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An abstract framework for structured arguments is presented that instantiates Dung’s (1995) abstract argu-
mentation frameworks. Arguments are defined as inference treesformed by applying two kinds of inference
rules: strict and defeasible rules. This naturally leads tothree ways of attacking an argument: attacking a
premise, attacking a conclusion and attacking an inference.To resolve such attacks, preferences may be
used, which leads to three corresponding kinds of defeat: undermining, rebutting and undercutting defeat.
The nature of the inference rules, the structure of the logical language on which they operate and the origin
of the preferences are, apart from some basic assumptions, left unspecified.

The resulting framework integrates work of Pollock, Vreeswijk and others on the structure of arguments
and the nature of defeat, and extends it in several respects.Various rationality postulates are proven to be
satisfied by the framework, and several existing approaches are proven to be a special case of the framework,
including assumption-based argumentation and DefLog.

1. Introduction

In 1995 Phan Minh Dung introduced an abstract formalism for argumentation-based infer-
ence (Dung 1995), which assumes as input nothing else but a set (of arguments) ordered
by a binary relation (of attack). Although he thus fully abstracted from the structure of
arguments and the nature of the attack relation, he was stillable to develop an extremely
interesting theory. His article was a breakthrough in threeways: it provided a general
and intuitive semantics for the consequence notions of argumentation logics (and for non-
monotonic logics in general); it made a precise comparison possible between different
systems (by translating them into his abstract format); andit made a general study of for-
mal properties of systems possible, which are inherited by instantiations of his framework.
In consequence, Dung’s work has given an enormous boost to research in computational
argumentation. Yet it has also been criticised for not specifying the structure of arguments
and the nature of the attack relation, which makes it less suitable for modelling specific ar-
gumentation problems. I believe that such criticism fails to appreciate the nature of Dung’s
formalism. It is best seen not as a formalism for directly representing argumentation-based
inference problems but as a tool for analysing particular argumentation systems and for
developing a metatheory of such systems. As such it has been very successful: differ-
ences between particular systems can be characterised in terms of some simple notions,
and formal results established for the framework are inherited by its instantiations. This
was already illustrated by Dung (1995) with reconstructions of Pollock’s (1987) system,
various logic-programming semantics and Reiter’s (1980) default logic in his formalism.
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Nevertheless, it is true that when actual argumentation-based inference has to be mod-
elled, Dung’s framework is by itself usually too abstract and instead an instantiated ver-
sion of his approach should be used. However, here too abstraction is still possible and
worthwhile. The aim of this paper is to instantiate Dung’s abstract approach with a general
account of the structure of arguments and the nature of the defeat relation1. The frame-
work defines arguments as inference trees formed by applying two kinds of inference
rules, strict and defeasible rules. This naturally leads to three ways of attacking an argu-
ment: attacking a premise, attacking a conclusion and attacking an inference. To resolve
such attacks, preferences may be used, which leads to three corresponding kinds of defeat:
undermining, rebutting and undercutting defeat. To characterise them, some minimal as-
sumptions on the logical object language must be made, namely that certain well-formed
formulas are a contrary or contradictory of certain other well-formed formulas. Apart
from this the framework is still abstract: it applies to any set of inference rules, as long
as it is divided into strict and defeasible ones, and to any logical language with a contrary
relation defined over it.

The choice for tree-structured arguments based on two types of inference rules arguably
is very natural both in light of logic and argumentation theory and when looking at argu-
mentation as it occurs in human thinking and dialogue. The notion of arguments as trees
of inferences is very common in standard logic and in argumentation theory, and is the ba-
sis of many software tools for argument visualisation. Moreover, in actual argumentation
humans often express their arguments as claims supported with one or more premises,
which can in turn be supported with further premises, and so on. Finally, as will be further
explained in Section 4, the setup with general defeasible inference rules is very suited for
modelling reasoning with argumentation schemes (Walton etal. 2008).

The account offered in this paper is not completely new. In fact, a rhetorical aim of the
paper is to counter the idea that the computational study of argumentation started with
Dung’s abstract approach and that only then researchers made it more concrete with ac-
counts of the structure of arguments and the nature of defeat. As a matter of fact, much
work on these two issues was already done or going on at the time when Dung wrote
his paper, and some of this work is still state-of the art. Forinstance, both John Pollock
(1987, 1994) and Gerard Vreeswijk (1993, 1997) did important work on the structure of
arguments, while Pollock (1974, 1987) introduced an important distinction between two
kinds of defeat, namely rebutting defeat (attack on a conclusion) and undercutting defeat
(attack on an inference rule). One aim of the present paper isto profit from, integrate and
build on this and other important work as much as possible. Assuch this paper is a fur-
ther development of the integration attempt that was undertaken in the European ASPIC
project (Amgoud et al. 2006). In this project, Vreeswijk’s formalisation of the structure of
arguments was combined with Pollock’s definitions of rebutting and undercutting defeat
in a way that also used insights from other work. The result wasa characterisation of a set
of tree-structured arguments ordered with a binary defeat relation, so that an instantiation
of Dung’s abstract approach was achieved and any of Dung’s semantics could be used to
compute the acceptability status of the structured arguments.

The ASPIC framework was developed by Leila Amgoud, Martin Caminada, Claudette
Cayrol, Marie-Christine Lagasquie-Schieux, myself and Gerard Vreeswijk, and was first
reported in a European project deliverable (Amgoud et al. 2006). The added expressive-
ness compared to Dung’s abstract formalism gave rise to further work by Caminada and
Amgoud (2007) on rationality postulates for systems instantiating the ASPIC framework.
The aim of this work was to propose the idea of rationality postulates and to criticise
some specific rule-based argumentation systems for failing to satisfy them. For this aim

1For reasons explained in Section 3 this paper will rename Dung’s attack relations to ‘defeat’ relations and reserve the term
‘attack’ for something else.
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only a simplified version of the ASPIC framework was needed, without preferences and
without the notion of a knowledge base. Moreover, the examples discussed by Caminada
and Amgoud (2007) were all with domain-specific inference rules instead of with general
inference patterns, which in effect somewhat obscured the potential of the framework to
be a general account of structured argumentation.

By contrast, the present paper aims to present the ASPIC framework as a general ab-
stract model of argumentation with structured arguments.1 To achieve this aim, the ASPIC
framework will be extended and generalised in four respects.

(1) A third way of argument attack, namely premise attack or ‘undermining’ will be
added, in a way inspired by Vreeswijk’s (1993, Ch. 8) combination of “plausible”
and “defeasible” argumentation. Apart from the naturalness of having all three
kinds of attack in a general framework for argumentation, this will make it easier
to formalise argument schemes in the framework and it will make it possible to
regard existing systems with premise attack as special cases of the framework.

(2) The three notions of attack will be generalised from the notion of contradiction
between formulasϕ and¬ϕ to an abstract relation of contrariness between for-
mulas which is not necessarily symmetric. This idea is taken from Bondarenko
et al. (1997) and Verheij (2003) and will help in showing thattheir systems are a
special case of the present framework.

(3) Four types of premises will be distinguished, inspired by a similar distinction of
Gordon et al. (2007).

(4) Attack relations will be partly resolved with preference orderings on arguments,
defeasible rules and the knowledge base (although Amgoud etal. 2006 also has
preferences, the results of Caminada and Amgoud 2007 do not cover them).

It will then be investigated to what extent the results of Caminada and Amgoud (2007) on
rationality postulates generalise to the thus extended ASPICframework. The final aim of
this paper is to compare the resulting framework with recentrelated work. It will turn out
that assumption-based argumentation (Bondarenko et al. 1997, Dung et al. 2006, 2007),
DefLog (Verheij 2003) and Amgoud and Cayrol (2002)’s versionof deductive argumen-
tation are special cases of this paper’s version of the ASPIC framework.

2. Dung’s abstract argumentation frameworks

First without explanation the basic concepts and insights ofDung’s abstract argumentation
approach are listed. For a state-of the art introduction seeBaroni and Giacomin (2009).

Definition 2.1: [Abstract argumentation framework] Anabstract argumentation frame-
work (AF ) is a pair〈A, Def 〉. A is a set arguments andDef ⊆A×A is a binary relation
of defeat. We say that an argumentA defeats an argumentB iff (A,B) ∈ Def .

Definition 2.2: [Conflict-free, Defence] LetB ⊆ A.

• A setB is conflict-freeiff there exist noAi,Aj in B such thatAi defeatsAj .
• A setB defendsan argumentAi iff for each argumentAj ∈ A, if Aj defeatsAi, then

there existsAk in B such thatAk defeatsAj .

Definition 2.3: [Acceptability semantics] LetB be a conflict-free set of arguments, and
let F : 2A 7→ 2A be a function such thatF(B) = {A | B defendsA}.

1In this paper the term ‘framework’ will be used to denote the general model, to highlight that it can be instantiated in
various ways (such instantiations will in turn be called argumentation systems). This contrasts with Dung’s (1995) use of
the term ‘argumentation framework’, which denotes a specific set of arguments with a specific attack relation. In the present
paper such specific inputs to an argumentation system will be called argumentation theories.
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• B is admissibleiff B ⊆ F(B).
• B is acomplete extensioniff B = F(B).
• B is agrounded extensioniff it is the smallest (w.r.t. set-inclusion) complete extension.
• B is a preferred extensioniff it is a maximal (w.r.t. set-inclusion) complete extension

(or, equivalently, ifB is a maximal (w.r.t. set inclusion) admissible set).
• B is astable extensioniff it is a preferred extension that defeats all arguments inA\B.

Note that this implies that each grounded, preferred or stable extension of anAF is also
a complete extension of thatAF . Some other known results are that

• the grounded extension is indeed unique but all other semantics allow for multiple
extensions of anAF ;

• eachAF has a grounded and at least one preferred and complete extension, but there
areAFs without stable extensions;

• the grounded extension of anAF is contained in all other extensions of thatAF .

3. Argumentation systems with structured arguments

In this section the arguments of Dung’s argumentation frameworks are given structure and
its defeat relation is defined in terms of the structure of arguments plus external prefer-
ence information. Apart from this, the resulting formalismis still as abstract as possible,
allowing for different logical languages, different sets of inference rules for building argu-
ments and different preference orderings. The framework uses Vreeswijk’s (1993, 1997)
definition of the structure of arguments and then adds Pollock’s (1987, 1994) distinction
between rebutting and undercutting attack, as well as a variant of the notion of premise at-
tack proposed by Vreeswijk (1993, Ch. 8). These notions are then generalised to languages
with arbitrary relations of contrariness and contradiction between well-formed formulas.
Then the three notions of attack are combined into a notion of defeat in a way inspired by
Vreeswijk (1993, Ch. 8) and Prakken and Sartor (1997). It is this combination that makes
it possible to regard the system as an instantiation of Dung’s abstract framework.

The resulting framework unifies two ways to capture the defeasibility of reasoning.
Some, e.g. Amgoud and Cayrol (2002), Besnard and Hunter (2008), Bondarenko et al.
(1997), Verheij (2003), locate the defeasibility of arguments in the uncertainty of their
premises, so that arguments can only be attacked on their premises. Others, e.g. Pollock
(1994), Vreeswijk (1997), instead locate the defeasibility of arguments in the riskiness of
their inference rules: in these logics inference rules are of two kinds, being either deduc-
tive or defeasible, and arguments can only be attacked on their applications of defeasible
inference rules. Typically, in this approach inconsistency of the knowledge base makes
the system collapse. Vreeswijk (1993, Ch. 8) called these two approachesplausibleand
defeasiblereasoning: he described plausible reasoning as sound (i.e,deductive) reasoning
on an uncertain basis, and defeasible reasoning as unsound (but still rational) reasoning on
a solid basis. In his chapter 8, Vreeswijk attempted to combine both forms of reasoning in
a single formalism, but since then most formal accounts of argumentation have modelled
either only plausible or only defeasible reasoning.

