
October 2023

Precedent-based reasoning with
incomplete cases

Daphne ODEKERKEN a,b,1, Floris BEX a,c and Henry PRAKKEN a

a Department of Information and Computing Sciences, Utrecht University
b National Police Lab AI, Netherlands Police

c Tilburg Institute for Law, Technology and Society, Tilburg University

Abstract. We extend the result model for precedent-based reasoning with incom-
plete case bases. In contrast to regular case bases, these consist of incomplete cases
for which not all dimension values need to be specified, but rather each dimension
is assigned a set of possible values. The outcome of cases then applies for each
(combination of) the possible dimension values. Building on earlier proposed no-
tions of justification and stability for incomplete focus cases, we introduce the no-
tion of possible justification statuses, which are required to maintain consistency
of the incomplete case base. We demonstrate how these theoretic notions can be
applied in practice for human-in-the-loop decision support, discuss their computa-
tional complexity and provide efficient algorithms.

Keywords. precedential constraint, incomplete cases

1. Introduction

Modelling reasoning with legal cases has been an important topic in the computational
study of legal argument. This type of reasoning is applied to problems that are not de-
cided by a legal rule, but by comparing the characteristics of cases. In particular, the
characteristics of a new case for which the outcome still has to be decided (called fo-
cus case) are compared to the characteristics of precedent cases for which the outcome
has already been assigned. These characteristics can be multi-valued (“dimensions”) or
boolean (“factors”) – in this work, we consider factors to be a special case of dimen-
sions. Each dimension has a direction, in the sense that some dimension values are more
favourable to one of the outcomes than other dimension values.

In this paper, we focus on a particular research branch within the study of precedent-
based reasoning, initiated by Horty in [1], that addresses the question how precedents
constrain the possible decisions for a focus case. Horty provided multiple models, includ-
ing a result model of precedential constraint. In a recent application, this model was used
as a classifier for human-in-the-loop decision support [2,3]. Whereas most research on
the result model presumes that the focus case is fully specified, that is not in the case in
this application: for some dimensions, the values are either completely unknown or there
are multiple possibilities. This motivated the introduction of the notion of stability in the

1Corresponding Author: Daphne Odekerken, d.odekerken@uu.nl.



October 2023

context of incomplete focus cases in [3], where the incomplete focus case is called sta-
ble if for every choice of the possible dimension values the constrained outcome would
be the same. If the outcome is stable towards one of the two sides (which we call PRO
and CONTRA), then further refinement of the incomplete focus case is not necessary to
make a decision. Otherwise, the analyst using the system can choose to either refine the
incomplete focus case by reducing the possible values of some dimension(s) or make a
decision and add this to the case base.

As far as we are aware, in all earlier work on the result model, including [3], the
case base only allows “complete” cases, in the sense that there is exactly one value for
each dimension. Consequently, whenever the analyst decides to add an incomplete focus
case to the case base, still some choice should be made for these values, which would
require either further investigation or a guess. Since neither option seems very desirable
in general, we present in this paper an alternative approach that allows for incomplete
information in not only the focus case, but also the case base. In order to do so, we intro-
duce the notion of incomplete case bases in Section 3. Subsequently, we discuss how the
justification and stability statuses, proposed for complete case bases in [3], can be com-
puted efficiently with respect to an incomplete case base (Section 4). We then introduce
in Section 5 the additional notion of possible justification statuses, which is required to
maintain consistency of the incomplete case base used in the decision support system
and conclude in Section 6. All proposed algorithms are added to the Python package for
precedent-based reasoning at https://git.science.uu.nl/D.Odekerken/lcbr.

