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An abstract framework for structured arguments is presehigdristantiates Dung’s (1995) abstract argu-
mentation frameworks. Arguments are defined as inferenceftseaed by applying two kinds of inference
rules: strict and defeasible rules. This naturally leadthtee ways of attacking an argument: attacking a
premise, attacking a conclusion and attacking an inferehzeesolve such attacks, preferences may be
used, which leads to three corresponding kinds of defeatemining, rebutting and undercutting defeat.
The nature of the inference rules, the structure of the &dénguage on which they operate and the origin
of the preferences are, apart from some basic assumptionsnigfecified.

The resulting framework integrates work of Pollock, Vregkwind others on the structure of arguments
and the nature of defeat, and extends it in several respémisus rationality postulates are proven to be
satisfied by the framework, and several existing approaaiegzraven to be a special case of the framework,
including assumption-based argumentation and DefLog.

1. Introduction

In 1995 Phan Minh Dung introduced an abstract formalism fguarentation-based infer-
ence (Dung 1995), which assumes as input nothing else but(afssguments) ordered
by a binary relation (of attack). Although he thus fully absted from the structure of
arguments and the nature of the attack relation, he wasbtdlto develop an extremely
interesting theory. His article was a breakthrough in thsegs: it provided a general
and intuitive semantics for the consequence notions ofraeguation logics (and for non-
monotonic logics in general); it made a precise comparisussiple between different
systems (by translating them into his abstract format);ianthde a general study of for-
mal properties of systems possible, which are inheritedhdtantiations of his framework.
In consequence, Dung’s work has given an enormous boosséameh in computational
argumentation. Yet it has also been criticised for not dpiexgj the structure of arguments
and the nature of the attack relation, which makes it lesalsia for modelling specific ar-
gumentation problems. | believe that such criticism failappreciate the nature of Dung'’s
formalism. It is best seen not as a formalism for directlyespnting argumentation-based
inference problems but as a tool for analysing particulguarentation systems and for
developing a metatheory of such systems. As such it has bemgnsuccessful: differ-
ences between particular systems can be characterisedris ¢ some simple notions,
and formal results established for the framework are indetdy its instantiations. This
was already illustrated by Dung (1995) with reconstructiohPollock’s (1987) system,
various logic-programming semantics and Reiter’s (19&8udlt logic in his formalism.
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Nevertheless, it is true that when actual argumentati@edhanference has to be mod-
elled, Dung's framework is by itself usually too abstractl amstead an instantiated ver-
sion of his approach should be used. However, here too abetras still possible and
worthwhile. The aim of this paper is to instantiate Dung’stedat approach with a general
account of the structure of arguments and the nature of tfeateelation. The frame-
work defines arguments as inference trees formed by applywogkinds of inference
rules, strict and defeasible rules. This naturally lead$itea ways of attacking an argu-
ment: attacking a premise, attacking a conclusion andlattg@n inference. To resolve
such attacks, preferences may be used, which leads to tmesjgonding kinds of defeat:
undermining, rebutting and undercutting defeat. To charase them, some minimal as-
sumptions on the logical object language must be made, pahedl certain well-formed
formulas are a contrary or contradictory of certain othel-feemed formulas. Apart
from this the framework is still abstract: it applies to amt ef inference rules, as long
as itis divided into strict and defeasible ones, and to agicld language with a contrary
relation defined over it.

The choice for tree-structured arguments based on two tyfpefecence rules arguably
is very natural both in light of logic and argumentation thyeand when looking at argu-
mentation as it occurs in human thinking and dialogue. Thi®onaif arguments as trees
of inferences is very common in standard logic and in arguat&m theory, and is the ba-
sis of many software tools for argument visualisation. Moe, in actual argumentation
humans often express their arguments as claims supportbconé or more premises,
which can in turn be supported with further premises, andsé&imally, as will be further
explained in Section 4, the setup with general defeasibéeénice rules is very suited for
modelling reasoning with argumentation schemes (Waltah. &008).

The account offered in this paper is not completely new. I fachetorical aim of the
paper is to counter the idea that the computational studygfraentation started with
Dung’s abstract approach and that only then researchers inatbre concrete with ac-
counts of the structure of arguments and the nature of defisad matter of fact, much
work on these two issues was already done or going on at theewihen Dung wrote
his paper, and some of this work is still state-of the art. iRetance, both John Pollock
(1987, 1994) and Gerard Vreeswijk (1993, 1997) did impdrteork on the structure of
arguments, while Pollock (1974, 1987) introduced an impariéstinction between two
kinds of defeat, namely rebutting defeat (attack on a caneh) and undercutting defeat
(attack on an inference rule). One aim of the present papgeqsofit from, integrate and
build on this and other important work as much as possiblesueh this paper is a fur-
ther development of the integration attempt that was uallert in the European ASPIC
project (Amgoud et al. 2006). In this project, Vreeswijkésrhalisation of the structure of
arguments was combined with Pollock’s definitions of rebgttimd undercutting defeat
in a way that also used insights from other work. The resultavetsaracterisation of a set
of tree-structured arguments ordered with a binary detdation, so that an instantiation
of Dung’s abstract approach was achieved and any of Dungisusécs could be used to
compute the acceptability status of the structured argtsnen

The ASPIC framework was developed by Leila Amgoud, Martin Cacén&laudette
Cayrol, Marie-Christine Lagasquie-Schieux, myself and @kxaeeswijk, and was first
reported in a European project deliverable (Amgoud et al620Dhe added expressive-
ness compared to Dung’s abstract formalism gave rise tbduwork by Caminada and
Amgoud (2007) on rationality postulates for systems irnt&siting the ASPIC framework.
The aim of this work was to propose the idea of rationality plases and to criticise
some specific rule-based argumentation systems for faiirggatisfy them. For this aim

LFor reasons explained in Section 3 this paper will rename Buatack relations to ‘defeat’ relations and reserve thete
‘attack’ for something else.
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only a simplified version of the ASPIC framework was needed, auittpreferences and
without the notion of a knowledge base. Moreover, the examgiscussed by Caminada
and Amgoud (2007) were all with domain-specific inferencesuhstead of with general
inference patterns, which in effect somewhat obscured divengial of the framework to
be a general account of structured argumentation.

By contrast, the present paper aims to present the ASPIC frarkeas a general ab-
stract model of argumentation with structured arguméfisachieve this aim, the ASPIC
framework will be extended and generalised in four respects

(1) A third way of argument attack, namely premise attackuodermining’ will be
added, in a way inspired by Vreeswijk’s (1993, Ch. 8) comtiareof “plausible”
and “defeasible” argumentation. Apart from the naturadnaglshaving all three
kinds of attack in a general framework for argumentatiois, will make it easier
to formalise argument schemes in the framework and it wilkenié possible to
regard existing systems with premise attack as speciat edshe framework.

(2) The three notions of attack will be generalised from thgamoof contradiction
between formulag and—¢ to an abstract relation of contrariness between for-
mulas which is not necessarily symmetric. This idea is takemfBondarenko
et al. (1997) and Verheij (2003) and will help in showing ttiegir systems are a
special case of the present framework.

(3) Four types of premises will be distinguished, inspirgdalsimilar distinction of
Gordon et al. (2007).

(4) Attack relations will be partly resolved with preferenarderings on arguments,
defeasible rules and the knowledge base (although Amgoald 2006 also has
preferences, the results of Caminada and Amgoud 2007 dawet them).

It will then be investigated to what extent the results of @Gada and Amgoud (2007) on
rationality postulates generalise to the thus extended A$RIGework. The final aim of
this paper is to compare the resulting framework with recelated work. It will turn out
that assumption-based argumentation (Bondarenko et@r, T®ung et al. 2006, 2007),
DefLog (Verheij 2003) and Amgoud and Cayrol (2002)'s versibeductive argumen-
tation are special cases of this paper’s version of the ASRIGdwork.

2. Dung's abstract argumentation frameworks

First without explanation the basic concepts and insighBusfg’s abstract argumentation
approach are listed. For a state-of the art introductiorBsgeni and Giacomin (2009).

Definition 2.1: [Abstract argumentation framework] Aabstract argumentation frame-
work (AF) is a pair(A, Def). Ais a set arguments ardef C A x Ais a binary relation
of defeat. We say that an argumehtefeats an argumet iff (A, B) € Def.

Definition 2.2: [Conflict-free, Defence] LeB C A.

e A setB is conflict-freeiff there exist noA;, A; in B such that4; defeatsA;.
e A set defendsan argument; iff for each argumentd; € A, if A; defeatsA;, then
there exists4;, in B such that4;, defeatsA;.

Definition 2.3: [Acceptability semantics] LeB be a conflict-free set of arguments, and
let 7: 24— 24 be a function such tha¥(B) = {A | B defendsA}.

LIn this paper the term ‘framework’ will be used to denote theegal model, to highlight that it can be instantiated in
various ways (such instantiations will in turn be calledusngntation systems). This contrasts with Dung’s (1995) use of
the term ‘argumentation framework’, which denotes a specafiobarguments with a specific attack relation. In the present
paper such specific inputs to an argumentation system wilabedccargumentation theories.
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B is admissibleff B C F(B).

B is acomplete extensiaiff B = F(B).

B is agrounded extensioiff it is the smallest (w.r.t. set-inclusion) complete axéen.
B is apreferred extensiofff it is a maximal (w.r.t. set-inclusion) complete extemsi
(or, equivalently, if3 is a maximal (w.r.t. set inclusion) admissible set).

e Bis astable extensioiff it is a preferred extension that defeats all argumentd 8.

Note that this implies that each grounded, preferred otes&@tiension of aml F' is also
a complete extension of thatF'. Some other known results are that

o the grounded extension is indeed unique but all other seosaaliow for multiple
extensions of aml [';

e eachAF has a grounded and at least one preferred and complete iextelmst there

are AF's without stable extensions;

the grounded extension of aF' is contained in all other extensions of th&k'.

3. Argumentation systems with structured arguments

In this section the arguments of Dung’s argumentation frkaonks are given structure and
its defeat relation is defined in terms of the structure of argpts plus external prefer-
ence information. Apart from this, the resulting formaligrstill as abstract as possible,
allowing for different logical languages, different seténderence rules for building argu-
ments and different preference orderings. The framework Wseeswijk’s (1993, 1997)
definition of the structure of arguments and then adds PobBod®87, 1994) distinction
between rebutting and undercutting attack, as well as amaof the notion of premise at-
tack proposed by Vreeswijk (1993, Ch. 8). These notions amedeneralised to languages
with arbitrary relations of contrariness and contradicti@tween well-formed formulas.
Then the three notions of attack are combined into a notioref#at in a way inspired by
Vreeswijk (1993, Ch. 8) and Prakken and Sartor (1997). It s¢bimbination that makes
it possible to regard the system as an instantiation of Bualgstract framework.

