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Abstract. In recent years, a model of a fortiori argumentation, developed to de-
scribe legal reasoning based on precedent, has been successfully applied in the field
of artificial intelligence to improve interpretability of data-driven decision systems.
In order to make this model more broadly applicable for this purpose, work has
been done to expand the knowledge representation on the basis of which it func-
tions, as the original model accommodates only binary propositional information.
In particular, two separate expansions of the original model emerged; one which
accounts for non-binary input information, and a second which accommodates hi-
erarchically structured reasoning. In the present work we unify these expansions to
a single model, incorporating both dimensional and hierarchical information.
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1. Introduction

In [1] Horty introduced a formal model of a fortiori reasoning, which he called the result
model (RM), for describing the type of reasoning performed by a court when citing past
decisions called precedent cases. The model describes when a new decision is, or is not,
consistent with respect to the precedent. In other words, it describes the way in which
a set of precedent constrains future decision-making. The RM works on the basis of a
knowledge representation using factors—legally relevant fact patterns that are assumed
to favor either a decision for the plaintiff or the defendant of the case. Two shortcomings
of the RM have been pointed out on the basis of this form of knowledge representation.

The first is that the factors used in the model are binary, while in practice there may
be relevant legal information which is encoded as, for example, a natural number. Horty
presented an extended version of the RM in [2], which uses a knowledge representation
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that allows for dimensional information to be encoded. For the purpose of comparison
we will refer to this modified version of the RM as the dimensional result model (DRM).

The second shortcoming (as already pointed out by Horty himself in [1]) is that in
practice factors often have a hierarchical structure, which the RM does not take into ac-
count. The court uses this hierarchical structure to move from low-level factors through
a series of intermediate concepts, called abstract factors, before arriving at some final
conclusion. Earlier work on formal models of precedential constraint by Roth and Ver-
heij [3,4] did include such hierarchical information. Building on those ideas, the RM was
extended in [5] to operate on a knowledge representation using hierarchical structure.
We will refer to this model as the hierarchical result model (HRM). We note that Horty’s
reason model of precedential constraint—also introduced in [1], and which builds upon
the RM by adding a notion of reason for the decision of the court—was also recently
extended to a model including hierarchical information in [6].

In the present work we unify the HRM and DRM into a single model which accounts
for both dimensional information and hierarchical structure, and which we will at present
refer to as the dimensional hierarchical result model (DHRM). This model subsumes the
HRM and the DRM in the same way they subsume the RM—for example, every instance
of the RM can also be considered an instance of the HRM, or of the DRM.

Our motivation for this work stems from recent applications of these a fortiori rea-
soning models to the improvement of interpretability of AI systems. For example, start-
ing with work by Prakken and Ratsma in [7], the DRM has been used as the basis of a
post-hoc explanation method for black-box AI systems. This work has since been con-
tinued in e.g. [8,9,10]. Additionally, the DRM is used as part of an interpretable decision
support system by the Dutch national police force [11]. To aid in this application, notions
of justifiability and relevance were recently added to the theory in [12]. The limits of the
knowledge representations used by the DRM and HRM in turn limit the scope of these
applications, which is why we presently propose the DHRM extension.

Following [10], we motivate and illustrate the applicability of the various a fortiori
models discussed in this work by use of a running example from the legal domain of
criminal sentencing. More specifically, we consider the tasks of judging recidivism risk
and granting bail. We show that a fortiori reasoning is applicable to these tasks, and re-
quires the use of a knowledge representation incorporating both dimensional and hierar-
chical information. Criminal sentencing is a highly relevant domain for our purposes—
decisions surrounding criminal sentences have the potential to greatly affect peoples’
lives, and AI is increasingly being used to compliment or even replace human decision-
making for these tasks. For example, in recent years there has been much discussion sur-
rounding allegations put forth in [13] that the COMPAS system, widely used in the United
States for automatic recidivism risk assessment, was making racially biased decisions.

