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Abstract. This paper reports on an experiment on using case-based rea-
soning in Dutch administrative law. The use case is decision-support for

human medical experts at the Dutch Central Office of Driving Certi-

fication who have to decide whether a citizen who applies for a driv-
ing licence is fit to drive. Case-based reasoning is investigated for this

purposes because of its potential advantages over machine-learning ap-

proaches as regards transparency and explainability. Both traditional
case-based reasoning, AI & Law models of precedential constraint and

their combination are investigated on predictive accuracy relative to a

large case base with more than 30.000 cases. A combined model is found
to have the highest accuracy. The results indicate that human-in-the-

loop support with a tool based on the combined model may be feasible,
but whether this is indeed so requires further investigation.
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1. Introduction

Case-based reasoning (CBR) has been recommended as a way to develop trans-
parent and explainable data-driven AI applications, as an alternative to machine-
learning approaches, which often lack transparency and explainability [11,14].
Models of case-based reasoning have been developed both in AI & law and in
other areas of AI. This paper reports on an experiment on using CBR in Dutch
administrative law. The Dutch Central Office of Driving Certification (in Dutch
the ‘Centraal Bureau Rijvaardigheidsbewijzen’, below ‘Bureau’ for short) is in-
terested in AI support for its decision-making about whether drivers are fit to
drive. Because of government policy, the CBR is reluctant to use machine-learning
methods, because of their problems with transparency and explainability. For this
reason the Bureau wanted to investigate the suitability of CBR methods. Such
methods explain or justify a decision in a new case by pointing at similar past
cases with the same outcome.
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The question arises which kind of CBR model is suitable. The Bureau initially
considered general CBR models, which essentially model cases as features with
a decision and then develop similarity measures between cases as a means to
suggest new decisions [5]. A simple similarity measure for domains with only
binary features is the proportion of features on which two cases agree. However,
traditional CBR methods have limited explainability capabilities in that they
cannot express whether a feature is pro or con a particular decision. Formal AI &
Law models of case-based reasoning [6,7,13] can explain this, since they capture
to which extent a feature value is pro or con a particular decision. This allows for
explaining decisions by so-called a fortiori reasoning : a decision can be explained
by pointing at a precedent with the same decision and where the current case is
on all features at least as strong for the same outcome as the precedent, so that
the case base ‘forces’ the decision. In this way, a difference in feature values that
in general CBR would be a relevant difference between cases can in a model of
precedential constraint be an even stronger reason for the same decision.

However, a fortiori reasoning also has a limitation, namely that that for un-
forced decisions it does not provide an unambiguous outcome but instead regards
both outcomes as allowed. Accordingly, the aim of this paper is to study in the
context of the Bureau application scenario how the two approaches can be com-
bined in a way that combines their advantages while avoiding their shortcom-
ings. Four different models will be tested, one general CBR model, two variants
of a formal AI & law model of precedential constraint and a combination of the
general CBR and the AI & law model. The models will be evaluated in terms of
how well they agree with the decisions of the human decision makers (accuracy,
precision, recall).

This evaluation approach requires justification, since it is not immediately
obvious why a tool that is evaluated on how well it reproduces human decisions can
be useful for supporting human decision-makers. According to Ashley [2, p. 102],
Aleven [1] “argued persuasively that predictive accuracy was one measure of the
reasonableness of a computational model of argument” in that “Good predictive
performance would inspire confidence that the arguments made by the program
(. . . ) have some relation to the reality of legal reasoning” [1, p. 212]. In Section 5
we will discuss to which extent this can be plausibly argued.

This paper is organised as follows. We will first in Section 2 outline the
Bureau domain and introduce the two formalisms used in our experiments. Then
in Section 3 we will present our experimental setup after which in Section 4 we
present the results. In Section 5 we will discuss the results, after which we conclude
in Section 6. In this paper we only describe and summarise the essential elements
of the experiment. The full details can be found in [10].