The resulting framework unifies two ways to capture the delbdégi of reasoning.
Some, e.g. Amgoud and Cayrol (2002), Besnard and Hunter j2@@®darenko et al.
(1997), Verheij (2003), locate the defeasibility of argumsein the uncertainty of their
premises, so that arguments can only be attacked on theniges. Others, e.g. Pollock
(1994), Vreeswijk (1997), instead locate the defeasibditarguments in the riskiness of
their inference rules: in these logics inference rules &te/o kinds, being either deduc-
tive or defeasible, and arguments can only be attacked anajmglications of defeasible
inference rules. Typically, in this approach inconsisieatthe knowledge base makes
the system collapse. Vreeswijk (1993, Ch. 8) called thesedpproacheplausibleand
defeasiblaeasoning: he described plausible reasoning as soundd€dective) reasoning
on an uncertain basis, and defeasible reasoning as undoutrsdill rational) reasoning on
a solid basis. In his chapter 8, Vreeswijk attempted to combith forms of reasoning in
a single formalism, but since then most formal accounts gfimentation have modelled
either only plausible or only defeasible reasoning.

3.1. Basic definitions

The basic notion of the present framework is that of an argtatien system, which ex-
tends the familiar notion of a proof system with a distinatietween strict and defeasible
inference rules and a preference ordering on the defeasible inference rules

IPollock (1987, 1994) calls these ‘conclusive’ and ‘primadaeasons’.
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Definition 3.1: [Argumentation system] Arargumentation systens a tuple AS =
(L,7,R,<)where

e Lis alogical language,

e ~is acontrariness function frou to 2%,

e R = Rs URyis a set of strict Rs) and defeasible®;) inference rules such that
RsNRy =0,

e < isa partial preorder o .

Amgoud et al. (2006) and Caminada and Amgoud (2007) assuat@thuments are
expressed in a logical language that is left unspecified éxbapit is closed under clas-
sical negation. In this paper this assumption will be gdisd in two ways. Firstly, non-
symmetric conflict relations between formulas will be allolwsuch as the contrariness
relation of Bondarenko et al. (1997) (which captures, f@tance, negation as failure)
and its inverse, the dialectical negation of Verheij (2008hich means ‘it is defeated
that’). Secondly, in addition to classical negation, othenmetric conflict relations will
be allowed, so that, for instance, formulas like ‘bachedord ‘married’ can, if desired, be
declared contradictory without having to reason with amaxi-(bachelorAn married).

Definition 3.2: [Logical language] LeL, a set, be a logical language and contrari-
ness function fromC to 2. If ¢ € ¢ then if¢ ¢ B theny is called acontrary of v,
otherwisep and+ are calledcontradictory The latter case is denoted by= — (i.e.,

@ € 9 andy € P).

In examples with classical negatien it will be assumed thaty € ¥ andy € =@.
Now that the notion of negation has been generalised, the saunst be done with the
notion of consistency.

Definition 3.3: [consistent set] LeP C L. P is consistentff # ¢, ¢ € P such that
1 € p, otherwise it ignconsistent

Note that this is a weak form of consistency, determined bgthér a set contains contrary
or contradictory formulas. Caminada and Amgoud (2007)tb&ldirect consistencgnd
they call consistency of the closure of a set under strigraricandirect consistency

Arguments are built by applying inference rules to subsét§.dnference rules are
eitherstrict or defeasibleThis distinction goes back to Lin and Shoham (1989), Pollock
(1987) and Vreeswijk (1993), as does the idea of abstrattimg their nature.

Definition 3.4: [Strict and defeasible rules] Lety, . . ., ©,, © be elements of.

e A strict rule is of the formen, ..., v, — ¢, informally meaning that ifo1, ..., ¢,
hold, thenwithout exceptiorit holds thatp.
o A defeasible rules of the formep;, ..., ¢, = ¢, informally meaning that iy, . . ., ¢,

hold, then itpresumablyholds thatp.
©v1,--.,pn are called thantecedentsf the rule andp its consequent

As usual in logic, inference rules will often be specified biesmes in which a rule’s
antecedents and consequent are metavariables ranging.over

Arguments are constructed from a knowledge base whichjratspy Gordon et al.
(2007), is assumed to contain four kinds of formulas.

Definition 3.5: [Knowledge bases] Aknowledge baseén an argumentation system
(L£,7,R,<)is a pair(K,<’) whereX C £ and<’ is a partial preorder oiC \ K,.
HereK = K,, UK, U K, U K; where these subsets kfare disjoint and

e I, is a set of (necessargxioms Intuitively, arguments cannot be attacked on their
axiom premises.
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e K, is a set ofordinary premisesintuitively, arguments can be attacked on their ordi-
nary premises, and whether this results in defeat must leerdeted by comparing the
attacker and the attacked premise (in a way specified below).

e K, is a set ofassumptiondntuitively, arguments can be attacked on their assumgtio
where these attacks always succeed.

e IC; is a set ofissuesIntuitively, arguments of which the premises include auéesare
never acceptable: an issue must always be backed with &fuathument.

(Gordon et al. 2007 call ordinary premises “assumption®ytregard assumptions as
the contradictories of “exceptions” and they call issuesliftary premises”. Their coun-
terpart to axioms is “accepted” and “rejected” stateméguits.explained by Gordon et al.
(2007), the category of issue premises is useful if an argatien system is embedded
in a dialogical context, defining the acceptability statuamguments relative to a stage in
a dialogue. For example, in legal proceedings legal claiasdre not backed by factual
evidence usually do not stand: for instance, an argumenhawve a contract by Section
X of the Civil Code since | made an offer and you accepted’ bdllunacceptable as long
as no factual evidence for the offer and acceptance is pedvith the present framework
this can be captured by giving the non-supported premiseg istatus.

3.2. Arguments

Next the arguments that can be constructed from a knowledge Im an argumenta-
tion system are defined. Arguments can be constructed stgpepyby chaining inference
rules into trees. Arguments thus contain subargumentshadrie the structures that sup-
port intermediate conclusions (plus the argument itsadfitmpremises as limiting cases).
In what follows, for a given argument, the functidem returns all the formulas of
(calledpremise}used to build the argumertonc returns its conclusiorfub returns all

its sub-argumentd)efRules returns all the defeasible rules of the argument and, finally,
TopRule returns the last inference rule used in the argument.

Definition 3.6: [Argument] AnargumentA on the basis of a knowledge bag€, <’)
in an argumentation systefd, —, R, <) is:

(1) pif p € K with:
Prem(A) = {¢},
Conc(A) = ¢,
Sub(A4) = {p},
DefRules(A) =0,
TopRule(A) = undefined.
2) Aq,... A, —»¢if Aq,..., A, are arguments such that there exists a strict rule
Conc(A1),...,Conc(4,) — ¢ in R,
Prem(A) = Prem(A;) U...UPrem(A4,),
Conc(A4) =,
Sub(A) = Sub(4;) U...USub(A4,)U{A},
DefRules(A) = DefRules(A;) U ... U DefRules(4,,),
TopRule(A) = Conc(A;), ... Conc(Ay,) — 9.
(3) Ay,... A, =y if Aq,..., A, are arguments such that there exists a defeasible
rule Conc(A;),...,Conc(Ay) = ¢ in Ry,
Prem(A) = Prem(A;) U...UPrem(4,),

Conc(A) =,
Sub(A) = Sub(A;) U...USub(4,) U{A},
DefRules(A) = DefRules(4;) U ... U DefRules(4,) U

{Conc(Ay),...Conc(A,) = ¢},
TopRule(A) = Conc(Ay),...Conc(A,) = 9.



May 17, 2010

16:22 Argument & Computation aspicAF

Example 3.7 Consider a knowledge base in an argumentation system with

Rs: {p,q—>s; u,v—>w}
Ra= {p=t;srt=0v}

Kn= {q}
ICP = {pa U}
Koe= {r}

An argument forw is displayed in traditional proof-tree format in Figure 1,em a single
line stands for a strict inference and a double line for aakdfde inference. The type of
a premise is indicated with a superscript. Formally the gyt and its subarguments are

4 q' 4

Figure 1. An argument

written as follows:

Allp A5:A1 =1

A2:q A6:A1,A2—>S
A3:’I” A7Z A5,A3,A6 =
A4Z u AgZ A7, A4 — w

We have that

Prem(Ag) = {p,q,r,u}
Conc(A4g) = w
SUb(AS) — {A17A27A37A47A57A67A77A8}

DefRules(Ag) = {p=1t; s,r,t = v}
TopRule(Ag) = v,u — w

Definition 3.8: [Argument properties] An argument is

strict if DefRules(A) = 0);
defeasibléf DefRules(A) # 0;
firmif Prem(A) C Ky;
plausibleif Prem(A) Z IC,,.

We write S + ¢ if there exists a strict argument ferwith all premises taken frorfi, and
S |~ ¢ if there exists a defeasible argument fowith all premises taken frorf.

Example 3.9 In Example 3.7 the argument, is strict and firm, whiled,, A3, A4 and
Ag are strict and plausible andls, A7 and Ag are defeasible and plausible. Furthermore,
we havethall - p, KF ¢, KFr,KFu, KFsandK ¢, K v, K o w.

(From hereon the theory will be left implicit if there is no agan for confusion.)

Now that the notion of an argument has been defined, orderimgsguments can be
considered. Belowx is a partial preorder such that < B means thaiB is at least as
‘good’ asA. As usuald < B meansA < B andB £ A.

In Section 6 two ways will be discussed to defikas a function from the orderings
on R, and<’ on K. However, the present framework allows for any partial pileo on
arguments that satisfies two basic assumptions (taken freasvijk 1993).
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Definition 3.10: [Admissible argument orderings] Let be a set of arguments. Then a
partial preorder< on A is anargument orderingff

(1) if Ais firm and strict and3 is defeasible or plausible, théh < A;
) ifA=A;,...A, - ¢thenforalll <i<n,A < A; and for somel < i <

(Vreeswijk also assumes that an argument cannot be strdmayeits weakest subargu-
ment but in Section 6 the so-called ‘last-link’ principle Mok discussed, which violates
this assumption.) The first condition says that strict-and-firguments are stronger than
all other arguments, while the second condition says th&ia mference cannot make
an argument weaker or stronger.

Definition 3.11: [Argumentation theories] Amrgumentation theorys a triple AT =
(AS, KB, <) whereAS is an argumentation systetii;B is a knowledge base iA.S and
=< is an argument ordering on the set of all arguments that caosructed fronK' B in
AS (below called the set of arguments on the basid D).

3.3. Attack and defeat

Dung’s use of the term “attack” might at first sight lead to tledidf that Dung’s frame-
work has no place for preferences. However, Dung’s attaleitioa can also be seen as
abstractingfrom the use of preferences: in this view an attack relatiohi$ framework
may be the result of applying preferences to a syntactic @nflhis view on Dung’s
attack relation was, to my knowledge, first used by Prakken arntdiga997), it was also
employed by Amgoud and Cayrol (2002) and it was the basis atB&apon’s (2003)
value-based argumentation frameworks. It was also th@neaty Prakken and Sartor
(1997) and Prakken and Vreeswijk (2002) replaced Dung's tattack’ with ‘defeat’,
to reflect that it may incorporate evaluative consideratidiés convention will also be
adopted in the present paper, while the term ‘attack’ wilréserved for non-evaluative
syntactic notions of conflict. The idea then is that defeat iermeined by attack plus
preference (except in some cases, where attack autonmatezads to defeat).

