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Abstract. This paper combines two recent extensions of Dung’s abstract argumen-
tation frameworks in order to define an abstract formalism for reasoning about
preferences in structured argumentation frameworks. First, extended argumentation
frameworks extend Dung frameworks with attacks on attacks, thus providing an
abstract dialectical semantics that accommodates argumentation-based reasoning
aboutpreferences over arguments. Second, a recent extension of the ASPIC frame-
work (ASPIC+) instantiates Dung frameworks with accounts of the structure of
arguments, the nature of attack and the use of preferences to resolve attacks. In this
paper, ASPIC+ is further developed in order to define attacks on attacks, resulting
in a dialectical semantics that accommodates argumentation based reasoning about
preferences in structured argumentation. Then, some recently proposed rationality
postulates for structured extended argumentation are proven to hold.
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1. Introduction

A Dung argumentation framework(DF ) [6] consists of a binaryattackrelation on a set
of arguments. The justified arguments are then evaluated under different semantics. The
abstract nature ofDFssuccessfully provides for a general and intuitive semantics for the
consequence notions of argumentation logics and for nonmonotonic logics in general: a
DF can be instantiated by the arguments and attacks defined by a theory in a logic, and
the theory’s inferences are then defined in terms of the claims of the justified arguments.
On the other hand, the abstract nature ofDFs precludes giving guidance as to what kinds
of instantiation ensure that the instantiating theory’s defined inferences satisfy intuitively
rational properties. To address this issue, the ASIPC abstract framework for structured
argumentation [2] integrated work on rule-based argumentation [12,15,14] with [6]’s
abstract approach. ASPIC provides abstract accounts of the structure of arguments, the
nature of attack, and the use of a given preference ordering to determine which attacks
succeed asdefeats. [5] then exploited this added expressiveness to formulate several
consistency and closure rationality postulates that cannot be formulated at Dung’s fully
abstract level. These postulates were then proven to be satisfied for a special case of [2]’s
ASPIC framework; one in which preference orderings werenot accounted for.

1Corresponding Author: Sanjay Modgil, E-mail: sanjaymodgil@yahoo.co.uk.



More recently, [13] generalised the ASPIC framework to develop ASPIC+. The sig-
nificance of this work is that: 1) ASPIC+ is proven to capture a broader range of sys-
tems than ASPIC, e.g., assumption-based argumentation [4] and systems using argument
schemes; 2) ASPIC+, and so any existing or new argumentation logic instantiating AS-
PIC+, is shown to satisfy [5]’s postulates for the more general case in which preferences
areaccounted for. Hence, for example, preferences can be applied to remove attacks de-
fined by an instantiation of ASPIC+, whilst guaranteeing that the claims of the arguments
in a complete extension are mutually consistent.

In a parallel development, [7] addressed a limitation of developments ofDFs that
account for the relative strengths of attacking arguments in order to determine which
attacks succeed as defeats [1,3]. While [1] and [3] respectively assumegivenpreference
and value orderings for valuating the relative strengths of arguments, in reality, such
valuations are often themselves the outcome of argumentation based reasoning. To model
this, [7] extendsDFs so that arguments expressing preferences attack the attacks between
the arguments over which the preferences are expressed. [7] then defines evaluation of the
justified arguments of these Extended Argumentation Frameworks (EAFs) under each of
the Dung semantics. However, while [7] investigates two specific instantiations ofEAFs,
a general principled account of structured argumentation accommodating argumentation
about preferences has thus far been lacking.

In this paper we provide such an account. Section 2 reviews Dung’s theory,EAFs,
and ASPIC+. Section 3 then builds on ASPIC+ to allow for arguments that express pref-
erences over other arguments, and which then instantiate a version of [7]’sEAFsin the
same general way asDFs have been instantiated by ASPIC+. We then show that the re-
sultingstructured EAFs satisfy [5]’s rationality postulates. The significance of this work
is that it enables principled development of novel and existing instantiating logics (e.g.,
[4]) to incorporate reasoning about priorities; principled in the sense that these logics’ in-
ferences, defined now through instantiation ofstructured EAFs, are guaranteed to satisfy
[5]’s rationality postulates. For example, one can now guarantee that despite the fact that
the instantiating logic defines arguments that attack and so remove attacks, the claims of
arguments contained in a complete extension of the instantiatedEAF will be mutually
consistent. In Section 3.3 we illustrate this with an example instantiation.