In Sections 2 through 5 we sequentially describe the RM, HRM, DRM, and DHRM.
Each of these models consists of roughly the same two components: some form of knowl-
edge representation which is used to represent fact situations and cases, and a notion of
the way in which a set of such cases constrains decision-making about new, unseen fact
situations. Each of the aforementioned sections is structured according to this fact—they
begin with an intuitive explanation of the model on the basis of our running example, and
then give formal definitions of their knowledge representation and the associated notion
of constraint. After having presented the models, we end in Section 6 with some closing
thoughts.



2. Result Model

2.1. An Example of Factors

We illustrate the various kinds of models discussed in this work through a running exam-
ple on the criminal sentencing domain. In this case, we consider a judgement of whether
a convict is at low or high risk of recidivism—a primary task of the COMPAS software.
Much research has been done on the factors influencing recidivism, see e.g. [14] for a
recent meta-study. Below is a graphical representation of a number of such factors:

Recid

Record Sex Education Married Age

(1)

The factors in the bottom row respectively indicate whether the defendant has a criminal
record, is male, has a high school diploma, is married, and is over the age of 21. A solid
line between a factor and the Recid node indicates that the presence of that factor sug-
gests a higher risk of recidivism, while a dotted line indicates that its presence suggests
a lower risk. For instance, having a criminal record indicates a higher risk, while being
married indicates a lower risk. Now, suppose a 30 year-old unmarried male defendant
with a pre-existing criminal record and no high school diploma was judged to be at high
risk of recidivism. Given our assumption that older people tend to recidivate less, it fol-
lows a fortiori that a defendant who is on all accounts similar, but is 20 years old instead
of 30, should also be judged to be at high risk of recidivism.

2.2. Knowledge Representation

A factor is a propositional variable, i.e. a variable which is either true (denoted t) or
false (denoted f). We denote factors using lowercase letters p,q,r etc. The domain is
modeled by a finite set of factors F . A fact situation is a valuation of F , i.e. a function
X : F →{t, f} assigning true or false to every factor in F . We use upper case letters X ,Y,Z
etc. to denote fact situations, and write X ⊨ p for X(p) = t and X ⊨ ¬p for X(p) = f.

Cases are decided for either of two sides; the plaintiff, denoted by π; or the defen-
dant, denoted by δ . Each factor p ∈ F has a preference for exactly one of the two sides,
which is modeled by two sets Pro(π), Pro(δ ). These sets should constitute a disjoint
union of F , meaning Pro(π)∪Pro(δ ) = F and Pro(π)∩Pro(δ ) = /0. If a factor is pro-π
(δ ) it is con-δ (π) so we define Con(δ ) = Pro(π) and Con(π) = Pro(δ ). A case is a pair
(X ,s) with X a fact situation and s a side; a case base CB is a finite set of cases.

2.3. Constraint

The idea behind the RM is that a decision of a fact situation X for a side s constitutes a
balancing of the pro-s factors in X against the con-s factors in X . The support that factors
provide for an outcome is defeasible and unquantified, which makes it difficult to weigh
sets of pros against sets of cons. However, once a set of pros was deemed to outweigh a
set of cons, any superset of the set of pros should also outweigh any subset of the set of
cons. This intuition is formalized by the following definition.



Definition 1. The decision of a fact situation X for a side s ∈ {π,δ} is forced by a case
base CB, denoted CB,X ⊨ s, if there exists a case (Y,s) ∈ CB such that:

• for all p ∈ Pro(s): if Y ⊨ p then X ⊨ p, and
• for all p ∈ Con(s): if X ⊨ p then Y ⊨ p.

Note carefully that the RM was not designed as a method for weighing pros and cons
against each other. Instead, it normatively prescribes a principle of what it means for
such a method to act in accordance to the a fortiori principle and a set of previous cases.

