaults are

represented in standard logic gives rise to arguments

which should not be possible.

a. Multiple conflicts ignored

Poole’s deftition of specificity handles examples in

which more than one conflict must be solved

incorrectly, because it ignores the possibility that an

argument contains a defeated premise. Consider the

following example:

Dl={a->b, b -> C, c-> cl}

D2={(a&c)->~b, Yb->e, e->=d}

Fc = {a,c} Fn = {c-> e}

Poole’s deftition prefers Al = Fc U Fn U D1

for d, because e is a fact which makes A2 = Fc U

Fn U D2 explain = d without Al explaining d, while

all facts which make Al explain d imply c and

therefore, since (c -> e) is in Fn, also e, which

makes A2 explain = d (note again that Fc is

ignored). However, Al uses the fact b, for which the

explanation Al’ = Fc U Fn U {a -> b} is clearly

defeated by A2’ = Fc U Fn U {(a & c) -> -b}

for ~ b. Of course, as Poole (1985:146) himself

recognizes, for an argument to be preferred not only

the final conclusion but also all intermediate

conclusions must be preferred.

What is needed is an iterative definition of

“specific defeats general”: it should be the case that

not only the “final” conclusions of an argument are

preferred, but also all intermediate conclusions. This

means that a fact can only be regarded as preferred

if there is a scenario such that - fact that is

implied by it has a preferred argument.

b. Defaults cannot be formulas of standard logic

Poole (1988) claims that if his framework for default

reasoning is adopted, there is no need to change the

logic for defaults, i.e. rules which are subject to

exceptions, since they can be simply represented as

ordinary first-order formulas, However, if his

framework is combined with the view that preferring

exceptions is choosing between arguments, there are

strong objections to this claim, since using the

material implication for defaults makes possible

arguments which intuitively should not be possible at

all. Consider first the example of Bob having killed

Karate Kid in self-defence.
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1. Killed(Bob,KK) -> Guilty(Bob)

2. [Killed(Bob,KK) & Self-defence(Bob)] ->

~Guilty(Bob)

3. Defended_against(UBob) -> Self-defence(Bob)

Fc = {Killed(Bob,KK), Defended_against(WBob)}

Intuitively, the preferred conclusion in this example

is with no doubt 7 Guilty (Bob). However, Poole’s

definition allows us to explain Self-defence(Bob)

from Fc U {3}, but also ~ Self-defence(Bob) from

Fc U {1,2}; and this would mean that given the

premises there is an irresolvable legal issue

concerning Self-defence, for which reason the

argument for T Guilty (Bob) uses a non-preferred

subargument and cannot be preferred. However, in

legal reasoning arguments like the one for -I Self-

defence(Bob) are not constructed; only arguments

for facts which are the consequent of a legal rule

are regarded as possible: if legal rules are viewed as

defaults they have directionality and therefore Modus

Tollens, on which the argument for Y Self-

defence(Bob) is based, should be impossible, Even

as an explanation of a decision with hindsight

Modus Tollens cannot be used: assume Bob was

found guilty, then it is not the case that it must

have been found that Bob was not acting in self-

defence, since maybe he was, but he was still found

guilty on the basis of a rule defeating (3).

In this view, given the premises the only legal

issue is the confhct between Fc U {1} for

Guilty(Bob) and Fc U {2,3} for ~ Guilty(Bob), of

which the second is clearly preferred. This argument

seems to hold for nonlegal defaults as well.

[t must be admitted that Poole (1988:137-40),

recognizing these arguments as “a possible point of

view”, presents a method, based on naming defaults,

to block Modus Tollens for defaults. This method,

however, is optionah the choice whether to use it or

not must be made separately for each default;

philosophically this is not satisfactory if Modus

Tollens is regarded as invalid for defaults, this

should be expressed in their logic.

Furthermore, blocking Modus Tollens does not

prevent the following problem, which can occur if

the specificity rule is iteratively defined on standard

logic. In that case defaults must, since they are

implied by any explanation in which they are used,

at least be preferred themselves, if the scenario is to

be capable of explaining any preferred fact at all.

