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In his talk, Huygen reported on an experiment with applying Bayesian probabilistic networks to legal
reasoning about evidence (published as Huygen 2002). Huygen based his experiment on an earlier
analysis of an actual legal case by myself and Silja Renooij. In this report I discuss Huygen’s experiments
in the light of our earlier findings.

Evidence and probability theory

During their study, law students are almost exclusively trained in finding and interpreting the relevant law,
and applying it to a given body of facts. Yet in many trials the facts are not simply given but have to be
established through reasoning and argumentation, and often the outcome of a case depends not on what is
the law but on what are the facts. Establishing the facts of a case involves reasoning about evidence. The
central question is whether the available evidence (witness testimonies and/or tangible evidence) warrants
the conclusion that a certain event occurred. In many cases this question cannot be answered with absolute
certainty, so ‘warrants’ often means that the conclusion is sufficiently plausible in light of the available
evidence. Consider the following (civil) case. A car has crashed and the officer on duty reports that he
had found skid marks on the road, he had found no sign of other obstacles, he had observed that the car’s
handbrake was in upright position, he had heard the driver accuse the passenger of pulling the handbrake,
and he had smelled alcohol when talking to the passenger. The passenger (plaintiff) sues the driver
(defendant) for compensation, stating that the accident was caused by speeding of the driver. The driver’s
defence is that the crash was instead caused by the fact that the passenger suddenly pulled the handbrake.
The judge has to assess whether, in light of the available evidence, plaintiff has met his burden of proving
that the crash was the driver’s fault. Clearly, absolute certainty is not obtainable in this case; the judge
must assess whether the evidence makes plaintiff’s explanation of the crash sufficiently plausible to meet
his burden of proof.

The standard mathematical theory concerning notions of plausibility and uncertainty is probability theory,
so a natural question is whether legal reasoning about evidence should conform to the standards of
probability theory. In actual judicial practice, explicit use of probabilistic techniques is very rare. One
possible explanation for this is that by far most lawyers lack the proper mathematical training for
performing the calculations required by probability theory. In fact, there is every reason to suspect that
professional lawyers perform just as poorly as people in general when making probabilistic judgements;
and as shown in the famous experiments by Tversky & Kahneman (1974), people generally perform very
poorly on this task.

Prakken & Renooij’s case study

However, even if lawyers would receive proper training in probabilistic reasoning techniques, applying
such techniques in practice is problematic, for one thing since probability theory requires numbers as
input, and in the fast majority of legal cases reliable numbers are very hard to obtain. In recent work by
myself and Silja Renooij on analysing the judge’s reasoning in the above car-crash example, we initially
tried to get around this problem by applying a qualitative version of a probabilistic technique, viz.
Bayesian probabilistic networks. The nodes of a probabilistic network stand for statistical variables (e.g.
‘absence or presence of skid marks on the road’, ‘whether or not the driver speeded’, ‘the position of the
handbrake’ ‘whether or not the passenger pulled the handbrake’). In our network, all variables were of a
propositional nature, having the two possible values true and false. The links between the nodes express



probabilistic dependencies between the values of such variables (for instance, ‘speeding causes skid marks
with 85% probability’). If these dependencies are quantified as numerical probabilities, and if also prior
probabilities are assigned to the node values (assigning probability 1 to the node values that represent the
available evidence), then the conditional probability concerning certain nodes of interest given a body of
evidence (modelled by setting the corresponding node values to 1) can be calculated according to the laws
of probability theory, including Bayes’ rule. In qualitative versions of probabilistic networks the
probabilities are not quantified. All that can be said of certain node values is that they have been observed,
and all that can be said of links between nodes is that they represent either a positive or negative
probabilistic influence of one node on another. A positive (respectively, negative) influence means that a
higher value of the parent node makes a higher (respectively, lower) value of the child node more likely
(In our twovalued network, true is higher than false). Now given a set of observations concerning certain
evidence nodes, labels +, — or ? can be computed for all other nodes. For our twovalued network + means
that, in the light of the new evidence, the probability that the node is true has increased , — means that it
has decreased, and ? means that it cannot be said whether it has increased, decreased, or remained the
same (the label ? results from conflicting probabilistic influences on a node). The important point is that
these labels are computed in accordance with the laws of probability theory, respecting the probabilistic
semantics of the node and link labels.