2. The Bureau domain and its formal modelling

When citizens apply for a driving license, a medical expert of the Bureau has to
determine whether they are ‘fit to drive’ in that they are healthy enough to safely
participate in traffic based on their mental and physical health. The health infor-
mation provided by the citizen is categorised in terms of a considerable number



of relevant dimensions2, more precisely, ‘nature-severity’ pairs. Some dimensions
are boolean, others have numerical values, some have date values and some have
a free-text formal value. Boolean dimensions stand for the presence or absence of
a defect, An example of a multi-valued dimension is VISUS, a nature correspond-
ing to eye defects, which has several severities, such as whether only the left- or
right eye was measured or both. For each VISUS-severity pair a numerical value
between 0.0 (for complete blindness) and 3.0 (for exceptional eyesight) can be
entered. Dimensions with a date value stand for the beginning of a certain disease,
such as diabetes, or the latest occurrence of a certain medical deviation, such as
a hypo in case of having diabetes. Finally, dimensions with free-text values are
used by the medical experts to record observations about the citizen’s health that
cannot be expressed in one of the other formats.

Often a decision can be made automatically with the help of clear rules but
other cases have to be decided by a medical expert. It is these cases for which the
Bureau wanted to investigate CBR support.

2.1. Precedential constraint

As the formal model of precedential constraint we use the dimension-based result
model of [7], using notation of [13]. A dimension is a tuple d = (V,≤s,≤s′)
where V is a set (of values) and ≤s and ≤s′ two partial orders on V such that
v ≤s v′ iff v′ ≤s′ v. A value assignment is a pair (d, v). The functional notation
v(d) = x denotes the value x of dimension d. Then a (dimension-based) case is a
pair c = (F, outcome(c)) such that D is a set of dimensions, F is a set of value
assignments to all dimensions in D and outcome(c) ∈ {s, s′}. Then a (dimension-
based) case base is a set of cases assumed to be relative to a set D of dimensions
in that all cases assign values to a dimension d iff d ∈ D. Likewise, a (dimension-
based) fact situation is an assignment of values to all dimensions in D. As for
notation, v(d, c) denotes the value of dimension d in case or fact situation c.
Finally, v ≥s v′ is the same as v′ ≤s v. Finally, a case base is inconsistent iff it
contains two cases c = (F, s) and c′ = (F ′, s′) such that F ≤s F

′.
In Horty’s result model a decision in a fact situation is forced iff there ex-

ists a precedent c for that decision such that on each dimension the fact situa-
tion is at least as favourable for that decision as the precedent. Horty formalises
this idea with the help of the following preference relation between sets of value
assignments.

Definition 2.1. [Preference relation on dimensional fact situations.] Let F and F ′

be two fact situations with the same set of dimensions. Then F ≤s F ′ iff for all
(d, v) ∈ F and all (d, v′) ∈ F ′ it holds that v ≤s v

′.

Then precedential constraint is defined as follows.

Definition 2.2. [Precedential constraint with dimensions: result model.] Let CS
be a case base and and F a fact situation given a set D of dimensions. Then,
given CB, deciding F for s is forced iff there exists a case c = (F ′, s) in CB such

2Since features with a direction towards a decision are in AI & law called dimensions, we will
from now on use the term ‘dimension’ instead of ‘feature’.



that F ′ ≤s F . Moreover, deciding F for s is allowed iff deciding F for s′ is not

forced.

As an example (taken from [13]), consider the issue whether the fiscal domicile

of a person who moved abroad for some time has changed. Assume there are two

dimensions d1, the duration of the stay abroad in months and d2 the percentage of

the tax-payer’s income that was earned abroad during the stay. For both values,

increasingly higher values increasingly favour the outcome change and decreas-

ingly favour the outcome no change. So, for instance, (d1, 12m) <change (d1, 24m)

and so (d1, 24m) <no change (d1, 12m). An example of a fact situation is F =

{v(d1) = 30m, v(d2) = 70%} and an example of a case is c = (F ′, change) where

F ′ = {v(d1) = 12m, v(d2) = 60%}. Deciding F for change is then forced because

of c since (d1, 12m) <change (d1, 30m) and (d2, 60%) <change (d2, 70%). If instead