However, if there are conflicting explanations, then

defaults used in an explanation cannot be explained

preferredly, as the following example shows.

4.a->b 5. (a & c) -> -b FC {a,c}

Clearly, our extended theory comparator should

deliver A2 = Fc U {5} as the preferred

explanation; however, it does not: Al = Fc U {4}

implies (a & c & b), which is equivalent to the

denial of (5): v ((a & c) -> ~ b). In the approach

towards multiple conflicts proposed here not only A2

for ~ b, but also A2 for (a & c) -> = b should be

strictly more specific, because (5) is implied by A2.

Unfortunately, however, it is not: there is no fact

which makes Al explain - ((a & c) -> - b)

without making A2 explain the unnegated

implication, for the latter, being a default, needs no

facts at all to be explained.

What causes the problem is the fact that in

exceptional cases the general default can be used to

set up an argument against the default which is an

exception to it: in our example the possibility to

explain b with (a -> b) under the circumstance (a

& c) is seen as an argument against (a & c) ->

= b. However, intuitively th~ is very strange, because

it is part of the very meaning of defaults that they

can have exception therefore, it should be

impossible to use defaults as an argument against

exceptions to them. However, if defaults are

formalized as material implications, there is no

natural way to achieve this.

In conclusion then, these examples show that

Poole’s framework for default reasoning cannot be

combined with the view that exceptions create

alternative arguments. Therefore, something has to

be changed. Rather than adopting an approach in

which exceptions more general arguments, for

instance, by making them inconsistent, which is one

of the ideas behind naming defaults in Poole (1988),

I will, as a solution, change his framework in such a

way that the idea of specitlcity as choosimt between

arguments is retained. Furthermore, in my view’

specflcity should be encoded: the possibility that

spec~lcity is determined by some externally defined

ordering should not be left open, as e.g. in Brewka

(1989), but specillcity should, as in Poole (1985), be
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determined solely by the semantics of the formulas

involved in the argument.

3. Specificity defined on default logic

3.1. Default logic

In the remainder of this paper Reiter’s default logic

(Reiter, 1980) will be used as the underlying logic

for the specificity principle, Poole’s and Reiter’s

systems are very similar. Both are based on a set of

facts and a set of defaults, and in both systems

arguments can be set up by using any default one

wishes, as long as consistency is preserved. If as

many defaults as possible are thus used, i.e. if

adding any new default would cause an

inconsistency, sets result which Poole calls maximal

scenarios and Reiter extensions. Both can be seen as

maximal sets of beliefs which may be held on the

basis of certain facts and default assumptions. Since

defaults can conflict, there may be more, mutually

inconsistent, maximal scenarios or extensions.

A crucial difference between the two systems is

that, whereas Poole’s defaults are first-order

formulas, those of Reiter are inference rules: wB/7

informally reads as “If w holds and t3 may be

consistently assumed, ? may be inferred. a. is called

the prerequisite, 13 the justification, and T the

consequent of the default. It is because of this

reading of defaults that defining the speciilcity

criterion on default logic meets two of the

requirements formulated in section 2: it is impossible

to construct arguments against inference rules; and

modus tollens cannot be applied to them.

Another difference is that default logic is

nonmonotonic if a default w.R/7 is used to infer T,

and after that -I 13 is added, then the inference of 7

becomes invalid; first-order predicate logic, on the

other hand, is monotonic merely adding premises

never invalidates first-order inferences.

3.2, Definitions

Now an extended and improved version of the

specificity rule is presented, defined on default logic.

Poole’s defaults w. -> 13 will be translated as

Reiter’s normal defaults cx:f3/J3, written as a = > b.

Normal defaults are defaults of which the

justification is identical to the consequent. Observe

that using the specificity rule to deal with exceptions

is meant to preclude the need for seminormal

defaults, i.e. defaults of the form u:(I3 & 7)/t3, in

which T k normally a spec~lc exception clause (cf.

Touretzlcy, 1986:20-1). Avoiding such defaults is

desirable, because the logic of seminormal default

theories is much more problematic than that of

normaf default theories (Reiter, 1980).

