
	

	

1	

Recognising	and	Avoiding	Fallacies	in	Interpreting	
Statistical	Evidence	

 
Henry Prakken 

Faculty of Law, University of Groningen & 
Faculty of Science, Department of Information and Computing Sciences, Utrecht 

University 
The Netherlands 

 
19 February 2021 

 
Abstract 
 
Legal fact finders are increasingly confronted with statistical evidence presented by 
forensic or other experts. Various studies have revealed that those involved in court 
cases find it often very hard to interpret such evidence. This chapter discusses how 
basic knowledge of standard and Bayesian probability can help recognising and 
avoiding some of the most frequently occurring fallacies when interpreting statistical 
evidence.  
 
 
1 Why should legal professionals and law students know about 
probability theory? 
	
When fact finders (judges or juries) have to determine the facts of a case, they are 
increasingly confronted with evidence that is presented in terms of probabilities 
(statistical evidence for short). Often this concerns forensic trace evidence, such as 
DNA evidence, fingerprint evidence, footprint evidence or tire tracks evidence. Such 
evidence usually comes with a so-called random-match probability, which is the 
probability that a potential source of the trace matches with the trace by coincidence, 
that is, if the potential source is not the actual source of the trace. Such probabilities 
are often based on statistical information concerning the frequencies of occurrences of 
particular patterns in a population, such as the frequency of specific DNA patterns or 
fingerprint patterns or feet shapes or car tire profiles. Other examples of statistical 
evidence are when experts report on the relative probability of finding a particular 
piece of evidence given alternative hypotheses about what may have happened. For 
instance, medical experts may report that they regard the injuries of a particular child 
much more probable if they are caused by child abuse than if they are caused by an 
accident. Such probabilities are called likelihood ratios. They can be based on 
statistics or on the expert’s expertise. Sometimes an expert reports only half of a 
likelihood ratio, such as a medical expert who asserts that that the probability that two 
babies in the same family die of cot death is one in 73 million. 	

It turns out that those involved in court cases find it often hard to interpret 
statistical evidence. This is no surprise since research in cognitive science has 
provided ample evidence that people are in general poor in dealing with probabilities 
(Tversky & Kahneman 1974; Kahneman 2011). While in daily life this may not be a 
big problem, in court this can result in serious miscarriages of justice. For example, in 
the UK Sally Clark was in 1999 convicted for having murdered her two babies, who 
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had both suddenly died when only their mother was at home. In 2003 she was 
acquitted in a second appeal after eminent statisticians had argued that the medical 
expert in this case, who had estimated the probability that two babies in the same 
family of the type of the Clarkes die of unexplained natural causes is one in 73 
million, had made serious statistical errors. Similar miscarriages of justice have 
happened in other countries. For example, in the Netherlands the nurse Lucia de Berk 
was initially convicted of murdering seven young children who had all died while 
being at an intensive care unit when Lucia de Berk was on duty. Later she was 
acquitted in a revision case, which was opened after statistical experts had shown that 
an initial expert had made serious errors when he estimated the probability that seven 
children at an ICU die of natural causes while the same nurse is on duty is one in 342 
million. Moreover, the experts convincingly argued that the judges and prosecutors in 
the case had dramatically misinterpreted the experts’ probability estimate (Meester et 
al. 2006; Derksen & Meijsing 2009).  In both the UK and The Netherlands these cases 
gave rise to fierce debates on the use of so-called Bayesian probability theory in court. 
In the USA a similar debate had arisen much earlier, after in 1968 a couple had been 
convicted of a robbery partly on the basis of statistical evidence offered by a 
university professor. Here too, other experts showed that the professor had made 
serious statistical errors (Tribe 1971; Lempert 1986). 

One theme in these debates is how the police, juries, judges, prosecutors and 
others involved in criminal investigation and (criminal or civil) trials can be 
safeguarded against reasoning errors when interpreting statistical evidence. This 
question is practically very important given the increasing amounts of statistical 
evidence presented in court (a development that started with the rise of DNA 
evidence). Another theme in this debate is of a more theoretical nature, namely, the 
question what is a good theory of rational reasoning about evidence. Should fact 
finders ideally think in terms of probability theory or can other modes of reasoning 
(for instance, argumentation- or scenario-based) also be rational? This chapter is 
devoted to the first, practical question only, except for a few remarks in the 
concluding section on the theoretical issue. For a recent collection of papers on 
theories of rational legal proof see Prakken et al. (2020). The main aim of the present 
chapter is to explain the basics of standard and Bayesian probability theory and to 
illustrate how it can be used to recognise and avoid some of the most frequent 
reasoning errors made in court with statistical evidence.  

To fulfil this aim, I shall first present some examples involving types of statistical 
evidence that are often misinterpreted (Section 2), after which in Section 3 I introduce 
the basics of probability theory. In Section 4 I use these basics to discuss some 
statistical fallacies based on inverting conditional probabilities and ignoring base 
rates. Analysing other fallacies requires the use of Bayes’s Theorem, which I will 
present and apply in Section 5. Then I shall in Section 6 discuss some issues 
surrounding the use of probability theory in court. I conclude in Section 7 with a 
practical recommendation for legal fact finders and some issues for research for legal 
scholars.  
 
2 Examples of statistical evidence in legal evidential reasoning 
 
In this section I give some typical examples of statistical evidence presented in court 
cases.  The first three examples are artificial but still realistic while the other four 
examples are real. 
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Drugs test Suppose Bob is involved in a car accident and is suspected of having used 
a kind of drug. He is subjected to a drugs test that is known to be 99% reliable, that is, 
99% of the drug users are identified as drug users and 99% of those who did not use 
the drug are identified as not having used the drug. Bob tests positive. The judge may 
want to know what is the probability that Bob has used the drug given the positive 
test. Many people are inclined to say ‘99%’ but we shall see that the example does not 
contain enough information to answer the judge’s question. 
 
Paternity test The following example is half real, half artificial. The Dutch company 
Verilabs, which offers paternity DNA tests claims at its website 
www.dnavaderschapstest.nl that  
 

“In a paternity test, Verilabs shows with a confidence of more than 99.99% 
whether a man is the biological father of a child” (my translation, HP).  

 
Imagine that Mary claims that John is the father of her child and John tests positive in 
a Verilabs test. The judge having to adjudicate Mary’s claim will want to know what 
is the probability that John is the father of Mary’s child given the positive test. Many 
will be inclined to say ‘more than 99.99%’ but we shall see that this example, too, 
does not contain enough information to answer the judge’s question. 
 
Blue and green taxis The third example was constructed by Tversky & Kahneman 
(1974) for a famous experiment on how well people interpret probability information. 
On a misty winter night a taxi hits another car and disappears in the night. A witness 
says that he saw that the taxi was blue. In the town where the accident happened that 
are two taxi companies, which together own 100 taxis. One company owns 85 of the 
taxis which are all green, while the other company owns the remaining 15 of the taxis, 
which are all blue. The witness is tested on his reliability and turns out to correctly 
report the colour of 80% of the taxis that are shown to him. The test subjects had to 
answer the question what is the probability that the taxi that hit the other car is blue 
given the testimony. Many (though not all) answered ‘80%’ but we shall see that this 
is a fallacy. 
 