F has v(d2) = 50% then (d2, 60%) 6<change (d2, 50%), so deciding F for change is

not forced because of c. If, moreover, c is the only precedent case, then deciding

F for change is not forced but only allowed, as is deciding F for no change. Note,

finally, that if the case base contains a second case c′ = (F ′′,no change) where

F ′′ = {v(d1) = 18m, v(d2) = 60%}, then the case base is inconsistent since c′ is

better for change than c′ while yet its decision is no change.

2.2. Similarity measure

For defining a similarity measure the orderings ≤o,≤o′ of dimension values are

ignored. The measure we propose is an adaptation of known measures from general

CBR [4,9]. Our adapted definition has to take into account three characteristics of

the Bureau data set, namely, that dimension values can be empty (not-specified),

can be of type date and can have free text format.

An empty value represents the absence of a health deviation, which is impor-

tant information for a case. This makes it important for the formula to take into

account. Additionally, the presence of a filled textual value has to be taken into

account even when textual fields do not match entirely. For example, suppose two

cases have a present chronic heart failure - other dimension, denoting a textual

explanation of the presence of chronic heart failures of ‘other’ types. Even though

the values of these cases differ, this still makes the cases more similar than two

cases where only one has this chronic heart failure dimension. Therefore, textual

fields are taken into account in the similarity measure, and cases containing such

textual fields are not removed from the KB for the similarity measure.

Our similarity measure defines a dissimilarity value d(Ci, Cj) for dimension

d between two cases Ci and Cj) as a numerical value between between 0 and 1.

Formula 1 denotes the final dissimilarity value of values Ci and Cj , which accounts

for different types of values and empty cells.



d(Cik, Cjk) =



0, if Cik = Cjk (or both are empty);

1, if Cik is empty or Cjk is empty and not both;

0.75, if Cik and Cjk are text values (and not equal);
|Cik−Cjk|
|Cik+Cjk|

, if Cik and Cjk are numbers and |Cik − Cjk| ≤ |Cik + Cjk|;
date(Cik, Cjk), if Cik and Cjk are date values and date(Cik, Cjk) ≤ 1;

1, otherwise.

(1)

where

date(Cik, Cjk) = datedifference in days(Cik, Cjk)/10000 (2)

First, if two values are equal or if they are both empty, the dissimilarity will
obviously be equal to 0, as both dimensions are equal.

If only one of the dimensions is empty, the dissimilarity will be equal to 1,
since the nature-severity combination is only present in one of the two cases. If
both values are text values (and not equal), the dissimilarity value will be 0.75,
as the presence of dimension values shows more similarity between the two cases
than the absence of one of the two values.

If Ci and Cj are numerical values, the dissimilarity between the dimensions
is calculated based on the formula of 3, taken from [9], but only if both values
are negative or both values are positive (equivalent to the condition |Ci − Cj | ≤
|Ci + Cj |). Otherwise, the value of

|Ci−Cj |
|Ci+Cj | would be higher than 0.

Canberra : DISS(Ci, Cj) =
∑ |Cik − Cjk|
|Cik + Cjk|

(3)

If Cik and Cjk are date values, the date difference in days is calculated ac-
cording to Formula 2. The output of this value is divided by 10.000, and the min-
imum of this output value and 1 is returned. As most date differences are smaller
than 10.000 days, this number was chosen as maximum difference between two
dates. A value higher than this number hardly ever occurs, and thus the similarity
between dates closer to each other must have a bigger influence on the similarity.

Finally, if none of the conditions above are met, the output for the dimension
will be 1. Entering the values for all dimensions d ∈ D for both cases, the total
dissimilarity value can be calculated, a value between 0 and 1.