Ml deftitions and proofs below are relative to a

freed default theory (F,f5), The spec~lcity rule is

defined on “proof sets”, which I define, analogously

to a scenario of Poole, as a set of facts and a set

of defaults. The idea is that a proof set does not

give rise to conflicting beliefs: therefore it should

have a unique extension. Furthermore, all defaults

should be relevant to the argument: therefore they

should be applicable.

Definition 1: a. S = (F,DI) (where D, is a finite

subset of ground instances of 6) is a proof set (p.s.)

iff it has a unique extension E(S) such that of all

defaults both the prerequisites and the consequent

are in E(S).

b. S exulains a formula et iff cx is in E(S) or,

equivalently (Reiter, 1980:92), iff a is classically

implied by the union of F and the set of

consequent of all defaults of S.

c. A proof set S’ = (F,D’) is a sub-uroof set of a

proof set S = (F,D iff D’ C D (C denotes proper

inclusion).

A preferred proof set is iteratively defined as

follows:

Definition 2: A proof set S = (F,D) is a preferred

proof set (p.p.s.) iff

L All sub-proof sets of S are a preferred proof

set;

2. For all a explained by S which are not

explained by any sub-proof set of S: if there is a

p.s. S’ which explains = cx and which does not

interfere with another p.p.s., then S is strictly

more specific than S’ with respect to a.

Because of the condition that all sub-proof sets of S

are also preferred, (1) ensures that multiple conflicts
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are correctly handled. (2) states that for every fact

which is not already explained by a sub-proof set of

S, S itself must defeat all arguments for a

contradicting fact which do not contain a defeated

sub-proof set. Checking whether S succeeds in doing

so is the job of Poole’s originaf definition, which is

restricted here to a particular formula and adapted

to default logic:

Definition 3: S1 = (Fc U Fn,Dl) is more specific

@ S2 = (Fc U Fn,D2) with respect to a (m.s./ct)

iff: if S2 explains = u, then there is a possible fact

Fp such that:

(Fn U {Fp}),D2) explains mu;

(Fn U {Fp}),Dl) does not explain ~

(Fn U { Fp}),Dl) does not explain ~ cx.

Being strictly more specific is defined as above.

Unlike Poole’s definition, the absolute and iterative

notion of preferedness provides the opportunity to

characterize the set of defensible knowledge of a

default theory, i.e. the facts for which there is an

argument which is better than any competing

argument; in legal terms: the facts and rules with

which a case can be won. Two ways of defining this

set suggest themselves; the fust is simply to collect

all facts which are explained by some preferred

argument:

Definition 4: The set of defensible knowledge DK~~,5j

of (F,S) is the set of all formulas explained by a

preferred proof set (F,D) such that D ~ 6.

In Prakken (1991) a few properties of this DK are

discussed: among other things it is shown that DK is

closed under first-order logicaf consequence and that

it is the unique extension of (F, D-pre~, where D-

pref is the set of defaults used in any p.p.s.

Another way to define the preferred knowledge of

a default theory is to take the intersection of some

of its extensions, viz. of those not containing any

defeated formula. To achieve this the specificity-

criterion is used to filter the set of extensions (an

idea of D.W. Etherington; see Touretz.ky, 1986:20-1):

all defeated extensions are deleted, i.e. extensions

which contain the negation of a formula for which

there is a preferred proof set.

Definition 5: The set of defensible knowledge DK*[~,5)

of (F,i5) is the intersection of all extensions of (F,8)

which are not defeated.

Proposition 1: DK* is closed under fwst-order logical

consequence.

Proof: All formulas which are in DK* are in all

extensions of which DK* is the intersection.

Therefore, if a set of formulas of DK* implies CX,

this set is in all such Es and, therefore, since

extensions are by definition closed under fwst-order

consequence, u is in them as well. By definition LX is

then in DK*.M

Proposition 2: If a formula is in D~ it is in DK*.