The notion of a defeasible inference rule naturally leadsvo tiotions of rebutting
and undercutting attack, introduced by Pollock (1974) and fimsnalised by Pollock
(1987). The third kind of attack, premise attack (in this pagaled undermining) is a
natural addition (and for deductive inferences it is theyddihd of attack) but highlights
the philosophical distinction between plausible and d&f#a reasoning discussed above.
It was independently introduced by Vreeswijk (1993, Ch.18) &lvang-Gransson et al.
(1993). In line with Prakken and Sartor (1997), rebutting andarcutting attacks can
also be launched on subarguments. This is essential in mtiergystem an instantiation
of Dung'’s abstract framework.

3.3.1. Attack

First the ways in which arguments can be attacked are definexhlRleat these are
just syntactic categories and do not reflect any preferenteelea arguments. The first
way of attack corresponds to the case where one argumena gedsasible rule of which
another argument says that it does not apply to the case dt hardefinition assumes
that inference rules can be named in the object languagpréeése nature of this naming
convention will be left implicit.

Definition 3.12: [Undercutting attack] Argumentl undercutsargumentB (on B’) iff
Conc(A) € B’ for someB’ € Sub(B) of the formBY, ..., Bl = .

Example 3.13 In Example 3.7 arguments can be undercut in two ways: by an argument
with conclusionA4s, which undercutsig on As, and by an argument with conclusien,
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which undercutsis on A-.

Undercutting attackers only say that there is some exaegitisituation in which a
defeasible inference rule cannot be applied, without digwihe opposite conclusion.
Rebutting attacks do the latter: they provide a contraryomtradictory conclusion for a
defeasible (sub-)conclusion of the attacked argument.

Definition 3.14: [rebutting attack] ArgumentA rebuts argument B on (B') iff
Conc(A) € p for someB’ € Sub(B) of the form BY,...,B]) = ¢. In such a case
A contrary-rebutsB iff Conc(A) is a contrary ofp.

Example 3.15 In Example 3.7 argumemdg can be rebutted onl; with an argument
for t and onA; with an argument for. Moreover, ift = —t then A5 in turn rebuts
any argument for with a defeasible top rule. Howeveds itself does not rebut that
argument, except in the special case where= t. This shows that for three reasons
rebutting attack is not symmetric: the rebuttal can haveiet $bp rule, rebutting can be
contrary-rebutting and rebutting can be launched on a gubant. However, the present
example also shows that in the latter case, if the rebuttitaglahas a defeasible top rule
and is not of the contrary-rebutting kind, the directly reéed subargument in turn rebuts
its attacker.

The final way of attack is an attack on a (non-axiom) premise.

Definition 3.16: [undermining attack] Argumem undermines3 (ony) iff Conc(A) €
@ for somey € Prem(B) \ K. In such a case argumeAtcontrary-undermines3 iff
Conc(A) is a contrary ofp or if ¢ € K.

Example 3.17 In Example 3.7 argumerg can be undermined with an argument that
has conclusiop, 7 or w. If that attacker has a defeasible top rule and, say, a csiocig
and does not contrary-undermidg, thenp as an argument in turn rebuts the attacker.

The following example (based on Example 4 of Caminada and Ath@®07) illus-
trates the interplay between strict and defeasible ruleshntting attack.

Example 3.18

Aq: WearsRing Ag: A1 = Married Az Ay — = Bachelor
Bi: Partyanimal By: By = Bachelor Bs: By — —~Married

Ag rebutsBj3 on its subargumenB, while B rebutsAs on its subargumem,. Note that
A, does not rebuBs, sinceBs applies a strict rule; likewise faB, and As.

3.3.2. Defeat

Now that we know how arguments can be attacked, the argumeaitiog can be used
to define which attacks result in defeat. For undercuttingc&tno preferences will be
needed to make it result in defeat, since otherwise a wealdgrautter and its stronger
target might be in the same extension. This would be strange shen the extension
contains an argument that applies an inference rule of waigther argument in the
same extension says that it should not be apglidthe same holds for the other two ways
of attack as far as they involve contraries (i.e., non-syimmeonflict relations between
formulas). The reason for this is that otherwise if a rebgttin undermining attacker is
weaker than its target, both may be in the same extensionthEaremaining forms of
attack the argument ordering will be used to determine wdrdtiey result in defeat.

IModgil (2009) argues that in some contexts such extension® sahkse. It seems that the formal results in Section 6
below on rationality postulates also hold for undercuttiegeat with preferences, but this should be formally verified



May 17, 2010

16:22

Argument & Computation aspicAF

10

Definition 3.19: [Successful rebuttal] Argument successfully rebutsrgumentB if A
rebutsB on B’ and eitherA contrary-rebuts3’ or A £ B'.

This definition determines whether rebutting attack is sugfoéby comparing the con-
flicting arguments at the points where they conflict. Thus in EXan3pl8 the conflict
betweenAs and Bj is resolved by comparingls with B, and comparingBs with As.
Now if Bs < As (for example, since the married-rule is given priority otlez bachelor-
rule) thenAs successfully rebut®, and Bs while Bs does not successfully rebut or
As. If, by contrast,As £ Bs and By 4 As then bothAs; and B3 successfully rebut each
other (while A3 still successfully rebut#3; and not vice versa, and likewise fé; and
As). Note also that ifA; is deleted from the example, thenBg < A,, no argument in
the example is defeated. This may at first sight seem counigiwetbut this is due to the
fact that the example violates closureff under transposition (cf. Section 5 below).

As noted by Caminada and Amgoud (2007), Example 3.18 alssiridites why Defini-
tions 3.14 and 3.19 should not allow that a defeasible argtimith a strict top rule can
be (successfully) rebutted on its final conclusion. The re@stirat otherwise if all defea-
sible rules in the example are of equal preference, thé4gtA,, B, By} is admissible,
which violates the rationality postulate of indirect catency (see Section 6 below).

Definition 3.20: [Successful undermining] Argument successfully underminds if
A undermines3 on ¢ and eitherA contrary-undermines or A 4 .

This definition exploits that an argument premise is also defiod& a subargument.

In Example 3.7 any argument far successfully undermineds since it contrary-
undermines it since € K,. The same holds for any argument for a contrary ar
u While for arguments for contradictories pbr « this depends on the argument ordering
(which may in turn depend on the orderiggon K; see Definitions 6.14 and 6.17 below).

It remains to be discussed how the framework should deal arjlaments that have
issue premises. As explained above, the idea is that argamatih issue premises are
always unacceptable. There are various ways to formalisédba. One would be to let
a special designated argument, or perhaps all strict-amdafiguments, defeat any argu-
ment with an issue premise (as in Modgil 2009, Prakken and ISH9®y). Here another
solution is adopted: an argument can defeat another ortlhés no issue premises. Then
in Definition 2.1 only setd3 with no issue premises will be considered, so that no argu-
ment with issue premises is in any extension.

The three defeat relations can how be combined in an oveffiiitien of ‘defeat’:

Definition 3.21: [Defeat] ArgumentA defeatsargumentB iff no premise ofA is an
issue and4d undercuts or successfully rebuts or successfully undersdin ArgumentA
strictly defeatsargumentB if A defeatsB andB does not defead.

In the literature other combinations of these kinds of &tta&ve been considered. For
example, Prakken and Sartor (1997) (who have no underminiag)pgecedence to un-
dercutting defeat over rebutting defeat, so thatlifuccessfully undercut® while B
successfully rebutd, neverthelessgl strictly defeatsB. It remains to be investigated how
crucial the present definition is for the results below.

Finally, argumentation theories can be linked to Dung-sayieimentation frameworks.

Definition 3.22: [Argumentation framework] Arabstract argumentation framework
(AF) corresponding to an argumentation theoty” is a pair<.4, Def> such that:

o Ais the set of arguments on the basisA¥ as defined by Definition 3.6,
o Defis the relation on4 given by Definition 3.21.

To leave arguments with issue premises out of any exteriBigimition 2.1 should now
start with “LetB be a conflict-free set of arguments that have no issue premises
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Itis now also possible to define a consequence notion forfeathed formulas. Several
definitions are possible. One is:

Definition 3.23: [Acceptability of conclusions] For any semanti§sand for any argu-
mentation theonA T and formulay € £ 47:

(1) pisskeptically S-acceptabla AT if and only if all S-extensions ofAT' contain
an argument with conclusiap;

(2) ¢ iscredulously S-acceptable AT if and only if there exists al§-extension of
AT that contains an argument with conclusipn

An alternative definition of skeptical acceptability is

(1) ¢ is skeptically S-acceptablie AT if and only if there exists an argument with
conclusiony that is contained in alb-extensions ofAT'.

While the original definition allows that different extensgcontain different arguments
for a skeptical conclusion, the alternative definition regsithat there is one argument for
it that is in all extensions.

4. Using the framework: domain-specific vs. general inferece rules

The framework defined in the previous section can be used in tayswlepending on
whether the inference rules are domain-specific or not. Therente rules of argumen-
tation systems are not part of the logical langu#gbut are metalevel constructs. The
usual practice in standard logic is that inference rulesesggeneral patterns of reason-
ing, such as modus ponens, universal instantiation and.séedaminada and Amgoud
(2007) use the inference rules to represent domain knowl|éddjne with a long tradition
in nonmonotonic logic of using domain-specific inferenceesule.g. Garcia and Simari
2004, Loui 1987, Nute 1994, Reiter 1980). The difference betwmoth approaches is il-
lustrated with the following example. Consider the infotima that all Frisians are Dutch,
that the Dutch are usually tall and that Wiebe is Frisian. Witmain-specific inference
rules this can in a propositional language be representtdlass:

Rs = {PFrisian — Dutch}
Ra = {Dutch = Tall}
K, = {Frisian}

The argument that Wiebe is tall then has the form as displagabeleft in Figure 2.
With general inference rules the two rules must instead peesented in the object
languageL. The first one can be represented with the material implicdtignfor the
second one a connective for defeasible conditionals muatiled tol and a defeasible
modus-ponens inference rule must be added for this coneeEr example:

Rs = {p,pDp—y(foralp,yel),. ..}
Ra = {%ﬁ/?“"wéw(fora”%lbGﬁ),---}
K, = {Frisian O Dutch, Dutch ~» Tall, Frisian}

Then the argument that Wiebe is tall has the form as displagabeoright in Figure 2.
Although the present system can be used both ways, both Wijkesnd Pollock in-
tended their inference rules to express general pattenesaebning, which is much more
in line with the role of inference rules in standard logicdéed, an important part of
John Pollock’s work was the study of general patterns of {epik) defeasible reason-
ing, which he called prima facie reasons. He formalised afacie reasons for reasoning
patterns involving perception, memory, induction, tenghpersistence and the statistical
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Frisian Frisian Frisian > Dutch
Dutch Dutch Dutch ~>Tall
Tall Tall

Figure 2. Domain-specific vs. general inference rules

syllogism, as well as undercutters for these reasons. The AS&Bh:work allows for
such general use of inference rules, by expressing the thulesgh schemes (in the log-
ical sense, with metavariables ranging o¥g¢r When used thus, the framework becomes
a general framework for argumentation with structured anguts. It thus is also suitable
for modelling reasoning with argument schemes, which auilyas an important topic

in the computational study of argument (cf. Walton et al. @0@rgument schemes are
stereotypical non-deductive patterns of reasoning, stingi of a set of premises and a
conclusion that is presumed to follow from them. Uses of argnt schemes are eval-
uated in terms of critical questions specific to the schemeexample of an epistemic
argument scheme is the scheme from expert opinion (Waltah 2008, p. 310):

E'is an expert in domaii
E asserts thaP is true

P is within D

Pistrue

This scheme has six critical questions:

How credible isE’ as an expert source?