3. Experimental setup

We first removed cases with obvious errors, such as type errors in the dimension
values. This left us with 30.584 cases. We then had to deal with the fact that
the medical specialists often leave dimension values empty. Since this reflects the
absence of a health problem for the considered nature-severity pair, we completed
these dimensions with their most favourable value for the outcome ‘fit to drive’
(although for applying the above similarity measure the dimension values are
regards as ‘empty’).



We then used the model and algorithms of Van Woerkom et al. [16] to com-
pute the preference relations on dimensions by calculating Pearson’s correlation
for every dimension value. In doing so, we had to ignore all cases with features
with textual values, since these cannot be naturally ordered. This left us with
15.843 cases, modelled in terms of a set of 123 dimensions, for which a prefer-
ence relation could be determined for all their dimensions. The orders of every
preference relation were then checked manually by an expert of the Bureau and
adjusted if the expert regarded the preference ordering as incorrect. The remain-
ing 14.741 cases had a textual dimension, for which the preference relation was
empty.

We used four different models for predicting driver fitness. Model 1 (tradi-
tional CBR) applies the above similarity measure to suggest the decision of the
case in the case base that has the highest similarity with the considered fact sit-
uation. If multiple cases have the highest similarity, then arbitrarily one of them
will be returned. Model 2 (negative AF) applies precedential constraint to a fact
situation as follows: if a single decision is forced, then predict that decision, if
both decisions are allowed or both decisions forced or a fortiori reasoning can-
not be applied because of dimensions with textual values, then predict ‘not fit to
drive’. Model 3 (positive AF) is the same as model 2 except that in the latter case
it predicts ‘fit to drive’. Model 2 and 3 can be seem as, respectively, favouring
safety and giving drivers the benefit of the doubt. Finally, Model 4 (combined
CBR) combines traditional CBR and a fortiori reasoning as follows: if one deci-
sion is forced, then predict that decision, otherwise predict the decision with the
similarity measure of traditional CBR.

We then implemented and tested all four CBR approaches independently,
using [16]’s implemented algorithms for precedential constraint extended with
our own algorithm for CBR similarity. As the Bureau case base contained 30.584
cases, the test set contained 7646 cases, which thus applied the traditional 80/20
split for training and testing models in machine-learning (in our case 80% for the
creation of the KB, 20% for testing). Each approach was applied to the same pair
of sets in order to obtain comparable results. As the performance measures we
adopted precision, recall and accuracy.

4. Results

This section presents the comparative analysis of four CBR models, designated
here as the Positive AF CBR model, the Negative AF CBR model, the traditional
CBR model, and the combined CBR model, across three key performance metrics:
precision, recall, and accuracy.

The test set consisted of 7646 randomly chosen cases from the entire Bureau
dataset. From these 7646 cases, 16 cases contained nature-severity combinations
that required manual decision making or came with a severity that represented
a shorter validity period of the license, which returned the automatic decision
of 0. This remains us with 7630 test cases in total. 3730 of the 7630 cases had
an actual decision of ‘1’ (fit to drive) and 3900 had decision ‘0’ (unfit to drive).
Tables 1, 2, 3 and 4 show the results of every model, where ‘Pred’ represents the



model’s decision and ‘Actual’ the actual decision of a test case.

Pred

Actual
1 0

1 3598 2186 5784

0 132 1714 1846

3730 3900 7630

Table 1. Results of positive AFCBR Model

Pred

Actual
1 0

1 1028 52 1080

0 2702 3848 6550

3730 3900 7630

Table 2. Results of negative AFCBR Model

Pred

Actual
1 0

1 3491 387 3878

0 239 3513 3752

3730 3900 7630

Table 3. Results of traditional CBR model

Pred

Actual
1 0

1 3421 360 3781

0 309 3540 3849

3730 3900 7630

Table 4. Results of combined CBR model

Model Precision Recall Accuracy

Positive AF CBR 0.622 0.965 0.696

Negative AF CBR 0.952 0.276 0.639

Traditional CBR 0.900 0.936 0.918

Combined CBR 0.905 0.917 0.912

Table 5. Precision, Recall and Accuracy scores
per CBR model

The precision metric calculated the percentage of accurately recognised pos-
itive cases among all cases classified as positive by the models. With a preci-
sion of 95.2%, the negative AF CBR model performed best in this comparison,
demonstrating its superior capacity to find appropriate scenarios with few false
positives. With a precision of 90.5% and 90.0% respectively, the combined CBR
and the traditional CBR model trailed closely behind, while the Positive AF CBR
model showed lower precision at 62.2%.