2. Preliminaries

First we recall the definitions of domain, fact situations, cases and the notion of prece-
dential constraint from [4]. The domain D is the set of all dimensions related to the cases
about which we want to reason, where a dimension is a tuple d = (V,≤PRO,≤CONTRA)
such that V is a set of values that can be assigned to d and ≤PRO and ≤CONTRA are two
partial orders on V such that v ≤PRO v′ iff v′ ≤CONTRA v. The notation V (D ,d) refers
to the set of values that can be assigned to dimension d in domain D . A fact situation
c within a domain D is a set D of value assignments to all dimensions in D . A value
assignment is a pair (d,v) where d ∈D and v ∈V (D ,d); note that fact situations require
exactly one value for each dimension. The notation v(d,c) denotes the value of dimen-
sion d in fact situation c. Based on the dimensions of the fact situation, an outcome o can
be assigned, which can be either PRO or CONTRA. A fact situation c paired with the
outcome o into a pair (c,o) is a case. We then refer to a set of cases as a case base.

Based on the ordering of dimension values, cases can be compared to each other,
following [4, Definition 12]. The idea is that a case with dimensions having values that
are “at least as PRO” as the values in case that is already assigned a PRO outcome is
constrained to be PRO. Similarly, a case that is at least as CONTRA as a case with
CONTRA outcome is assigned to be CONTRA. Using the cases from the case base, in
specific situations the outcome of a new fact situation can be predicted (“forced”) based
on the so-called a fortiori constraint [1].

Definition 1 (A fortiori constraint). Let c1 and c2 be two fact situations within some
domain D and o an outcome (PRO or CONTRA). Then c1 is at least as strong as c2 for
the outcome o – written c1 ≥o c2 – iff for all d ∈ D: v(d,c1)≥o v(d,c2). By the a fortiori

https://git.science.uu.nl/D.Odekerken/lcbr


October 2023

v11: Many complaints,
no retractions

v12: Few complaints,
no retractions

v13: Many complaints,
some retractions

v14: No complaints

v21: Safe payment displayed,
not possible

v22: No safe payment displayed

v23: Safe payment possible

Figure 1. Hesse diagrams for the ≥PRO ordering of the two dimensions in (a toy example version of) the web
shop domain {d1,d2}. The dimension d1, displayed on the left, has the four values {v11,v12,v13,v14} while
dimension d2, on the right, has three values {v21,v22,v23}. If there is a path from value a to b then a ≥PRO b.

constraint, a fact situation c is forced towards outcome o (PRO or CONTRA) by a case
base C iff there is some (c′,o) in C such that c ≥o c′.

Note that a new case only has a forced outcome if there is a precedent in the case
base for which the a fortiori constraint applies. The notion of justification directly uses
the a fortiori constraint to assign an outcome to a focus case (i.e. any (new) fact situation
that is not yet assigned an outcome) based on a consistent case base. The following
definition for consistency is adapted from [5, Section III] for dimensions:

Definition 2 (Consistency of a case base). A case base C is inconsistent iff there are
cases (c1,CONTRA) and (c2,PRO) in C such that c1 ≥PRO c2 and consistent otherwise.

Definition 3 (Justification status). The justification status of a fact situation c given a
consistent case base C is: PRO if c is forced towards outcome PRO by C ; CONTRA if c
is forced towards outcome CONTRA by C ; and UNDECIDED otherwise.

Example 1. As a running example, we consider the domain D of classifying web shops,
illustrated in Figure 1, for the decision whether a web shop is trustworthy (PRO) or
not (CONTRA). D has two dimensions: D = {d1,d2}. d1 represents the number of com-
plaints filed at the police, taking into account retracted complaints as well. It can be
stated that web shops without complaints (v14) at least as trustworthy (PRO) as, for
example, web shops with many complaints and some retractions (v13). Not all values
of d1 can be compared to each other: in the ≥PRO ordering illustrated in Figure 1,
v12 ̸≥PRO v13 and v13 ̸≥PRO v12. d2 represents the possibility of paying in a safe way.
Whereas web shops that do not display this possibility (v22) are in general less trust-
worthy than web shops that do have this possibility (v23), it is even worse if a web shop
(deceptively) displays the safe payment option while this is actually not possible (v21).
Suppose that a case base C consists of two cases C = {(c1,PRO),(c2,CONTRA)} where
c1 = {(d1,v12),(d2,v23)} and c2 = {(d1,v13),(d2,v22)}. Now consider a fact situation
c′ = {(d1,v14),(d2,v23)}. Given that c′ ≥PRO c1 and c1 has the outcome PRO in C , c′ is
forced towards outcome PRO by C and therefore has the justification status PRO.