3.1. Basic definitions

The basic notion of the present framework is that of an argumentation system, which ex-
tends the familiar notion of a proof system with a distinction between strict and defeasible
inference rules1 and a preference ordering on the defeasible inference rules.

1Pollock (1987, 1994) calls these ‘conclusive’ and ‘prima facie reasons’.
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Definition 3.1: [Argumentation system] Anargumentation systemis a tupleAS =
(L,−,R,≤) where

• L is a logical language,
• − is a contrariness function fromL to 2L,
• R = Rs ∪ Rd is a set of strict (Rs) and defeasible (Rd) inference rules such that

Rs ∩Rd = ∅,
• ≤ is a partial preorder onRd.

Amgoud et al. (2006) and Caminada and Amgoud (2007) assume that arguments are
expressed in a logical language that is left unspecified except that it is closed under clas-
sical negation. In this paper this assumption will be generalised in two ways. Firstly, non-
symmetric conflict relations between formulas will be allowed, such as the contrariness
relation of Bondarenko et al. (1997) (which captures, for instance, negation as failure)
and its inverse, the dialectical negation of Verheij (2003)(which means ‘it is defeated
that’). Secondly, in addition to classical negation, other symmetric conflict relations will
be allowed, so that, for instance, formulas like ‘bachelor’and ‘married’ can, if desired, be
declared contradictory without having to reason with an axiom¬(bachelor∧ married).

Definition 3.2: [Logical language] LetL, a set, be a logical language and− a contrari-
ness function fromL to 2L. If ϕ ∈ ψ then if ψ 6∈ ϕ thenϕ is called acontrary of ψ,
otherwiseϕ andψ are calledcontradictory. The latter case is denoted byϕ = −ψ (i.e.,
ϕ ∈ ψ andψ ∈ ϕ).

In examples with classical negation¬, it will be assumed that¬ϕ ∈ ϕ andϕ ∈ ¬ϕ.
Now that the notion of negation has been generalised, the same must be done with the

notion of consistency.

Definition 3.3: [consistent set] LetP ⊆ L. P is consistentiff ∄ ψ, ϕ ∈ P such that
ψ ∈ ϕ, otherwise it isinconsistent.

Note that this is a weak form of consistency, determined by whether a set contains contrary
or contradictory formulas. Caminada and Amgoud (2007) callthisdirect consistencyand
they call consistency of the closure of a set under strict inferenceindirect consistency.

Arguments are built by applying inference rules to subsets of L. Inference rules are
eitherstrict or defeasible. This distinction goes back to Lin and Shoham (1989), Pollock
(1987) and Vreeswijk (1993), as does the idea of abstractingfrom their nature.

Definition 3.4: [Strict and defeasible rules] Letϕ1, . . ., ϕn, ϕ be elements ofL.

• A strict rule is of the formϕ1, . . . , ϕn → ϕ, informally meaning that ifϕ1, . . . , ϕn

hold, thenwithout exceptionit holds thatϕ.
• A defeasible ruleis of the formϕ1, . . . ,ϕn ⇒ ϕ, informally meaning that ifϕ1, . . . , ϕn

hold, then itpresumablyholds thatϕ.

ϕ1, . . . , ϕn are called theantecedentsof the rule andϕ its consequent.

As usual in logic, inference rules will often be specified by schemes in which a rule’s
antecedents and consequent are metavariables ranging overL.

Arguments are constructed from a knowledge base which, inspired by Gordon et al.
(2007), is assumed to contain four kinds of formulas.

Definition 3.5: [Knowledge bases] Aknowledge basein an argumentation system
(L,−,R,≤) is a pair(K,≤′) whereK ⊆ L and≤′ is a partial preorder onK \ Kn.
HereK = Kn ∪ Kp ∪ Ka ∪ Ki where these subsets ofK are disjoint and

• Kn is a set of (necessary)axioms. Intuitively, arguments cannot be attacked on their
axiom premises.
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• Kp is a set ofordinary premises. Intuitively, arguments can be attacked on their ordi-
nary premises, and whether this results in defeat must be determined by comparing the
attacker and the attacked premise (in a way specified below).

• Ka is a set ofassumptions. Intuitively, arguments can be attacked on their assumptions,
where these attacks always succeed.

• Ki is a set ofissues. Intuitively, arguments of which the premises include an issue are
never acceptable: an issue must always be backed with a further argument.

(Gordon et al. 2007 call ordinary premises “assumptions”, they regard assumptions as
the contradictories of “exceptions” and they call issues “ordinary premises”. Their coun-
terpart to axioms is “accepted” and “rejected” statements.) As explained by Gordon et al.
(2007), the category of issue premises is useful if an argumentation system is embedded
in a dialogical context, defining the acceptability status ofarguments relative to a stage in
a dialogue. For example, in legal proceedings legal claims that are not backed by factual
evidence usually do not stand: for instance, an argument ‘wehave a contract by Section
X of the Civil Code since I made an offer and you accepted’ willbe unacceptable as long
as no factual evidence for the offer and acceptance is provided. In the present framework
this can be captured by giving the non-supported premises issue status.

3.2. Arguments

Next the arguments that can be constructed from a knowledge base in an argumenta-
tion system are defined. Arguments can be constructed step-by-step by chaining inference
rules into trees. Arguments thus contain subarguments, which are the structures that sup-
port intermediate conclusions (plus the argument itself and its premises as limiting cases).
In what follows, for a given argument, the functionPrem returns all the formulas ofK
(calledpremises) used to build the argument,Conc returns its conclusion,Sub returns all
its sub-arguments,DefRules returns all the defeasible rules of the argument and, finally,
TopRule returns the last inference rule used in the argument.

Definition 3.6: [Argument] AnargumentA on the basis of a knowledge base(K,≤′)
in an argumentation system(L,−,R,≤) is:

(1) ϕ if ϕ ∈ K with:
Prem(A) = {ϕ},
Conc(A) = ϕ,
Sub(A) = {ϕ},
DefRules(A) = ∅,
TopRule(A) = undefined.

(2) A1, . . . An → ψ if A1, . . . , An are arguments such that there exists a strict rule
Conc(A1), . . . ,Conc(An) → ψ in Rs,
Prem(A) = Prem(A1) ∪ . . . ∪ Prem(An),
Conc(A) = ψ,
Sub(A) = Sub(A1) ∪ . . . ∪ Sub(An) ∪ {A},
DefRules(A) = DefRules(A1) ∪ . . . ∪ DefRules(An),
TopRule(A) = Conc(A1), . . .Conc(An) → ψ.

(3) A1, . . . An ⇒ ψ if A1, . . . , An are arguments such that there exists a defeasible
ruleConc(A1), . . . ,Conc(An) ⇒ ψ in Rd,
Prem(A) = Prem(A1) ∪ . . . ∪ Prem(An),
Conc(A) = ψ,
Sub(A) = Sub(A1) ∪ . . . ∪ Sub(An) ∪ {A},
DefRules(A) = DefRules(A1) ∪ . . . ∪ DefRules(An) ∪
{Conc(A1), . . .Conc(An) ⇒ ψ},
TopRule(A) = Conc(A1), . . .Conc(An) ⇒ ψ.
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Example 3.7 Consider a knowledge base in an argumentation system with

Rs = {p, q → s; u, v → w}
Rd = {p⇒ t; s, r, t⇒ v}
Kn = {q}
Kp = {p, u}
Ka = {r}

An argument forw is displayed in traditional proof-tree format in Figure 1, where a single
line stands for a strict inference and a double line for a defeasible inference. The type of
a premise is indicated with a superscript. Formally the argument and its subarguments are

Figure 1. An argument

written as follows:

A1: p A5: A1 ⇒ t

A2: q A6: A1, A2 → s

A3: r A7: A5, A3, A6 ⇒ v

A4: u A8: A7, A4 → w

We have that

Prem(A8) = {p, q, r, u}
Conc(A8) = w

Sub(A8) = {A1, A2, A3, A4, A5, A6, A7, A8}
DefRules(A8) = {p⇒ t; s, r, t⇒ v}
TopRule(A8) = v, u→ w

Definition 3.8: [Argument properties] An argumentA is

• strict if DefRules(A) = ∅;
• defeasibleif DefRules(A) 6= ∅;
• firm if Prem(A) ⊆ Kn;
• plausibleif Prem(A) 6⊆ Kn.

We writeS ⊢ ϕ if there exists a strict argument forϕ with all premises taken fromS, and
S |∼ ϕ if there exists a defeasible argument forϕ with all premises taken fromS.

Example 3.9 In Example 3.7 the argumentA2 is strict and firm, whileA1, A3, A4 and
A6 are strict and plausible andA5, A7 andA8 are defeasible and plausible. Furthermore,
we have thatK ⊢ p, K ⊢ q, K ⊢ r, K ⊢ u, K ⊢ s andK |∼ t, K |∼ v, K |∼ w.

(From hereon the theory will be left implicit if there is no danger for confusion.)
Now that the notion of an argument has been defined, orderings on arguments can be

considered. Below� is a partial preorder such thatA � B means thatB is at least as
‘good’ asA. As usualA ≺ B meansA � B andB 6� A.

In Section 6 two ways will be discussed to define� as a function from the orderings≤
onRd and≤′ onK. However, the present framework allows for any partial preorder on
arguments that satisfies two basic assumptions (taken from Vreeswijk 1993).
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Definition 3.10: [Admissible argument orderings] LetA be a set of arguments. Then a
partial preorder� onA is anargument orderingiff

(1) if A is firm and strict andB is defeasible or plausible, thenB ≺ A;
(2) if A = A1, . . . An → ψ then for all1 ≤ i ≤ n,A � Ai and for some1 ≤ i ≤

n,Ai � A.

(Vreeswijk also assumes that an argument cannot be strongerthan its weakest subargu-
ment but in Section 6 the so-called ‘last-link’ principle will be discussed, which violates
this assumption.) The first condition says that strict-and-firmarguments are stronger than
all other arguments, while the second condition says that a strict inference cannot make
an argument weaker or stronger.

Definition 3.11: [Argumentation theories] Anargumentation theoryis a tripleAT =
(AS ,KB ,�) whereAS is an argumentation system,KB is a knowledge base inAS and
� is an argument ordering on the set of all arguments that can beconstructed fromKB in
AS (below called the set of arguments on the basis ofAT ).

3.3. Attack and defeat

Dung’s use of the term “attack” might at first sight lead to the belief that Dung’s frame-
work has no place for preferences. However, Dung’s attack relation can also be seen as
abstractingfrom the use of preferences: in this view an attack relation in his framework
may be the result of applying preferences to a syntactic conflict. This view on Dung’s
attack relation was, to my knowledge, first used by Prakken and Sartor (1997), it was also
employed by Amgoud and Cayrol (2002) and it was the basis of Bench-Capon’s (2003)
value-based argumentation frameworks. It was also the reason why Prakken and Sartor
(1997) and Prakken and Vreeswijk (2002) replaced Dung’s term‘attack’ with ‘defeat’,
to reflect that it may incorporate evaluative considerations. This convention will also be
adopted in the present paper, while the term ‘attack’ will bereserved for non-evaluative
syntactic notions of conflict. The idea then is that defeat is determined by attack plus
preference (except in some cases, where attack automatically leads to defeat).

The notion of a defeasible inference rule naturally leads to two notions of rebutting
and undercutting attack, introduced by Pollock (1974) and first formalised by Pollock
(1987). The third kind of attack, premise attack (in this paper called undermining) is a
natural addition (and for deductive inferences it is the only kind of attack) but highlights
the philosophical distinction between plausible and defeasible reasoning discussed above.
It was independently introduced by Vreeswijk (1993, Ch. 8) and Elvang-G̈oransson et al.
(1993). In line with Prakken and Sartor (1997), rebutting and undercutting attacks can
also be launched on subarguments. This is essential in makingthe system an instantiation
of Dung’s abstract framework.