3. Hierarchical Result Model

3.1. An Example of a Factor Hierarchy

A downstream purpose of recidivism risk assessment, and an example of the purposes
for which the COMPAS program is used in practice, is to determine whether a defendant
should be released on bail. Bail is a sum of money that the defendant must pay to the
court as a guarantee that they will appear at their trial—if the defendant does not appear,
the bail is forfeited. The decision to grant bail, like recidivism risk, is influenced by
several factors; e.g. a defendant with a high risk of flight is less likely to be granted bail,
while one with a history of appearing to court is more likely to be granted bail.

In other words, determining bail is a domain to which the result model can be ap-
plied, but this time one of the input factors—risk of recidivism—can itself be determined
on the basis of a fortiori reasoning. This situation is called a factor hierarchy in the AI &
law literature, a concept which was first used in the CATO program [15]. We expand our
example from Section 2.1, graph (1), to a hierarchy including a bail decision:

Bail

Recid Appear Flight

Record Sex Education Married Age

(2)

The Bail node corresponds to a decision to grant bail. The links are either solid or dotted,
which carries the same meaning as it did in our earlier example. For instance, the dotted
line from Recid to Bail indicates that high risk of recidivism suggests bail should be
denied. Two other factors are added: Appear, which stands for a low or high chance of
appearing at the next trial, and Flight, which stands for a low or high risk of fleeing. This
means that in this example we assume that older people are more likely to flee before
trial than younger people. Whether this assumption holds in practice is debatable—it is
added primarily to exemplify that factors can influence multiple higher level factors.

3.2. Knowledge Representation

We again assume the domain is modeled by a set F of factors. However, we now consider
the case outcome to be just one of the factors. Therefore, to be able to distinguish between



fact situations that have been decided for a side and those that have not, we also drop
the requirement that a fact situation is defined on all factors. More specifically, a fact
situation is now a valuation of a subset of F . The domain of a fact situation X , i.e. the
factors to which it assigns true or false, is denoted dom(X).

A factor hierarchy is a set of factors F with a binary relation H on F satisfying:

1. the transitive closure of H is irreflexive, and
2. it is equal to a disjoint union of two relations Pro and Con.

A hierarchy H is called flat if all factors in it are H-minimal or H-maximal. An H-minimal
factor is called base-level. A factor that is not base-level is called abstract, and the set of
abstract factors is denoted by A. Factors are assumed to support or oppose each other in
hierarchical fashion, as indicated by the relations Pro and Con. When H(p,q) holds be-
tween factors p and q then either Pro(p,q), which means p is a pro-q factor, or Con(p,q),
which means p is a con-q factor.

A hierarchy can have one or more maximal elements—factors which are not subor-
dinate to any other factor. In a hierarchy modelling a common-law system there should
be a single maximal element corresponding to the case outcome, as in the RM. However,
when modelling a civil-law system there may be multiple maximal elements correspond-
ing to the issues of the domain—inputs to a legal rule which together determine the case
outcome. See [16] for an analysis on the role of issues in precedential constraint.

3.3. Constraint

For the notion of constraint for HRM we introduce negations of factors as a notational
device. Given a factor p ∈ F we denote its negation by ¬p. We extend the set of factors
F to a set F including these negations, so F = F ∪{¬p | p ∈ F}. Similarly, we define
A=A∪{¬p | p∈A}. We extend a fact situation X to operate on negations in the obvious
way—if p ∈ dom(X) then X(¬p) = ¬X(p). We also define Pro,Con as in the RM:

Pro(p) = {q ∈ F | Pro(q, p)}, Con(p) = {q ∈ F | Con(q, p)},

Pro(¬p) = Con(p), Con(¬p) = Pro(p).

Lastly we define ProX(p) = Pro(p)∩ dom(X)—the set of pro-p factors on which a fact
situation X is defined.

This brings us to the definition of constraint for the HRM.

Definition 2. The decision of a fact situation X for a factor p ∈ F is forced by a case
base CB, denoted CB,X ⊨ p, if and only if either

• X ⊨ p, or
• p ∈ A and there is a fact situation Y ∈ CB with Y ⊨ p and

* for all q ∈ ProY(p): if Y ⊨ q then CB,X ⊨ q, and
* for all q ∈ ConY(p): if CB,X ⊨ q then Y ⊨ q.