2. Background

2.1. A Review of Abstract Argumentation

A Dung argumentation framework(DF) [6] is a tuple (A, C), whereC ⊆ A × A is an
attack relation on the arguments inA. An argumentX ∈ A is then said to be acceptable
w.r.t. someS ⊆ A iff ∀Y s.t. (Y,X) ∈ C implies∃Z ∈ S s.t. (Z, Y ) ∈ C (i.e.,Z rein-
statesX). A DF’s characteristic functionF is defined such that for anyS ⊆ A, F(S)
= {X|X is acceptable w.r.t. S}. We now recall Dung’s definition of extensions under
different semantics:

Definition 1 Let (A, C) be aDF, S ⊆ A beconflict free(i.e.,∀X,Y ∈ S, (X,Y ) /∈ C):

S is anadmissibleextension iffS ⊆ F(S); S is acompleteextension iffS = F(S); S is
a preferred extension iff it is a set inclusion maximal complete extension;S is a grounded
extension iff it is a set inclusion minimal complete extension (sinceF is monotonic there



is guaranteed to be a unique grounded extension given byF ’s least fixed point);S is a
stable extension iff it is preferred and∀Y /∈ S, ∃X ∈ S s.t. (X,Y ) ∈ C.
For s ∈ {complete, preferred, grounded, stable}, X ∈ A is scepticallyjustified under
thes semantics, ifX belongs to alls extensions, andcredulouslyjustified ifX belongs
to at least ones extension.

Extended Argumentation Frameworks(EAFs) [7] extendDFs to include a second
attack (pref-attack) relation:

Definition 2 [EAF] An EAF is a tuple (A, C,D), where (A, C) is aDF,D ⊆ A×C, and
if (Z, (X,Y )), (Z ′, (Y,X)) ∈ D then (Z,Z ′), (Z ′, Z) ∈ C.

Note the constraint on anyZ, Z ′, where given that they respectively pref-attack
(X,Y ) and (Y,X), then they express contradictory preferences (Y is preferred toX,
respectivelyX is preferred toY ) and so themselves symmetrically attack.

Henceforth, we focus onbounded hierarchical EAFs that are stratified so that attacks
at some leveli are only pref-attacked by arguments in the next level up (suchEAFs have
been shown to suffice for many applications ofEAFs [8,9,10]):

Definition 3 [bh-EAFs] ∆ = (A, C,D) is abounded hierarchical EAF(bh-EAF) iff there
exists a partition∆H = ( ((A1, C1),D1), . . ., ((An, Cn),Dn)) such thatDn = ∅, and:

• A =
⋃n

i=1Ai, C =
⋃n

i=1Ci,D =
⋃n

i=1Di, and fori = 1 . . . n, (Ai, Ci) is aDF.
• (C, (A,B)) ∈ Di implies (A,B) ∈ Ci, C ∈ Ai+1.

The notion of a successful attack (defeat) is then parameterised w.r.t. preferences
specified by some given setS of arguments:

Y defeatsS X, denotedY →S X, iff (Y,X) ∈ C and¬∃Z ∈ S s.t. (Z, (Y,X)) ∈ D.

An EAF conflict freesetS is then defined as a set that does not admit arguments that
symmetrically attack, but can contain someY andX such thatY asymmetricallyattacks
X, given aZ ∈ S that pref-attacks this attack. That is,S is conflict freeiff :

∀X,Y ∈ S: if (Y,X) ∈ C then (X,Y ) /∈ C, and∃Z ∈ S s.t. (Z, (Y,X)) ∈ D.

The acceptability of an argumentX w.r.t. a setS requires that there is areinstatement
setfor any reinstating defeat:

Definition 4 [EAF acceptability] LetS ⊆ A in (A, C, D). Let RS = {X1 →S

Y1, . . . , Xn →S Yn} where fori = 1 . . . n, Xi ∈ S. ThenRS is a reinstatement set
for A →S B, iff A →S B ∈ RS , and∀X →S Y ∈ RS , ∀Y ′ s.t. (Y ′, (X,Y )) ∈ D,
∃X ′ →S Y ′ ∈ RS

X is acceptable w.r.t.S ⊆ A iff ∀Y s.t.Y →S X, there is areinstatement setfor some
Z →S Y .

Given this definition of acceptability, admissible, preferred, complete, grounded and
stable extensions are defined in the same way as forDFs (except that ‘X →S Y ’ re-
places ‘(X,Y ) ∈ C’ in the definition of stable extensions), and Dung’s fundamental
lemma [6] is shown to hold forEAFs. The domain of anEAFs characteristic function
F is limited to conflict free sets and is monotonic forbh-EAFs, so that the grounded
extension is defined by the least fixed point ofF 2.