3.3.1. Attack

First the ways in which arguments can be attacked are defined. Recall that these are
just syntactic categories and do not reflect any preference between arguments. The first
way of attack corresponds to the case where one argument usesa defeasible rule of which
another argument says that it does not apply to the case at hand. Its definition assumes
that inference rules can be named in the object language; theprecise nature of this naming
convention will be left implicit.

Definition 3.12: [Undercutting attack] ArgumentA undercutsargumentB (onB′) iff
Conc(A) ∈ B′ for someB′ ∈ Sub(B) of the formB′′

1 , . . . , B
′′
n ⇒ ψ.

Example 3.13 In Example 3.7 argumentA8 can be undercut in two ways: by an argument
with conclusionA5, which undercutsA8 onA5, and by an argument with conclusionA7,
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which undercutsA8 onA7.

Undercutting attackers only say that there is some exceptional situation in which a
defeasible inference rule cannot be applied, without drawing the opposite conclusion.
Rebutting attacks do the latter: they provide a contrary or contradictory conclusion for a
defeasible (sub-)conclusion of the attacked argument.

Definition 3.14: [rebutting attack] ArgumentA rebuts argumentB on (B′) iff
Conc(A) ∈ ϕ for someB′ ∈ Sub(B) of the formB′′

1 , . . . , B
′′
n ⇒ ϕ. In such a case

A contrary-rebutsB iff Conc(A) is a contrary ofϕ.

Example 3.15 In Example 3.7 argumentA8 can be rebutted onA5 with an argument
for t and onA7 with an argument forv. Moreover, if t = −t thenA5 in turn rebuts
any argument fort with a defeasible top rule. However,A8 itself does not rebut that
argument, except in the special case wherew ∈ t. This shows that for three reasons
rebutting attack is not symmetric: the rebuttal can have a strict top rule, rebutting can be
contrary-rebutting and rebutting can be launched on a subargument. However, the present
example also shows that in the latter case, if the rebutting attack has a defeasible top rule
and is not of the contrary-rebutting kind, the directly rebutted subargument in turn rebuts
its attacker.

The final way of attack is an attack on a (non-axiom) premise.

Definition 3.16: [undermining attack] ArgumentA underminesB (onϕ) iff Conc(A) ∈
ϕ for someϕ ∈ Prem(B) \ Kn. In such a case argumentA contrary-underminesB iff
Conc(A) is a contrary ofϕ or if ϕ ∈ Ka.

Example 3.17 In Example 3.7 argumentA8 can be undermined with an argument that
has conclusionp, r or u. If that attacker has a defeasible top rule and, say, a conclusionp
and does not contrary-undermineA8, thenp as an argument in turn rebuts the attacker.

The following example (based on Example 4 of Caminada and Amgoud 2007) illus-
trates the interplay between strict and defeasible rules inrebutting attack.

Example 3.18

A1: WearsRing A2: A1 ⇒ Married A3: A2 → ¬Bachelor

B1: Partyanimal B2: B1 ⇒ Bachelor B3: B2 → ¬Married

A3 rebutsB3 on its subargumentB2 whileB3 rebutsA3 on its subargumentA2. Note that
A2 does not rebutB3, sinceB3 applies a strict rule; likewise forB2 andA3.

3.3.2. Defeat

Now that we know how arguments can be attacked, the argument ordering can be used
to define which attacks result in defeat. For undercutting attack no preferences will be
needed to make it result in defeat, since otherwise a weaker undercutter and its stronger
target might be in the same extension. This would be strange since then the extension
contains an argument that applies an inference rule of whichanother argument in the
same extension says that it should not be applied.1. The same holds for the other two ways
of attack as far as they involve contraries (i.e., non-symmetric conflict relations between
formulas). The reason for this is that otherwise if a rebutting or undermining attacker is
weaker than its target, both may be in the same extension. Forthe remaining forms of
attack the argument ordering will be used to determine whether they result in defeat.

1Modgil (2009) argues that in some contexts such extensions make sense. It seems that the formal results in Section 6
below on rationality postulates also hold for undercuttingdefeat with preferences, but this should be formally verified.
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Definition 3.19: [Successful rebuttal] ArgumentA successfully rebutsargumentB if A
rebutsB onB′ and eitherA contrary-rebutsB′ orA 6≺ B′.

This definition determines whether rebutting attack is successful by comparing the con-
flicting arguments at the points where they conflict. Thus in Example 3.18 the conflict
betweenA3 andB3 is resolved by comparingA3 with B2 and comparingB3 with A2.
Now if B2 ≺ A3 (for example, since the married-rule is given priority overthe bachelor-
rule) thenA3 successfully rebutsB2 andB3 while B3 does not successfully rebutA2 or
A3. If, by contrast,A2 6≺ B3 andB2 6≺ A3 then bothA3 andB3 successfully rebut each
other (whileA3 still successfully rebutsB2 and not vice versa, and likewise forB3 and
A2). Note also that ifA3 is deleted from the example, then ifB3 ≺ A2, no argument in
the example is defeated. This may at first sight seem counterintuitive but this is due to the
fact that the example violates closure ofRs under transposition (cf. Section 5 below).

As noted by Caminada and Amgoud (2007), Example 3.18 also illustrates why Defini-
tions 3.14 and 3.19 should not allow that a defeasible argument with a strict top rule can
be (successfully) rebutted on its final conclusion. The reasonis that otherwise if all defea-
sible rules in the example are of equal preference, the set{A1, A2, B1, B2} is admissible,
which violates the rationality postulate of indirect consistency (see Section 6 below).

Definition 3.20: [Successful undermining] ArgumentA successfully underminesB if
A underminesB onϕ and eitherA contrary-underminesB orA 6≺ ϕ.

This definition exploits that an argument premise is also definedto be a subargument.
In Example 3.7 any argument forr successfully underminesA8 since it contrary-

undermines it sincer ∈ Ka. The same holds for any argument for a contrary ofp or
u while for arguments for contradictories ofp or u this depends on the argument ordering
(which may in turn depend on the ordering≤′ onK; see Definitions 6.14 and 6.17 below).

It remains to be discussed how the framework should deal witharguments that have
issue premises. As explained above, the idea is that arguments with issue premises are
always unacceptable. There are various ways to formalise this idea. One would be to let
a special designated argument, or perhaps all strict-and-firm arguments, defeat any argu-
ment with an issue premise (as in Modgil 2009, Prakken and Sartor 1997). Here another
solution is adopted: an argument can defeat another only if it has no issue premises. Then
in Definition 2.1 only setsB with no issue premises will be considered, so that no argu-
ment with issue premises is in any extension.

The three defeat relations can now be combined in an overall definition of ‘defeat’:

Definition 3.21: [Defeat] ArgumentA defeatsargumentB iff no premise ofA is an
issue andA undercuts or successfully rebuts or successfully underminesB. ArgumentA
strictly defeatsargumentB if A defeatsB andB does not defeatA.

In the literature other combinations of these kinds of attack have been considered. For
example, Prakken and Sartor (1997) (who have no undermining) give precedence to un-
dercutting defeat over rebutting defeat, so that ifA successfully undercutsB while B
successfully rebutsA, neverthelessA strictly defeatsB. It remains to be investigated how
crucial the present definition is for the results below.

Finally, argumentation theories can be linked to Dung-styleargumentation frameworks.

Definition 3.22: [Argumentation framework] Anabstract argumentation framework
(AF ) corresponding to an argumentation theoryAT is a pair<A, Def> such that:

• A is the set of arguments on the basis ofAT as defined by Definition 3.6,
• Def is the relation onA given by Definition 3.21.

To leave arguments with issue premises out of any extension,Definition 2.1 should now
start with “LetB be a conflict-free set of arguments that have no issue premises...”.
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It is now also possible to define a consequence notion for well-formed formulas. Several
definitions are possible. One is:

Definition 3.23: [Acceptability of conclusions] For any semanticsS and for any argu-
mentation theoryAT and formulaϕ ∈ LAT :

(1) ϕ is skeptically S-acceptablein AT if and only if allS-extensions ofAT contain
an argument with conclusionϕ;

(2) ϕ is credulously S-acceptablein AT if and only if there exists anS-extension of
AT that contains an argument with conclusionϕ.

An alternative definition of skeptical acceptability is

(1) ϕ is skeptically S-acceptablein AT if and only if there exists an argument with
conclusionϕ that is contained in allS-extensions ofAT .

While the original definition allows that different extensions contain different arguments
for a skeptical conclusion, the alternative definition requires that there is one argument for
it that is in all extensions.

4. Using the framework: domain-specific vs. general inference rules

The framework defined in the previous section can be used in two ways, depending on
whether the inference rules are domain-specific or not. The inference rules of argumen-
tation systems are not part of the logical languageL but are metalevel constructs. The
usual practice in standard logic is that inference rules express general patterns of reason-
ing, such as modus ponens, universal instantiation and so on. Yet Caminada and Amgoud
(2007) use the inference rules to represent domain knowledge, in line with a long tradition
in nonmonotonic logic of using domain-specific inference rules (e.g. Garcia and Simari
2004, Loui 1987, Nute 1994, Reiter 1980). The difference between both approaches is il-
lustrated with the following example. Consider the information that all Frisians are Dutch,
that the Dutch are usually tall and that Wiebe is Frisian. Withdomain-specific inference
rules this can in a propositional language be represented asfollows:

Rs = {Frisian → Dutch}
Rd = {Dutch ⇒ Tall}
Kp = {Frisian}

The argument that Wiebe is tall then has the form as displayed on the left in Figure 2.
With general inference rules the two rules must instead be represented in the object

languageL. The first one can be represented with the material implicationbut for the
second one a connective for defeasible conditionals must beadded toL and a defeasible
modus-ponens inference rule must be added for this connective. For example:

Rs = {ϕ,ϕ ⊃ ψ → ψ (for all ϕ,ψ ∈ L), . . .}
Rd = {ϕ,ϕ ; ψ ⇒ ψ (for all ϕ,ψ ∈ L), . . .}
Kp = {Frisian ⊃ Dutch,Dutch ; Tall ,Frisian}

Then the argument that Wiebe is tall has the form as displayed on the right in Figure 2.
Although the present system can be used both ways, both Vreeswijk and Pollock in-

tended their inference rules to express general patterns ofreasoning, which is much more
in line with the role of inference rules in standard logic. Indeed, an important part of
John Pollock’s work was the study of general patterns of (epistemic) defeasible reason-
ing, which he called prima facie reasons. He formalised prima facie reasons for reasoning
patterns involving perception, memory, induction, temporal persistence and the statistical
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Figure 2. Domain-specific vs. general inference rules

syllogism, as well as undercutters for these reasons. The ASPICframework allows for
such general use of inference rules, by expressing the rulesthrough schemes (in the log-
ical sense, with metavariables ranging overL). When used thus, the framework becomes
a general framework for argumentation with structured arguments. It thus is also suitable
for modelling reasoning with argument schemes, which currently is an important topic
in the computational study of argument (cf. Walton et al. 2008). Argument schemes are
stereotypical non-deductive patterns of reasoning, consisting of a set of premises and a
conclusion that is presumed to follow from them. Uses of argument schemes are eval-
uated in terms of critical questions specific to the scheme. Anexample of an epistemic
argument scheme is the scheme from expert opinion (Walton etal. 2008, p. 310):

E is an expert in domainD
E asserts thatP is true
P is withinD
P is true

This scheme has six critical questions:

1. How credible isE as an expert source?
2. IsE an expert in domainD?
3. What didE assert that impliesP?
4. IsE personally reliable as a source?
5. IsP consistent with what other experts assert?
6. IsE’s assertion ofP based on evidence?