Sally Clark The next example is a tragic case that happened in England (below I 
follow the description in Dawid 2005, Section 4.3). In December 1996 Sally Clark’s 
first son suddenly died, 2,5 months old, while he was alone at home with his mother. 
In January 1998 Sally’s second son died, 2 months old, also while being at home 
alone with his mother. Sally was accused of having killed her sons but Sally claimed 
they had died of natural causes (maybe cot death). A paediatrician estimated the 
probability that one child dies from unexplained natural causes in a family such as the 
Clarks is 1 in 8500. He then multiplied this probability with itself to conclude that the 
probability that two children die from unexplained natural causes in a family such as 
the Clarks is 1 in 73 million. Many may be tempted to infer from this that Sally 
almost certainly killed her two sons and indeed the jury found Sally Clark guilty and 
her first appeal was dismissed. However, we shall see that this inference is based on at 
least two reasoning errors.  
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Tire tracks The next example is a Dutch criminal case from 20141 in which tire 
tracks were found at the crime scene that match with the tire profile of the car owned 
by the accused.  An expert witness testified that  
 

“The probability that a random Dutch car (…) has tire profiles that match with 
the observed tire tracks is (…) 1 in 5000” (my translation, HP) 

 
The court of appeal interpreted the expert’s testimony as follows: 
 

The probability that the tire tracks are caused by a random other car is (…) 
estimated at 1 in 5000, which yields a high probability that the accused’s car 
made the tire tracks.” (my translation, HP) 

 
While many may be tempted to agree with the court of appeal, we shall see below that 
the court’s inference from the expert’s testimony is based on a reasoning fallacy. 
 
Child abuse In a Dutch child abuse case in 20142 a medical expert testified that  
 

“The combination of the brain injury, the bruises under the hard meninges, the 
retinal haemorrhages and the skin lesions is very much more probable in a non-
accidental event than in an accidental event or medical condition” (Google 
Translate’s translation, HP) 

 
The criminal court added that the expert witness had stated that 
 

“there is no higher degree of probability in this field than ‘very much more 
probable’.” (my translation, HP) 

 
The court then concluded as follows: 
 

“The court accepts the conclusions of expert (…) and infers from this that the 
victim must have been seriously assaulted (…)”. (my translation, HP) 

 
We shall see that the court’s inference is based on the same fallacy as in the tire tracks 
case. Note that the expert did not report numerical probabilities; I shall explain later in 
Section 5 that this does not prevent the application of probability theory to the 
example. 
 
Denis Adams The final example concerns a rape case in England in the early 1990s 
(My discussion of this example is based on Dawid’s 2005 discussion of the same 
example). In 1991 a woman was raped in Hemel Hempstead near London. In 1993 
Denis Adams was arrested for another offence and his DNA profile was discovered to 
match with the DNA profile of a semen sample obtained from the rape victim. He was 
then accused of being the rapist. (From the discussion in Dawid (2005) it seems that 

	
1	ECLI:NL:RBNHO:2014:10689	

2	ECLI:NL:RBZWB:2014:4249 
	



	

	

5	

during the case it was uncontested that the semen sample was from the rapist and that 
the only issue was whether Adams was the source of the semen sample and therefore 
guilty of rape. Therefore, I will in my discussions of this example equate the issues of 
identification and guilt; note that in other cases such an equation may not be justified.) 
A prosecution’s forensic expert estimated the probability that a random person’s DNA 
would match with the DNA found at the crime scene as 1 in 200 million. Such a 
probability is called a random-match probability. The defence made a lower estimate 
of this probability of 1 in 2 million. Besides the DNA evidence there were two further 
pieces of evidence in the case. First, the victim had failed to recognise Adams in a 
lineup and, second, Adam’s girlfriend testified that he had spent the night of the rape 
with her. The jury found Adams guilty of the rape.  

Below I shall use the Adams case to once more illustrate that statistical DNA 
evidence has to be interpreted with care, but also to illustrate that DNA evidence has 
to be combined with other evidence if available. 
 
 
3 The basics of probability theory 
 
In this section I introduce the basics of probability theory step-by-step. Along the way 
I will return to several of the examples from Section 3. 
 
3.1 Basic properties of probabilities 
 
In probability theory, uncertainty concerning the truth of a statement is expressed in a 
number between 0 and 1 (or equivalently between 0% and 100%). A probability of 1 
(or 100%) means that the statement is certainly true, a probability of 0 (or 0%) means 
that it is certainly false, and every number or percentage between these extremes 
expresses a degree of uncertainty. An important property of probabilities is that if two 
statements cannot be true at the same time and together exhaust all possibilities, then 
they add up to 1 (or to 100%). For example, if the probability that it will rain 
tomorrow is 0.8 (or 80%) then the probability that it will not rain tomorrow is 0.2 (or 
20%). This property holds for a statement and its logical negation, as in the just-given 
example or for ‘John was at the crime scene’ versus ‘John was not at the crime scene’ 
but it also holds for incompatible statements that leave no other possibility given the 
way the world is (for instance, ‘the taxi that hit the other car was green’ and ‘the taxi 
that hit the other car was blue’ if we are sure that only a green or blue taxi could have 
caused the accident).  
 
3.2 Statistical independence 
 
An important concept in probability theory is statistical independence. Two 
statements A and B are statistically independent of each other if information about the 
probability that A is true is irrelevant for determining the probability that B is true, 
otherwise they are statistically dependent. For instance, let A be ‘I flip a coin the first 
time’ and B ‘I flip the coin a second time’. Assuming the coin is fair, the probability 
that I flip heads the first time is ½ (that is, 50%). Clearly, the probability that I flip 
heads the second time also is ½ (50%) since the two coin-flipping events do not 
influence each other. When two statements A and B are statistically independent, then 
the probability that they are both true (‘A and B’) can be calculated by multiplying the 
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probabilities that each of them is true. So the probability that I flip heads both the first 
and the second time equals ½ x ½ = ¼ (or 25%). However, when A and B are 
statistically dependent of each other, then this calculation is invalid and the 
probability of A and B has to be determined independently from the probabilities of A 
and B. For example, when I throw a fair dice once, and A = “I throw an even number” 
and B = “I throw a 6”, then the probability of A equals ½ (since there are three even 
and three odd numbers) while the probability of B equals 1/6. Clearly, if we are told 
that I threw an even number, this influences the probability that I threw a 6, since now 
there are only three possibilities 2, 4 and 6, so the probability that I threw a 6 has 
increased to 1/3. This is unequal to the product of the two probabilities of A and B, 
which equals ½ x 1/6 = 1/12.  

While in simple chance games it is easy to see whether two statements are 
statistically independent, in the law this is often different. Consider again the Sally 
Clark case. We saw that the paediatrician multiplied the probability of 1 in 8500 that 
one child dies from unexplained natural causes in a family such as the Clarks with 
itself to obtain that two children die from unexplained natural causes in a family such 
as the Clarks.  This calculation results in 1 in 73 million, which is such a small 
probability that it made many believe that Sally Clark almost certainly killed her two 
sons. Later we shall identify this as another fallacy but for now we can identify the 
first fallacy in the paediatrician’s reasoning, namely, to assume without justification 
that the two deaths of Sally Clarks sons are statistically independent. Other experts 
pointed out that these two deaths may be related because of shared genetic, social or 
domestic characteristics, so the paediatrician should not have multiplied the 
probabilities of the single deaths. The other experts, taking the dependencies into 
account, estimated the probability that two babies die of natural causes in a family 
such as the Clarks as 1 in 850,000. This probability is still very small so many may 
still be have been inclined to infer from this that Sally Clark almost certainly killed 
her two sons. However, in Section 5 I shall show that this inference is fallacious. 
 
3.3 Conditional probabilities 
 
Another important concept in probability theory is that of a conditional probability. 
Such a probability expresses the probability that some statement is true given that, or 
assuming that some other statement is true. Here are some examples: 
 

the probability that I throw a 6 with a fair dice given that I throw an even number; 
the probability that FC Barcelona will win next year’s Champions Leave given 
that Lionel Messi leaves the club after this season; 
the probability that the suspect was at the crime scene given that a witness says 
he saw him a the crime scene; 
the probability that the suspect committed the crime as charged given the 
available evidence.  