Proofi Assume for contradiction that there is a p,p.s,

S for ~ and DK* does not contain u. Then some

not defeated extension E of (F,fi) does not contain

u and therefore, since cs is implied by F with the

consequent of all the defaults of S (Reiter, 1980:W,

cf. definition lb), this E misses the consequent D of

some default of S. Then either B can be consistently

added to E, in which case B is in E by definition of

an extension (Reiter, 198089), whereas by

assumption it is not, or it cannot, in which case E

contains =8. But then, since B is explained by a

p.p.s., E is a defeated extensio% which contradicts

the observation that it is not.-

The reverse of proposition 2 does not hol~ a

counterexample is

F = {c,d,e}

b ={d=>a, (a&c) =>b,

e => ~a, (la&c) =>b}

Of the two arguments (F,{d = > a}) for a and

(F,{e = > -a}) for = a neither is preferred;

therefore b, which needs a or ~ a to be explained,

is, because of the iterative deftition of a p.p.s., not

explained by any p.p.s., for which reason it is not in

DK However, b is in DK*, since this default theory

has two extensions:

El = Th(F U {~b})

E2 = Th(F U { 1 a,b})
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and El f? E2, although it contains neither a, nor

1 a, contains b.

Intuitively, the difference between DK and DK’ is

that DK is a more constructive approach, which only

contains facts for which a preferred argument can

be constructed, whereas DK* also allows facts to be

preferred which hold irrespective of which choice is

made in case of conflicting arguments of which

neither is strictly more specific.

4. Some applications

In this section the definitions of section 3 are

applied to some further examples.

Example 1. The first example shows that the

definitions are capable of handling exceptions to

exceptions. It is formed by adding to the second

example of 2.1. a norm that rent contracts of houses

bind all subsequent owners of the house, unless the

tenant has agreed by contract with the opposite.

1. Contract(c) = > Binds_ordy_parties(c)

2. HouserentContract(c) = >

( ~ Binds_only_parties(c) & Binds_all_owners(c))

3. (HouserentContract(c) & Tenant_agreed_by(c))

= > Binds_only~arties(c)

Fn = { (x)[HouserentContract(x) -> Contract(x)]}

Fc = {HouserentContract(c), Tenant_agreed_by(c)}

S1 = (Fc U Fn,{l}) explains Binds_only~arties(c),

S2 = (Fc U Fn,{2}) explains the opposite and S3

again explains Binds_only~arties( c). Clearly S2 is

strictly more specific than S1. However, in order to

be a p.p.s., S2 must also defeat S3, but it is the

other way around, since S3 is strictly more specific

than S2. Therefore S3 is a preferred proof set and

the consequent of (2) is neither in D~ nor in DK”.

Example 2. This example shows a peculiarity of the

second clause of definition 2. To the third example

of 2.1. a default is added stating that if a wall near

a road which is seldom used has loose bricks, there

is no dangerous situation.

1. loose bricks = > maintenance deficiency

2. (loose bricks & near road) = > danger

3. maintenance deficiency = > (landlord &

~ tenant)

4. danger = > (tenant & -I landlord)

5. (loose bricks & and near road & seldom used)

= > = danger

Fc = {loose bricks, near road, seldom used}

Like in 2.1., S1 = (Fe,{ 1,3}) explains “landlord

while S2 = (Fc,{2,4}) explains “ = landlord. But

unlike in 2.1., although not S1 s.m.s,/landlord S2, S1

is still a p.p.s., since S2 contains a defeated sub-

proof set, (Fc,{2}), which is defeated by (Fc,{5}).

Example 3

D1. Sales-contract(a,b) = > Obliged_to_deliver(a)

& Obliged_to~ay(b)

D2. Sales_contract(a,b) & Refuses_toflay(b) = >

- Obliged_to~ay(a)

Fc = {Sales-contract(a,b), Refuses_toflay(b)}

Clearly, ~ Obliged_to_deliver(a) is preferred, but

what about Obliged_to~ay(b)? There is no proof

set for the opposite, but since the only p.s.

explaining it is defeated, Obliged_to~ay(b) is neither

in D~ nor in DK”. In this respect the present

definitions differ from those of Delgrande (1987). In

my view, the correct answer in this example depends

on whether the two obligations are regarded as

connected or not, and since this is not a logical

matter, a formal system should have ways to

formalize both possibilities. In the present system

this can indeed be done: the alternative

interpretation can be represented if D1 is split into

the next. two defaults.