In practice, for new fact situations the exact value of each dimension is not immedi-
ately known [2]. Therefore, we would like to take multiple values into account for spe-
cific dimensions. An explicit representation of these possible values is enabled by the
notion of incomplete fact situation, which was introduced in [3].



October 2023

Definition 4 (Incomplete fact situation). An incomplete fact situation c within a do-
main D is the assignment of a possible value set for each dimension: for each d =
(V,≤PRO,≤CONTRA) in D the incomplete fact situation contains a tuple (d,Vp) where
Vp ⊆ V (D ,d) is the set of possible values. The notation Vp(d,c) denotes the set of pos-
sible dimension values of dimension d in incomplete fact situation c. For each d ∈ D ,
Vp(d,c) must contain at least one value.

By obtaining more information on an incomplete fact situation, the set of possible
values can be reduced. Once all these uncertainties are resolved, the fact situation is
no longer incomplete. Completions of an incomplete fact situation are (complete) fact
situations that are obtained by selecting a single value from the set of possible values for
each dimension.

Definition 5 (Completions). A completion of an incomplete fact situation c is a fact
situation c′ such that for each (d,v) ∈ c′: v ∈Vp(d,c).

The stability status, introduced in [3], can then be used to identify situations in which
the justification is the same for all completions, so further investigation is not needed:

Definition 6 (Stability status). Let C be a consistent case base and c an incomplete fact
situation. Then the stability status of c given C is Stable-PRO if the justification status
of each completion c′ of c given C is PRO; Stable-CONTRA if the justification status of
each completion c′ of c given C is CONTRA; Stable-UNDECIDED if the justification
status of each completion c′ of c given C is UNDECIDED; and Unstable otherwise.

Example 2. In the incomplete fact situation c3 = {(d1,{v12,v14}),(d2,{v23})} in the
web shop domain, we do not know the exact value of d1 (i.e., the number of complaints
and retractions). For each completion c′ of c3: c′ ≥PRO c1; therefore, c3 is Stable-PRO.

In practice, there will be many situations like in Example 2, where a decision can be
taken without full investigation of the incomplete focus case, given that it is Stable-PRO
or Stable-CONTRA w.r.t. the case base. There will, however, also be many situations
where this is not the case. Then the user can opt to do further investigation, refining
the possible dimension values of the incomplete focus case. Such a refinement is a par-
tial completion. In a partial completion, part of the information may still be uncertain,
whereas in a completion the exact value for each of the dimensions is certain.

Definition 7 (Partial completion). A partial completion of an incomplete fact situation c
is an incomplete fact situation c′ such that for each (d,V ′

p) ∈ c′: V ′
p ⊆Vp(d,c).

Example 3. The incomplete fact situation c4 = {(d1,{v11,v12,v13}),(d2,{v21,v23})} in
the web shop domain is Unstable: completions can be PRO, UNDECIDED or CONTRA.
An analyst can decide upon further investigation, for example by trying to make a pay-
ment using the safe option (analysing d2). If the analyst succeeds, c4 should be replaced
by c5 = {(d1,{v11,v12,v13}),(d2,{v23})}. Note that c5 is a partial completion of c4.