A natural way to formalise reasoning with argument schemes is to regard them as de-
feasible inference rules and to regard critical questions as pointers to counterarguments
(this approach was earlier defended by Bex et al. 2003 and Verheij 2003). More precisely,
the three kinds of attack on arguments correspond to three kinds of critical questions of
argument schemes. Some critical questions challenge an argument’s premise and there-
fore point to undermining attacks, others point to undercutting attacks, while again other
questions point to rebutting attacks. In the scheme from expert opinion questions (2) and
(3) point to underminers (of, respectively, the first and second premise), questions (4),
(1) and (6) point to undercutters (the exceptions that the expert is biased or incredible
for other reasons and that he makes scientifically unfounded statements) while question
(5) points to rebutting applications of the expert opinion scheme. Thus we also see that
Pollock’s prima facie reasons are examples of epistemic argument schemes and that his
undercutters are negative answers to one kind of critical question.

Now one benefit of having undermining attack in addition to rebutting and undercutting
attack can be discussed in more detail: if the inference rules are supposed to be domain-
independent, then representing facts with non-conditional inference rules (as done by
Caminada and Amgoud 2007) does not make sense.
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5. Transposition and contraposition

Before it can be studied to what extent the present frameworksatisfies the rationality
postulates of Caminada and Amgoud (2007), first some technicalities concerning strict
inference rules must be discussed. To start with, Caminada and Amgoud define the notions
of a transposition of a strict rule and closure of sets of strict rules under transposition.

Definition 5.1: [Transposition] A strict rules is atranspositionof ϕ1, . . ., ϕn → ψ iff s
= ϕ1, . . ., ϕi−1, −ψ, ϕi+1, . . ., ϕn → −ϕi for some 1≤ i ≤ n.

Definition 5.2: [Transposition operator] LetRs be a set of strict rules.Cltp(Rs) is the
smallest set such that:

• Rs ⊆ Cltp(Rs), and
• If s ∈ Cltp(Rs) andt is a transposition ofs thent ∈ Cltp(Rs).

We say thatRs is closed under transpositioniff Cltp(Rs) = Rs.

Now the subclass of argumentation systems closed under transposition can be defined.

Definition 5.3: [Closure under transposition] An argumentation system(L,−,R,≤) is
closed under transpositionif Rs = Cltp(Rs). An argumentation theory is closed under
transposition if its argumentation system is.

Caminada and Amgoud (2007) also define the closure of a set of formulas under appli-
cation of strict rules.

Definition 5.4: [Closure of a set of formulas] LetP ⊆ L. Theclosureof P under the
setRs of strict rules, denotedClRs(P), is the smallest set such that:

• P ⊆ ClRs(P).
• if ϕ1, . . . , ϕn → ψ ∈ Rs andϕ1, . . . , ϕn ∈ ClRs(P) thenψ ∈ ClRs(P).

If P = ClRs(P), thenP is said to beclosed.

It is also relevant whether strict inference satisfies contraposition.

Definition 5.5: [Closure under contraposition] An argumentation system isclosed under
contrapositionif for all S ⊆ L, all s ∈ S and allϕ it holds that ifS ⊢ ϕ thenS \ {s} ∪
{−ϕ} ⊢ −s. An argumentation theory is closed under contraposition ifits argumentation
system is.

Closure under transposition does not imply closure under contraposition, as shown by
the following counterexample (in all examples below sets which are empty are not listed).

Example 5.6 LetRs = Cltp({p→ q; p→ r; p, r → s}). Then{p} ⊢ s but{−s} 6⊢ −p.

In general it neither holds that closure under contraposition implies closure under trans-
position, as shown by the following counterexample.

Example 5.7 Let Rs = {p→ q; ¬q → r; r → ¬p; ¬r → q; p→ ¬r}. ThenRs is not
closed under transposition, since it does not include¬q → ¬p. Still we have

{p} ⊢ q and{¬q} ⊢ ¬p {p} ⊢ ¬r and{r} ⊢ ¬p
{¬r} ⊢ q and{¬q} ⊢ r {¬q} ⊢ r and{¬r} ⊢ q

SoRs satisfies contraposition.

However, contraposition does imply transposition in the following special case.

Proposition 5.8: Consider any argumentation theory withL closed under classical
negation and− defined correspondingly. Then ifRs consists of all valid propositional
inferences thenRs is closed under contraposition and transposition.
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Note that the proposition does not hold if the condition ‘Rs consists of all valid proposi-
tional inferences’ is changed to ‘⊢ corresponds to propositional logic’. A counterexample
is any argumentation theory with a sound and complete axiomatisation of propositional
logic with modus ponens as the only inference rule.

6. Rationality postulates

Dung’s semantics can be seen as rationality constraints on evaluating arguments in ab-
stract argumentation frameworks. The refinement of his abstract approach with structured
arguments naturally leads to the question whether this additional structure gives rise to ad-
ditional rationality constraints. Caminada and Amgoud (2007) gave a positive answer to
this question by proposing a number of ‘rationality postulates’ for what they called ‘rule-
based argumentation’. Four of their postulates formulate constraints on any extension of
an argumentation framework corresponding to an argumentation theory:1

• Closure under subarguments:for every argument in an extension also all its subar-
guments are in the extension.

• Closure under strict rules: the set of conclusions of all arguments in an extension is
closed under strict-rule application.

• Direct consistency:the set of conclusions of all arguments in an extension is consistent.
• Indirect consistency: the closure of the set of conclusions of all arguments in an ex-

tension under strict-rule application is consistent.

Caminada and Amgoud (2007) proved for their version of the ASPIC framework that the
first two postulates are always satisfied while the two consistency postulates are satisfied
if the set of strict rules is consistent and closed under transposition. However, their version
of the ASPIC framework is considerably simpler than the present one. Firstly, it has no
knowledge base and facts must be represented as inference rules with empty antecedents;
because of this, arguments cannot be undermined. Furthermore, it assumes just a basic
ordering on arguments, according to which strict argumentsare strictly preferred over
defeasible ones and nothing else. Finally, it has a special case of the present− function
fromL to 2L, corresponding to classical negation. The task now is to investigate to which
extent the results of Caminada and Amgoud (2007) can be generalised to the present case.

The postulates of closure under subarguments and strict-rule application still hold un-
conditionally for the present framework. (Here that a givensemantics is subsumed by
complete semantics means that any of its extensions also is acomplete extension).

Proposition 6.1: Let<A, Def> be an argumentation framework as defined in Defi-
nition 3.22 andE any of its extensions under a given semantics subsumed by complete
semantics. Then for allA ∈ E: if A′ ∈ Sub(A) thenA′ ∈ E.

Proposition 6.2: Let<A, Def> be an argumentation framework corresponding to an
argumentation theory, andE any of its extensions under a given semantics subsumed by
complete semantics. Then{Conc(A)|A ∈ E} = ClRs({Conc(A)|A ∈ E}).

As for the two consistency postulates, Caminada and Amgoud’s results do not gener-
alise unconditionally. Consider the following example.

Example 6.3 LetRd = {⇒ p; ⇒ q} andRs = {q → ¬p; p→ ¬q}. Then we have

A: ⇒ p

B′: ⇒ q B: B′ → ¬p

1Caminada and Amgoud (2007) propose similar postulates for the intersection of extensions but since their results on these
postulates directly follow from the ones for individual extensions, they will below be ignored.
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Now assume thatA ≻ B, soB does not defeatA. However,A neither defeatsB, since
B’s last inference is strict. At first sight, it would seem thatA can be extended with the
transposition ofq → ¬p (i.e. withp→ ¬q) to an argument

A+: A→ ¬q

that rebutsB’s subargumentB′ for q. Then since by condition (2) of Definition 3.10 a
strict continuation of an argument cannot make it weaker,B′ ≺ A+ soA+ defeatsB′.
Moreover, by the same conditions any argument defeatsA if and only if it defeatsA+ so
if A is in an extensionE then by Proposition 6.2A+ will be in E and thereforeB will
not be inE since extensions are conflict-free.

However, this line of reasoning does not hold without a further assumption on the argu-
ment ordering. Consider a more complex variant of Example 6.3.

Example 6.4 Let Rd = {⇒ p; ⇒ q; ⇒ r} andRs = {q, r → ¬p; q, p → ¬r; p, r →
¬q}. Then we have

A: ⇒ p

B′: ⇒ q B′′: ⇒ r B: B′, B′′ → ¬p

The problem is thatA cannot be extended with any transposition ofq, r → ¬p to obtain
A+ unless it is combined with eitherB′ or B′′ but thenA is extended with a defeasible
rule, soA+ might be weaker thanA. This problem holds wheneverB has more than one
maximal defeasible or plausible subargument.

However, assuming contraposition or transposition, direct consistency can still be
proven if it can also be assumed that there is a way to extendA with all but one of
B’s maximal defeasible subarguments that is not weaker than the remaining one. In our
example this means that eitherA extended withB′ is not weaker thanB′′ orA extended
with B′′ is not weaker thanB′. Intuitively this assumption seems acceptable given thatA

is stronger than bothB′ andB′′. It is therefore to be expected that it will be satisfied by
many reasonable argument orderings. Since similar situations can arise with undermining
attack, the notion of a maximal fallible subargument is needed.

Definition 6.5: [Maximal fallible subarguments] For any argumentA, an argumentA′ ∈
Sub(A) is amaximal fallible subargumentof A if

(1) A′’s final inference is defeasible orA′ is a non-axiom premise; and
(2) there is noA′′ ∈ Sub(A) such thatA′′ 6= A andA′ ∈ Sub(A′′) andA′′ satisfies

condition (1).

The set of maximal fallible subarguments of an argumentA will be denoted byM(A).

Corollary 6.6 : For any argumentA it holds thatConc(M(A)) ⊢ Conc(A).

Definition 6.7: [Reasonable argument orderings] Argument ordering� is reasonableif
it satisfies the following condition. LetA andB be arguments with contradictory conclu-
sions such thatB ≺ A. Then there exists aBi ∈ M(B) and anA+ with A ∈ Sub(A+)
such thatConc(A+) = −Conc(Bi) andA+ 6≺ Bi.

A final problem to deal with is that in Example 6.3,Conc(A) could be a contrary of
Conc(B); the problem is that the solution with closure under contraposition and transpo-
sition does not apply to this case. Therefore the focus must berestricted to argumentation
theories that respect the intended use of assumptions and contraries.

Definition 6.8: An argumentation theory iswell-formedif:

(1) no consequent of a defeasible rule is a contrary of the consequent of a strict rule;
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(2) if ϕ ∈ Ka andϕ is a contrary ofψ, thenψ 6∈ Kn∪Kp andψ is not the conclusion
of a rule inR.

Condition (2) in effect says that assumptions can only be contraries of other assump-
tions. An example of an argumentation theory that is not well-formed is

Rs = {p→ q}, Rd = {r ⇒ s, t⇒ u}, Kp = {p, r}, Ka = {v}

and such thats is a contrary ofq andv is a contrary ofu. Then condition (1) of Defini-
tion 6.8 is violated since we have argumentsA: p→ q andB: r ⇒ s. Moreover, condition
(2) is violated sincev ∈ Ka andt⇒ u ∈ Rd.

Now it can be proven that under certain conditions an argumentation theory satisfies the
postulate of direct consistency.

Theorem 6.9: Let<A, Def> be an argumentation framework corresponding to a well-
formed argumentation theory that is closed under contraposition or transposition and
has a reasonable argument ordering and a consistentClRs(Kn), and letE be any of
its extensions under a given semantics subsumed by completesemantics. Then the set
{Conc(A) | A ∈ E} is consistent.