Finally, we note that we can now consider any instance of the RM as a flat hierarchy,
in which the factors of the RM are the base-level factors of the hierarchy, and the case out-
come is the (single) maximal element of the hierarchy. In other words, every instance of
the RM can be translated to an instance of the HRM. Moreover, this translation preserves
the RM’s notion of constraint, which is to say the HRM subsumes the RM.



4. Dimensional Result Model

4.1. An Example of Dimensions

Whereas a factor can be seen as a proposition, a dimension can take on a set of possible
values. Usage of this terminology in the field of AI & law dates back to CATO’s prede-
cessor HYPO [17]. For an example of dimensions, we return to our running example:

Recid

Priors Sex Age

(3)

Previously, the Age factor represented whether the defendant was over the age of 21.
Viewed instead as a dimension, Age can take any value above 0. Similarly, we replace the
Record factor with a dimension Priors, indicating the number of previous convictions.

It is not possible to say directly of a dimension whether it favors one of the two
outcomes of a case. Instead, we require the dimension to come with a relation expressing
the relative preference the values have for the final judgement. For instance, we know
that in general older people tend to recidivate less, and so for the Age dimension we can
say that the value 30 is less indicative than the value 21. In the graph above we have
again used solid and dotted links to indicate whether higher values of the dimension are
suggestive of high or low risk of recidivism. Dimensions with two values, such as the
Sex dimension, can be considered as factors in the RM and HRM models.

4.2. Knowledge Representation

A dimension is a nonempty set d. We denote dimensions by lower case letters d,e, f etc.
The domain is modeled by a finite set of dimensions D. A fact situation X is a choice
function on D, i.e. a function X : D →

⋃
D such that X(d) ∈ d for every d ∈ D.

Cases are again decided for one of the two sides π or δ , and again we assume that
specific values of dimensions have a preference for either of these sides, but this is now
modeled by a binary relation on the dimension. More specifically, we assume there is
for each dimension d ∈ D a preference relation ⪯ on d, which we require to be a partial
order. Given values v,w ∈ d such that v ⪯ w, we say w prefers outcome π relative to v,
and v prefers outcome δ relative to w. For this reason we will also denote ⪯ by ⪯π , and
⪰ (the converse of ⪯) by ⪯δ .

4.3. Constraint

The notion of constraint for the DRM can now be stated succinctly as follows.

Definition 3. The decision of a fact situation X for a side s is forced by a case base CB,
denoted CB,X ⊨ s, if there is a case (Y,s) ∈ CB such that Y (d)⪯s X(d) for all d ∈ D.

The factors of the knowledge representation for the RM can be modeled in the DRM
as two-element dimensions, of which one of the elements is strictly greater than the other,
depending on the preference of the factor. Again, this preserves the notion of constraint
in the RM, so that the DRM subsumes the RM.



5. Dimensional Hierarchical Result Model

We now unify the knowledge representations of the previous sections, by considering a
set of dimensions D together with a hierarchical structure H—a dimension hierarchy.

5.1. An Example of a Dimension Hierarchy

Consider the following modification of our running example, graph (2):

Bail

Recid Flight Appear

Priors Sex Age

(4)

In the setting of a dimension hierarchy we can consider recidivism risk as a dimension,
for instance as a score ranging from 1 to 10. The COMPAS system also outputs a score
from 1 to 10 indicating severity of the risk, so this is a more realistic example than
those in the previous sections. Additionally, Bail can now be considered a dimension,
specifying the amount of bail in, say, USD. Note that denial of bail can still be modeled
as an ‘infinite’ amount of bail. Appear, too, can be considered a dimension, indicating
the relative frequency of past trial appearances by the defendant.