3. Incomplete case bases

As we have seen in Example 3, incomplete fact situations that are unstable can be refined,
which results in a partial completion that may or not be stable. Now suppose that the



October 2023

analyst decides on an outcome that would apply for each completion of the incomplete
fact situation and wants to add this information to the case base. Let us assume, for
example, that the analyst decides that having a safe payment option is a very strong
sign that a web shop is trustworthy and that therefore each of c5’s completions should
have the outcome PRO. If the case base can only contain “complete” cases, as defined
in Section 2, then this information cannot be expressed in a single case. We therefore
extend the definitions of cases and case bases to an incomplete variant.

Definition 8 (Incomplete case base). Within a domain D , an incomplete case is a pair
(c′,o), where c′ is an incomplete fact situation within the domain D and o is the assigned
outcome of the case, which can be either PRO or CONTRA. An incomplete case base C
within a domain D is a set of incomplete cases within D .

Although an incomplete case base can only contain incomplete cases, it is still pos-
sible to add a case for which the precise dimension values are known. This can be done
by choosing a singleton for each set of possible dimension values. For example, in a
domain with one dimension d1 and a (complete) fact situation {(d1,v1)} that we assign
the outcome PRO, the “incomplete” case ({(d1,{v1})},PRO) is added to the incomplete
case base.

Since incomplete case bases consist of incomplete cases rather than cases, we need
to redefine the notions of a fortiori constraint and consistency.

Definition 9 (A fortiori constraint with incomplete case base). A fact situation c is forced
towards outcome o (PRO or CONTRA) by an incomplete case base C iff there is some
incomplete case (c′,o) in C such that c′ has at least one completion c′′ such that c ≥o c′′.

Example 4. Let C ′ be a case base in domain D that is the “incomplete version of” C
from Example 1: C ′ = {(c1,PRO),(c2,CONTRA)} where c1 = {(d1,{v12}),(d2,{v23})}
and c2 = {(d1,{v13}),(d2,{v22})}. For C ′ ∪ {(c5,PRO)}, the fact situation c′′ =
{(d1,v13),(d2,v23)} is forced towards outcome PRO because of c5 = {(d1,{v11,v12,v13}),
(d2,{v23})}: c5 has a completion c′5 = {(d1,v13),(d2,v23)} and c′′ ≥PRO c′5. Note
that c5 also has completions that are not “at least as PRO as” c′′, for example:
c′′5 = {(d1,v11),(d2,v23)} ̸≥PRO c′′. This does not influence the a fortiori constraint on
c′′, as having c5 in the incomplete case base with outcome PRO should be interpreted as:
each of c5’s completions should have the outcome PRO. The exact value of d1 does not
matter here as the analyst considered the value assignment (d2,v23), i.e., the web shop
having a safe payment option, to be decisive for having the PRO outcome.

Note that Definition 9 is an incomplete counterpart of Definition 1. Analogously,
we present an incomplete version of Definition 2 of consistency in Definition 10. In
words, an incomplete case base is consistent if it is not possible to find a completion of a
CONTRA case that is at least as PRO as a completion of a PRO case.

Definition 10 (Consistency of an incomplete case base). An incomplete case base C is
inconsistent iff there are incomplete cases (c1,CONTRA) and (c2,PRO) in C such that
c1 has a completion c′1 and c2 has a completion c′2 for which c′1 ≥PRO c′2. C is consistent
iff it is not inconsistent.

Example 5. C ′ from Example 4 is consistent. Now recall c4 = {(d1,{v11,v12,v13}),
(d2,{v21,v23})}; C ′∪{(c4,PRO)} is inconsistent, just like C ′∪{(c4,CONTRA)}.



October 2023

Then justification and stability w.r.t. incomplete case bases are defined as in Defini-
tions 3 and 6, except that the consistent case base is replaced by an incomplete one.

Example 6. For the consistent incomplete case base C ′∪{(c5,PRO)} in the web shop
domain, the incomplete fact situation c6 = {(d1,{v12,v13}),(d2,{v23})} is Stable-PRO.