 
In evidential reasoning conditional probabilities are crucial, since in the end we are 
interested in the probability that some legally relevant statement is true given the 
available evidence. Several probabilities in our examples from Section 2 are 
conditional. For example: 
 

the probability that Bob tests positive in a drug test given that Bob uses the drug; 
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the probability that Bob uses the drug given that he tests positive in a drug test; 
the probability that John is the father of Mary’s child given the positive DNA 
paternity test; 
the probability that a random car’s tire profile matches with the tire tracks found 
at the crime scene given that the car did not make the tire tracks;  
the probability that this child has these injuries given that they were caused by an 
accidental event or medical condition; 
the probability that the child was seriously assaulted given that it has these 
injuries. 

 
Below we will see that that the examples contain more conditional probabilities, 
although this is not always easy to recognise from the natural language used by 
experts or judges. It will turn out that the vagueness of natural language is one reason 
why probabilities reported by an expert are often misinterpreted. 

Conditional probabilities have much the same properties as unconditional 
probabilities. They are also between 0 and 1 (or between 0% and 100%), and when 
two statements A and B exclude each other and are jointly exhaustive of all 
possibilities, then their probabilities given the same condition C add up to 1 (or to 
100%). For example, the probability that Albert was at the crime scene given that 
Carole says she saw him and the probability that Albert was not at the crime scene 
given that Carole says she saw him add up to 1 (or to 100%). So if we estimate the 
first of these probabilities as ¾ (or 75%) then the latter probability is ¼ (or 25%). We 
will need this property of conditional probabilities later to derive useful conclusions 
from Bayes’s theorem. 

Conditional probabilities allow a precise definition of when two statements A and 
B are statistically independent of each other. We say that statement A is statistically 
independent of statement B if the conditional probability of A given B equals the 
unconditional probability of A. In other words, whether B is true or not does not 
matter for the probability that A is true.  

This new definition of statistical independence is a good way to test whether two 
statements are statistically independent. For example, we now have another way to 
express that the paediatrician in the Sally Clark case made an unjustified statistical 
independence assumption: the unconditional probability that a child dies from 
unexplained natural causes in a family as the Clarks is not the same as the conditional 
probability that a child dies from natural causes in a family as the Clarks given that 
another child in the same family has died from unexplained natural causes.  
 
 
4 Inverted conditional probabilities and the base rate fallacy 
 
Even without introducing Bayes’s Theorem we can give a systematic account of some 
types of statistical fallacies. In legal evidential reasoning one cause of such fallacies is 
that conditional probabilities are often erroneously inverted. For example, in our 
drugs use example I said that many people are tempted to conclude that the 
probability that Bob used the drug given the drugs test is 99% since the drugs test is 
99% reliable. However, this confuses the following two conditional probabilities: 
 

the probability that a person is tested positive given that he used the drug; 
the probability that a person used the drug given that he is tested positive 
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The reliability (often called accuracy) of a drugs test does not equate the second but 
the first conditional probability (together with the probability that the person is tested 
negative given that he did not use the drug). Recall that in the example we said that 
99% reliable means that 99% of the drug users are identified as drug users and 99% of 
those who did not use the drug are identified as not having used the drug. These two 
frequencies correspond to the following two conditional probabilities: 
 

the probability that a person is tested positive given that he used the drug is 99%; 
the probability that a person is tested negative given that he did not use the drug 
is 99%. 

 
This is not the same as saying 
 

the probability that a person used the drug given that he is tested positive is 99%; 
the probability that a person did not use the drug given that he is tested negative 
is 99%. 

 
Now the crucial thing is that to make the step from the probability that Bob is tested 
positive (negative) given that he used (did not use) the drug to the probability that 
Bob used (did not use) the drug given that he is tested positive (negative) we need 
more information. The information we need is how many people in the population we 
are considering use the drug (called the base rate of drug users). To see this, assume 
that it is known that 0.5% of the population uses the drug. For ease of calculation, let 
us consider a population of 100,000 people. We then know that 500 of them use the 
drug while the remaining 99,500 do not use it. Of the 500 people who use the drug, 
99%, so 495 people, will correctly test positive while 1%, so 5 people, will incorrectly 
test negative (note that to calculate the number of negatively tested people we use the 
property that the probabilities of a statement and its negation add up to 1 (or 100%). 
In addition, of the 99,500 people who do not use the drug, 99%, so 98,505 people, 
will correctly test negative but the remaining 1%, so 995 people, will incorrectly test 
positive. So of all the 495+995=1490 people who will test positive (including Bob), 
only 495/1490, which approximately equals 33.2%, use the drug. Bob could be any of 
these 1490 people who tested positive, so given the positive test, the probability that 
he used the drug is only 33.2%, even though the drug test is 99% reliable.  

This calculation is summarised in the following table: 
 

Persons Total Positive Negative 
Drug users 500 495 495 
Non drug-users 99,500 995 98,505 
Total population 100,000 1490 98,510 

	

Table	1:	the	drug	use	example 

Since Bob is tested positive, he is somewhere in the ‘Positive’ column but we don’t 
know whether he is in the ‘Drug users’ row or in the ‘Non drug-users’ row. Then the 
probability that he is in the ‘Drug users’ row is 495/1490 = 33.2%, as we calculated. 

The reason for this at first sight counterintuitive outcome is that there are so many 
more non drug-users than drug users that even with a highly reliable test more non-
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users will be incorrectly tested positive (the so-called false positives) than that users 
will be correctly tested positive (the so-called true positives). The failure to see this is 
often called the base rate fallacy (after Tversky & Kahneman 1974), which (in our 
example) is the fallacy to neglect the high base rate of non drug-users in the 
population.  

We now see that there may be some truth in the claim of many athletes tested 
positive in a doping test that they are innocent: if the great majority of the athletes 
does not use the drug for which the athlete is tested, then even with a highly reliable 
doping test there may be more false positives than true positives. 

The Blue and green taxis example can be analysed in the same way. Recall that 
a witness is known to correctly report the colour of 80% of the taxis show to him, that 
the witness said that the taxi that hit the other car was blue, and that in the town of the 
accident 85 of the taxis are green while the remaining 15 are blue. We said that many 
are tempted to infer that the taxi is blue given that the witness says so is 80%. 
However, this inference is another instance of the base rate fallacy, since it ignores 
that there are so many more green taxis than blue taxis in town that the probability of 
a false positive identification by the witness is still high even though he is 80% 
reliable. The following table confirms this: 
 

Taxis Total “Blue” “Green” 
Blue 15 12 3 
Green 85 17 68 
Total taxis 100 29 71 

	

Table	2:	the	blue	and	green	taxis	example	

We see that the witness will correctly identify 12 of the 15 blue taxis as blue and 
incorrectly identify 3 blue taxis as green. Likewise, he will correctly identify 68 of the 
85 green taxis as green and incorrectly identify 17 green taxis as blue. So only 12 of 
the 29 taxis he will identify as blue are in fact blue, so given that he identified the taxi 
that hit the other car as blue, the probability that it is indeed blue is 12/29, which 
approximately equals 41.4%. The reason for this low probability despite the witness’s 
high reliability is that there are many more green taxis than blue ones, which makes a 
false positive more probable than a true positive.  

We now know which information was lacking in the Paternity test example, in 
which John was tested positive in a DNA paternity test to see whether he was the 
father of Mary’s child. What we also need to know is how many men could be the 
father of Mary’s child. Unlike in the previous example, this is not so easy to express 
in population frequencies; we have to make an estimate on other grounds, perhaps 
based on specific evidence about John and Mary or simply on the basis of our 
commonsense, given where Mary lives and how many male adults live in her area. 
Let us first assume that there are 100,000 potential fathers; in practice it may be hard 
to estimate such a precise number, but we need it to explain the correct reasoning; 
with less precise numbers the reasoning stays the same although the input of the 
reasoning may be less than certain.  