Recall assesses the model’s ability to identify all actual positive cases within
the dataset. The Positive AF CBR model outperformed the others in this metric



with a recall rate of 96.5%. The traditional CBR model had a recall of 93.6%,
slightly exceeding the combined CBR model, which recorded a recall rate of 91.7%.
The Negative AF CBR model scored an extremely low recall score compared to
the other three models, only scoring 27.6% in this metric.

Finally, the accuracy represents the proportion of all correct decisions (both
positive and negative) made by the models over the total number of cases. The
traditional CBR achieved the highest overall accuracy at 91.8%, followed closely
by the combined CBR model with a 91.2% accuracy score. The Positive and Neg-
ative AF CBR models showed somewhat lower accuracies at 69.6% and 63.9%
respectively. Since accuracy is seen as the most important and widely used per-
formance metric in testing AI-models, the traditional CBR has shown to be the
optimal model for this situation compared to the other three models, followed
closely by the combined CBR model. Table 5 summarises the performance scores
per model.

In total, 2.926 of the 7.630 test cases were decided by a forced decision of the
a fortiori algorithm in the models that used AFR. The remaining 4704 cases were
determined by using the similarity measure in the combined CBR model.

5. Discussion

Looking at the results, it can be observed that the traditional CBR model and the
combined CBR model outperformed the Positive and Negative AF CBR models.
This can be easily explained by the fact that the Positive and Negative AF CBR
models always make an automatic decision when a fortiori reasoning does not
generate a uniquely forced decision. Since the unforced cases were quite spread
out over both decisions, this means that both the Positive and the Negative AF
CBR model performed poorly. A more unexpected outcome is the fact that the
traditional CBR model outperformed the combined CBR model, even though
the combined CBR model should have only found stronger evidence for certain
decisions by using a fortiori reasoning.

A closer analysis of the results reveals that a main source of incorrect predic-
tions of the models using a fortiori reasoning is the inconsistency of the case base.
Van Woerkom et al. [16], propose a measure to calculate the degree of consistency
of a case base as “the relative frequency of cases in the case base that have their
outcome forced for the outcome they did not receive”. Results of this measure
show that the subset of the Bureau case base to which a fortiori reasoning can
be applied (recall that this subset consists of 15.843 cases) only comes with a
consistency percentage of 54.5%, which means that only 8.642 of the 15.843 cases
were consistent. In order to increase the accuracy of the combined CBR model,
the Bureau will have to determine which cases must be removed from the current
dataset to prevent incorrect forced decisions.

Another possible explanation of the poor performance of models 2 and 3 (the
‘default’ a fortiori models) is that 2657 of the 4704 cases with no unique forced
outcome were cases to which a fortiori reasoning could not be applied because of
the presence of textual dimensions. Admittedly, our current handling of textual
dimensions is rather coarse, which is a limitation of our study. Having said so,



the combined model (model 4) achieved 86,3% accuracy for these cases, which is
still quite high.

Finally, in some cases it could be determined by Bureau experts that an
incorrect prediction by a fortiori was caused by an incorrect preference ordering
on dimension values.

As said in the introduction, Ashley [2], citing [1], argued that predictive ac-
curacy was one measure of the reasonableness of a computational model of argu-
ment. We believe that this only holds under the following assumptions:

1. The system contains the same knowledge as the human decision-maker,
which is all and only the relevant knowledge.

2. The system reasons with the knowledge in the same way as the human
decision-maker, which is rationally sound reasoning.