To begin building some intuition for an appropriate notion of constraint in this set-
ting we illustrate a difference with the DRM, which is that dimensions now affect other
dimensions instead of the case outcome directly. To this end, we consider the subgraph
of graph (4) consisting of just the dimensions Recid, Priors, Sex, and Age, and the fact
situations X , Y , and Z, listed in Table 1. The situation Z concerns a 25-year-old female
with 2 prior offenses. What recidivism risk score may be consistently assigned to Z,
given the previous judgements that a 30-year-old female with 1 prior offense received
score 5 (situation X), and that a 20-year-old male with 4 prior offenses received score 8
(situation Y )? Comparing the situation Z to X we see that Z is dimension-wise equal or
more indicative of recidivism risk than X : Z is younger, both Z and X are female, and Z
has more prior offenses. Since X received a recidivism risk score of 5, it seems sensible
to require that Z would get at least a score of 5, but possibly higher since Z is indicative
of higher risk on some dimensions. This exemplifies one of the key differences between
the DHRM and the previous models—decisions are not forced exactly, but constrained to
lie within an interval. Comparing Z to the situation Y we get the opposite picture; Y has
received a risk score of 8, but Z is dimension-wise equal or less indicative of recidivism
risk than Y . Therefore, we expect Z to receive a score of at most 8. In sum, the case base
{X ,Y} should produce the constraint that 5 ⪯ Z(Recid)⪯ 8.

We now turn our attention to the full hierarchy, depicted by graph (4), involving
a downstream judgement of bail amount. In such a scenario, we can apply a recursive
notion of constraint as in the HRM. Consider, again, the fact situations listed in Table 1.
We have seen that X and Y bind the recidivism score of Z to the integer range [5,8]. In
addition, we now have two situations V and W for which a bail amount was determined
on the basis of their recidivism risk assessment, risk of flight, and relative frequency of



Table 1. Five example fact situations V , W , X , Y , and Z for the bail domain.

Age Sex Priors Recid Flight Appear Bail

X 30 F 1 5 - - -
Y 20 M 4 8 - - -
V - - - 2 low 0.8 $2,500
W - - - 9 high 0.3 $20,000

Z 25 F 2 ? low 0.5 ?

previous trial appearances. Defendant V was granted a bail amount of $2,500, on the
basis of a recidivism risk score of 2, a perceived low risk of flight, and an 80% appearance
rate at previous trials. Defendant Z has a lower appearance rate at previous trials and is
similarly perceived as unlikely to flee, but is not yet assigned a definitive recidivism risk
score. However, since we know that Z should receive a risk score of at least 5 it will in any
case be higher than V ’s score of 2. Therefore, we would ultimately expect Z to receive
a bail amount which is equal or greater than that of V —so $2,500 ⪯ Z(Bail). Similarly,
we can deduce from the case W that, since Z should receive a risk score of at most 8,
the amount of bail for Z should not exceed $20,000—so Z(Bail)⪯ $20,000. In sum, the
case base {V,W,X ,Y} should produce the constraints $2,500 ⪯ Z(Bail)⪯ $20,000.

This use of recursion is useful, because it allows the use of the forcing relation
despite some dimensions not having been assigned an exact value. Consider, for instance,
the decision support system used by the Dutch national police force [11]. It is argued
in [12] that determining the values of dimensions for a specific case can be costly, and
the aforementioned use of recursion can alleviate this need for abstract factors.

5.2. Knowledge Representation

A dimension hierarchy is a set D of dimensions, together with a hierarchy H satisfying the
familiar conditions listed in Section 3.2. We maintain the terminology from the HRM—a
dimension is base-level if it is H-minimal, and abstract otherwise; A is the set of abstract
dimensions. A fact situation X is a choice function on a subset of D; we denote its domain
by dom(X). Lastly, we assume each dimension d ∈ D is assigned a partial order ⪯ on d.

5.3. Constraint

As in the HRM, we define Pro(d) = {e ∈ D | Pro(e,d)} and ProX(d) = Pro(d)∩dom(X);
the sets Con(d) and ConX(d) are defined analogously. Using these, we now define by
mutual recursion two relations CB ⊨ v ⪯ X(d) and CB ⊨ X(d)⪯ v.