Recall also that Verilabs claimed that Verilabs claimed that its test shows with a 
confidence of more than 99.99% whether a man is the biological father of a child. We 
now know that Verilabs cannot have meant the following probabilities 



	

	

10	

the probability that John is the father given a positive test is more than 99.99%; 
the probability that John is not the father given a negative test is more than 
99.99% 

 
since this simply not the information that is known about a medical test; what is 
always reported is the probability of a test outcome given a hypothesis, not the 
probability of a hypothesis given a test outcome. So what Verilabs means is  
 

the probability that John tests positive given that he is the father is more than 
99.99%; 
the probability that John tests negative given that he is not the father is more than 
99.99%. 

 
Let us apply these probabilities to our guess that there are 100,000 potential fathers of 
Mary’s child, for convenience ignoring the ‘more than’. Of these 100,000 potential 
fathers, one is the real father while the other 99,999 are not the real father. The real 
father will (with a very small error margin of 0.01% that we can safely ignore) 
certainly test positive) while of the other 99,999 men 99.99% will test negative, which 
are 99,989 men, while still 0.01% of them will test positive, which are 10 men. Note 
that in the latter calculation we apply the property that the conditional probabilities of 
a statement and its negation given the same condition add up to 100%: since the 
probability of a negative test given that the person is not the father equals 99.99%, the 
probability of a positive test given that the tested person is not the father equals 100% 
- 99.99% = 0.01%. Table 3 summarises our analysis: 
 

Potential fathers Total Positive Negative 
Real father 1 1 0 
Other men 99,999 10 99,989 
Total men 100,000 11 99,989 

	

Table	3:	paternity	test	example 

 
Only one of the 11 men who test positively is the real father. Since John tested 
positive we know that he is one of these 11 men but we do not know which one. So 
the probability that he is the real father given the positive test is 1/11, which 
approximately equals 9.1%. 

Does this mean that a DNA paternity test is weak evidence after all? No, since if 
we succeed in reducing the number of potential fathers with other evidence, then the 
positive test quickly makes it probable or even highly probable that John is the father. 
For example, with 10,000 potential fathers there will be only one false positive test 
(0.01% x 10,000), so then the probability that John is the father given the positive test 
is ½ = 50%. And with 1000 potential fathers the probability of a true positive is 10 
times greater than the probability of a false positive test, which gives a probability of 
approximately 91% that John is the father. Finally, assume that John admits that he 
had sexual intercourse with Mary 9 months before the child was born and that we 
have reason to believe that around the same time Mary had sexual intercourse with 9 
other men, so the number of potential fathers is 10. Then the probability of a true 
positive is 1000 times greater than the probability of a false positive, which yields a 
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probability of 99.9% that John is the father given the positive test (that is, if John 
cannot provide any evidence against his fatherhood; see further Section 5 below). The 
last two calculations are hard to display in a table, since the expected number of false 
positive tests is smaller than 1. In Section 5 we will see that Bayes’s Theorem allows 
us to make the precise calculations.  

The final example of Section 3 that can be analysed with this section’s tabular 
method is the tire tracks example, in which car tire tracks found at the crime scene 
matched with the tire profile of the accused. Recall that an expert witness testified that  
 

“The probability that a random Dutch car (…) has tire profiles that match with 
the observed tire tracks is (…) 1 in 5000”  

 
The court of appeal interpreted the expert’s testimony as follows: 
 

The probability that the tire tracks are caused by a random other car is (…) 
estimated at 1 in 5000, which yields a high probability that the accused’s car 
made the tire tracks.”  
 

By now the reader will have understood that in order to draw useful inferences from 
the expert’s probability, we must know the number of Dutch cars. Let us assume that 
there are 5 million Dutch cars; only one of them made the tire tracks found at the 
crime scene (for simplicity we ignore the possibility that a foreign car made the 
tracks). The tire profile of that car will surely match with the tire tracks found at the 
crime scene but also those of 1 in 5000 of the other Dutch cars will match, which are 
1000 cars.  The accused’s car could be any of these 1001 cars, so the probability that 
his car caused the tire tracks given the match is just 1/1001, which approximately 
equals 0,1%. This is a far cry from the court’s conclusion to “a high probability that 
the accused’s car made the tire tracks”.  

What has gone wrong here? It may be that the court was misled by the ambiguous 
nature of the expert’s statement, which does not have a clear conditional structure like 
“the probability of this given that is …”. This happens more often: natural language is 
not as precise as mathematical language, which is one reason why expert testimonies 
on probabilities are so often misinterpreted. Another reason is that judges and 
prosecutors usually are not properly trained in probability theory and its use in 
evidential reasoning. 

While the tabular method we used in this section is suitable for several types of 
examples, especially those in which probabilities can be based on frequencies of 
(human or other) populations, this does not hold for all types of examples. First, the 
tabular method does not apply well to examples with multiple pieces of evidence, as 
in the Denis Adams example. Furthermore, not all probabilities can be based on 
frequencies; sometimes probabilities pertain to specific events, such as the 
probabilities in the child abuse example that the observed injuries are caused by an 
accident. Finally, the way the expert in the child abuse example reported the 
probabilities, namely, as a ratio between two probabilities, cannot easily be explained 
with the tabular method. All three kinds of examples are better analysed with Bayes’s 
Theorem, of which the tabular method is but a special case.  
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5 Bayes’s Theorem and its use in legal evidential reasoning 
 
In this section I present Bayes’s Theorem, a theorem that can be mathematically 
derived from the axioms of probability theory. Bayes’ Theorem is at the heart of the 
so-called Bayesian way of applying probability theory. After presenting the theorem, I 
shall first apply it to some examples from the previous section, to illustrate that the 
tabular method used in that section is equivalent to a special case of Bayes’s 
Theorem. Then I shall apply the theorem to the remaining examples from Section 2.  

Bayes’s Theorem is about the relation between two mutually exclusive 
hypotheses and evidence pertaining to these hypotheses. In legal evidential reasoning 
the hypotheses can be any factual statement the truth of which is to be determined in 
court, such as ‘John is/is not the father of Mary’s child’, ‘Bob used/did not use drug 
X’, The taxi that hit the other car was blue/green’, ‘Sally Clark killed her two 
suns/Sally Clarks two suns died of unexplained natural causes’, and so on. There are 
several mathematically equivalent formulations of Bayes’s Theorem. I will present 
the so-called odds version, which states a mathematical relation between three ratios 
of probabilities. Consider two hypotheses H1 and H2 and E a piece of evidence 
pertaining to H1 and H2 (later I will instantiate these symbols with specific 
examples). Then the prior odds states the ratio between the unconditional 
probabilities of H1 and H2: 
 

The probability of hypothesis H1  
The probability of hypothesis H2  

 
The likelihood ratio states the ratio between the conditional probabilities of E given 
H1, respectively, H2: 
 

The probability of evidence E given hypothesis H1 
The probability of evidence E given hypothesis H2 

 
Finally, the posterior odds expresses the ratio between the conditional probabilities of 
the two hypotheses H1, respectively, H2 given evidence E:  
 

The probability of hypothesis H1 given evidence E 
The probability of hypothesis H2 given evidence E 

 
Bayes’s Theorem then says that the posterior odds equals the prior odds multiplied by 
the likelihood ratio:  
 

Posterior odds = Prior odds x Likelihood ratio 
 
Below I initially assume that the two hypotheses H1 and H2 are not only incompatible 
but also jointly exhaustive. This assumption is far from innocent but for now it 
simplifies the explanation. Later in Section 6.1 I come back to it. 