Caminada and Amgoud (2007) also prove that their system satisfies the postulate of
indirect consistency. This follows from their Proposition 7,which says that if an argu-
mentation theory satisfies closure and direct consistency, it also satisfies indirect consis-
tency. Since in the present case the conditions of the proof ofdirect consistency had to be
strengthened, the same holds for indirect consistency.

Theorem 6.10: Let <A, Def> be an argumentation framework corresponding to a
well-formed argumentation theory that is closed under contraposition or transposition
and has a reasonable argument ordering and a consistentClRs(Kn), and letE be any
of its extensions under a given semantics subsumed by complete semantics. Then the set
ClRs({Conc(A) | A ∈ E}) is consistent.

Corollary 6.11: If the conditions of Theorem 6.10 are satisfied, then for any extension
E under a given semantics subsumed by complete semantics the set {ϕ | ϕ is a premise
of an argument inE} is consistent.

Concluding this section, two intuitively plausible argument orderings will be shown
to be reasonable, namely, the weakest-link and last-link orderings from Amgoud et al.
(2006). The versions below are slightly revised to make the principles arguably more in-
tuitive. Both orderings define a strict partial order≺s on sets in terms of a partial preorder
≤e on their elements, as follows:S1 ≺s S2 iff there exists ane1 ∈ S1 such that for all
e2 ∈ S2 it holds thate1 <e e2.

The last-link principle prefers an argumentA over another argumentB if the last
defeasible rules used inB are less preferred than the last defeasible rules inA or, in case
both arguments are strict, if the premises ofB are less preferred than the premises ofA.
The concept of ‘last defeasible rules’ is defined as follows andis essentially the same as
Prakken and Sartor’s (1997) notion of a ‘relevant set’.

Definition 6.12: [Last defeasible rules] LetA be an argument.

• LastDefRules(A) = ∅ iff DefRules(A) = ∅.
• If A = A1, . . ., An ⇒ φ, thenLastDefRules(A) = {Conc(A1), . . ., Conc(An) ⇒ φ},

otherwiseLastDefRules(A) = LastDefRules(A1) ∪ . . . ∪ LastDefRules(An).

Corollary 6.13: LastDefRules(A) = {TopRule(A′) | A′ ∈M(A)}.

An example with more than one last defeasible rule is withK = {p; q} andRd = {p⇒
r; q ⇒ s}. Then for argumentA for r∧swe haveLastDefRules(A) = {p⇒ r; q ⇒ s}.
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The above definition is now used to compare pairs of arguments asfollows:

Definition 6.14: [Last link principle] LetA andB be two arguments. ThenA ≺ B iff
either

(1) condition (1) of Definition 3.10 holds; or
(2) LastDefRules(A) ≺s LastDefRules(B); or
(3) LastDefRules(A) andLastDefRules(B) are empty andPrem(A) ≺s Prem(B).

(Amgoud et al. 2006 do not include the second condition so if both arguments are strict
the ordering on the knowledge base is ignored.) This definitionin effect compares sets on
their weakest elements.

Proposition 6.15: The last-link argument ordering is reasonable.

Consider the following example (taken from Prakken 1997) on whether people misbe-
having in a university library may be denied access to the library.

Example 6.16 LetKp = {Snores; Professor}, Rd =

{Snores ⇒r1
Misbehaves;

Misbehaves ⇒r2
AccessDenied ;

Professor ⇒r3
¬AccessDenied}.

Assume thatSnores <′ Professor andr1 < r2, r1 < r3, r3 < r2, and consider the
following arguments.

A1: Snores A2: A1 ⇒ Misbehaves A3: A2 ⇒ AccessDenied

B1: Professor B2: B1 ⇒ ¬AccessDenied

To resolve the conflict betweenA3 and B2, the rule sets to be compared are
LastDefRules(A3) = {r2} andLastDefRules(B2) = {r3}. Sincer3 < r2 we have
thatB2 ≺s A3 soA3 strictly defeatsB2.

Theweakest-link principle considers not the last but all uncertain elements in an ar-
gument. It prefers an argumentA over an argumentB if A is preferred toB on both their
premises and their defeasible rules.

Definition 6.17: [Weakest link principle] LetA andB be two arguments. ThenA ≺ B

iff either condition (1) of Definition 3.10 holds; or

(1) Prem(A) ≺s Prem(B); and
(2) If DefRules(B) 6= ∅ thenDefRules(A) ≺s DefRules(B).

(Amgoud et al. 2006 do not have the condition of (2), so that with two strict arguments
neither of them can be preferred.)

Proposition 6.18: The weakest-link argument ordering is reasonable.

Example 6.19 Consider again Example 6.16. With the weakest-link principle the out-
come is different. To resolve the conflict betweenA3 andB2, the rule sets to be compared
are nowDefRules(A3) = {r1, r2} andDefRules(B2) = {r3}. Sincer1 < r3 we have
that DefRules(A3) ≺s DefRules(B2). Moreover, sinceSnores <′ Professor we also
have thatPrem(A3) ≺s Prem(B2). HenceB2 now strictly defeatsA3.

Example 6.20 We finally return to Example 3.18. Let

r1 = WearsRing ⇒ Married

r2 = PartyAnimal ⇒ Bachelor

Note that since both arguments apply just one defeasible rule and no premise is attacked,
the weakest- and last-link ordering produce the same result. Now if r1 < r2 we have
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thatA3 strictly defeatsB3 by successfully rebutting it onB2, while if both r1 6< r2 and
r2 6< r1 thenA3 andB3 defeat each other sinceA3 successfully rebutsB3 onB2 while
B3 successfully rebutsA3 onA2.

7. Self-defeat

As discussed by Pollock (1994) and Caminada and Amgoud (2007), self-defeating argu-
ments can cause problems if argumentation systems are not carefully defined, particularly
if they include standard propositional logic. In the present framework two types of self-
defeating arguments are possible: serial self-defeat occurs when an argument defeats one
if its earlier steps, while parallel self-defeat occurs when the contradictory conclusions of
two or more arguments are taken as the premises for⊥. Pollock (1994) gives an example
of serial self-defeat of the following form:

Example 7.1 LetRd = {p⇒ q}, Rs = { q → ¬A2} andK = {p, q}. Then we have

A1: p A2: A1 ⇒ q A3: A2 → ¬A2

(Readp as “witness John says that he is unreliable” andq as “witness John is unreliable”).
ArgumentA3 is self-defeating since it undercuts itself onA2. This example is arguably
handled properly by preferred and grounded semantics, who both haveE = {A1} as the
only extension.

One of Pollock’ (1994) examples of parallel self-defeat has the following form.

Example 7.2 Let Rd = {p ⇒ q; r ⇒ ¬q; t ⇒ s} andK = {p, r, t} while Rs contains
all propositionally valid inferences. Then:

A1: p A2: A1 ⇒ q

B1: r B2: B1 ⇒ ¬q
C1: A2, B2 → ⊥ C2: C1 → ¬s
D1: t D2: D1 ⇒ s

Here a problem arises sinces can be any formula, so any defeasible argument unrelated to
A2 orB2, such asD2, can, depending on the rule priorities, be rebutted byC2. Clearly, this
is extremely harmful, since the existence of just a single case of mutual rebutting defeat,
which is very common, could trivialise the system. In fact, of the semantics defined by
Dung (1995) this is only a problem for grounded semantics. Since all preferred/stable
extensions contain eitherA2 orB2, argumentC2 is not in any of these extensions soD2

is. However, if neither ofA2 andB2 strictly defeats the other, then neither of them is in
the grounded extension so that extension does not defendD2 againstC2 and therefore
does not containD2.

Pollock (1994) also discusses the following variant of this example (with the same
argumentation theory):

A1: p A2: A1 ⇒ q A3: A2 → q ∨ ¬s
B1: r B2: B1 ⇒ ¬q
C1: A2, B2 → ¬s
D1: t D2: D1 ⇒ s

Again with grounded semantics the problem is thats can be any formula, so any defeasible
argument unrelated toA2 orB2 can be rebutted byC1.

According to Caminada (personal communication) the only way to solve this problem
is to make parallel self-defeat impossible. One way to implement this solution is to dis-
allow arguments with a contradictory set of sub-conclusions. However, this affects the
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proof of Theorems 6.9 and 6.10. The reason is that for such systems the argumentA+ that
according to Lemma 10.1 can be constructed sometimes has to have contradictory sub-
conclusions, as the following example (with a system closedunder transposition) shows.

Example 7.3 Let p ∈ Kn, q ∈ Ka andRs = Cltp({p→ t; q → r; q → s; r, s→ ¬t}).

A1: p A2: A1 → t

B1: q B2: B1 → r B3: B1 → s B4: B2, B3 → ¬t

Now if A2 is to be extended to an argumentA+ that underminesB4, thenB1 must be
included inA+.

An similar example for systems closed under contrapositionis:

Example 7.4 LetKp = {p, q,¬p,¬q} and letRs consist of all valid propositional infer-
ences. Then

A1: p A1: q A3: A1, A2 → p ∧ q
B1: ¬p B2: ¬q B3: B1, B2 → ¬(p ∧ q)

Note thatM(B3) = Prem(B3). Now any addition of a premise ofB3 toPrem(A3) makes
Prem(A3) inconsistent.

Since these problems only arise in particular argumentationsystems and with particular
semantics, no general solution will be pursued here; instead such solutions are left for fu-
ture research on instantiations of the framework. Note alsothat Examples 7.3 and 7.4 only
contain strict rules, so that the problem may also arise in assumption-based frameworks,
which will in the next section be proven to be a special case ofthe ASPIC framework.

8. The relation with assumption-based argumentation

After having presented his fully abstract approach to argumentation, Dung joined Kowal-
ski, Toni and others in their development of a more concrete version of his approach
(e.g. Bondarenko et al. 1997, Dung et al. 2006, 2007). In thisapproach arguments essen-
tially are sets of formulas called “assumptions”, from which conclusions can be drawn
with strict inference rules. Arguments can be attacked witharguments that conclude to
the “contrary” of one of their assumptions. In fact, the extensions defined by the various
semantics of Bondarenko et al. (1997) are not sets of arguments but sets of assumptions.
However, Dung et al. (2007) showed that an equivalent fully argument-based formulation
can be given.

In this section it will be shown that assumption-based argumentation (ABA) is a spe-
cial case of the present framework with only strict inference rules, only assumption-type
premises and no preferences. The proof will be given for the argument-based version of
Dung et al. (2007) and carries over to Bondarenko et al. (1997) by the equivalence result
of Dung et al. (2007).

First the main definitions of ABA are recalled (in the formulation of Dung et al. 2007).

Definition 8.1: (Def. 2.3 of Dung et al. 2007.) Adeductive systemis a pair(L,R) where

• L is a formal language consisting of countably many sentences, and
• R is a countable set of inference rules of the formα1, . . . , αn → α.1 α ∈ L is called

the conclusionof the inference rule,α1, . . . , αn ∈ L are called thepremisesof the
inference rule andn ≥ 0.

1In (Dung et al. 2007) the arrows are from right to left.
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Definition 8.2: (Def. 2.5 of Dung et al. 2007.) Anassumption-based argumentation
framework(ABF ) is a tuple(L,R,A,−) where

• (L,R) is a deductive system.
• A ∈ L,A 6= ∅. A is the set ofcandidate assumptions.
• If α ∈ A, then there is no inference rule of the formα1, . . . , αn → α ∈ R.
• − is a total mapping fromA into L. α is thecontraryof α.

The third condition amounts to a restriction to so-called flatABFs. This restriction is
not entirely innocent, since in debates it may occur that someone first assumes a premise
and, after it is defeated, constructs an argument for it, in an attempt to rebut the defeater.
To make Dung et al.’s analysis apply to all stages of such a debate, assumptions should be
deleted fromA as soon as they are supported with an argument.