Is E an expert in domaib?

What didE' assert that implie®?

Is E personally reliable as a source?

Is P consistent with what other experts assert?
Is E’s assertion ofP based on evidence?

I A

A natural way to formalise reasoning with argument scherads regard them as de-
feasible inference rules and to regard critical questianpanters to counterarguments
(this approach was earlier defended by Bex et al. 2003 arfte\f&2003). More precisely,
the three kinds of attack on arguments correspond to thregslaf critical questions of
argument schemes. Some critical questions challenge amardis premise and there-
fore point to undermining attacks, others point to undeitcgiattacks, while again other
guestions point to rebutting attacks. In the scheme froneapinion questions (2) and
(3) point to underminers (of, respectively, the first and selcpremise), questions (4),
(1) and (6) point to undercutters (the exceptions that thpekxs biased or incredible
for other reasons and that he makes scientifically unfountigédrsents) while question
(5) points to rebutting applications of the expert opinicheme. Thus we also see that
Pollock’s prima facie reasons are examples of epistemicnaegti schemes and that his
undercutters are negative answers to one kind of criticestijon.

Now one benefit of having undermining attack in addition taitghbg and undercutting
attack can be discussed in more detail: if the inferencesrate supposed to be domain-
independent, then representing facts with non-conditioxfarence rules (as done by
Caminada and Amgoud 2007) does not make sense.
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5. Transposition and contraposition

Before it can be studied to what extent the present framewatisfies the rationality
postulates of Caminada and Amgoud (2007), first some tedii@saconcerning strict

inference rules must be discussed. To start with, Caminadlaangoud define the notions
of a transposition of a strict rule and closure of sets o€sttiles under transposition.

Definition 5.1: [Transposition] A strict rule is atranspositiorof 1, ..., ¢, — ¥ iff s
= P1y ey Pi—1, —’(/J, Oidlyevoy Pn — —Q; for some 1< <n.

Definition 5.2: [Transposition operator] LeR, be a set of strict rule€’'l,,(R,) is the
smallest set such that:

e Rs C Cly(Rs), and
o If s € Cl;,(R,) andt is a transposition of thent € Cl;,(Rs).

We say thaiR is closed under transpositiaff Cly,(Rs) = Rs.
Now the subclass of argumentation systems closed undeptraition can be defined.

Definition 5.3: [Closure under transposition] An argumentation systént, R, <) is
closed under transpositioii R, = Cl;,(R,). An argumentation theory is closed under
transposition if its argumentation system is.

Caminada and Amgoud (2007) also define the closure of a setratifas under appli-
cation of strict rules.

Definition 5.4: [Closure of a set of formulas] Le? C £. Theclosureof P under the
setR of strict rules, denoted'zs(P), is the smallest set such that:

e P C Clrs(P).
o if p1,...,0nh = € Ryandypy,..., ¢, € Clrs(P) theny € Clrs(P).

If P =Clgrs(P), thenP is said to beclosed
It is also relevant whether strict inference satisfies cquiséion.

Definition 5.5: [Closure under contraposition] An argumentation systeciosed under
contrapositionif for all S C £, all s € S and ally it holds that ifS - ¢ thenS \ {s} U
{—¢} F —s. An argumentation theory is closed under contrapositids irgumentation
system is.

Closure under transposition does not imply closure undetraposition, as shown by
the following counterexample (in all examples below setgtvlare empty are not listed).

Example 5.6 LetRs = Cly,({p — ¢;p — r;p,r — s}). Then{p} F s but{—s} t/ —p.

In general it neither holds that closure under contrapmsitnplies closure under trans-
position, as shown by the following counterexample.

Example 5.7 LetRs = {p — ¢; ~¢ — r; r — —p; —-r — q; p — —r}. ThenR, is not
closed under transposition, since it does not incluge— —p. Still we have

{p} - gand{-g} - -p {p} = —rand{r}F -p
{-r}Fqgand{—q¢} Fr {—¢} Frand{-r}Fq

SoR, satisfies contraposition.

However, contraposition does imply transposition in tHeWing special case.

Proposition 5.8: Consider any argumentation theory with closed under classical
negation and~ defined correspondingly. Then7 consists of all valid propositional
inferences thef is closed under contraposition and transposition.
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Note that the proposition does not hold if the conditi&) ‘consists of all valid proposi-
tional inferences’ is changed tb torresponds to propositional logic’. A counterexample
is any argumentation theory with a sound and complete axieaian of propositional
logic with modus ponens as the only inference rule.

6. Rationality postulates

Dung’s semantics can be seen as rationality constraintva@noating arguments in ab-
stract argumentation frameworks. The refinement of his atisigproach with structured
arguments naturally leads to the question whether thigiaddi structure gives rise to ad-
ditional rationality constraints. Caminada and Amgoudd20gave a positive answer to
this question by proposing a number of ‘rationality podiesafor what they called ‘rule-
based argumentation’. Four of their postulates formulatestraints on any extension of
an argumentation framework corresponding to an argunienttteory?

o Closure under subarguments:for every argument in an extension also all its subar-
guments are in the extension.

e Closure under strict rules: the set of conclusions of all arguments in an extension is
closed under strict-rule application.

o Direct consistency:the set of conclusions of all arguments in an extension isistant.

¢ Indirect consistency:the closure of the set of conclusions of all arguments in an ex
tension under strict-rule application is consistent.

Caminada and Amgoud (2007) proved for their version of the £&fRimework that the
first two postulates are always satisfied while the two consigtpostulates are satisfied
if the set of strict rules is consistent and closed undespasition. However, their version
of the ASPIC framework is considerably simpler than the presan. Firstly, it has no
knowledge base and facts must be represented as inferdasavith empty antecedents;
because of this, arguments cannot be undermined. Furtherib@ssumes just a basic
ordering on arguments, according to which strict argumangsstrictly preferred over
defeasible ones and nothing else. Finally, it has a specia chthe present function
from £ to 2%, corresponding to classical negation. The task now is tcshiyate to which
extent the results of Caminada and Amgoud (2007) can be gjésest to the present case.
The postulates of closure under subarguments and strestapglication still hold un-
conditionally for the present framework. (Here that a gigamantics is subsumed by
complete semantics means that any of its extensions alswmisiplete extension).

Proposition 6.1: Let <A, Def> be an argumentation framework as defined in Defi-
nition 3.22 andE' any of its extensions under a given semantics subsumed tpletem
semantics. Then for ald € E: if A’ € Sub(A) thenA’ € E.

Proposition 6.2:  Let <A, Def> be an argumentation framework corresponding to an
argumentation theory, anfl’ any of its extensions under a given semantics subsumed by
complete semantics. Th¢@Uonc(A)|A € E} = Clrs({Conc(A)|A € E}).

As for the two consistency postulates, Caminada and Amgaedults do not gener-
alise unconditionally. Consider the following example.

Example 6.3 Let Ry = {= p; = ¢} andR; = {¢ — —p; p — —q}. Then we have

A =p
B:=q B: B —-p

LCcaminada and Amgoud (2007) propose similar postulates fontaesection of extensions but since their results on these
postulates directly follow from the ones for individual emsions, they will below be ignored.



May 17, 2010

16:22

Argument & Computation aspicAF

15

Now assume thatl = B, so B does not defeafl. However, A neither defeat®, since
B’s last inference is strict. At first sight, it would seem thhtan be extended with the
transposition off — —p (i.e. withp — —¢) to an argument

At A — -q

that rebutsB’s subargumenB’ for ¢q. Then since by condition (2) of Definition 3.10 a
strict continuation of an argument cannot make it weak¥r< A* so A* defeatsB’.
Moreover, by the same conditions any argument deféatsand only if it defeatsA™ so

if Ais in an extensior then by Proposition 6.2 will be in E and therefore3 will
not be inE since extensions are conflict-free.

However, this line of reasoning does not hold without a fertasssumption on the argu-
ment ordering. Consider a more complex variant of Example 6.3

Example 6.4 Let Ry = {= p; = ¢; = r} andRs = {q,7 — —p; ¢,p — —7r; p,7 —
—q}. Then we have

A=0p
B =q B"=r B:B,B"—-p

The problem is thatl cannot be extended with any transpositioyof — —p to obtain
AT unless it is combined with eithes’ or B” but thenA is extended with a defeasible
rule, soA™ might be weaker thard. This problem holds whenevét has more than one
maximal defeasible or plausible subargument.

However, assuming contraposition or transposition, dieansistency can still be
proven if it can also be assumed that there is a way to extendth all but one of
B’s maximal defeasible subarguments that is not weaker t@amemaining one. In our
example this means that eithdrextended withB’ is not weaker thaB” or A extended
with B” is not weaker tha’. Intuitively this assumption seems acceptable given.that
is stronger than botls’ and B”. It is therefore to be expected that it will be satisfied by
many reasonable argument orderings. Since similar singtan arise with undermining
attack, the notion of a maximal fallible subargument is reked

Definition 6.5: [Maximal fallible subarguments] For any argumehtan argumentl’ €
Sub(A) is amaximal fallible subargumerttf A if

(1) A’’sfinal inference is defeasible ot is a non-axiom premise; and
(2) there is naA” € Sub(A) such thatd” # A and A’ € Sub(A”) and A” satisfies
condition (1).

The set of maximal fallible subarguments of an arguménmtill be denoted by\/ (A).
Corollary 6.6: For any argument it holds thatConc(M (A)) F Conc(A).

Definition 6.7: [Reasonable argument orderings] Argument ordefing reasonablef

it satisfies the following condition. Led and B be arguments with contradictory conclu-
sions such thaB < A. Then there exists &, € M (B) and anA™ with A € Sub(A™)
such thaConc(A™) = —Conc(B;) andA* £ B;.

A final problem to deal with is that in Example 6. 8pnc(A) could be a contrary of
Conc(B); the problem is that the solution with closure under corgsiton and transpo-
sition does not apply to this case. Therefore the focus musadigcted to argumentation
theories that respect the intended use of assumptions amdes.

Definition 6.8:  An argumentation theory iwell-formedif:

(1) no consequent of a defeasible rule is a contrary of theemurent of a strict rule;
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(2) if p € K, andyis a contrary ofy, theny & KC,, U K, andy is not the conclusion
ofaruleinR.

Condition (2) in effect says that assumptions can only berades of other assump-
tions. An example of an argumentation theory that is not-fegthed is

Rs={p—q},Ra={r=st=u},Ky={p,r} Kq = {v}

and such that is a contrary ofy andwv is a contrary ofu. Then condition (1) of Defini-
tion 6.8 is violated since we have argumeAt® — g andB: r» = s. Moreover, condition
(2) is violated since € K, andt = u € Ry.

Now it can be proven that under certain conditions an argtatien theory satisfies the
postulate of direct consistency.

Theorem 6.9: Let<.4, Def> be an argumentation framework corresponding to a well-
formed argumentation theory that is closed under contrdjrsor transposition and
has a reasonable argument ordering and a consis@&ht;(C,,), and let E be any of
its extensions under a given semantics subsumed by consplet@ntics. Then the set
{Conc(A) | A € E'} is consistent.