By itself Bayes’s Theorem is just a mathematical equation. It derives its fame 
from its use as a way of thinking, as a way to update the probability of a hypothesis of 
interest after receiving new evidence. The probability of hypothesis H1 in the 
numerator of the prior odds is then called the prior probability of H1 and the 
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probability of H1 given E its posterior probability. The idea is that the prior 
probability of H1 is its probability before considering evidence E while its posterior 
probability is its probability after considering the evidence. In this way of thinking the 
likelihood ratio captures the probative force of evidence E in that it expresses how 
much more or less probable observing E makes hypothesis H1. It immediately follows 
from Bayes’s Theorem that if the likelihood ratio of E with respect to H1 and H2 is 
greater than 1, then E makes H1 more probable than it was before receiving the 
evidence, while if the likelihood ratio is less than 1, then E makes H1 less probable 
than it was before receiving the evidence. When H1 is a guilt hypothesis, such as the 
hypothesis that Sally Clark killed her two sons, then evidence with likelihood ratio 
greater than, respectively, less than 1 can be called incriminating, respectively, 
exculpatory. Evidence with likelihood ratio 1 is irrelevant, since it does not change 
the prior probability of H: clearly multiplying the prior probability with 1 makes the 
posterior probability equal to the prior.  

In applications to evidential reasoning we are always interested in the probability 
of a hypothesis of interest given the available evidence. Therefore, we are ultimately 
not interested in the posterior odds but in its numerator, that is, in the probability of 
hypothesis H1 given the evidence E. If we only have the value of the posterior odds 
but not the values of its numerator and denominator, then the numerator can be 
derived from the posterior odds as follows. Let H1 be a hypothesis the court is 
interested in, such as that John is the father of Mary’s child. Then H2 is the hypothesis 
that John is not the father of Mary’s child. We know that the conditional probabilities 
of a statement and its negation given the same condition add up to 1 (or to 100%). Let 
us also assume that after multiplying the prior odds with the likelihood ratio we arrive 
at a posterior odds of 3, so given the evidence E it is three times more probable that 
John is the father of Mary’s child (H1) than that he is not (H2).  This implies that the 
probability of H1 given E is 0.75 (or 75%), since 0.75/0.25 = 3. What we have done 
here is adding 1 to the likelihood ratio (1 + 3 = 4) and dividing the numerator by the 
result (3/4 = 0.75). This rule can always be used to deduce a so-called posterior 
probability from a posterior odds, provided the two hypotheses that appear in the odds 
are mutually exclusive and jointly exhaustive, as we are assuming for now.  

This all looks very abstract, so let us illustrate it with concrete examples. Let us 
first consider the blue and green taxis example. Hypothesis H1 is that the taxi that hit 
the other car is blue while hypothesis H2 is that it is green. E is the witness testimony 
that he saw that the taxi was blue.  The prior odds is then3  
 

The probability that the taxi is blue  = 0.15     ≈    0.176 
The probability that the taxi is green  0.85 

 
The likelihood ratio is 
 

The probability that the witness says the taxi is blue given that the taxi is blue 
The probability that the witness says the taxi is blue given that the taxi is green 
 
= 0.8 = 4 
 0.2 

	
3	The symbol ≈ means ‘is approximally equal to’.	
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So the witness testimony makes it four times more probable that the taxi is blue than 
before it was considered. We can now calculate the value of the posterior odds 
 

The probability that the taxi is blue given that the witness says the taxi is blue 
The probability that the taxi is green given that the witness says the taxi is blue  

 
which equals 0.176 x 4 = 0.706. Then dividing 0.706 by 1.706 yields a posterior 
probability that the taxi is blue given the evidence of 0.414 or 41.4%, which is the 
probability we arrived at in the tabular method.   

We see that in the odds version of Bayes’s Theorem the base rate is expressed in 
the prior odds while the witness’s reliability is captured in the likelihood ratio. Even 
though the witness testimony is incriminating since its probative force equals 4, the 
posterior probability that what the witness says is true remains less then 0.5 since the 
base rate of taxis is biased against what the witness says.  

The drugs use and the paternity test examples can be analysed in the same way. I 
only show the calculation for the paternity test example. Assume again that other 
evidence has reduced the number of potential fathers to 10, of which John is one, so 
the prior probability that John is the father is 1/10 = 0.1. Then the prior probability 
that John is not the father is 0.9, so the prior odds is 
 

The probability that John is the father  = 0.1     ≈    0.11 
The probability that John is not the father  0.9 

 
 
The 99.99% = 0.999 test reliability yields the following likelihood ratio: 
  

The probability that John tests positive given that he is the father 
The probability that John tests positive given that he is not the father  
 
=  0.9999 =  9999 
 0.0001 
 

So the positive test makes it 9999 times more probable that John is the father. 
Multiplying this probative force with the prior odds yields 0.11 x 9999 ≈ 1100. Then 
1100/1101 ≈ 0.999, which is a 99.9% probability that John is the father given the 
positive test.  

In the two examples thus far the numerator and denominator of the likelihood 
ratio add up to 1. However, this does not have to be the case. Consider again the tire 
tracks example. With 5 million Dutch cars the prior odds that the accused’s car made 
the tire tracks is 
 

The probability that the accused’s car made the tracks 
The probability that another car made the tracks  

 
 = 1 in 5 million   ≈ 1 in 5 million 
  4,999,999 in 5 million 
 
The likelihood ratio is 
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The probability of the match given that the accused’s car made the tracks 
The probability of the match given that another car made the tracks 
 

 = 1   = 5000 
  1/5000  
 
Here the random-match probability is the denominator of the likelihood ratio. Its 
numerator equals 1 since if the accused’s car made the tire tracks, its tire profile will 
certainly match with the tire tracks at the crime scene. We now compute the posterior 
odds as 5000 x 1 in 5 million, which equals 1/1000. Then the posterior probability 
that the accused’s car made the tire tracks given the match is 1/1001 ≈ 0.001.  

It is instructive to see what happens if the number of potential sources of the tire 
tracks can be reduced by other evidence. With 10,000 potential sources the prior odds 
is 1 in 10,000/9,999 in 10,000, which approximately equals 1 in 10,000. This yields a 
posterior odds of ½, which in turn yields a posterior probability of 1 divided by 1+2 = 
1/3 or 33.3%. This can also be seen with the tabular method: with 10,000 potential 
sources and a random-match probability of 1 in 5000, we have that 2 cars will match 
with the tire tracks even though they are not the source. So the accused’s car can be 
the source of the tracks or one of these other two cars, so the probability that it is the 
source is 1/3. If the number of potential sources is 5000, then the prior odds is 
approximately 1/5000, so the posterior odds is 1, so the posterior probability is 0.5 or 
50%. Or in the tabular method we have that one of the 5000 cars will match without 
being the source while one is the source and the accused’s car could be either of them. 
Finally, if the number of potential sources can be reduced to 500, then the posterior 
odds is 10, which yields a posterior probability of 10 divided by 10+1 = 10/11 ≈ 91%. 
What this illustrates is that even if we have evidence with strong probative force, the 
posterior probability of a hypothesis given the evidence may range from low to high 
depending on the prior probability of the evidence. 

This also explains what went wrong in the child abuse example. Now that we 
know the odds version of Bayes’s Theorem, we see that the expert in fact reported the 
likelihood ratio of the observed injuries given two hypotheses. That he reported it in 
qualitative terms does not matter for the applicability of the theorem, since even 
without numbers we can recognise the court’s mistake: it failed to show awareness 
that the likelihood ratio must be combined with the prior odds. As indicated above, 
the prior odds may be based on further evidence in the case (see also the discussion of 
the Denis Adams case below). It may well be that the additional evidence in the case 
justified a sufficiently high prior odds to warrant het court’s conclusion but it is 
nevertheless worrying that the court showed no awareness that the prior odds is 
relevant, since this indicates that the court may have committed a fallacy.  