2For arbitraryEAFs,F is not monotonic. However [7] shows that iteratingF starting from the empty set
does provide a fixed point that identifies the grounded extensions



2.2. A Framework for Structured Argumentation

As stated earlier, the ASPIC+ framework of [13] further develops [2,5]’s instantiation of
[6]’s abstract frameworks with accounts of the structure of arguments, the nature of attack
and the use of preferences to resolve attacks. The framework instantiates Dung’s abstract
approach by assuming an unspecified logical language and by defining arguments as
inference trees formed by applying strict or defeasible inference rules. The notion of an
argument as an inference tree naturally leads to three ways of attacking an argument:
attacking an inference, attacking a conclusion and attacking a premise. To resolve such
conflicts, preferences may be used, which leads to three corresponding kinds of defeat:
undercutting, rebutting and undermining defeat. To characterise them, some minimal
assumptions on the logical object language are made; namely that certain well-formed
formulas are a contrary or contradictory of certain other well-formed formulas. Apart
from this the framework is still abstract: it applies to any set of inference rules divided
into strict and defeasible, and to any logical language with a defined contrary relation.

The basic notion of [13]’s framework is that of an argumentation system.

Definition 5 [Argumentation system] Anargumentation systemis a tupleAS =
(L,−,R,≤) where

• L is a logical language.
• − is a contrariness function fromL to 2L , such that ifϕ ∈ ψ then ifψ 6∈ ϕ then
ϕ is called acontraryof ψ, otherwiseϕ andψ are calledcontradictory. The latter
case is denoted byϕ = −ψ (i.e.,ϕ ∈ ψ andψ ∈ ϕ).

• R = Rs ∪Rd is a set of strict (Rs) and defeasible (Rd) inference rules such that
Rs ∩Rd = ∅.

• ≤ is a partial preorder onRd.

Henceforth, a setS ⊆L is said to be consistent iff@ ψ,ϕ ∈ S such thatψ ∈ ϕ, otherwise
it is inconsistent.

Arguments are built by applying inference rules to one or more elements ofL. Strict
and defeasible rules are of the formϕ1, . . . ,ϕn → ϕ andϕ1, . . . ,ϕn ⇒ ϕ, interpreted
as ‘if theantecedentsϕ1, . . . , ϕn hold, thenwithout exception, respectivelypresumably,
theconsequentϕ holds’. As is usual in logic, inference rules can be specified by schemes
in which a rule’s antecedents and consequent are metavariables ranging overL. Argu-
ments are constructed from a knowledge base, which is assumed to contain three kinds
of formulas.

Definition 6 [Knowledge bases] Aknowledge basein an argumentation system
(L,−,R,≤) is a pair(K,≤′) whereK ⊆ L and≤′ is a partial preorder onK \Kn.
Here,K = Kn ∪ Kp ∪ Ka where these subsets ofK are disjoint and:

• Kn is a set of (necessary)axioms. Intuitively, arguments cannot be attacked on
their axiom premises.

• Kp is a set ofordinary premises. Intuitively, arguments can be attacked on their
ordinary premises, and whether this results in defeat must be determined by com-
paring the attacker and the attacked premise (in a way specified below).

• Ka is a set ofassumptions. Intuitively, arguments can be attacked on their ordinary
assumptions, where these attacks always succeed.



The following definition of arguments is taken from [15], in which for any argument
A, the functionPrem returns all the formulas ofK (calledpremises) used to buildA,
Conc returnsA’s conclusion,Sub returns all ofA’s sub-arguments,DefRules returns all
defeasible rules inA, andTopRule returns the last inference rule used inA.

Definition 7 [Argument] AnargumentA on the basis of a knowledge base(K,≤′) in an
argumentation system(L,−,R,≤) is:

1. ϕ if ϕ ∈ K with: Prem(A) = {ϕ}; Conc(A) = ϕ; Sub(A) = {ϕ}; Rules(A) =
∅; TopRule(A) = undefined.

2. A1, . . . An →/⇒ ψ if A1, . . . , An are arguments such that there exists a
strict/defeasible ruleConc(A1), . . . , Conc(An) →/⇒ ψ in Rs/Rd.
Prem(A) = Prem(A1) ∪ . . . ∪ Prem(An),
Conc(A) = ψ,
Sub(A) = Sub(A1) ∪ . . . ∪ Sub(An) ∪ {A}.
Rules(A) = Rules(A1)∪ . . .∪Rules(An)∪{Conc(A1), . . . , Conc(An) →/⇒
ψ}
DefRules(A) = DefRules(A1) ∪ . . . ∪ DefRules(An),
TopRule(A) = Conc(A1), . . . Conc(An) →/⇒ ψ

Furthermore,DefRules(A) = Rules(A)/Rs. ThenA is: strict if DefRules(A) = ∅;
defeasibleif DefRules(A) 6= ∅; firm if Prem(A) ⊆ Kn; plausibleif Prem(A) 6⊆ Kn.