Caminada and Amgoud (2007) also prove that their systersfieatithe postulate of
indirect consistency. This follows from their Propositionvwich says that if an argu-
mentation theory satisfies closure and direct consistenaiga satisfies indirect consis-
tency. Since in the present case the conditions of the pradifeét consistency had to be
strengthened, the same holds for indirect consistency.

Theorem 6.10: Let <A, Def> be an argumentation framework corresponding to a
well-formed argumentation theory that is closed under @pusition or transposition
and has a reasonable argument ordering and a consistéat (KC,,), and letE be any

of its extensions under a given semantics subsumed by demspl@antics. Then the set
Clrs({Conc(A) | A € E}) is consistent.

Corollary 6.11: If the conditions of Theorem 6.10 are satisfied, then for atgresion
E under a given semantics subsumed by complete semantiostthe sy is a premise
of an argument irE'} is consistent.

Concluding this section, two intuitively plausible argumh@rderings will be shown
to be reasonable, namely, the weakest-link and last-linleramgs from Amgoud et al.
(2006). The versions below are slightly revised to make ticjpies arguably more in-
tuitive. Both orderings define a strict partial ordes on sets in terms of a partial preorder
<. on their elements, as follows$; <, S» iff there exists are; € S; such that for all
ea € Sy it holds thate; <. es.

The last-link principle prefers an argumend over another argumernB if the last
defeasible rules used i are less preferred than the last defeasible rules @m, in case
both arguments are strict, if the premisesibare less preferred than the premisesiof
The concept of ‘last defeasible rules’ is defined as follows iaressentially the same as
Prakken and Sartor’s (1997) notion of a ‘relevant set'.

Definition 6.12: [Last defeasible rules] Led be an argument.

e LastDefRules(A) = ) iff DefRules(A) = 0.
o If A=Ay, ..., A, = ¢, thenLastDefRules(A) = {Conc(A4,), ..., Conc(4,) = ¢},
otherwiseLastDefRules(A) = LastDefRules(A4;1) U ... U LastDefRules(A,,).

Corollary 6.13: LastDefRules(A) = {TopRule(A’) | A’ € M(A)}.

An example with more than one last defeasible rule is With: {p; ¢} andR; = {p =
r; ¢ = s}. Then for argumend for r A s we haveLastDefRules(A4) = {p = r; ¢ = s}.
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The above definition is now used to compare pairs of argumeriitdlas's:

Definition 6.14: [Last link principle] Let A and B be two arguments. TheA < B iff
either

(1) condition (1) of Definition 3.10 holds; or
(2) LastDefRules(A) <, LastDefRules(B); or
(3) LastDefRules(A) andLastDefRules(B) are empty an@Prem(A4) <, Prem(B).

(Amgoud et al. 2006 do not include the second condition sotifilarguments are strict
the ordering on the knowledge base is ignored.) This definiti@ifect compares sets on
their weakest elements.

Proposition 6.1%  The last-link argument ordering is reasonable.

Consider the following example (taken from Prakken 1997) betiver people misbe-
having in a university library may be denied access to thatip

Example 6.16 Let K, = {Snores; Professor}, Rq =

{Snores =, Misbehaves;
Misbehaves =, AccessDenied;
Professor =, = AccessDenied}.

Assume thatSnores <’ Professor andr; < ry, 11 < r3, 73 < 79, @and consider the
following arguments.

A1 Snores Asg: A1 = Misbehaves As: A9 = AccessDenied
By: Professor Bs: By = —AccessDenied

To resolve the conflict betweemls and Bs, the rule sets to be compared are
LastDefRules(As) = {re} and LastDefRules(B2) = {rs}. Sincers < ro we have
that B, < As S0 Aj strictly defeatsB,.

The weakest-link principle considers not the last but all uncertain elements in an ar-
gument. It prefers an argumenAtover an argumenB if A is preferred taB on both their
premises and their defeasible rules.

Definition 6.17: [Weakest link principle] LetA and B be two arguments. TheA < B
iff either condition (1) of Definition 3.10 holds; or

(1) Prem(A) <, Prem(B); and
(2) If DefRules(B) # 0 thenDefRules(A) <5 DefRules(B).

(Amgoud et al. 2006 do not have the condition of (2), so th&hwio strict arguments
neither of them can be preferred.)

Proposition 6.18& The weakest-link argument ordering is reasonable.

Example 6.19 Consider again Example 6.16. With the weakest-link prirciple out-
come is different. To resolve the conflict betweénand B, the rule sets to be compared
are nowDefRules(As) = {r1,r2} andDefRules(B2) = {r3}. Sincer; < r3 we have
that DefRules(A3) < DefRules(Bz). Moreover, sinceSnores <’ Professor we also
have thafPrem(As) <5 Prem(Bs2). HenceB; now strictly defeatsis.

Example 6.20 We finally return to Example 3.18. Let

r1 = WearsRing = Married
ro = PartyAnimal = Bachelor

Note that since both arguments apply just one defeasitdeand no premise is attacked,
the weakest- and last-link ordering produce the same reNoiv if 1 < ro we have
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that Ag strictly defeatsB3 by successfully rebutting it oBy, while if bothry £ r and
ro < r1 then A3 and Bs defeat each other sincé; successfully rebut®s on By while
B3 successfully rebutds on As.

7. Self-defeat

As discussed by Pollock (1994) and Caminada and Amgoud (268lfydefeating argu-
ments can cause problems if argumentation systems arenefulbadefined, particularly

if they include standard propositional logic. In the prademmework two types of self-
defeating arguments are possible: serial self-defeatrsaeglien an argument defeats one
if its earlier steps, while parallel self-defeat occurs witge contradictory conclusions of
two or more arguments are taken as the premises fétollock (1994) gives an example
of serial self-defeat of the following form:

Example 7.1 Let Ry = {p = ¢}, Rs = { ¢ — A2} andK = {p, ¢}. Then we have
Al:p Az:Al = q Ag:AQH—!AQ

(Readp as “witness John says that he is unreliable” aad “witness John is unreliable”).
ArgumentAjs is self-defeating since it undercuts itself da. This example is arguably
handled properly by preferred and grounded semantics, wtiohaveE = {4, } as the
only extension.

One of Pollock’ (1994) examples of parallel self-defeat tnesfollowing form.

Example 7.2 Let Ry = {p = ¢q; r = —¢; t = s} andK = {p,r, t} while R, contains
all propositionally valid inferences. Then:

Alip Ag:Al = q
Bi:r BQZB1:>—\(]
01:A2,32—>J_ Cy: Ch — —s
Dyt Dy. D1 = s

Here a problem arises singe&an be any formula, so any defeasible argument unrelated to
A or By, such ad),, can, depending on the rule priorities, be rebuttedbyClearly, this
is extremely harmful, since the existence of just a singteead mutual rebutting defeat,
which is very common, could trivialise the system. In fadtflee semantics defined by
Dung (1995) this is only a problem for grounded semanticscesall preferred/stable
extensions contain eithets or By, argument’s is not in any of these extensions 8B
is. However, if neither ofA; and B, strictly defeats the other, then neither of them is in
the grounded extension so that extension does not ddfegnalgainstCy and therefore
does not contaiDs.

Pollock (1994) also discusses the following variant of thiaraple (with the same
argumentation theory):

Ailp Asi A1 =g Asz: Ay — gV —s
Biir Bsy: By = q

C]_:AQ,BQ — TS

Dyt Ds: D= s

Again with grounded semantics the problem is the&n be any formula, so any defeasible
argument unrelated td, or B> can be rebutted bg .

According to Caminada (personal communication) the only t@asolve this problem
is to make parallel self-defeat impossible. One way to imrmget this solution is to dis-
allow arguments with a contradictory set of sub-conclusidiowever, this affects the
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proof of Theorems 6.9 and 6.10. The reason is that for suchraggtee argument ™ that
according to Lemma 10.1 can be constructed sometimes hawe¢occbatradictory sub-
conclusions, as the following example (with a system clagser transposition) shows.

Example 7.3 Letp € Ky, ¢ € Ko andRs = Cly,({p — t; ¢ — 73 ¢ — 8; 1,5 — —t}).

Alip A2:A1—>t
Bliq By: By —r BgZBl—>8 B4:BQ,Bg—>—|t

Now if A, is to be extended to an argumefit that undermines3,, then B; must be
included inA.

An similar example for systems closed under contraposiion

Example 7.4 Let K, = {p, q, —~p, 7q} and letR s consist of all valid propositional infer-
ences. Then

Aiip Ailg Azt A, Ay —pAg
Bi:—p Byi—q B3:B]_,B2_>_‘(p/\q)

Note thatM/ (B3) = Prem(Bs). Now any addition of a premise @f; to Prem(A3) makes
Prem(As) inconsistent.

Since these problems only arise in particular argumentagietems and with particular
semantics, no general solution will be pursued here; idstaah solutions are left for fu-
ture research on instantiations of the framework. NotethlabExamples 7.3 and 7.4 only
contain strict rules, so that the problem may also arise saraption-based frameworks,
which will in the next section be proven to be a special casb@RSPIC framework.

8. The relation with assumption-based argumentation

After having presented his fully abstract approach to agutation, Dung joined Kowal-
ski, Toni and others in their development of a more concretsion of his approach
(e.g. Bondarenko et al. 1997, Dung et al. 2006, 2007). Ingbmoach arguments essen-
tially are sets of formulas called “assumptions”, from whionclusions can be drawn
with strict inference rules. Arguments can be attacked aitfuments that conclude to
the “contrary” of one of their assumptions. In fact, the esiens defined by the various
semantics of Bondarenko et al. (1997) are not sets of argisnbeib sets of assumptions.
However, Dung et al. (2007) showed that an equivalent futipement-based formulation
can be given.

In this section it will be shown that assumption-based amgputation (ABA) is a spe-
cial case of the present framework with only strict infer@ngles, only assumption-type
premises and no preferences. The proof will be given for tgaraent-based version of
Dung et al. (2007) and carries over to Bondarenko et al. (1B97he equivalence result
of Dung et al. (2007).

First the main definitions of ABA are recalled (in the formutetiof Dung et al. 2007).

Definition 8.1: (Def. 2.3 of Dung et al. 2007.) Aeductive systeis a pair(£, R) where

e L is aformal language consisting of countably many senteraces

e R is a countable set of inference rules of the faxm. .., o, — a.' a € £ is called
the conclusionof the inference ruleg;,...,a, € L are called thgoremisesof the
inference rule ana > 0.

LIn (Dung et al. 2007) the arrows are from right to left.
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Definition 8.2: (Def. 2.5 of Dung et al. 2007.) Aassumption-based argumentation
framework(ABF) is a tuple(£, R, A, ~) where

(£, R) is a deductive system.

A€ L, A+#0. Ais the set otandidate assumptions

If « € A, then there is no inference rule of the form, ..., o, — a € R.
~ is a total mapping fromd into L. @ is thecontrary of «.

The third condition amounts to a restriction to so-called fi&F's. This restriction is
not entirely innocent, since in debates it may occur thatesoe first assumes a premise
and, after it is defeated, constructs an argument for itniatteempt to rebut the defeater.
To make Dung et al.’s analysis apply to all stages of such atdebssumptions should be
deleted fromA as soon as they are supported with an argument.