I next return to the Sally Clark case. The unjustified independence assumption 
was not the only problem with the paediatrician’s estimate that the probability that 
two children die from unexplained natural causes in a family such as the Clarks is 1 in 
73 million. Many inferred from this very low probability that Sally almost certainly 
killed her two sons. I will now, following Dawid (2005, Section 4.3) show with 
Bayes’s Theorem that this inference is based on an erroneous inversion of a 
conditional probability. Consider the hypotheses H1 that Sally Clark killed her two 
babies and H2 that she did not kill her two babies and the evidence E that both babies 



	

	

16	

died. Note that H2 does not imply that the babies died. Bayes’s Theorem is thus 
instantiated as follows: 
 

The probability that Sally Clark killed her two babies given that they died  
The probability that Sally Clark did not kill her two babies given that they died 

 
= 

 
The probability that Sally Clark killed her two babies 

The probability that Sally Clark did not kill her two babies 
 
x 
 

The probability that the two babies died given that Sally Clark killed them 
The probability that the two babies died given that Sally Clark did not kill them 

 
In determining the likelihood ratio the paediatrician’s estimate can be used as the 
probability that the two babies died given that Sally Clark did not kill them. This 
yields a likelihood ratio of 73 million, since the babies will surely have died if Sally 
Clark killed them, so we have to divide 1 by 1 in 73 million, which equals 73 million. 
So the death of Sally Clarks two sons is strongly incriminating evidence, since after 
receiving this evidence Sally Clarks guilt is 73 million times more probable than 
before. However, the prior odds counters this strength, since the probability that Sally 
Clark killed her two babies is also very low: there are not many mothers who kill their 
children. On the basis of official murder statistics Dawid (2005) estimates this 
probability as 1 in 8.4 billion, admitting that his estimate is “at least as spurious” as 
the paediatrician’s estimate. With Dawid’s estimate the prior odds is 1 in 8.4 billion, 
which when multiplied with 73 million yields a posterior odds of 0.009. So the 
posterior probability that Sally Clark killed her two sons given that they died is 
negligibly small. And it becomes even 90 times smaller (0.0001) if the paediatrician’s 
estimate is replaced by the later estimate of 1 in 850,000 by the experts who took the 
dependencies between the deaths into account. 

One way to explain the fallacy committed by those who concluded from the 
paediatrician’s estimate that Sally Clark almost certainly killed her sons is that they 
failed to see that we must compare the probability of two rare events: not only 
unexplained death of two babies by natural causes is rare but also a mother killing her 
two baby sons is rare. The rarity of the first event is accounted for in the likelihood 
ratio, which is high, while the rarity of double murder is expressed in the prior odds, 
which is low. 

I finally apply Bayes’s Theorem to the Denis Adams case, to illustrate the 
processing of multiple pieces of evidence and also to illustrate that probabilities 
cannot always be based on frequencies. Recall that in this case there were three pieces 
of evidence: the match between Denis Adam’s DNA and DNA in the semen sample 
found in the rape victim (E1), the failure of the victim to recognise Adams in a lineup 
(E2) and the alibi provided by Adams’ girlfriend that he had spent the night of the 
crime with her (E3). Let us consider as hypotheses that Adams was (H1), respectively 
was not the rapist (H2) (recall that we assume that the source of the semen was the 
rapist). How can Bayes’s Theorem be applied to multiple pieces of evidence? If we 
can make an independence assumption then this is straightforward. The assumption is 
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that given the two hypotheses, the three pieces of evidence are statistically 
independent of each other. This is a generalisation of the definition of statistical 
independence given above in Section 3.3: we say that that statement A is statistically 
independent of statement B given hypothesis H if the conditional probability of A 
given H & B equals the conditional probability of A given H. In other words, for 
knowing whether A is true if H is true, it is irrelevant whether B is true or false. 

Let us assume that the three pieces of evidence are statistically independent given 
H1 (and H2) in this sense. This assumption is far from obvious and needs to be 
argued; there no such thing as a general presumption that things are statistically 
independent unless shown otherwise; this is simply not how the world is in general. 
Nevertheless, the assumption allows us to illustrate how independent pieces of 
evidence can be processed through Bayes’s Theorem. We are interested in the 
posterior probability that Adams was the rapist given the three pieces of evidence. We 
obtain the corresponding posterior odds by subsequently multiplying the prior odds 
with the likelihood ratios of each of the pieces of evidence: 
 

The probability that Adams was the rapist given E1 & E2 & E3  
The probability that Adams was not the rapist given E1 & E2 & E3 

 
= 

The probability that Adams was the rapist 
The probability that Adams was not the rapist 

 
x 

 
The probability of E1 (the DNA match) given that Adams was the rapist 

The probability of E1 (the DNA match) given that Adams was not the rapist 
 
x 
 

The probability of E2 (the non-recognition) given that Adams was the rapist 
The probability of E2 (the non-recognition) given that Adams was not the rapist 

 
x 
 

The probability of E3 (the alibi) given that Adams was the rapist 
The probability of E3 (the alibi) given that Adams was not the rapist 

 
In this way the posterior odds obtained after processing one piece of evidence 
functions as the prior odds for processing the next piece of evidence.  

Having seen the analysis of the other examples, the reader will understand that a 
good way to estimate the prior is estimating the potential number of rapists. Should 
we include all adult males in Hemel Hempstead, or in the Greater London Area, or in 
England, the UK, Europe …? There is no easy answer to this question and the 
problem of determining the prior is often regarded as the Achilles heel of Bayesian 
thinking. Nevertheless, to make sense of the random-match probabilities estimated by 
the expert, we cannot escape the task to estimate the prior odds; as Bayes’s Theorem 
show, without such an estimate nothing can be inferred from the match and its 
random-match probability about whether Adams was the rapist. 
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Let us, just to illustrate the reasoning, initially assume that there were 2 million 
potential rapists (perhaps all male adults in the greater London area). Then the prior 
odds is 1 in 2 million divided by 1,999,000 in 2 million, which, with a very small 
error margin that can safely be ignored, equals 1 in 2 million. For determining the 
likelihood ratio I go along with the defence’s estimate of the random-match 
probability, which was 1 in 2 million. This yields a likelihood ratio of 2 million, since 
if Adams was the rapist, his DNA would certainly match. Clearly, multiplying 1 in 2 
million by 2 million results in a prior odds of 1, so given only the DNA match it is 
just as probable that Adams was the rapist as that he was not the rapist: 50%.  

So even with a very small random-match probability of 1 in 2 million it may, 
depending on the prior, not be probable that Adams was the source of the DNA, 
contrary to what is often concluded from a DNA match. Wrongly inverting a small 
random-match probability to conclude that the person who matches with a trace is 
almost certainly the source of the trace is sometimes called the prosecutor’s fallacy  
(after Thompson & Schumann 1987), since several of the first instances of this fallacy 
in court were made by prosecutors presenting DNA evidence. In the paternity test and 
tire tracks examples we saw other instances of this fallacy.  

To see the importance of the prior odds, let us now assume that there were 
200,000 instead of 2 million potential rapists (perhaps all male adults in the Hemel 
Hempstead area). Then the probative force of 2 million of the DNA match must be 
multiplied with a prior odds of 200,000, which gives a posterior odds of 10, which in 
turns gives a posterior probability that Adams was the rapist given the match of 10 
divided by 10+1 = 10/11 ≈ 91%. To some this may be sufficient to regard Adams 
guilty beyond reasonable doubt. However, it is important to be aware that even if after 
considering some evidence the posterior probability of guilt is very high, this does not 
mean that the case is closed, since new evidence could always bring the posterior 
down, even close to 0.  