Definition 4. Given a case base CB and a value v in some dimension d, a fact situation
X is lower bounded by v and CB, written CB ⊨ v ⪯ X(d), if and only if either

• v ⪯ X(d), or
• d ∈ A and there is Y ∈ CB such that v ⪯ Y (d) and

* for all e ∈ ProY(d): CB ⊨ Y (e)⪯ X(e), and
* for all e ∈ ConY(d): CB ⊨ X(e)⪯ Y (e).

The upper bound by v, written CB ⊨ X(d)⪯ v, is defined analogously.



The idea behind the recursive clause is that there is a precedent Y which, by the
a fortiori principle, forces X(d) to take a value which is at least Y (d), and therefore
v ⪯ X(d) follows by transitivity from v ⪯ Y (d)⪯ X(d).

Let us now verify that Definition 4 correctly captures the intuition of the example
in Section 5.1. We consider a dimension hierarchy as depicted in graph (4), with a case
base {W,Y} and novel fact situation Z as listed in Table 1. The question is now whether
{W,Y} ⊨ Z(Bail)⪯ $20,000. To check this, we first verify that {W,Y} ⊨ Z(Recid)⪯ 9:

{W,Y} ⊨ Z(Recid)⪯ 9 (5)

if there is T ∈ {W,Y} such that T (Recid)⪯ 9 and (6)

∗ for all d ∈ ProT(Recid): {W,Y} ⊨ Z(d)⪯ T (d), and

∗ for all d ∈ ConT(Recid): {W,Y} ⊨ T (d)⪯ Z(d)

if {W,Y} ⊨ Z(Priors)⪯ 4, and (7)

{W,Y} ⊨ Z(Sex)⪯ M, and

{W,Y} ⊨ 20 ⪯ Z(Age)
if Z(Priors)⪯ 4 and 20 ⪯ Z(Age). (8)

Since Z(Recid) is undecided, we begin by unfolding (5) to the recursive clause of Defi-
nition 4, which gives (6). We then substitute T = Y , as Y (Recid) = 8 ⪯ 9, yielding (7).
Since all the dimensions subordinate to Recid are base-level, and any value v of Sex
satisfies v ⪯ M, we can simplify (7) to (8). Indeed, defendant Z of Table 1 satisfies these
conditions, and so we have verified that {W,Y} ⊨ Z(Recid)⪯ 9.

Next, we proceed in the same fashion to confirm that {W,Y} ⊨ Z(Bail)⪯ $20,000:

{W,Y} ⊨ Z(Bail)⪯ $20,000 (9)

if there is T ∈ {W,Y} such that T (Bail)⪯ $20,000 and (10)

∗ for all d ∈ ProT(Bail): {W,Y} ⊨ Z(d)⪯ T (d), and

∗ for all d ∈ ConT(Bail): {W,Y} ⊨ T (d)⪯ Z(d)

if {W,Y} ⊨ Z(Recid)⪯ 9, and (11)

{W,Y} ⊨ Z(Flight)⪯ high, and

{W,Y} ⊨ 0.3 ⪯ Z(Appear)
if {W,Y} ⊨ Z(Recid)⪯ 9 and 0.3 ⪯ Z(Appear). (12)

The reasoning proceeds in the same way as in the previous derivation, except now we
substitute W for T . Line (12) holds for defendant Z listed in Table 1, as we have already
shown that {W,Y} ⊨ Z(Recid)⪯ 9, and 0.3 ⪯ Z(Appear) holds by assumption.

6. Conclusion

In this work, we have proposed an extension of Horty’s result model of precedential con-
straint [1] which accounts for both dimensional and hierarchical information, thereby
subsuming two of its extensions given in [2] and [5]. We exemplified and motivated prac-
tical use of such models through an example of the legal domain of criminal sentencing.



Using this example, we showed that our formal model correctly captures the intuition of
some examples from this domain.

In the future, we intend to use the theory developed in this work and apply it to the
improvement of interpretability and responsible use of black-box AI systems. In particu-
lar, it would be interesting to see systems like COMPAS adhere to the notion of constraint
for the DHRM.
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