Since the notion of an argument is central to the present cosctne informal expla-
nation of Dung et al. (2007, p. 646) will be quoted in (almdsti)

Deductions can be understood as proof trees: the root ofdhéstlabelled by the conclusion
of the deduction and the leaves are labelled by the premiggsosgting the deduction. For
every non-terminal node in the tree, there is an inferentewhose conclusion matches
the sentence labelling the node, and the children of the aoeldabelled by the premises
of the inference rule. (..) we define deductions as sequesfdesntiers Sy, ..., S,, of the
proof trees. Each frontier is represented by a multi-satiich the same sentence can have
several occurrences, if it is generated more than once asmig® of different inference
steps. In order to generate proof trees, a selection syraaeweded to identify which node
to expand next. We formalise this selection strategy by medma selection function, as in
the formalisation of SLD resolution. A selection functian,this context, takes as input a
sequence of multi-setS; and returns as output a sentence occurrencg.iliVe restrict the
selection function so that if a sentence occurrence is tsglén a multi-set in a sequence
then it will not be selected again in any later multi-set iatthequence.

Essentially, a backward deduction thus presents one plartiotder in which an argu-
ment in the sense of Definition 3.6 can be constructed by réagtackwards from the
conclusion to the premises.

Definition 8.3: (Def. 2.4 of Dung et al. 2007.) Given a selection functifina (back-
ward) deductiorof a conclusiomy based on (or supported by) a set of premigess a
sequence of multi-set$, ..., S,,, whereS; = {a}, S, = P, and for everyl < i < m,
whereo is the sentence occurrencednselected byf:

(1) If oisnotinP thenS;y; = S; — {o} U S for some inference rule of the form
S—oeR.
(2) If oisin PthenS;, 1 = S;.

Eachs; is a step in the deduction.
Now an assumption-based argument is defined as follows.

Definition 8.4: (Def. 2.6 of Dung et al. 2007.) Aargumentfor a conclusion on the
basis of anA BF' is a deduction of that conclusion whose premises are alhgssons (in
A).

As for notation, the existence of an argument for a conclusisupported by a set of
assumptionsi is denoted byA - «, or by A k45 « if it has to be distinguished from
the existence of a strict argument according to Definitionv8th the same premises and
conclusion; the latter will below be denoted Hy- 47 a.

Finally, Dung et al.’s notion of argument attack is defined dgves.

Definition 8.5: (Def. 2.7 of Dung et al. 2007.)

e An argumentA F « attacks an argumenB + g if and only if A - « attacks an
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assumption inB; B
e an argument + « attacks an assumptiagh if and only if « is the contrarys of 3.

The argumentation theory corresponding to an assumptiseebftamework is now
defined as follows.

Definition  8.6: Given an assumption-based framework4d BF =
(LaBF,RaBrF, A, y5r), the corresponding argumentation thed¥,pr = (AS, KB),
whereAS = (Lar, 47, Rar, <) andKB = (K, <'), is defined as follows:

Lar = Lapr
O €Yariff o =1 pp
Rar = Rs = RaBF

'eRe)
b

a

<=<'==<=1

Note thatAT 4 gr is well-formed and ald T 4 g arguments are strict and plausible.
The main task now is to prove that there isA&BF-argument fokx from P if and only
if there is anA T 4 gpp-argument for with premisesP. In fact, this can only be proven for
the special case of argumentation theories that do not &ioarguments with an infinite
number of subarguments. Technically the present frameatokvs for such arguments
even if they are noncircular. For example, 4" with Ry = {p;+1 — p; | i > 1} allows
for an argument fop; with an infinite number of subarguments (and an empty set of
premises). So far no proof has depended on finiteness of argsineanA BE', however,
arguments are by definition finite even if the set of inferendesrallows for infinite ones,
as in the just-given example.

Proposition 8.7:  For all ABF suchthatAT = AT 4pr does not allow arguments with
an infinite number of subarguments, there exists an argumentizr « if and only if
there exists an argument - 47 «.

From this it follows that

Proposition 8.8: For all ABF suchthatAT = AT 4pr does not allow arguments with
an infinite number of subarguments it holds for every argumem 4 o and every
argumentA F4p athat A F4pr « is defeated by an argumeRt 45 (§ if and only if
A Far «ais defeated by an argumeBt- 41 5.

Now the main correspondence result can be proven.

Theorem 8.9: For all ABF, any semantic§ subsumed by complete semantics and any
setkE:

() if Fis anS-extension ofd BF thenFE 41 is an S-extension ofAT, whereE 47 =
{A Far a | A|_ABF o€ E};

(2) if E is an S-extension ofAT then E4pp is an S-extension ofA BF', where
FEapr = {A FaBr @ | Abiar a0 € E}

Theorem 8.9 in fact says that there is a one-to-one corregpoecetween the exten-
sions of and BF' and those of its correspondingl’. From this it follows that:

Corollary 8.10: For any ABF, any semantic§ subsumed by complete semantics, and
for any formulay it holds thaty is skeptically (credulouslyy-acceptable ind BF if and
only if ¢ is skeptically (credulouslyy-acceptable ilMAT 4.
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9. Other related research

As was said above, the present framework is inspired by thik @fdollock (1987, 1994)
and Vreeswijk (1993, 1997). Essentially, it takes from bdth idea that defeasible rea-
soning proceeds by chaining two kinds of inference rulesiimfierence trees. The present
mathematical formulation of this idea is directly adoptenhi Vreeswijk (1993, 1997).
The present notions of undercutting and rebutting defeatadeen from Pollock’s work
and then generalised to arbitrary preference relationsgamzents (Pollock only has a no-
tion of probabilistic strength), and to logical languagegwarbitrary contrary mappings.
They are then combined with a notion of undermining defeat.

In fact, the system of Pollock (1994) is not formalised in teraf arguments but in
terms of so-called ‘inference graphs’, in which nodes amnested either by inference
links (applications of inference rules) or by defeat linkfie nodes are ‘lines of argu-
ment’, which are propositions plus an encoding of the arguirfires from which they
are derived. So if a proposition is derived in more than one, Wayccurs in more than
one line of argument. Such duplications cannot be avoidadediefeat relations depend
on the strength of a proposition, which in turn depends om#igin which it is derived.
Nodes are evaluated in terms of the recursive structureeoftaph. Jakobovits and Ver-
meir (1999) proved that Pollock’s system can be given an etpriv formulation as an
instance of Dung’s abstract argumentation frameworks priéfierred semantics.

With Vreeswijk’'s framework the relation with Dung-stylersantics is still an open
issue, since it models conflict not as a relation between tdivislual arguments but as a
property ofsetsof arguments: a set of arguments is said to be in conflict ifetlesists a
strict argument from their conclusions far. Vreeswijk then defines a notion of warrant
for arguments which resembles stable semantics.

Gordon et al. (2007) propose the Carneades framework ‘afraegt and burden of
proof’. Carneades’ main structure is that of an argumenplgravhich, despite its name,
is similar to Pollock’s inference graphs. Statement nodebrdeed to each other via argu-
ment nodes, which record the inferences from one or morestumdanother. This notion
of an argument does not have the recursive structure of DefirBt6 but instead stands
for a single inference step. As explained in Section 3.1, teenses of an argument can
be of three types: presumptions (similar to the presenegswassumptions (similar to
the present ordinary premises) and exceptions (similaptaradictories of the present
assumptions). Carneades has no distinction between atidctiefeasible inference rules
and, unlike Pollock, does not express conflicts as a specialdylink between statement
nodes. Instead, inferences (i.e., arguments) can be gitber con a statement. Because
of this, statements occur only once in the graph. Also, kttalations are thus expressed
either as arguments pro and con the same statement or asuamesitgpro an exception-
type premise of another argument. Carneades thus allowsltiaiting and undermining
but not for undercutting; instead, undercutters are sitedly arguments pro exceptions.
Carneades’ inference graphs are assumed to contain necytleh excludes the repre-
sentation of mutual attack relations through exceptions.

In Carneades the evaluation of statements in an argumepl ggaas with Pollock’s
inference graphs, defined in terms of the recursive structutiee graph. Statements are
acceptable if they satisfy their ‘proof standard’. The gah&ramework abstracts from
their nature but Gordon et al. (2007) give several examgdlpsonf standards. The proof
standards are at the heart of Carneades’ acceptabilitymqtist like the notions of de-
fence and admissibility are at the heart of Dung-style séitmrNone of the examples
given by Gordon et al. (2007) have a known relation with arigteng Dung-style seman-
tics or the present framework, which thus is an issue forreutasearch. Here it is also
relevant that Carneades incorporates dialogical elensamte it matters whether a state-
ment is ‘stated’, ‘questioned’, ‘accepted’ or ‘rejectefihese statuses of a statement are
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assumed to be provided by a dialogical context in which Cadas is embedded.

Verheij (2003) presents a “sentence-based” (as opposeddarhent-based”) logic for
defeasible reasoning, called DefLog. Verheij assumes &dbdpnguage with just two
connectives, a unary connectivewhich informally stands for ‘it is defeated that’ and
a binary connective-» for expressing defeasible conditionals. He then assumagjbe s
inference scheme for this language, namely, modus ponens f@é\ set of sentences
is said tosupporta sentence if “ p is in T or follows from T by repeated application
of ~»-modus ponens” (Verheij 2003, p. 327). It seems reasonalftarmalise this as the
backward deductions of assumption-based argumentatitimeastrict arguments of the
present framework. Moreovefr, is said toattack o if T' supportsx . Verheij then con-
siders partitiong.J, D) of sets of sentence& which he callsdialectical interpretations
and which are such that (the “justified” sentences) is conflict-free and attacks every
sentence irD (the “defeated” sentences).

As already suggested by Verheij, there is a close formatiogldbetween DefLog and
assumption-based argumentation. Firstly, dialectica&rpretations are easily proven to
be equivalent to stable labellings, which are known to bavadgnt to stable semantics
(first proven by Verheij 1996; see also Caminada 2006, Jaktsband Vermeir 1999).
Furthermore, DefLog theories can be mapped onto assumpgisedidframeworks by let-
ting an A BF contrary mapping be& ¢ = i for anyp, by regarding any set of dialectically
interpreted sentences as the assumptidrg an ABF' and by havingp, ¢ ~ 1 — 1,
for any ¢ and in DefLog’s language, as the sgt of inference rules of thel BF'. The
result is an assumption-based framework in the sense of Befild.2 with stable seman-
tics. The correspondence results of Dung et al. (2007) withdBeenko et al. (1997) then
also apply to the special case of a DefLog-stfIBF' so that by the above Theorem 8.9
DefLog is a special case of the present framework with onigtsarguments and only
undermining defeat.

Several argumentation systems model deductive argumamtafiere arguments are
proofs according to some deductive logic with consisteetpses taken from a possi-
bly inconsistent knowledge base expressed in the langudtpe @ogic (usually taken to
be standard propositional or first-order logic). In Amgoud &wayrol (2002), which is
based on propositional logic, the structure of argumentefisindefined, except that the
premises imply the conclusion according to propositioogid. Several notions of defeat
are then considered. One of them corresponds to the presdetraining defeat, where
arguments are compared in terms of a partial preorder ordiief base from which their
premises are taken. Argument acceptability is defined aswptd grounded semantics.