Let us illustrate this with processing the two other pieces of evidence. In doing 
so, I assume a prior of 1 in 200,000, so after processing the DNA match the posterior 
odds equals 10. We must now estimate the likelihood ratio of the non-recognition of 
Adams by the victim in a line-up (E2). This is not trivial either. Dawid (2005) 
estimates it as 1/9, so the non-recognition is nine times less probable if Adams was 
the rapist than if he was not the rapist. Dawid recognises that this estimate is 
speculative but let us go along with it. Then we obtain a new posterior odds of 10 x 
1/9 = 10/9, which yields a new posterior probability that Adams was the rapist of 
approximately 53%. Next we must estimate the probative force of the alibi evidence. 
This is clearly weak since Adams’ girlfriend had a reason to protect her boyfriend. 
Dawid tentatively estimates it as ½, so he regards it as the twice as probable that 
Adams girlfriend testified as she did if Adams was not the rapist than if he was the 
rapist. Then 10/9 multiplied by ½ yields 5/9 as the final posterior odds, which results 
in a final posterior probability that Adams was the rapist of 36%, clearly not enough 
to convict Adams. 

The point of this analysis of the example is not to argue that Adams was wrongly 
convicted; for that conclusion the probability estimates are too speculative. What the 
example shows is that even though DNA evidence is strong incriminating evidence, it 
must always be combined not only with prior estimates but also with other evidence, 
some of which may be exculpatory. So a DNA match can never be a ‘smoking gun’ 
on its own. 
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There is more to say about this example. While random-match probabilities of 
DNA evidence are based on the frequency of occurrences of DNA profiles in a 
population, and while our estimates of the prior odds before processing any evidence 
could be based on frequency estimates of the number of male adults in the area, with 
the likelihood ratio’s of the non-recognition and alibi evidence this was hardly 
possible. In these cases the probabilities are instead degrees of believability of 
statements about individual events or states of affair. In our example this means that 
after processing the non-recognition evidence, resulting in a new prior odds of 10/9 
for processing the alibi evidence, we cannot say that we have reduced the number of 
potential sources of the DNA to, roughly, 2 persons. Instead, the probability of 53% 
that Adams was the rapist expresses a degree of believability of the claim that Adams 
was the rapist. A similar analysis is possible of the paternity test and tire tracks 
examples. For instance, in the paternity test example we may have evidence that more 
strongly points at John as the father than at the many other potential fathers, without 
being able to say that the number of potential fathers has been reduced. So if, say, we 
estimate a new prior probability of 10% that John is the father on the basis of other 
evidence, this does not necessarily mean that there are 10 potential fathers of which 
John is one; instead it means that we regard it 10 times more believable that someone 
else is the father than that John is the father. For such belief-type probabilities the 
mathematics is the same as for frequency-type probabilities, that is, Bayes’s Theorem 
and the other laws of probability theory still apply.4 However, the ways of justifying 
the probability estimates with which we calculate are different. I shall return to this 
issue in the next section.  
 
 
6 Practical and theoretical issues with using probability theory in 
court 
 
In this section I discuss several issues concerning the use of probability theory in 
court. First, above I made two assumptions that are not always satisfied in practice, 
namely, that the hypotheses we compare with Bayes’s Theorem are not only mutually 
exclusive but also jointly exhaustive and that multiple pieces of evidence are 
statistically independent of each other given the hypotheses that are compared. 
Another issue is that there is a danger that the mathematical form in which statistical 
evidence is presented creates an unfounded impression of objectivity. I now discuss 
these three issues in turn. 
 
6.1 Non-exhaustive hypotheses 
 
If the hypotheses H1 and H2 that are compared in Bayes’s Theorem are not 
exhaustive, then we cannot derive a posterior probability from a posterior odds. The 
reason is that in that case the two probabilities of H1 given evidence E and H2 given 
evidence E do not add up to 1 (or to 100%), since another hypothesis may be the true 

	
4	This point is in fact not entirely uncontested; there are non-standard schools of 
thought that claim that the mathematics of belief-type probabilities is different than 
for frequency-type probabilities. See e.g. Section 2 of the introduction of Prakken et 
al. (2020) and the references therein.	
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one. This is a serious problem, since in court we are in the end always interested in 
the probability of a hypothesis of interest given all available evidence. At first sight, 
there would seem to be a simple way to avoid this problem by always letting H2 be 
the negation of H1. This is what we did in most of our examples. However, there is a 
practical problem with this solution, since in many cases it is hard to estimate the 
probability of a piece of evidence given the negation of a hypothesis (which we must 
do to determine the likelihood ratio). For example, suppose some morning we see that 
our car, which is parked along the street in front of the neighbours’ home, is damaged, 
and we want to consider the hypothesis that another car hit it. Based on our 
commonsense we can make a reasonable estimate of the probability of the damage if 
another car hit our car, since that is a good explanation of the damage. However, 
doing the same for the hypothesis that no other car hit our car is much more difficult, 
since by itself this negative fact does not give a good explanation of the damage. So it 
is tempting to compare our first scenario with a specific other scenario, such as that a 
heavy object fell off a truck while it passed our car. However, this creates the danger 
that other possible scenarios are overlooked, so that the step from posterior odds to 
posterior probability cannot be made. In our example yet another explanation might 
be that a sailboat mast which the neighbours had stored at the top of their flat roof fell 
off the roof in a storm (this actually happened to my car a few years ago).  

Another example of this danger is a Dutch criminal case5 in which a man was 
shot and killed in a home and DNA that matched with DNA of another man who was 
known to be in the home at the time of the killing was found on the victim’s body. In 
this case it was beyond dispute that the DNA found on the victim was the other man’s 
DNA and the issue was how the other man’s DNA had ended on the victim’s body. 
The prosecution’s hypothesis was that this had happened by direct violent contact 
while the defence claimed that it had happened by secondary transfer in the home, for 
instance, since the victim had touched an object that was previously touched by the 
other man.  Unlike the issue who is the source of a DNA trace, in which the random-
match probability can be based on statistics, the issue of how the other man’s DNA 
had ended up on the victim’s body cannot be analysed in terms of statistics.  
Accordingly, a DNA transfer expert estimated a likelihood ratio in qualitative terms, 
testifying that he regarded it as much more probable that the DNA was on the victim’s 
body because of direct violent contact than because of secondary transfer in the home. 
The court, perhaps trained in Bayesian thinking, refused to draw a conclusion from 
this testimony on the grounds that the expert should also have considered another 
explanation for the DNA trace. What had happened in the case is that after the victim 
was killed, he was wrapped in a tapestry and transported to a place in the countryside 
in the other man’s car: according to the court the other man’s DNA might have been 
transferred to the dead victim’s body during this car ride. 
 
 
 
 

	
5	ECLI:NL:GHARL:2014:8932 
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6.2 Non-independent evidence 
 
Our application of Bayes’s Theorem to the Denis Adams case showed that if multiple 
pieces of evidence are statistically independent of each other given the hypotheses, 
then processing them is straightforward: just estimate their individual likelihood ratios 
and then multiply them with each other and the prior odds. However, in non-trivial 
cases evidence is often non-independent of each other. We already saw an example in 
the Sally Clark case, where the two deaths of he babies could have been due to 
underlying shared genetic, domestic or social causes. To give just a few other 
examples, imagine a case where there is camera footage of a man looking like the 
suspect in the main hall of Utrecht Central Station at 10pm and a witness testifies that 
she saw a man looking like the suspect leaving the station at 10.15pm on the same 
day. Clearly, the probability that a witness will observe a man looking like the suspect 
given that the man is the suspect is lower than the probability that the witness will 
observe a man looking like the suspect given that the man is the suspect and a man 
looking like the suspect is on camera footage of 10 minutes earlier. So the likelihood 
ratios of these pieces of evidence cannot be multiplied. Or suppose that DNA 
matching a suspect’s profile is found on the victim’s shirt and on furniture in the room 
where the suspect was killed. Then the probability of a match given that the suspect is 
not the source is lower than the probability of a match given that the suspect is not the 
source but DNA with the same profile was found at the furniture: in the later case it is 
probable that a person with the same DNA profile as the suspect was in the room, so 
finding another trace of the same DNA becomes more probable, whether the DNA is 
of the suspect or of another person with the same profile.  