Finally note that adding incomplete fact situations with a Stable-PRO or -CONTRA
outcome to an incomplete case base can never make the resulting case base inconsistent:

Proposition 1. Let C be a consistent incomplete case base and c an incomplete fact
situation. o ∈ {PRO,CONTRA}: if c is Stable-o w.r.t. C then C ∪{(c,o)} is consistent.

Proof. Suppose that c is Stable-PRO w.r.t. C ; then for each completion c′ of c, there is
some (c∗,PRO) ∈ C that has some completion c∗′ such that c′ ≥PRO c∗′. Given that C is
consistent, there are no (c1,CONTRA) and (c2,PRO) in C such that c1 has a completion
c′1 and c2 has a completion c′2 for which c′1 ≥PRO c′2. Thus, assuming towards a contra-
diction that C ∪{(c,PRO)} is inconsistent, the inconsistency must have been introduced
by adding (c,PRO): there must be some (c⋆,CONTRA) in C and some completion c′ of
c such that c⋆ has a completion c⋆′ and c⋆′ ≥PRO c′. But then, by transitivity of ≥PRO,
c⋆′ ≥PRO c∗′, which would imply that C was inconsistent. From this contradiction we
derive that C ∪{(c,PRO)} is consistent.

4. Complexity and algorithms

If we literally follow Definition 9 in order to compute the justification status given an
incomplete case base and a fact situation, the resulting algorithm would require an expo-
nential number of steps, as the number of completions of a given incomplete fact situa-
tion can be exponential. Therefore, we propose an alternative, more efficient, algorithm
in this section. This algorithm is based on the following proposition:

Proposition 2 (Reformulation of the a fortiori constraint for incomplete case bases). Let
C be a consistent incomplete case base in domain D and c a fact situation. Then for
outcome o (PRO or CONTRA): c is forced towards outcome o by C iff there is some
incomplete (c′,o) in C where c′ is such that for each d ∈ D there is some v′ ∈ Vp(d,c′)
such that v(d,c)≥o v′.

Proof. Let C be a consistent incomplete case base, let c be a fact situation and let o be
an outcome in {PRO,CONTRA}. We proceed by proving both directions.

• Suppose that c is forced towards outcome o by C . Then by Definition 9 there is
some incomplete (c′,o) in C such that c′ has at least one completion c′′ such that
c ≥o c′′. Then by Definition 1 for all d ∈ D : v(d,c) ≥o v(d,c′′). Given that c′′ is
a completion of c′, it must be that v(d,c′′) ∈Vp(d,c′). So for each d ∈ D , there is
some v′ (v′ = v(d,c′′)) in Vp(d,c′) such that v(d,c)≥o v′.

• Suppose that there is some incomplete (c′,o) in C where c′ is such that for each
d ∈ D there is some v′ ∈ Vp(d,c′) such that v(d,c) ≥o v′. Now construct the fact
situation c′′ by selecting for each dimension d ∈ D one value v′ from Vp(d,c′)
such that v(d,c)≥o v′. Given that, for each dimension d ∈ D , v(d,c′′) ∈Vp(d,c′),
by Definition 5, c′′ is a completion of c′. In addition, c ≥o c′′ by Definition 1. We
thus conclude that c is forced towards outcome o by C (Definition 9).



October 2023

We use Proposition 2 to design a polynomial algorithm for computing the justifica-
tion status of fact situation c given a consistent incomplete case base C . This algorithm
works by iterating over C , searching for an incomplete case (c′,o)∈C such that for each
dimension in the domain, there is at least one possible value v′ of the incomplete fact sit-
uation such that v(d,c)≥o v′. If such an incomplete case is found, then by Proposition 2,
the justification status is o; otherwise, it is UNDECIDED.