Since the notion of an argument is central to the present concerns, the informal expla-
nation of Dung et al. (2007, p. 646) will be quoted in (almost)full.

Deductions can be understood as proof trees: the root of the tree is labelled by the conclusion
of the deduction and the leaves are labelled by the premises supporting the deduction. For
every non-terminal node in the tree, there is an inference rule whose conclusion matches
the sentence labelling the node, and the children of the nodeare labelled by the premises
of the inference rule. (..) we define deductions as sequencesof frontiersS1, . . . , Sm of the
proof trees. Each frontier is represented by a multi-set, inwhich the same sentence can have
several occurrences, if it is generated more than once as a premise of different inference
steps. In order to generate proof trees, a selection strategy is needed to identify which node
to expand next. We formalise this selection strategy by means of a selection function, as in
the formalisation of SLD resolution. A selection function,in this context, takes as input a
sequence of multi-setsSi and returns as output a sentence occurrence inSi. We restrict the
selection function so that if a sentence occurrence is selected in a multi-set in a sequence
then it will not be selected again in any later multi-set in that sequence.

Essentially, a backward deduction thus presents one particular order in which an argu-
ment in the sense of Definition 3.6 can be constructed by reasoning backwards from the
conclusion to the premises.

Definition 8.3: (Def. 2.4 of Dung et al. 2007.) Given a selection functionf , a (back-
ward) deductionof a conclusionα based on (or supported by) a set of premisesP is a
sequence of multi-setsS1, . . . , Sm, whereS1 = {α}, Sm = P , and for every1 ≤ i < m,
whereσ is the sentence occurrence inSi selected byf :

(1) If σ is not inP thenSi+1 = Si − {σ} ∪ S for some inference rule of the form
S → σ ∈ R.

(2) If σ is in P thenSi+1 = Si.

EachSi is a step in the deduction.

Now an assumption-based argument is defined as follows.

Definition 8.4: (Def. 2.6 of Dung et al. 2007.) Anargumentfor a conclusion on the
basis of anABF is a deduction of that conclusion whose premises are all assumptions (in
A).

As for notation, the existence of an argument for a conclusion α supported by a set of
assumptionsA is denoted byA ⊢ α, or byA ⊢ABF α if it has to be distinguished from
the existence of a strict argument according to Definition 3.6with the same premises and
conclusion; the latter will below be denoted byA ⊢AT α.

Finally, Dung et al.’s notion of argument attack is defined as follows.

Definition 8.5: (Def. 2.7 of Dung et al. 2007.)

• An argumentA ⊢ α attacks an argumentB ⊢ β if and only if A ⊢ α attacks an
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assumption inB;
• an argumentA ⊢ α attacks an assumptionβ if and only if α is the contraryβ of β.

The argumentation theory corresponding to an assumption-based framework is now
defined as follows.

Definition 8.6: Given an assumption-based frameworkABF =
(LABF ,RABF ,A,

−

ABF ), the corresponding argumentation theoryATABF = (AS ,KB),
whereAS = (LAT ,

−

AT ,RAT ,≤) andKB = (K,≤′), is defined as follows:

• LAT = LABF

• ϕ ∈ ψAT iff ϕ = ψABF

• RAT = Rs = RABF

• Kn = Kp = Ki = ∅
• Ka = A
• ≤=≤′=�= ∅

Note thatATABF is well-formed and allATABF arguments are strict and plausible.
The main task now is to prove that there is anABF -argument forα fromP if and only

if there is anATABF -argument forα with premisesP . In fact, this can only be proven for
the special case of argumentation theories that do not allowfor arguments with an infinite
number of subarguments. Technically the present frameworkallows for such arguments
even if they are noncircular. For example, anAT with Rs = {pi+1 → pi | i ≥ 1} allows
for an argument forp1 with an infinite number of subarguments (and an empty set of
premises). So far no proof has depended on finiteness of arguments. In anABF , however,
arguments are by definition finite even if the set of inference rules allows for infinite ones,
as in the just-given example.

Proposition 8.7: For all ABF such thatAT = ATABF does not allow arguments with
an infinite number of subarguments, there exists an argumentA ⊢ABF α if and only if
there exists an argumentA ⊢AT α.

From this it follows that

Proposition 8.8: For all ABF such thatAT = ATABF does not allow arguments with
an infinite number of subarguments it holds for every argument A ⊢ABF α and every
argumentA ⊢AT α thatA ⊢ABF α is defeated by an argumentB ⊢ABF β if and only if
A ⊢AT α is defeated by an argumentB ⊢AT β.

Now the main correspondence result can be proven.

Theorem 8.9: For all ABF , any semanticsS subsumed by complete semantics and any
setE:

(1) if E is anS-extension ofABF thenEAT is anS-extension ofAT , whereEAT =
{A ⊢AT α | A ⊢ABF α ∈ E};

(2) if E is an S-extension ofAT thenEABF is an S-extension ofABF , where
EABF = {A ⊢ABF α | A ⊢AT α ∈ E}.

Theorem 8.9 in fact says that there is a one-to-one correspondence between the exten-
sions of anABF and those of its correspondingAT . From this it follows that:

Corollary 8.10: For anyABF , any semanticsS subsumed by complete semantics, and
for any formulaϕ it holds thatϕ is skeptically (credulously)S-acceptable inABF if and
only ifϕ is skeptically (credulously)S-acceptable inATABF .
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9. Other related research

As was said above, the present framework is inspired by the work of Pollock (1987, 1994)
and Vreeswijk (1993, 1997). Essentially, it takes from both the idea that defeasible rea-
soning proceeds by chaining two kinds of inference rules into inference trees. The present
mathematical formulation of this idea is directly adopted from Vreeswijk (1993, 1997).
The present notions of undercutting and rebutting defeat aretaken from Pollock’s work
and then generalised to arbitrary preference relations on arguments (Pollock only has a no-
tion of probabilistic strength), and to logical languages with arbitrary contrary mappings.
They are then combined with a notion of undermining defeat.

In fact, the system of Pollock (1994) is not formalised in terms of arguments but in
terms of so-called ‘inference graphs’, in which nodes are connected either by inference
links (applications of inference rules) or by defeat links.The nodes are ‘lines of argu-
ment’, which are propositions plus an encoding of the argument lines from which they
are derived. So if a proposition is derived in more than one way, it occurs in more than
one line of argument. Such duplications cannot be avoided, since defeat relations depend
on the strength of a proposition, which in turn depends on theway in which it is derived.
Nodes are evaluated in terms of the recursive structure of the graph. Jakobovits and Ver-
meir (1999) proved that Pollock’s system can be given an equivalent formulation as an
instance of Dung’s abstract argumentation frameworks withpreferred semantics.

With Vreeswijk’s framework the relation with Dung-style semantics is still an open
issue, since it models conflict not as a relation between two individual arguments but as a
property ofsetsof arguments: a set of arguments is said to be in conflict if there exists a
strict argument from their conclusions for⊥. Vreeswijk then defines a notion of warrant
for arguments which resembles stable semantics.

Gordon et al. (2007) propose the Carneades framework ‘of argument and burden of
proof’. Carneades’ main structure is that of an argument graph, which, despite its name,
is similar to Pollock’s inference graphs. Statement nodes arelinked to each other via argu-
ment nodes, which record the inferences from one or more nodes to another. This notion
of an argument does not have the recursive structure of Definition 3.6 but instead stands
for a single inference step. As explained in Section 3.1, the premises of an argument can
be of three types: presumptions (similar to the present issues), assumptions (similar to
the present ordinary premises) and exceptions (similar to contradictories of the present
assumptions). Carneades has no distinction between strictand defeasible inference rules
and, unlike Pollock, does not express conflicts as a special type of link between statement
nodes. Instead, inferences (i.e., arguments) can be eitherpro or con a statement. Because
of this, statements occur only once in the graph. Also, attack relations are thus expressed
either as arguments pro and con the same statement or as an argument pro an exception-
type premise of another argument. Carneades thus allows forrebutting and undermining
but not for undercutting; instead, undercutters are simulated by arguments pro exceptions.
Carneades’ inference graphs are assumed to contain no cycles, which excludes the repre-
sentation of mutual attack relations through exceptions.

In Carneades the evaluation of statements in an argument graph is, as with Pollock’s
inference graphs, defined in terms of the recursive structureof the graph. Statements are
acceptable if they satisfy their ‘proof standard’. The general framework abstracts from
their nature but Gordon et al. (2007) give several examples of proof standards. The proof
standards are at the heart of Carneades’ acceptability notion, just like the notions of de-
fence and admissibility are at the heart of Dung-style semantics. None of the examples
given by Gordon et al. (2007) have a known relation with any existing Dung-style seman-
tics or the present framework, which thus is an issue for future research. Here it is also
relevant that Carneades incorporates dialogical elementssince it matters whether a state-
ment is ‘stated’, ‘questioned’, ‘accepted’ or ‘rejected’.These statuses of a statement are
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assumed to be provided by a dialogical context in which Carneades is embedded.
Verheij (2003) presents a “sentence-based” (as opposed to “argument-based”) logic for

defeasible reasoning, called DefLog. Verheij assumes a logical language with just two
connectives, a unary connective× which informally stands for ‘it is defeated that’ and
a binary connective; for expressing defeasible conditionals. He then assumes a single
inference scheme for this language, namely, modus ponens for ;. A set of sentencesT
is said tosupporta sentenceϕ if “ ϕ is in T or follows fromT by repeated application
of ;-modus ponens” (Verheij 2003, p. 327). It seems reasonable to formalise this as the
backward deductions of assumption-based argumentation orthe strict arguments of the
present framework. Moreover,T is said toattackϕ if T supports×ϕ. Verheij then con-
siders partitions(J,D) of sets of sentences∆ which he callsdialectical interpretations
and which are such thatJ (the “justified” sentences) is conflict-free and attacks every
sentence inD (the “defeated” sentences).

As already suggested by Verheij, there is a close formal relation between DefLog and
assumption-based argumentation. Firstly, dialectical interpretations are easily proven to
be equivalent to stable labellings, which are known to be equivalent to stable semantics
(first proven by Verheij 1996; see also Caminada 2006, Jakobovits and Vermeir 1999).
Furthermore, DefLog theories can be mapped onto assumption-based frameworks by let-
ting anABF contrary mapping be×ϕ = ϕ for anyϕ, by regarding any set of dialectically
interpreted sentences as the assumptionsA of anABF and by havingϕ,ϕ ; ψ → ψ,
for anyϕ andψ in DefLog’s language, as the setR of inference rules of theABF . The
result is an assumption-based framework in the sense of Definition 8.2 with stable seman-
tics. The correspondence results of Dung et al. (2007) with Bondarenko et al. (1997) then
also apply to the special case of a DefLog-styleABF so that by the above Theorem 8.9
DefLog is a special case of the present framework with only strict arguments and only
undermining defeat.

Several argumentation systems model deductive argumentation. Here arguments are
proofs according to some deductive logic with consistent premises taken from a possi-
bly inconsistent knowledge base expressed in the language of the logic (usually taken to
be standard propositional or first-order logic). In Amgoud and Cayrol (2002), which is
based on propositional logic, the structure of arguments isleft undefined, except that the
premises imply the conclusion according to propositional logic. Several notions of defeat
are then considered. One of them corresponds to the present undermining defeat, where
arguments are compared in terms of a partial preorder on the belief base from which their
premises are taken. Argument acceptability is defined according to grounded semantics.