The notion of an argument ordering is used in the notion of an argument theory.
The argument ordering is a partial preorder� on arguments (with its strict counterpart
≺ defined in the usual way), and is assumed to be ‘admissible’, i.e., firm-and-strict ar-
guments are strictly better than all other arguments, and a strict inference cannot make
an argument strictly better or worse than its weakest proper subargument. Note that [13]
investigates two example definitions of� in terms of the orderings onRd andK.

Definition 8 [Argumentation theories] Anargumentation theoryis a triple AT =
(AS ,KB ,�) whereAS is an argumentation system,KB is a knowledge base inAS and
� is an admissible ordering on the set of all arguments that can be constructed fromKB
in AS .

As indicated above, when arguments are inference trees, three syntactic forms of at-
tack are possible: attacking a premise, a conclusion, or an inference. Below these attacks
will be called, respectively, undermining, rebutting and undercutting attack. To model
undercutting attacks on inferences, it is assumed that applications of inference rules can
be expressed in the object language; the precise nature of this naming convention will be
left implicit, unless indicated otherwise in examples.

Definition 9 [Attacks]
• ArgumentA undercutsargumentB (onB′) iff Conc(A) ∈ B′ for someB′ ∈ Sub(B)
of the formB′′1 , . . . , B

′′
n ⇒ ψ.

• ArgumentA rebutsargumentB on (B′) iff Conc(A) ∈ ϕ for someB′ ∈ Sub(B) of
the formB′′1 , . . . , B

′′
n ⇒ ϕ. In such a caseA contrary-rebutsB iff Conc(A) is a contrary

of ϕ.

• ArgumentA underminesB (onϕ) iff Conc(A) ∈ ϕ for someϕ ∈ Prem(B) \ Kn. In
such a caseA contrary-underminesB iff Conc(A) is a contrary ofϕ or if ϕ ∈ Ka.



Attacks combined with the preferences defined by an argument ordering yield three
kinds of defeat. For undercutting attack no preferences will be needed to make it result
in defeat, since otherwise a weaker undercutter and its stronger target might be in the
same extension. The same holds for the other two ways of attack as far as they involve
contraries (i.e., non-symmetric conflict relations between formulas).

Definition 10 [Successful rebuttal, undermining and defeat]
A successfully rebutsB if A rebutsB onB′ and eitherA contrary-rebutsB′ orA 6≺ B′.
A successfully underminesB if A underminesB onϕ and eitherA contrary-undermines
B orA 6≺ ϕ.
A defeatsB iff A undercuts or successfully rebuts or successfully underminesB.

The success of rebutting and undermining attacks thus involves comparing the con-
flicting arguments at the points where they conflict. The definition of successful under-
mining exploits the fact that an argument premise is also a subargument.

In [13], structured argumentation theories are then linked to Dung frameworks:

Definition 11 An abstract argumentation frameworkDFAT corresponding to an argu-
mentation theoryAT is a pair〈A, Def 〉 such thatA is the set of arguments defined by
AT as in Definition 7, andDef is the relation onA given by Definition 10.

Then any semantics for Dung frameworks can be used to define the acceptability status
of arguments and their conclusions.

3. Linking Structured Argumentation Theories to Extended Argumentation
Frameworks

3.1. Defining Structured Extended Argumentation Frameworks

We build on the previous section’s work in order to link structured argumentation theo-
ries to a modified version of [7]’s bounded hierarchicalEAFs. The idea is that the previ-
ous section’s reference to the argument ordering� is removed; we instead assume a fully
abstract partial functionP that extracts orderings fromsets ofarguments that conclude
preferences (over other arguments). These sets of preference arguments thencollectively
pref-attack attacks in order to undermine the success of the latter as defeats. In the fol-
lowing section, we then makeP more specific for an argumentation theory that defines
� in terms of the two orderings≤ on defeasible rules and≤′ on the knowledge base.

To motivate the generalisation of [7]’s theory to accommodate collective pref-
attacks, consider the following informal example argumentation theory in which rules
express priorities over other rules (through the use of rule names as in [14]):

Example 12 Let A = [r1 :⇒ p, r2 : p ⇒ q], B = [r3 :⇒ s, r4 : s ⇒ ¬q], C1 =
[r5 :⇒ r1 > r3], C2 = [r6 :⇒ r2 > r3],D1 = [r7 :⇒ r3 > r2],D2 = [r8 :⇒ r4 > r2].