This variant of Amgoud and Cayrol (2002) can be reconstruated special case of
the present framework as follows. Firstly,is any propositional language closed under
classical negation, wherge = ¢ if ¢ = =) or¢ = —¢. ThenR, consists of all valid
propositional inferences whilR, is empty. The knowledge base equals. Finally, as
with Deflog, it seems reasonable to formalise arguments asttine arguments of the
present framework, although the extra constraint must dedthat such arguments have
classically consistent premises. This consistency cdnstmeakes that not all results of
this paper hold without further qualification. It is easy teifyethat Propositions 5.8, 6.1
and 6.2 still hold with this constraint (for Proposition 5.8ta that in this casé + ¢
by definition implies that the strict argument that exists ¢ohas consistent premises).
However, the proofs of Theorems 6.9 and 6.10 do not apply $atige, for similar reasons
as explained above in Section 7 with Example 7.4. It remaing tonestigated whether
these theorems can be proven for this case under altericatiktions.

Besnard and Hunter’'s (2008) version of deductive arguntientés similar to that of
Amgoud and Cayrol (2002), except for a generalised notiamoermining: an argument
is undermined by any argument of which the conclusion negtie conjunction if its
premises. It remains to be seen whether this version of aridarg can be reduced to the



May 17, 2010

16:22

Argument & Computation aspicAF

24

present version.

Two other logics for defeasible reasoning with both (dormspecific) strict and de-
feasible inference rules are Defeasible Logic (DL), first psgubby Nute (1994), and
Defeasible Logic Programming (DeLP; e.g. Garcia and Simari 2084both systems the
logical language is restricted in logic-programming sty is not explicitly argument-
based but defines the notion of a proof tree, which interleaupport and attack. Gover-
natori et al. (2004) investigate the relation with Dunglestgemantics. One variant of DL
is proven to instantiate grounded semantics. In DeLP thewalyto attack an argument
is on a (sub-)conclusion. DeLP’s notion of argument accelittabas no known relation
to any of the current argumentation semantics.

Prakken and Sartor (1997) presented an argument-basedrvefsirtended logic pro-
gramming, designed as an instance of Dung’s abstract argatian frameworks with
grounded semantics. Their system comes close to being aabpasie of the present
framework. It has (domain-specific) strict and defeasibference rules and allows for
rebutting and undercutting defeat. Furthermore, its naticen argument comes close to
a ‘deduction’ version of Definition 3.6, i.e., it representpaticular order in which an
argument can be constructed. A difference is that in PrakkdrSartor (1997) two paral-
lel subarguments do not need to be completed with an inferom their conclusion, so
that, for example (in the present notatigny = ¢, r,r = s is an argument with conclu-
sionsq ands. In Prakken and Sartor (1997) this was convenient for modgtasoning
about defeasible priorities in the system. A more substhdiiference is that while the
present framework considers rebutting and undercuttitaglabn equal footing, Prakken
and Sartor (1997) give priority to undercutting attack, sat th A undercutsB while B
rebutsA, A strictly defeatsB. It seems that the present results do not crucially rely on
this difference, but this should be further investigated.

A final difference with the present framework is that in Prakkex Sartor (1997) the
role of strict rules in defeat is different. As in the preséaimework, only defeasible
inferences can be attacked, but an argumemtith conclusiony rebuts an argumern®
with conclusiony’ if there exists sets of strict rules, and S, and a formula) such that
(with present notationy, U {x} F ¢ andS, U {¢'} - +. The difference can be best
explained with Examples 3.18 and 6.20. The motivation betiediefinition of Prakken
and Sartor (1997) was that intuitively the ‘real’ conflict istlween the two defaults on
whether someone is a bachelor or married. This is captureadiydefinition of rebutting
attack, sinceds can be extended witll; to contradictB,’s conclusion and vice versa.
Hence the rule priorities are applied 6 and B;. By contrast, in the present framework
these arguments do not rebut each other since their top atgestrict. Instead, we saw
that their conflict is decided indirectly, by comparidg with B, and B3 with As. The
present treatment of such examples can be defended by sagirapnflicts are recognised
only when they are made explicit in an argument’s conclyswinich seems to better
respect the general nature of argumentation as providiplicébgrounds for conclusions.
It remains to be investigated whether this difference adfebe present results on the
rationality postulates (note that, although Prakken ancb84897 do not assume that the
strict rules are closed under transposition, this assumgin be easily added).

In one respect Prakken and Sartor (1997) go beyond the presemt\viork, namely,
in making the preference relation on the set of defeasilie&zence rules defeasible and
derivable within the framework. In this respect the systena iforerunner of Modgil's
(2009) extended argumentation frameworks.

10. Conclusion

The main rhetorical aim of this paper has been to present the @8Bmework as a
general abstract framework for rule-based argumentatiomprevious publications on
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the ASPIC framework its unifying potential was underexposedalise of a focus on
domain-specific inference rules instead of on general inf@¢atterns. Here it has been
argued that ASPIC, although it can be used as a specific logieatame level of ab-
straction as systems like DeLP, DL and Prakken and Sartor (128n)also be used
as an abstract framework for reasoning with general inf&eales, including argument
schemes. Moreover, it has been shown that by including omderg attack and gener-
alising negation to arbitrary contrary mappings, the ASPEerework unifies rule- and
assumption-based approaches to argumentation. The l&tier ltas been backed by a
formal proof that assumption-based argumentation (Bardar et al. 1997, Dung et al.
2007) is a special case of the framework and by semi-fornalbeations that the same
holds for Verheij's (2003) DefLog and (to a large extent) Amdaand Cayrol's (2002)
version of deductive argumentation.
In addition, the following technical contributions haveebemade:

e ageneralisation of the ASPIC framework to arbitrary relagiohcontrariness between
well-formed formulas;

¢ an extension of the ASPIC framework with preference infororafor resolving con-
flicts between arguments;

o an extension of the ASPIC framework with four types of preméas$ with undermin-
ing attack;

o proof that Caminada and Amgoud’s (2007) rationality pcaes still hold for the thus
generalised and extended framework, and that they hold migtfor systems closed
under transposition but also for systems closed underaposition.

The framework can be further extended and investigated iraeways. Firstly, as indi-
cated above in Section 3.3.2, several alternative ways toedtfarelation between the
three kinds of defeat are possible. It could be investigaiahat extent such alternatives
affect the present results. The same holds for the use ofrprefes to resolve undercutting
attack (also discussed in Section 3.3.2), for the consttia@ttarguments have consistent
premises (cf. the discussion of deductive argumentati@®eiction 9) and for alternative
ways to define argument conflicts involving strict rules (cé tliscussion of Prakken and
Sartor 1997 in Section 9).

Finally, as touched upon at the end of Section 9, an importaeteion of the present
framework is making the preference relations that are usegolving conflicts defeasi-
ble and derivable within the framework. This could be donaglihe lines of Prakken and
Sartor (1997), after which it should be investigated whetedgil's (2009) reconstruc-
tion of Prakken and Sartor (1997) as an instance of his exteadgdnentation frame-
works can be adapted to the extended ASPIC framework.

Appendix: proofs

Proposition 5.8Consider any argumentation theory withclosed under classical nega-
tion and~ defined accordingly. Then ®, consists of all valid propositional inferences
thenR; is closed under contraposition and transposition.

Proof: Note first that ifR ; consists of all valid propositional inferences, theratisfies
the deduction theorem, i.e., it satisfies

{p1,...,pn}Fa ©F@mA...pn) Dy

Now consider any rule,...,p, — q. Then{p1,...,p,} F ¢ so by the deduction
theorent (p1A...pn) D q. Then also (by propositional reasonitg)—gApaA. .. p,) D
—p1. But then by the deduction theorefmq, ps, ..., p,} F —p1 SO SiNCeER; contains all



May 17, 2010 16:22 Argument & Computation aspicAF

26

valid propositional inference® ; contains—q, ps, . . ., pn, — —P1. O

Proposition 6.1 Let <.4, Def> be an argumentation framework as defined in Defini-
tion 3.22 andE any of its extensions under a given semantics subsumed hylatem
semantics. Then for all € E: if A’ € Sub(A) thenA’ € E.

Proof: The proof is a trivial adaptation of the proof of PropositionflCaminada and
Amgoud (2007), taking the possibility of undermining defiedio account. O

Proposition 6.2 Let <A, Def > be an argumentation framework corresponding to an
argumentation theory, anél’ any of its extensions under a given semantics subsumed by
complete semantics. Thé¢fUonc(A)|A € E} = Clrs({Conc(A)|A € E}).

Proof: Caminada and Amgoud’s proof of their Proposition 8 dependroposition 6.1,
which also holds for the present framework, and makes nongstsons on the use of
priorities. Therefore the proof also holds for the presensioa. O

Theorem 6.9 Let <A, Def> be an argumentation framework corresponding to a well-
formed argumentation theory that is closed under contrdjrsor transposition and
has a reasonable argument ordering and a consis@&ht;(K,,), and let E be any of
its extensions under a given semantics subsumed by consplet@ntics. Then the set
{Conc(A) | A € E'} is consistent.

Proof: Let E be a complete extension. Suppose ff@&inc(A) | A € E} isinconsistent.
This means thalA, B € E, Conc(A) = Conc(B). SinceFE is a complete extensiot;
is conflict-free. This means that does not defeaB and B does not defeadl. It will be
shown that this leads to a contradiction.

First the following lemmas are proven.

Lemma 10.1: Let A be an argument and3 a plausible or defeasible argument in
an argumentation theory that is closed under contraposito transposition such that
Conc(A) and Conc(B) are contradictories. Ther can be extended to an argumetit
that rebuts or undermineB.

Proof: Consider first systems closed under contraposition. By Goyob.6 it holds
that Conc(M (B)) = Conc(B) so with contraposition (which is assumed to hold) and
sinceConc(A) and Conc(B) contradict each other we have for aBy € M (B) that
Conc(M(B) \ {B;}) U Conc(A) + —Conc(B;). Then clearlyM (B) \ {B;} andM (A)
are the maximal fallible subarguments of an argumg&htfor —Conc(B;). Since by con-
struction of M (B) either B; is a non-axiom premise or ends with a defeasible inference,
AT either undermines or rebufs;. But thenA also undermines or rebufs.

For systems closed under transposition the existence ofregtsA™ and B; is proven
by straightforward generalisation of Lemma 6 of Caminada Aamdjoud (2007). Then
the proof can be completed as above. O

Corollary 10.2: If the argumentation theory has a reasonable argument dmgethen
if B < A, thenA™ defeatsB.

Proof: (Continuing the proof of Lemma 10.1) Sineeis reasonable, there exist such a
B; andA™ such thatd*™ £ B;. ThenA™ defeatsB; so A™ defeatsB. O

Now for proving Theorem 6.9 the following cases must be digtished.

(1) A € K;. ThenA is not in any extension.

(2) A is an assumption. IfA is a contradictory ofConc(B), then B defeatsA. If
insteadA is a contrary ofConc(B), then since the argumentation theory is well-
formed, B is also an assumption sbdefeatsB. Contradiction.
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(3) Ais firm and strict. If B is also firm and strict, thefiz(/C,,) is inconsistent,
which contradicts the assumption that it is consistenB I plausible or defea-
sible, thenA defeatsB by condition (1) of Definition 3.10. Contradiction.