This variant of Amgoud and Cayrol (2002) can be reconstructedas a special case of
the present framework as follows. Firstly,L is any propositional language closed under
classical negation, whereϕ = ψ if ϕ = ¬ψ or ψ = ¬ϕ. ThenRs consists of all valid
propositional inferences whileRd is empty. The knowledge base equalsKp. Finally, as
with Deflog, it seems reasonable to formalise arguments as thestrict arguments of the
present framework, although the extra constraint must be added that such arguments have
classically consistent premises. This consistency constraint makes that not all results of
this paper hold without further qualification. It is easy to verify that Propositions 5.8, 6.1
and 6.2 still hold with this constraint (for Proposition 5.8 note that in this caseS ⊢ ϕ

by definition implies that the strict argument that exists forϕ has consistent premises).
However, the proofs of Theorems 6.9 and 6.10 do not apply to this case, for similar reasons
as explained above in Section 7 with Example 7.4. It remains to be investigated whether
these theorems can be proven for this case under alternativeconditions.

Besnard and Hunter’s (2008) version of deductive argumentation is similar to that of
Amgoud and Cayrol (2002), except for a generalised notion ofundermining: an argument
is undermined by any argument of which the conclusion negates the conjunction if its
premises. It remains to be seen whether this version of undermining can be reduced to the
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present version.
Two other logics for defeasible reasoning with both (domain-specific) strict and de-

feasible inference rules are Defeasible Logic (DL), first proposed by Nute (1994), and
Defeasible Logic Programming (DeLP; e.g. Garcia and Simari 2004). In both systems the
logical language is restricted in logic-programming style. DL is not explicitly argument-
based but defines the notion of a proof tree, which interleavessupport and attack. Gover-
natori et al. (2004) investigate the relation with Dung-style semantics. One variant of DL
is proven to instantiate grounded semantics. In DeLP the onlyway to attack an argument
is on a (sub-)conclusion. DeLP’s notion of argument acceptability has no known relation
to any of the current argumentation semantics.

Prakken and Sartor (1997) presented an argument-based version of extended logic pro-
gramming, designed as an instance of Dung’s abstract argumentation frameworks with
grounded semantics. Their system comes close to being a special case of the present
framework. It has (domain-specific) strict and defeasible inference rules and allows for
rebutting and undercutting defeat. Furthermore, its notionof an argument comes close to
a ‘deduction’ version of Definition 3.6, i.e., it represents aparticular order in which an
argument can be constructed. A difference is that in Prakken and Sartor (1997) two paral-
lel subarguments do not need to be completed with an inference from their conclusion, so
that, for example (in the present notation)p, p⇒ q, r, r ⇒ s is an argument with conclu-
sionsq ands. In Prakken and Sartor (1997) this was convenient for modelling reasoning
about defeasible priorities in the system. A more substantial difference is that while the
present framework considers rebutting and undercutting attack on equal footing, Prakken
and Sartor (1997) give priority to undercutting attack, so that if A undercutsB while B
rebutsA, A strictly defeatsB. It seems that the present results do not crucially rely on
this difference, but this should be further investigated.

A final difference with the present framework is that in Prakkenand Sartor (1997) the
role of strict rules in defeat is different. As in the presentframework, only defeasible
inferences can be attacked, but an argumentA with conclusionϕ rebuts an argumentB
with conclusionϕ′ if there exists sets of strict rulesSa andSb and a formulaψ such that
(with present notation)Sa ∪ {ϕ} ⊢ ψ andSb ∪ {ϕ′} ⊢ ψ. The difference can be best
explained with Examples 3.18 and 6.20. The motivation behind the definition of Prakken
and Sartor (1997) was that intuitively the ‘real’ conflict is between the two defaults on
whether someone is a bachelor or married. This is captured by their definition of rebutting
attack, sinceA2 can be extended withA3 to contradictB2’s conclusion and vice versa.
Hence the rule priorities are applied toA2 andB2. By contrast, in the present framework
these arguments do not rebut each other since their top rulesare strict. Instead, we saw
that their conflict is decided indirectly, by comparingA3 with B2 andB3 with A2. The
present treatment of such examples can be defended by sayingthat conflicts are recognised
only when they are made explicit in an argument’s conclusion, which seems to better
respect the general nature of argumentation as providing explicit grounds for conclusions.
It remains to be investigated whether this difference affects the present results on the
rationality postulates (note that, although Prakken and Sartor 1997 do not assume that the
strict rules are closed under transposition, this assumption can be easily added).

In one respect Prakken and Sartor (1997) go beyond the present framework, namely,
in making the preference relation on the set of defeasible inference rules defeasible and
derivable within the framework. In this respect the system is a forerunner of Modgil’s
(2009) extended argumentation frameworks.

10. Conclusion

The main rhetorical aim of this paper has been to present the ASPIC framework as a
general abstract framework for rule-based argumentation.In previous publications on
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the ASPIC framework its unifying potential was underexposed because of a focus on
domain-specific inference rules instead of on general inference patterns. Here it has been
argued that ASPIC, although it can be used as a specific logic at the same level of ab-
straction as systems like DeLP, DL and Prakken and Sartor (1997), can also be used
as an abstract framework for reasoning with general inference rules, including argument
schemes. Moreover, it has been shown that by including undermining attack and gener-
alising negation to arbitrary contrary mappings, the ASPIC framework unifies rule- and
assumption-based approaches to argumentation. The latter claim has been backed by a
formal proof that assumption-based argumentation (Bondarenko et al. 1997, Dung et al.
2007) is a special case of the framework and by semi-formal explanations that the same
holds for Verheij’s (2003) DefLog and (to a large extent) Amgoud and Cayrol’s (2002)
version of deductive argumentation.

In addition, the following technical contributions have been made:

• a generalisation of the ASPIC framework to arbitrary relations of contrariness between
well-formed formulas;

• an extension of the ASPIC framework with preference information for resolving con-
flicts between arguments;

• an extension of the ASPIC framework with four types of premisesand with undermin-
ing attack;

• proof that Caminada and Amgoud’s (2007) rationality postulates still hold for the thus
generalised and extended framework, and that they hold not only for systems closed
under transposition but also for systems closed under contraposition.

The framework can be further extended and investigated in several ways. Firstly, as indi-
cated above in Section 3.3.2, several alternative ways to define the relation between the
three kinds of defeat are possible. It could be investigatedto what extent such alternatives
affect the present results. The same holds for the use of preferences to resolve undercutting
attack (also discussed in Section 3.3.2), for the constraintthat arguments have consistent
premises (cf. the discussion of deductive argumentation inSection 9) and for alternative
ways to define argument conflicts involving strict rules (cf. the discussion of Prakken and
Sartor 1997 in Section 9).

Finally, as touched upon at the end of Section 9, an important extension of the present
framework is making the preference relations that are used for resolving conflicts defeasi-
ble and derivable within the framework. This could be done along the lines of Prakken and
Sartor (1997), after which it should be investigated whetherModgil’s (2009) reconstruc-
tion of Prakken and Sartor (1997) as an instance of his extendedargumentation frame-
works can be adapted to the extended ASPIC framework.

Appendix: proofs

Proposition 5.8Consider any argumentation theory withL closed under classical nega-
tion and− defined accordingly. Then ifRs consists of all valid propositional inferences
thenRs is closed under contraposition and transposition.

Proof : Note first that ifRs consists of all valid propositional inferences, then⊢ satisfies
the deduction theorem, i.e., it satisfies

{p1, . . . , pn} ⊢ q ⇔ ⊢ (p1 ∧ . . . pn) ⊃ q

Now consider any rulep1, . . . , pn → q. Then{p1, . . . , pn} ⊢ q so by the deduction
theorem⊢ (p1∧. . . pn) ⊃ q. Then also (by propositional reasoning)⊢ (¬q∧p2∧. . . pn) ⊃
¬p1. But then by the deduction theorem{¬q, p2, . . . , pn} ⊢ ¬p1 so sinceRs contains all
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valid propositional inferences,Rs contains¬q, p2, . . . , pn → ¬p1. �

Proposition 6.1 Let <A, Def> be an argumentation framework as defined in Defini-
tion 3.22 andE any of its extensions under a given semantics subsumed by complete
semantics. Then for allA ∈ E: if A′ ∈ Sub(A) thenA′ ∈ E.

Proof : The proof is a trivial adaptation of the proof of Proposition 1 of Caminada and
Amgoud (2007), taking the possibility of undermining defeat into account. �

Proposition 6.2. Let<A, Def > be an argumentation framework corresponding to an
argumentation theory, andE any of its extensions under a given semantics subsumed by
complete semantics. Then{Conc(A)|A ∈ E} = ClRs({Conc(A)|A ∈ E}).

Proof : Caminada and Amgoud’s proof of their Proposition 8 depends onProposition 6.1,
which also holds for the present framework, and makes no assumptions on the use of
priorities. Therefore the proof also holds for the present version. �

Theorem 6.9. Let<A, Def> be an argumentation framework corresponding to a well-
formed argumentation theory that is closed under contraposition or transposition and
has a reasonable argument ordering and a consistentClRs(Kn), and letE be any of
its extensions under a given semantics subsumed by completesemantics. Then the set
{Conc(A) | A ∈ E} is consistent.

Proof : LetE be a complete extension. Suppose that{Conc(A) | A ∈ E} is inconsistent.
This means that∃A,B ∈ E,Conc(A) = Conc(B). SinceE is a complete extension,E
is conflict-free. This means thatA does not defeatB andB does not defeatA. It will be
shown that this leads to a contradiction.

First the following lemmas are proven.

Lemma 10.1: Let A be an argument andB a plausible or defeasible argument in
an argumentation theory that is closed under contraposition or transposition such that
Conc(A) andConc(B) are contradictories. ThenA can be extended to an argumentA+

that rebuts or underminesB.

Proof : Consider first systems closed under contraposition. By Corollary 6.6 it holds
that Conc(M(B)) ⊢ Conc(B) so with contraposition (which is assumed to hold) and
sinceConc(A) andConc(B) contradict each other we have for anyBi ∈ M(B) that
Conc(M(B) \ {Bi}) ∪ Conc(A) ⊢ −Conc(Bi). Then clearlyM(B) \ {Bi} andM(A)
are the maximal fallible subarguments of an argumentA+ for −Conc(Bi). Since by con-
struction ofM(B) eitherBi is a non-axiom premise or ends with a defeasible inference,
A+ either undermines or rebutsBi. But thenA also undermines or rebutsB.

For systems closed under transposition the existence of argumentsA+ andBi is proven
by straightforward generalisation of Lemma 6 of Caminada andAmgoud (2007). Then
the proof can be completed as above. �

Corollary 10.2: If the argumentation theory has a reasonable argument ordering then
if B ≺ A, thenA+ defeatsB.

Proof : (Continuing the proof of Lemma 10.1) Since� is reasonable, there exist such a
Bi andA+ such thatA+ 6≺ Bi. ThenA+ defeatsBi soA+ defeatsB. �

Now for proving Theorem 6.9 the following cases must be distinguished.

(1) A ∈ Ki. ThenA is not in any extension.
(2) A is an assumption. IfA is a contradictory ofConc(B), thenB defeatsA. If

insteadA is a contrary ofConc(B), then since the argumentation theory is well-
formed,B is also an assumption soA defeatsB. Contradiction.
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(3) A is firm and strict. IfB is also firm and strict, thenClRs(Kn) is inconsistent,
which contradicts the assumption that it is consistent. IfB is plausible or defea-
sible, thenA defeatsB by condition (1) of Definition 3.10. Contradiction.