We wanted to use qualitative probabilistic networks also because their graphical structure seems very
suitable for modelling legal reasoning about evidence. In their evidential arguments, lawyers are used to
formulate stories that explain a certain event and that are ‘anchored’ in the available evidence, and a
network structure can capture the structure of such stories. For instance, in our network of the car crash
case, we tried to capture the causal structure of plaintiff’s and defendant’s explanations of the crash. As
said above, we expected that by using a qualitative version of such a network, we could avoid the number
problem. More precisely, we expected that if we drew a causal structure representing plaintiff’s and
defendant’s explanations of the crash, then assigning the proper labels to the nodes and links would be
easy, so that we could calculate the relative likelihood of the two explanations without having to assign
numbers. However, what happened was that all nodes of interest were assigned the label ?. This was due
to weak semantics of the + and — labels of links: all they mean is that there exists a positive, (or negative)
probabilistic influence; there is no way to express that a positive influence is stronger than a conflicting
negative influence. In consequence, if both positive and negative influence is exerted on a node, and if
the calculations have to respect probability theory, the node has to be assigned the label ?, and this label is
then propagated through the entire network, so that a nontrivial comparison of the likelihood of the two
explanations for the crash is impossible.

Faced with this problem, we reinterpreted the network for the case as a causal model expressed in standard
logic, and we applied a standard logical theory of abductive diagnosis. The result (published as Prakken &
Renooij 2001) was that, by any reasonable standard available in this theory, defendant’s explanation of the
crash was much more plausible than plaintiff’s, so that the court’s decision in favour of defendant
appeared fully justified.

Huygen’s experiments

Paul Huygen took our paper as the starting point for his own analysis. He agreed with the value of our
network representation of the car crash case, but he criticised our use of logical reasoning techniques on
the ground that logic cannot quantify how plausible a conclusion is, and how much a piece of evidence
contributes to this plausibility. For this reason he returned to our original interpretation of the network as a
probabilistic network, and experimented with two numerical probability distributions. One distribution
expressed Huygen’s own estimates, while the other deviated from the first to the plaintiff’s advantage.
Huygen carried out his experiment with one of the elegant software tools that have recently been
developed to support the use of probabilistic networks, viz. Hugin Light (freely downloadable from



www.hugin.com). His findings were that in both distributions, the posterior probability that the crash was
caused by the passenger’s pulling of the handbrake was much higher than the posterior probability that it
was caused by speeding of the driver.

Of course, given the speculative nature of Huygen’s estimates, his analysis cannot be conclusive. However
Huygen’s did not want to argue that with his approach the ‘right’ solution to a case can be found. Instead,
he wanted to illustrate that the use of software such as Hugin Light forces a decision maker to make his or
her assumptions explicit, and to ask the right questions. Huygen claimed that such use of probabilistic
software is feasible and useful both in training environments and in the courtroom, although he remarked
that more must be done to specialise such software to the use of lawyers. For instance, according to him
the software should facilitate easy construction of a model of a case, and it should probably contain a
knowledge base with statistics on which estimates of prior probabilities can be based. I could add to this
that the software should also enable easy sensitivity analysis, so that a user could test the sensitivity of the
computed probabilities to a change in value of certain variables. If for a certain variable this sensitivity is
high, the user knows that it is important to obtain accurate probability values for this variable.

Software in the courtroom?

In the discussion following Huygen’s talk, many expressed their doubt whether software tools for
Bayesian reasoning will ever make it to the courtroom. I share these doubts. To start with, there is the
cultural problem that most lawyers are reluctant or unable to use mathematical models. However, even if
this problem can be overcome, there is still the knowledge acquisition bottleneck. Since legal cases are
very diverse (probably much more diverse than medical cases) it is often very hard to obtain a reliable
network structure for a sufficiently general class of cases, let alone to find suitable probability
distributions for such a network; often no more than a model of a specific case can be obtained, with all
the obvious problems concerning its reliability. Huygen thinks that this problem can be tackled by
inputting different sets of probability estimates (as he did in his experiment). However, I have problems
sharing Huygen’s optimism, since this solution only partially avoids the number problem, while the
modelling problem remains. So, coming back to my initial question whether the rationality of legal
reasoning about evidence should conform to the standards of probability theory, I think that the answer in
most cases is negative, since the necessary information to apply probability theory is often not available
(and we have seen that qualitative versions of probability theory are too weak). In those cases, it seems
that a qualitative approach with ‘softer’ rationality requirements, such as nonmonotonic logic or
argumentation theory, is more appropriate.

However, I am more optimistic about the prospects for the use of probabilistic software in the teaching
and training of lawyers. The outcome of a trial can have huge impact on a person’s life, and judges have
an obligation towards society to make rational decisions. Since reasoning about evidence may involve
probabilistic judgements, lawyers should therefore be trained to make these judgements in a rational way
and to be aware of possible fallacies in their reasoning. As shown by Kadane & Schum (1996) in their
analysis of the famous Sacco & Vanzetti case, a probabilistic analysis of evidence can be very
enlightening even if it is impossible to specify fully reliable numbers. A worthwhile goal for Al & Law
researchers then is to design user-friendly probabilistic software specialised to the needs of lawyers, with
which the resistance that lawyers often have against mathematical methods may be overcome.
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