The bad news in such cases is that then application of Bayes’s Theorem becomes 
much more complicated. It follows from Bayes’s Theorem that we must then for a 
given piece of evidence E estimate the following ratio: 
 
The probability of E given hypothesis H1 and all other evidence on which E depends 
The probability of E given hypothesis H2 and all other evidence on which E depends 
 
Clearly, determining these probabilities is often much more difficult than determining 
the probabilities of E given H1 or given H2 alone. It should be said that there are 
more sophisticated ways to process probabilities, which use graph theory to 
graphically represent statistical independence relations. These so-called Bayesian 
networks are currently very popular in artificial intelligence, for instance, for medical 
applications. However, Bayesian networks are for non-specialists much harder to 
understand than simple uses of Bayes’s Theorem. This is a serious practical obstacle 
to their use in legal contexts (although some claim that this problem is not 
unsurmountable; see e.g. Fenton & Neil 2011). 
 
6.3 Justifying probability estimates 
 
So far we have mainly focused on how probabilities reported by experts in court cases 
can be used to draw useful conclusions. However, when courts are confronted with 
such reports, they also face the question to which extent the probabilities reported by 
the experts are justified. This is, of course, a special case of what courts must always 
do when confronted with expert evidence, but a special feature of statistical evidence 
is that it is often presented in mathematical form, which may create an unfounded 
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impression of objectivity. Non-specialists are often not aware of the fact that 
mathematical formulas are nothing else than statements in some language and that 
they can be false just as any statement in natural language can be false. When 
calculating with probability estimates it holds that ‘garbage in, garbage out’: if the 
probabilities that go into a calculation cannot be justified, then the probabilities 
derived from them will not be justified either, even if the way they were derived from 
the ‘input’ probabilities is mathematically sound. 

So what can justify probability estimates? One way is to base them on statistical 
frequencies, as is usually the case with random-match probabilities of forensic trace 
evidence. They may also be based on scientific experiments. For example, controlled 
experiments have been done on the probative value of recognitions in police lineups. 
When probabilities cannot be based on statistics or experiments, then professional 
expertise is a good alternative, such as in the child abuse example, or in the DNA 
transfer case discussed in Section 6.1. Of course, appeal to expert opinion is 
defeasible, since experts can be mistaken, multiple experts can disagree, experts may 
be tempted to make statements that are outside their expertise, or their claim that they 
are experts may be exaggerated or even false. Nevertheless, professional expertise is 
often a reasonably reliable source of statistical evidence.   

However, expertise is not always available. This often holds for prior 
probabilities, since experts usually only have expertise about the probative force of 
certain types of evidence and therefore usually withhold judgement on the prior. It 
also holds for probabilities concerning non-technical or non-medical matters from 
daily life, which often arise in legal cases. For instance, suppose that in the paternity 
test case there is evidence that John and Mary dated each other a few times. 
Commonsense tells us that this is incriminating evidence but it is very hard to express 
this in reliable numbers.  Moreover, commonsense is not a very reliable knowledge 
source and can shift into subjective opinion or even prejudice. 
 
 
6 Conclusion: the benefits and limitations of using probability 
theory in court 
 
Summarising, we have seen that the main benefits of probability theory, especially of 
the Bayesian way of using it, are pedagogical and therapeutic. It is easy to show with 
simple examples that various seductive forms of reasoning with probabilities are 
fallacious. Therefore, basic knowledge and understanding of (standard and Bayesian) 
probability theory is important for legal professionals, scholars and students to help 
recognising and avoiding fallacies when interpreting statistical evidence. For more on 
such uses of Bayesian thinking see e.g. Fenton & Berger (2016) and Dahlman (2020). 
However, Bayesian probability theory is less suitable as a general way of thinking 
about legal evidential issues. The Bayesian way of thinking is for many people 
counterintuitive, precise probability estimates are often hard to give and statistical 
non-independence issues seriously complicate matters in non-trivial cases. 

This raises the issue of how fact finders should embed the statistical evidence 
presented by experts into their general thinking about a case if their general thinking 
cannot be in terms of probability theory. I believe that much would be gained if 
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courts6 in their decisions show an awareness when referring to likelihood ratios or 
random-match probabilities that these must be combined with an assessment of the 
prior odds on the basis of other evidence, where this assessment can very well be in 
non-numerical terms and obtained with a non-probabilistic way of thinking. For 
example, in the child abuse case the court could have said: 
 

‘The court accepts the conclusions of expert (…) that the combination of the 
brain injury, the bruises under the hard meninges, the retinal haemorrhages and 
the skin lesions is very much more probable in a non-accidental event than in an 
accidental event or medical condition.  Moreover, on the basis of the other 
evidence the court regards a non-accidental event as not much less probable than 
an accidental event or medical condition. The court infers from this that the 
victim must have been seriously assaulted’.  
 

With the italicised phrase the court would have shown awareness that the expert’s 
likelihood ratio must be combined with a prior odds in order to draw conclusions 
about the hypotheses it is considering. The court could then explain in non-
probabilistic terms why it regards a non-accidental cause of the injuries as not much 
less probable then the alternative hypothesis.  

An interesting question is what are rational constraints on such a non-
probabilistic way of evidential reasoning. The two main alternatives that have been 
proposed in the academic literature are argumentation-based and scenario-based 
thinking. Argumentation-based approaches take arguments, more specifically, series 
of inferences from evidence to conclusions, as the main concept. This approach goes 
back to Wigmore's (1931) charting method for legal proof and was revived in the 
1980s and 1990s by the so-called New Evidence scholars (cf. Anderson et al. 2005). 
The idea of this method is that making the various inferences in an argument explicit 
allows one to identify sources of doubt in these arguments.  

While the latter is a strong point of argumentative thinking, a problem is that it 
does not explicitly allow for the construction and comparison of alternative scenarios 
as a way of maintaining overview of a mass of evidence. This is a strong point of 
scenario-based (sometimes also called story- or narrative-based) thinking, which 
consists in constructing and comparing multiple plausible and coherent scenarios that 
explain the evidence (see e.g. Van Koppen & Mackor 2021). The scenario that is the 
most plausible and coherent and that best explains the evidence should be accepted as 
true. Scenario-based thinking is thus a form of what philosophers have called 
inference to-the-best explanation. Some, though not all scholars see inference-to-the 
best explanation as a qualitative approximation of Bayesian thinking, where 
judgements on how well the scenarios explain the evidence are the counterpart of 
likelihood ratios and considerations on the scenarios’ plausibility and coherence are 
the counterparts of the prior odds (cf. Jellema 2019).  If this is true, then scenario-
based thinking could be a good overall way for fact finders to structure their thinking 
while they can zoom in on specific issues with argumentation or probability theory 
when appropriate. However, the academic debate on this issue is still ongoing, 
witness e.g. the papers in Prakken et al. (2020). 

	
6 This does, of course, not apply to juries, which generally do not have to give reasons 
for their judgements. 
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