(4) A is plausible or defeasible. IfB is firm and strict then this is case (3), since the
case thatConc(A) is a contrary ofConc(B) is then excluded by well-formedness
of the argumentation theory. IfB’s top rule is defeasible andConc(A) is a con-
trary of Conc(B) thenA defeatsB, while if Conc(A) andConc(B) contradict
each other, eitherA defeatsB orB defeatsA. If B’s top rule is strict then by the
assumption that the argumentation theory is well-formed,Conc(A) andConc(B)
contradict each other. IfB 6≺ A thenB defeatsA while otherwiseA can by
Lemma 10.1 and Corollary 10.2 be extended to an argumentA+ that defeatsB.
It is then left to prove thatA+ ∈ E. Any defeaterC ofA+ will by construction of
A+ do so by defeating an element ofM(A) orM(B) (since all inferences that are
not inM(A) or M(B) are strict and there are no new premises). However, this
defeated element is inE by Proposition 6.1, so sinceE is conflict-free,C 6∈ E.
But thenA+ ∈ E, which contradicts the fact thatE is conflict-free.

�

Theorem 6.10Let<A, Def> be an argumentation framework corresponding to a well-
formed argumentation theory that is closed under contraposition or transposition and
has a reasonable argument ordering and a consistentClRs(Kn), and letE be any of
its extensions under a given semantics subsumed by completesemantics. Then the set
ClRs({Conc(A) | A ∈ E}) is consistent.

Proof : As in Caminada and Amgoud (2007). �

Corollary 6.11 If the conditions of Theorem 6.10 are satisfied, then for any extensionE
under a given semantics subsumed by complete semantics the set {ϕ | ϕ is a premise of
an argument inE} is consistent.

Proof : letA be any argument inE andϕ any premise ofA. By definition of an argument,
ϕ is a subargument ofA so by Proposition 6.1 we have thatϕ ∈ E. Then the corollary
follows from Theorem 6.10 and the fact that subsets of consistent sets are consistent.�

Proposition 6.15The last-link argument ordering is reasonable.

Proof :

Lemma 10.3: Consider any ordering�s on sets ordered by a partial preorder≤e such
thatS1 ≺s S2 iff there exists ane1 ∈ S1 such that for alle2 ∈ S2 it holds thate1 <e e2.
Then ifS1 ≺s S2 ande1 is a non-smallest element ofS1 (w.r.t.≤e), thenS2∪{e1} 6≺s S1.

Proof : Straightforward. �

Now by Corollary 6.13 thatB ≺ A means that there exists aBi ∈M(B) with top rule
b such that for allA′ ∈ M(A) with top rulea it holds thatb < a. Choose such aBi with
minimal b (w.r.t.≤e) to formA+ as in the proof of Corollary 10.2. Then by Lemma 10.3
LastDefRules(A+) 6≺s LastDefRules(Bi). But thenA+ 6≺ Bi. �

Proposition 6.18The weakest-link argument ordering is reasonable.

Proof :
That B ≺ A now means thatPrem(B) ≺s Prem(A) and DefRules(B) ≺s

DefRules(A).
If DefRules(B) 6= ∅ then there exists aBi ∈ DefRules(B) with top ruleb such that

for all A′ ∈ DefRules(A) with top rulea it holds thatb < a. Choose such aBi with
minimalb (w.r.t.≤) in the construction ofA+ andBi in the proof of Corollary 10.2. Then
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since all new defeasible rules of the correspondingA+ are from elements ofM(B), by
Lemma 10.3DefRules(A+) 6≺s DefRules(B). But thenA+ 6≺ Bi.

If DefRules(B) = ∅ thenDefRules(A) = ∅. SincePrem(B) ≺s Prem(A) there exists
a premisep in Prem(B) such that for all premisesp′ in Prem(A) it holds thatp′ < p .
Then in the construction ofA+ andBi in the proof of Corollary 10.2, chooseBi to be an
argument containing a minimal suchp. Then since all new premises of the corresponding
A+ are fromPrem(B), by Lemma 10.3Prem(A+) 6≺s Prem(B). But thenA+ 6≺ Bi. �

Proposition 8.7For all ABF such thatAT = ATABF does not allow arguments with an
infinite number of subarguments, there exists an argumentA ⊢ABF α if and only if there
exists an argumentA ⊢AT α.

Proof :
⇒ For the only-if part, letS1, . . . , Sn be a backward deduction ofα. It will be shown

by induction on the structure of backward deductions that there exists anAT -argument
with conclusionα and premisesSn.

Note first that since all elements ofSn are inA so inKa, by clause (1) of Definition 3.6
they are all anAT -argument and their premises are all inSn.

Consider next any setSi such that all elements ofSi+1 are the conclusion of anAT -
argument with premises fromSn. Then for any elementαi of Si, if αi is also inSi+1,
then triviallyαi is the conclusion of anAT -argument with premises inSn, otherwise for
some setS = {β1, . . . , βm} ⊆ Si+1 there exists a ruleβ1, . . . , βm → αi in RABF . But
then this rule is also inRs. Let, furthermore, theAT -arguments forβ1, . . . , βm (which
exist by the induction hypothesis) beB1, . . . , Bm: then by clause (2) of Definition 3.6,
B1, . . . , Bm → αi is anAT -argument forαi with all its premises inSn.

Next it is proven that for anySi the union of all premises of allAT -arguments
for elements inSi is Sn. Note that for any pairSi, Si+1, the setSi+1 is formed by
replacing at most one elementσ in Si with a setS in Si+1. As just proven, there exists
an AT -argumentB1, . . . , Bm → αi, whereB1, . . . , Bm are theAT -arguments for all
elements inS. By clause (2) of Definition 3.6 the premises of this argument are the union
of the premises of the argumentsB1, . . . , Bn. But then no premises have been added
or deleted by creatingSi+1 from Si. Note finally, that the union of the premises of all
AT -arguments for any element inSn (which are these elements themselves) trivially
equalsSn. But then this set equalsSn for all Si.

⇐ For the if-part, supposeP ⊢AT α. A backward deduction with multisetsS1, . . . , Sn

such thatS1 = {α} andSn = P can be created as a maximal sequence such that:

(1) S1 = {α},
(2) For allSi(i ≥ 1): createSi+1 by selecting one elementσ from Si not selected

before and:
a) if σ ∈ P thenSi+1 = Si; otherwise
b) Si+1 = Si − {σ} ∪ S for someS = {Conc(B1), . . . ,Conc(Bn)} such that

there exists an argumentB ∈ Sub(A) of the formB1, . . . , Bn → σ.

It is now proven that for anySi and anyσ ∈ Si one of these two conditions is satisfied,
i.e., eitherσ ∈ P or σ is the conclusion of an argument inSub(A). The proof is with
induction on the structure ofS1, . . . , Sn. Consider firstS1 = {α}. Then ifA = α ∈
Ka, then trivially α ∈ P , otherwiseA = A1, . . . , An → α so trivially A ∈ sub(A).
Consider next anySi such that all its elements satisfy conditions (2)a and (2)b.Then if
Si+1 = Si this trivially also holds forSi+1, otherwise ifS replacesσ in Si+1 then by
the induction hypothesis this is since there exists a subargumentB ∈ Sub(A) of the form
B1, . . . , Bn → σ such thatS = {Conc(B1), . . . ,Conc(Bn)}. Then clearly for any new
elementConc(Bi) ∈ S there exists a subargument for it inSub(A), namely,Bi.
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Next, since all steps in the sequence apply an inference rulefromRs, which by Defini-
tion 8.6 is also inRABF , the sequence clearly is a backward deduction.

Finally it is proven that the sequence ends withSn = P . Let Sub∗(A) be the mul-
tiset consisting of, for allA′ ∈ Sub(A) , as many occurrences as there are inferences
in A that useA′. Note that by the assumption thatSub(A) is finite, Sub∗(A) is also
finite. Then let for anySi the setUnusedSub(Si) be the subset of all arguments in
Sub∗(A) that were not used to createSi from S1. (SoUnusedSub(S1) = Sub∗(A) and
e.g.UnusedSub(S2) = Sub∗(A) − {A}). Then note that by any application of condi-
tion (2)b this multiset loses one element. Then sinceS1, . . . , Sn is a maximal sequence
of elements satisfying conditions (1) and (2), we have thatUnusedSub(Sn) = ∅. Then
sinceP ⊆ Sub∗(A), we have thatP ⊆ Sn. Assume next for contradiction that there is
an elementσ ∈ Sn which is not inP : then, as proven above,σ can be replaced by a set
S such thatS → σ is an inference inA, soS1, . . . , Sn is not maximal. Contradiction, so
Sn = P . �

Proposition 8.8For all ABF such thatAT = ATABF does not allow arguments with
an infinite number of subarguments it holds for every argument A ⊢ABF α and every
argumentA ⊢AT α thatA ⊢ABF α is defeated by an argumentB ⊢ABF β if and only if
A ⊢AT α is defeated by an argumentB ⊢AT β.

Proof : ⇒ AssumeA ⊢ABF α andB ⊢ABF β defeatsA ⊢ABF α. Then according to
the contrariness mapping inABF we have thatβ = p for somep ∈ A. Furthermore, by
Proposition 8.7 there exists anA ⊢AT α and an argumentB ⊢AT β. Then by identity
of the contrariness mappings we also have thatβ = p for somep ∈ A according toAT .
Then sincep ∈ Ka, clearlyB ⊢AT β defeatsA ⊢AT α.
⇐ AssumeA ⊢AT α andB ⊢AT β defeatsA ⊢AT α. Then since all arguments in AT

are strict,B underminesA and according to the contrariness mapping inAT we have that
β = p for somep ∈ A. Furthermore, by Proposition 8.7 there exists anA ⊢ABF α and
an argumentB ⊢ABF β. Then by identity of the contrariness mappings we also have that
β = p for somep ∈ A according toABF . Then sincep ∈ A, clearlyB ⊢ABF β defeats
A ⊢ABF α. �

Theorem 8.9For all ABF , any semanticsS subsumed by complete semantics and any
setE:

(1) if E is anS-extension ofABF thenEAT is anS-extension ofAT , whereEAT =
{A ⊢AT α | A ⊢ABF α ∈ E};

(2) if E is an S-extension ofAT thenEABF is an S-extension ofABF , where
EABF = {A ⊢ABF α | A ⊢AT α ∈ E}.

Proof : As before, the proof for complete semantics suffices.

(1) Consider any complete extensionE of ABF . It is first proven that any member
of EAT is defended byEAT . SinceE is conflict-free, by construction ofEAT and
Proposition 8.8 alsoEAT is conflict-free. Consider next anyA ⊢AT α ∈ EAT

defeated by someB ⊢AT β. By construction ofEAT , there exists anA ⊢ABF

α ∈ E. Then by Propositions 8.7 and 8.8 there exists aB ⊢ABF β defeating
A ⊢ABF α. But sinceE is a complete extension,B ⊢ABF β is in turn defeated
by someC ⊢ABF γ ∈ E. Then by construction ofEAT and Proposition 8.7,
alsoC ⊢AT γ ∈ EAT and by Proposition 8.8,C ⊢AT γ defeatsB ⊢AT β. So
A ⊢AT α is defended byEAT .

Next, to prove that any argument defended byEAT is a member ofEAT , as-
sumeA ⊢AT α is defended byEAT . Then any of its defeatersB ⊢AT β is in turn
defeated by an elementC ⊢AT γ ∈ EAT . But then by Proposition 8.8 the same
holds for their correspondingABF -arguments, which exist by Proposition 8.7.
Moreover, by construction ofEAT we have thatC ⊢ABF γ ∈ E so, sinceE
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is a complete extension, alsoA ⊢ABF α ∈ E. But thenA ⊢AT α ∈ EAT by
construction ofEAT and Proposition 8.7.

(2) The proof of (2) is entirely similar and therefore omitted.

�

Corollary 8.10 For anyABF , any semanticsS subsumed by complete semantics, and for
any formulaϕ it holds thatϕ is skeptically (credulously)S-acceptable inABF if and
only ifϕ is skeptically (credulously)S-acceptable inATABF .

Proof : Straightforward. �
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