Example 7. For the consistent incomplete case base C ′∪{(c5,PRO)}, the fact situation
c′′ = {(d1,v13),(d2,v23)} is forced towards outcome PRO because of c5. Note that for
each dimension, only one possible value in c5 needs to be “at least as PRO” as the
value in c′′. In this example, Vp(d1,c5) = {v11,v12,v13}. To derive the PRO status of c′′ it
suffices that v(d1,c′′) = v13 ≥PRO v13, even though v11 ̸≥PRO v13 and v12 ̸≥PRO v13.

The algorithm requires a single run on the incomplete case base and for each of
the incomplete cases it performs one comparison with the focus case for each possible
dimension value. This implies that the algorithm is polynomial, therefore the problem of
deciding PRO/CONTRA-justification can be computed in polynomial time (so is in P).

Proposition 3. Deciding if an incomplete fact situation is PRO/CONTRA w.r.t. some
incomplete case base is in P.

Thus the justification problem in a setting with incomplete case bases is in the same
complexity class as justification with complete case bases (cf. [3, Section 3.1]). Next, we
show that the same applies for PRO/CONTRA-stability: it is still CoNP-complete.

Proposition 4. Deciding if an incomplete fact situation is Stable-PRO/Stable-CONTRA
w.r.t. some incomplete case base is CoNP-complete.

Proof. The problem is CoNP-hard because it is CoNP-hard w.r.t. complete case bases
(proven in [3, Proposition 6]). It is in CoNP as a negative instance can be verified in
polynomial time, given a completion of the incomplete fact situation that is not PRO (or
CONTRA) as a certificate, using the justification algorithm proposed in this section.

To conclude this section, we provide an algorithm for stability with an incomplete
case base. This algorithm is similar to the algorithm from [3] for complete case bases.
The idea of the algorithm is to first construct the “most PRO” and “most CONTRA” com-
pletions of the incomplete fact situation. After that, the justification algorithm is applied
to each of these completions. If all have the same justification status, the incomplete fact
situation was stable. These extreme completions are defined as in [3, Definition 14]:

Definition 11 (Extreme completions). Let c be an incomplete fact situation within a
domain D and let o be an outcome (PRO or CONTRA). For each of the dimensions
di ∈ D , let the most o values of this dimension in c be {V ′

p ⊆ Vp(d,c) | for each v′p ∈
V ′

p: for each vp ∈ Vp: if vp ≥o v′p then v′p ≥o vp}. The set of most o completions of c is
{(di,vi) | di ∈ D ,vi ∈ the most o values of dimension di in c}.

Example 8. Consider again the consistent incomplete case base C ′∪{(c5,PRO)} in the
web shop domain D . The incomplete fact situation c6 = {(d1,{v12,v13}),(d2,{v23})}
has two most CONTRA completions: {(d1,v12),(d2,v23)} and {(d1,v13),(d2,v23)}. The
first is forced to be PRO by c1; the second is forced to be PRO as well, by c5. Since all
most CONTRA completions are PRO, c6 must be Stable-PRO w.r.t. C ′∪{(c5,PRO)}.



October 2023

PRO

STABILITY
&

POSSIBILITY
PRO CON UND

Incomplete fact situation

Incomplete case base

Possible / stable outcomes

Inform

Add case*
Refine* * if allowed

Figure 2. Illustration of the human-in-the-loop decision-making process, where the stability algorithm (Sec-
tion 4) is used to check if the incomplete fact situation has a forced outcome given its incomplete case base.
If not, the user chooses from the allowed actions (as specified in Section 5), which could include refining the
incomplete fact situation or assigning an outcome and adding the resulting incomplete case to the incomplete
case base.

5. Maintaining consistency

In Section 4 we assumed that the justification and stability algorithms are applied to an
incomplete case base that is consistent, in accordance with Definition 10. In the human-
in-the-loop decision support system, illustrated in Figure 2, we can guarantee consistency
by posing restrictions on the incomplete fact situations that are allowed to be added to
the case base. In the original version, where only complete fact situations could be added
to the case base, it sufficed to check that cases with justification status PRO were not
added with a CONTRA outcome and vice versa [3]. This does not apply to the extension
presented in this paper, where incomplete fact situations are added to the case base, since
the notion of justification status is only defined for complete fact situations that are used
as focus case. We therefore introduce the notion of possible justification statuses and
show how they can be used to guarantee that the consistency of the incomplete case base
is maintained after an adding an incomplete case.