3. Different human decision-makers decide in the same way.

Under these assumptions a tool with high predictive accuracy can be useful for
decision support since it contains the same knowledge as used by the human
decision-makers and reasons with it in the same way as the human decision-
makers and thus produces acceptable decisions, while in doing so it is not subject
to the cognitive limitations of the human decision-maker, such as flawed memory
or making reasoning errors. Note that this is the same motivation as the moti-
vation given for the introduction of rule-based expert systems in Dutch public
administration [15]. The aim was not to build systems with superior knowledge or
reasoning models but instead to mitigate the problems observed in practice that
human ‘street-level bureaucrats’ often overlooked relevant regulations and often
made logical reasoning errors or calculation errors.

Non-perfect accuracy can then be explained as follows that these assumptions
do not hold categorically:

1. Humans may use other or more knowledge. For instance, they may assume
different sets of dimensions, different similarity relations or different prefer-
ence relations on dimensions). This can also be since the knowledge engi-
neering was flawed.

2. Humans remember or reason imperfectly. For instance, they may ignore
relevant past cases or apply the a fortiori reasoning model incorrectly.

3. Different human decision-makers decide differently.

As indicated above, the last point (inter-expert inconsistency) was confirmed
by our results, while we also found examples in which a preference ordering on
dimension values was with hindsight judged to be incorrect by the experts.

As regards possible usefulness in practice, the results indicate that fully au-
tomatic decision-making is infeasible but that a human-in-the loop application
might be feasible. Possible advantages of such an application are: no overlooking
of relevant cases, insight in the consistency of decision-making by different ex-
perts, adherence to the logic of a fortiori reasoning and time-efficiency. In partic-
ular, the human decision-maker can investigate whether discrepancies are due to
flawed system modelling, the similarity function or to human errors or inconsis-
tencies between human decision-makers. In informal discussions with the Bureau



employees we found that they in particular valued that the tool makes them aware
of possible inconsistencies and possible changes in human decision behaviour over
time. We note that the first benefit, awareness of inconsistent decision-making,
exists because of our modelling of the problem in terms of dimensions instead of
just unordered features, as in traditional CBR. Whether a system based on the
present ideas will have these benefits requires further experimentation, since it is
well known that good performance on a reasoning task in artificial settings does
not imply usefulness in practice [8].

6. Conclusion

In this paper we investigate whether ‘traditional’ case-based reasoning models and
formal AI & Law models of precedential constraint can be applied in a realistic
setting of administrative-law decision-making. Our main positive finding was the
high accuracy of a model that combines the two approaches (model 4). To the
best of our knowledge, such a combination of ‘traditional’ and formal AI & law
models of case-based reasoning is novel. We believe that even if the combined
model is used, then in ambiguous cases (that is, cases in which the traditional
model decides) the preference orderings on the dimensions can still be useful for
explaining the prediction. In our case study we informally found that experts
at the Bureauin particular valued that the tool makes them aware of possible
inconsistencies and possible changes in human decision behaviour over time.

Also novel is the large scale of our experiments, with thousands of precedents,
compared to the just 147 precedents in the US trade-secret law case base used
by [1] and much follow-up work. The only other work of this scale that we know
of is [16], who experiment with a case base with almost 6000 cases. Arguably,
the larger the case base, the higher the degree of its inconsistency will be, which
raises issues not encountered with case bases of small size. See [3,12] for two recent
studies of CBR with inconsistent case bases. The issue of inconsistent case bases
is an important topic for future research. For instance, it could be investigated to
what extent different case modelling methods influence the consistency degree of
a case base. Another topic for future research is a more sophisticated treatment
of textual dimensions, possibly using natural-language processing methods.

All in all, our experiments, combined with informal feedback by Bureau ex-
perts, suggests that a tool with humans in the loop based on our combined model
might be useful in practice, but whether this is indeed so requires evaluation
studies of a different kind in realistic decision-making settings.
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