D3: Sales-contract(a,b) = > Obliged_to_deliver(a)

D4 Sales-contract(a,b) = > Obliged_to~ay(b)

Thus Obliged_to~ay(b) can be explained preferredly

with S3 = (Fc,{D4}).

Example 4. This example shows a problem with the

deftition of a preferred proof set: in some cases it

is circtdar.

D5={a=>b, (b&c) =>7d}

D6={c=>d, (a&d) =>~b}

Fc = {a,c}
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In order to know whether S5 = (Fc,D5) is a p.p.s.

we must first determine whether S5 s.m.s./d S6’,

where S6’ = (F, { c = > d}). It appears that this is

indeed the case. Furthermore, we must know

whether S5’ = (F,{a = > b}) is a p.p.s.; S6 = Fc

U D6 would seem to defeat S5’, but actually it does

not, since S5 s.m.s./d S6’ = (Fe, {c = > d}), which

is contained in S6. Does this mean that S6 is a

defeated proof set? This would be the case if S5

were a p,p.s., but this is what we are trying to find

out ! Here the definition proves to be circular,

Programmers should be aware of this additional

source of circularities (e.g. the program of Nute

(1989) does not prevent them). A solution may be

to define an ordering which is such that if a default

theory satisfies it, circularities will not occur (cf. e.g.

Touretzky, 1986).

5. Implementation

As was said in the introduction, the aim of this

paper has not been to give a procedure for

determining which arguments are preferred, but to

give a definition of what it means that an argument

is preferred. As a consequence, the theory developed

in this paper is not very well suited for a

straightforward implementation. Moreover,

implementing the full theory is problematic for a

number of reasons. Firstly, the theory uses the full

expressive power of first-order predicate logic, for

which as a whole to date no theorem provers exist

which are both complete and efficient. Furthermore,

default logic is known to be non-semidecidable:

there is no algorithm which garantuees that every

provable formula is proven (Reiter, 1980:104).

Finally, unlike theorem provers for standard Iogica,

which can stop when a proof has been found,

systems which try to fmd the ~ argument will

have to continue searching the whole space of

possible counterarguments.

In practice, problems of efficiency may be

overcome by restricting the language, for example to

clause logic, as in Nute (1989), or to the even more

restricted language of multiple inheritance systems

(cf. Touretzky, 1986), of which the expressive powers

are, however, toa weak for mast legal applications,

Moreover, efficiency may be increased by sacriilcing

completeness with respect to our theory.

Nevertheless, however difi7cult the implementation

of the theory developed in this paper may be, it

does at least make it possible to formulate exactly in

which respects practical applications are or have to

be imperfect. Particularly relevant for practical

purposes is the following list of requirements which

should be met and issues which should be taken into

account when implementing “Specific defeats

general”:

- the program should handle multiple cofllcts

correctly, i.e. iterativelfi

- Modus Tollens may not be valid for norms which

are implicitly subject to exceptions;

- the specificity principle can give rise to new types

of circuiarities;

- it should be considered whether in “superior

evidence” cases the solution of Loui or of this

paper is adopted.

- a choice must be made between DK* or DK as

the set of preferred facts, i.e. whether facts which

follow from every choice in an ambiguous case

should be preferred.

6. Conclusion

This paper has developed with logical tools a formal

theory about preferring the most specific argument,

improving other proposals in some important

respects. Its main contributions to AI and Law are

that (1) it offers a way to deal with exceptions to

legal rules, (2) it draws part of the dividing line

between hard and easy questions, which is relevant

for programs which “spot issues”, and (3) it provides

a touchstone for evaluating the soundness and

completeness of implementations of “Specific defeats

general”.

In conclusion, by treating arguments as internally

subject to the rules of (default) logic and defining

specificity in logical terms this paper has shown that

logic can be useful as a tool in legal reasoning even

if deduction is not regarded as the right way to

model it.
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