Informally, the possibility status is the natural counterpart of the stability status:
whereas an incomplete fact situation is Stable-PRO if the justification status of each of
its completions is PRO, it is Possible-PRO if some of them is PRO.

Definition 12 (Possibility statuses). Given a consistent incomplete case base C and a
justification status j (PRO, CONTRA or UNDECIDED), an incomplete fact situation c
is Possible- j if the justification status of some completion c′ of c given C is j.

Note that an incomplete fact situation can be both Possible-PRO and Possible-
CONTRA. In addition, it is also possible that it is neither Possible-PRO nor Possible-
CONTRA: this is exactly the case if the incomplete fact situation is Stable-UNDECIDED.
Finally, each incomplete fact situation should have at least one possibility status – so it
should be Possible-PRO, -CONTRA or -UNDECIDED (or a combination) – since each
incomplete fact situation has at least one completion. Next, we show how this new notion
of possibility can be applied for verifying if the incomplete case base remains consistent
after adding an incomplete fact situation with a specific outcome.



October 2023

P-PRO P-CONTRA P-UNDEC Stability Add PRO Add CONTRA Refine
Yes No No S-PRO Obsolete Forbidden Obsolete
No Yes No S-CONTRA Forbidden Obsolete Obsolete
No No Yes S-UNDEC Allowed Allowed Allowed
Yes Yes No Unstable Forbidden Forbidden Required
Yes No Yes Unstable Allowed Forbidden Allowed
No Yes Yes Unstable Forbidden Allowed Allowed
Yes Yes Yes Unstable Forbidden Forbidden Required

Table 1. Possibility statuses, their relation to stability and the allowed actions for the user. In this table, P is
short for Possible, S is short for Stable and UNDEC is short for UNDECIDED.

Proposition 5 (Maintaining consistency). Let C be an incomplete case base that is con-
sistent and let c be an incomplete fact situation.

1. C ∪ (c,PRO) is consistent iff c is not Possible-CONTRA given C ; and
2. C ∪ (c,CONTRA) is consistent iff c is not Possible-PRO given C .

In Table 1 we summarise the relation between each combination of possibility sta-
tuses, the corresponding stability status and the actions that the user can or should take
(i.e., refine the case or add it to the case base with some outcome). For completeness, we
also include the Possible-UNDECIDED status, although it does not play a role in main-
taining consistency. Actions that introduce an inconsistency according to Proposition 5
are forbidden; all other actions are allowed. For incomplete fact situations that are both
Possible-PRO and Possible-CONTRA, the only allowed action is refinement. Therefore,
we marked this action as required. Finally, if an incomplete fact situation c is Stable-o (o
being PRO or CONTRA) then adding (c,o) to the incomplete case base C is obsolete, in
the sense that for any new fact situation c′, the justification status of c′ given C ∪{(c,o)}
is exactly the same as its justification status given C . Refinement does not have any effect
either, as every partial completion of c will be Stable-o as well.

Given that the Possible-PRO and Possible-CONTRA statuses are required for decid-
ing if an incomplete focus case with a specific outcome can be added to the incomplete
case base, we need to compute these possibility statuses in an efficient way. Fortunately,
this can be done in polynomial time, using Proposition 6.

Proposition 6 (Reformulation of possibility status). Let C be a consistent incomplete
case base and c an incomplete fact situation and o an outcome (PRO or CONTRA). Then
c is Possible-o given C iff there is some incomplete (c′,o) in C where c′ is such that for
each d ∈ D there are some v′ ∈Vp(d,c′) and v ∈Vp(d,c) such that v ≥o v′.