(4) Ais plausible or defeasible. B is firm and strict then this is case (3), since the
case thaConc(A) is a contrary ofConc(B) is then excluded by well-formedness
of the argumentation theory. B’s top rule is defeasible andonc(A) is a con-
trary of Conc(B) then A defeatsB, while if Conc(A) andConc(B) contradict
each other, eithed defeatsB or B defeatsA. If B’s top rule is strict then by the
assumption that the argumentation theory is well-fornGggic(A) andConc(B)
contradict each other. IB £ A then B defeatsA while otherwiseA can by
Lemma 10.1 and Corollary 10.2 be extended to an arguménthat defeats3.
Itis then left to prove thatl™ € E. Any defeatelC' of A+ will by construction of
AT do so by defeating an elementif( A) or M (B) (since all inferences that are
not in M (A) or M (B) are strict and there are no new premises). However, this
defeated element is iR by Proposition 6.1, so sinck is conflict-free,C' ¢ E.
ButthenA™ € E, which contradicts the fact that is conflict-free.

O

Theorem 6.10Let <A, Def> be an argumentation framework corresponding to a well-
formed argumentation theory that is closed under contramwsor transposition and
has a reasonable argument ordering and a consistéht(K,,), and let E be any of
its extensions under a given semantics subsumed by consgelei@ntics. Then the set
Clrs({Conc(A) | A € E}) is consistent.

Proof: Asin Caminada and Amgoud (2007). O

Corollary 6.11 If the conditions of Theorem 6.10 are satisfied, then for atgressonE
under a given semantics subsumed by complete semantiostthe [sp is a premise of
an argument in£'} is consistent.

Proof: let A be any argumentift andy any premise ofd. By definition of an argument,
w is a subargument oft so by Proposition 6.1 we have thate E. Then the corollary
follows from Theorem 6.10 and the fact that subsets of corsistets are consistentd

Proposition 6.15The last-link argument ordering is reasonable.
Proof:

Lemma 10.% Consider any orderings, on sets ordered by a partial preordet, such
thatS; < Sq iff there exists ar; € S such that for alles € S5 it holds thate; <. es.
ThenifS; <5 Sy ande; is a non-smallest element 8f (w.r.t. <.), thenSa U{e; } A5 Si.

Proof: Straightforward. O

Now by Corollary 6.13 thaB < A means that there existsa € M (B) with top rule
b such that for alld’ € M (A) with top rulea it holds thath < a. Choose such &; with
minimal b (w.r.t. <.) to form A™ as in the proof of Corollary 10.2. Then by Lemma 10.3

LastDefRules(A1) £ LastDefRules(B;). ButthenA™ £ B;. 0
Proposition 6.18The weakest-link argument ordering is reasonable.
Proof:

That B < A now means thaPrem(B) —<s; Prem(A) and DefRules(B) =,
DefRules(A).

If DefRules(B) # 0 then there exists &; € DefRules(B) with top ruleb such that
for all A’ € DefRules(A) with top rulea it holds thath < a. Choose such @&; with
minimalb (w.r.t. <) in the construction ofi* andB; in the proof of Corollary 10.2. Then
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since all new defeasible rules of the correspondingare from elements of/(B), by
Lemma 10.DefRules(A™) 45 DefRules(B). But thenAt £ B;.

If DefRules(B) = () thenDefRules(A) = ). SincePrem(B) <, Prem(A) there exists
a premisep in Prem(B) such that for all premises in Prem(A) it holds thaty’ < p .
Then in the construction o™ andB; in the proof of Corollary 10.2, choodg; to be an
argument containing a minimal suphThen since all new premises of the corresponding
AT are fromPrem(B), by Lemma 10.Prem(A™) A5 Prem(B). But thenA™ £ B;. O

Proposition 8.7For all ABF suchthatAT = AT 4pr does not allow arguments with an
infinite number of subarguments, there exists an argumeny zr « if and only if there
exists an argumem -4 «.

Proof:

= For the only-if part, letSy, ..., S, be a backward deduction of It will be shown
by induction on the structure of backward deductions thatetexists amd T-argument
with conclusionn and premises,,.

Note first that since all elements 8f, are in.A so inXC,, by clause (1) of Definition 3.6
they are all alM T-argument and their premises are allSp

Consider next any sef; such that all elements &f;; are the conclusion of ad T-
argument with premises frorfi,,. Then for any element; of S;, if «; is also inS;,1,
then trivially «; is the conclusion of ardl T-argument with premises ifi,,, otherwise for
some setS = {f1,...,0m} C Si+1 there exists arulg, ..., 5, — a; In Rapr. But
then this rule is also iR ;. Let, furthermore, thed T-arguments fo3y, ..., G, (which
exist by the induction hypothesis) &, ..., B,,: then by clause (2) of Definition 3.6,
By,..., B, — «;is anAT-argument fory; with all its premises irf,,.

Next it is proven that for anyS; the union of all premises of alhT-arguments
for elements inS; is S,,. Note that for any paitS;, S;+1, the setS;,; is formed by
replacing at most one elemestin S; with a setS in S; ;1. As just proven, there exists
an AT-argumentBs, ..., B,, — «;, whereBy,..., B,, are theAT-arguments for all
elements inS. By clause (2) of Definition 3.6 the premises of this argumeatlae union
of the premises of the argumens, ..., B,. But then no premises have been added
or deleted by creating; .1 from S;. Note finally, that the union of the premises of all
AT-arguments for any element iff, (which are these elements themselves) trivially
equalsS,,. But then this set equals, for all S;.

< For the if-part, suppos® F.r a. A backward deduction with multisets, ..., S,
such thatS; = {a} andS,, = P can be created as a maximal sequence such that:

(1) S1={a},
(2) For all S;(i > 1): createS;,; by selecting one element from .S; not selected
before and:
a) ifo € PthenS;;1 = S;; otherwise
b) Sit+1 = S5; —{o}uUS for someS = {Conc(B),...,Conc(B,)} such that
there exists an argumepBt € Sub(A) of the formBy, ..., B, — o.

It is now proven that for anys; and anys € S; one of these two conditions is satisfied,
i.e., eitherc € P or o is the conclusion of an argument $ub(A). The proof is with
induction on the structure oy, ...,S,. Consider firstS; = {a}. ThenifA = a €
Ka, then trivially « € P, otherwiseA = A;,..., A, — «a sotrivially A € sub(A).
Consider next any; such that all its elements satisfy conditions (2)a and (Zjien if
Si+1 = S; this trivially also holds forS; 1, otherwise ifS replacess in S;; then by
the induction hypothesis this is since there exists a suinaegtB € Sub(A) of the form
Bi,...,B, — o such thatS = {Conc(By),...,Conc(By,)}. Then clearly for any new
elementConc(B;) € S there exists a subargument for itSab(A), namely,B;.
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Next, since all steps in the sequence apply an inferencérarteR ;, which by Defini-
tion 8.6 is also iMR 4 g, the sequence clearly is a backward deduction.

Finally it is proven that the sequence ends with = P. Let Sub*(A4) be the mul-
tiset consisting of, for ald’ € Sub(A) , as many occurrences as there are inferences
in A that useA’. Note that by the assumption thaittb(A) is finite, Sub*(A) is also
finite. Then let for anysS; the setUnusedSub(S;) be the subset of all arguments in
Sub*(A) that were not used to creatg from S;. (So UnusedSub(S;) = Sub*(A) and
e.g. UnusedSub(S2) = Sub*(A) — {A}). Then note that by any application of condi-
tion (2)b this multiset loses one element. Then sif¢e .., .S, is a maximal sequence
of elements satisfying conditions (1) and (2), we have thaisedSub(S,,) = 0. Then
sinceP C Sub*(A), we have tha”? C S,,. Assume next for contradiction that there is
an element € S,, which is not inP: then, as proven above,can be replaced by a set
S such thatS — ¢ is an inference i4, s0 54, ..., S, is not maximal. Contradiction, so
Sp, = P. O

Proposition 8.8For all ABF such thatAT = AT sppr does not allow arguments with
an infinite number of subarguments it holds for every argumem 4 o and every
argumentA F4p athat A F4pr « is defeated by an argumeBt 45 3 if and only if
A Fr «ais defeated by an argumeBt- 41 5.

Proof: = AssumeA t4pr o andB +4pr 3 defeatsA +4pr «. Then according to
the contrariness mapping lhBE' we have thats = p for somep € A. Furthermore, by
Proposition 8.7 there exists ah 41 « and an argumenB + 47 3. Then by identity
of the contrariness mappings we also have that p for somep € A according toAT.
Then sincen € K, clearlyB F41 3 defeatsd Far a.

< AssumeA 41 a andB + 41 3 defeatsA F 41 «. Then since all arguments in AT
are strict,B underminesA and according to the contrariness mappinglifi we have that
£ = p for somep € A. Furthermore, by Proposition 8.7 there existsaf 4pr « and
an argumen3 -4 pr (. Then by identity of the contrariness mappings we also haate th
B = p for somep € A according toABF. Then sincey € A, clearlyB -5r (3 defeats
AFaApr . (Il

Theorem 8.9For all ABF, any semantic$ subsumed by complete semantics and any
setk:

(1) if Fis anS-extension ofA BF thenFE 41 is an S-extension ofAT, whereE 47 =
{A Far o | AFABF (RS E};

(2) if E is an S-extension ofAT then E4pr is an S-extension ofA BF', where
Eapr = {A FaBr @ | Abar a0 € E}

Proof: As before, the proof for complete semantics suffices.

(1) Consider any complete extensiéhof ABF'. It is first proven that any member
of Er is defended by 47. SinceF is conflict-free, by construction df 4 and
Proposition 8.8 als@ 47 is conflict-free. Consider next an§ Fa7 a € Ear
defeated by som& + 47 (. By construction ofE' 47, there exists amd F4pp
o € E. Then by Propositions 8.7 and 8.8 there existB & 4pr ( defeating
A F4apr a. ButsinceFE is a complete extensiol} F4pp 3 is in turn defeated
by someC +45r v € E. Then by construction of 4 and Proposition 8.7,
alsoC Far v € Ear and by Proposition 8.8, Far ~ defeatsB Far (. So
A F a7 ais defended by 4p.

Next, to prove that any argument defendedBy; is a member off 47, as-
sumeA 41 «is defended byE 4. Then any of its defeate -4 G is in turn
defeated by an element 47 v € E4p. But then by Proposition 8.8 the same
holds for their corresponding BF-arguments, which exist by Proposition 8.7.
Moreover, by construction off 4 we have thaC +45r v € E S0, sinceF
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is a complete extension, alsb-4pr o € E. ButthenA a7 o € Ear by
construction ofty 47 and Proposition 8.7.
(2) The proof of (2) is entirely similar and therefore omitted

O

Corollary 8.10 For any A BF, any semantic$ subsumed by complete semantics, and for
any formulay it holds thaty is skeptically (credulouslyy-acceptable inA BF' if and
only if ¢ is skeptically (credulouslyy-acceptable ilMAT 4.

Proof: Straightforward. O
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