Proposition 6 can be used in polynomial algorithms for finding the Possible-PRO
and Possible-CONTRA statuses in the following way: given an incomplete case base C
and incomplete fact situation c, iterate over all incomplete cases in C . If we find come
incomplete case c′ ∈ C for which in all dimensions there is some v′ ∈Vp(d,c′) such that
there is some v ∈ Vp(d,c) such that v ≥PRO v′ then we conclude that c is Possible-PRO
given C , based on Proposition 6. The algorithm for Possible-CONTRA is analogous.
Using these algorithms, the consistency check can be performed in polynomial time:

Proposition 7. For any consistent incomplete case base C , incomplete fact situation
c and outcome o (PRO or CONTRA), it can be decided in polynomial time whether
C ∪{(c,PRO)} or C ∪{(c,CONTRA)} is inconsistent.



October 2023

Proof. For any consistent incomplete case base C and incomplete fact situation c, it can
be decided in polynomial time whether c is Possible-PRO and/or c is Possible-CONTRA
given C using the algorithms described above, which require only a single run on C .
Then by Proposition 5, C ∪ (c,PRO) is consistent iff c is not Possible-CONTRA and
C ∪ (c,CONTRA) is consistent iff c is not Possible-PRO.

6. Conclusion and future work

We have shown how the human-in-the-loop decision support system introduced in [3]
can be extended such that it becomes possible to add cases to the case base while their
fact situation is incomplete. This is a convenient feature in situations where the user is
certain of a specific outcome, regardless of the remaining uncertainties concerning the
dimension values. We have shown that this extension does not influence the complexity
classes in which the justification and stability problems are situated and provided algo-
rithms for solving these problems. The extension does have an impact on the check that is
required to maintain consistency of the case base: to guarantee consistency, we proposed
a polynomial algorithm based on the newly introduced notion of possibility statuses.

The idea of making a decision based on part of the characteristics of the precedent
seems to be strongly related to the reason model, for which various definitions have
been proposed [4,6,7,8]. In future work, we plan to study how these definitions can be
expressed in terms of incomplete fact situations and case bases. In addition, we aim to
investigate two yet untouched aspects of the incomplete case base extension proposed
here. First, we would like to study the complexity of the relevance problem, introduced
in [3] for a setting with complete case bases, when applied to incomplete case bases.
The second aspect is inconsistency handling. There may be situations in which the user
is determined to add the incomplete focus case c with a specific outcome o to the case
base, even though this is inconsistent with earlier decisions. It would then be convenient
to have an automatic procedure for revision of the case base that adapts the case base in
some minimal way, enabling the addition of (c,o) without inconsistencies.

References

[1] Horty J. Rules and reasons in the theory of precedent. Legal Theory. 2011;17:1-33.
[2] Odekerken D, Bex F. Towards transparent human-in-the-loop classification of fraudulent web shops.

In: Villata S, Harasta J, Kremen P, editors. Proceedings of the 33rd International Conference on Legal
Knowledge and Information Systems. IOS Press; 2020. p. 239-42.

[3] Odekerken D, Bex F, Prakken H. Justification, stability and relevance for case-based reasoning with
incomplete focus cases. In: Proceedings of the 19th International Conference on Artificial Intelligence
and Law; 2023. p. 177-86.

[4] Horty J. Reasoning with dimensions and magnitudes. Artificial Intelligence and Law. 2019;27:309-45.
[5] Horty J. The result model of precedent. Legal Theory. 2004;10(1):19-31.
[6] Horty J. Modifying the reason model. Artificial Intelligence and Law. 2021;29:271-85.
[7] Prakken H. A formal analysis of some factor-and precedent-based accounts of precedential constraint.

Artificial Intelligence and Law. 2021;29(4):559-85.
[8] Rigoni A. Representing dimensions within the reason model of precedent. Artificial Intelligence and

Law. 2018;26:1-22.