A andB attack each other, andA is preferred toB since ruler3 in B is strictly
less than all rules inA, as concluded by argumentsC1 andC2. Effectively then, it is
the argumentsC1 andC2 that in combinationexpress a preference forA overB. In [7]
the object level construction of arguments accounts for the conjoining of such arguments
C1 andC2, so as to obtain a super-argument ‘C1 + C2’ that attacks the attack fromB



to A. This is somewhat inelegant, so that in this paper we conservatively modify [7]’s
extended theory to allow for arguments tocollectivelyattack attacks, and re-define the
notions of defeat, conflict free, and reinstatements sets accordingly. For arbitraryEAFs it
can be shown that the results in [7] are preserved under this generalisation. In this paper
we are interested inbh-EAFs, and thus only present collective attacks on attacks (and
other modifications) for suchEAFs:

Definition 13 [bh-EAFC]
• A bh-EAFC is a tuple (A, C, D), where (A, C) is a DF andD ⊆ (2A/∅) × C, and
the hierarchical partition of (A, C, D) is defined as in Definition 3, replacing a setφ of
arguments for the single preference argumentC.

• A defeatsS B iff (A,B) ∈ C and¬∃φ ⊆ S s.t. (φ, (A,B)) ∈ D.

• S ⊆ A is conflict free iff∀A,B ∈ S, if (A,B) ∈ C, then∃φ ⊆ S s.t. (φ, (A,B)) ∈ D
(i.e.,∀A,B ∈ S,A 9S B).

• Let RS = {X1 →S Y1, . . . , Xn →S Yn} where fori = 1 . . . n, Xi ∈ S. RS is a
reinstatement set forA →S B, iff A →S B ∈ RS , and∀X →S Y ∈ RS , ∀φ s.t. (φ,
(X,Y )) ∈ D, ∃X ′ →S Y ′ ∈ RS for someY ′ ∈ φ.

Acceptability and extensions ofbh-EAFCs are then defined as in Section 2.1.

Two other modifications are worth noting in the above definition. Firstly, we have
not included what one would expect to be the following generalisation to the collective
case: If (φ, (A,B)), (φ′, (B,A)) ∈ D, then∃Z ∈ φ,Z ′ ∈ φ s.t. (Z,Z ′), (Z ′, Z) ∈ C.
As will be shown in Section 3.3, this is because when linking structured theories tobh-
EAFCs one cannot always guarantee that this (or indeed the weaker constraint that an
asymmetric attack exists between someZ andZ ′) follows from the definition of attacks
given in Definition 9. The second modification to note is that the definition of conflict
free drops the requirement that conflict free sets exclude mutually attacking arguments.
We do not want to impose such a constraint at the abstract level; rather we want that it
follows from the defined linkage of structured theories tobh-EAFCs, that no extension
under any of the semantics admits arguments that attack (this will be implied by showing
that the linked theories satisfy rationality postulates in Section 3.2). However, it can
be shown that despite both these modifications, the key results for the extended theory
defined in Definition 13 still hold (proofs of all the results in this paper can be found in
[11]):

Proposition 14 [Fundamental lemma and Monotonicity of Characteristic Function]
Let ∆ = (A, C,D) be abh-EAFC. Then:

1) If S is an admissible extension of∆, andA,A′ arguments acceptable w.r.tS, then:S′

= S ∪ {A} is admissible;A′ is acceptable w.r.t.S′.
2) Let S andS′ be conflict free subsets ofA such thatS ⊆ S′. ThenF(S) ⊆ F(S′).3

We are now ready to link structured theories tobh-EAFCs.

3This result is to be expected given that the requirements that contradictory preference arguments symmet-
rically attack, and that conflict free sets exclude symmetrically attacking arguments, are only required to show
(in [7]) that iteratingF from the empty set yields a fixed point and so defines the grounded extension forarbi-
trary EAFs. Forbh-EAFCs, it follows from 1) that all admissible extensions form a complete partial order w.r.t.
set inclusion, and 2) guarantees the existence of a least fixed point forF that identifies a finitarybh-EAFC’s
grounded extension.



Definition 15 [Extended Argumentation Theory, Arguments and Preference Function]
• An extended argumentation systemis a tripleEAS = (L,−,R)
• An extended knowledge baseis a setEKB = K = Kn ∪ Kp ∪ Ka

• An extended argumentation theoryis a tupleEAT = (EAS,EKB)
• LetA denote the set of arguments defined byEAT as in Definition 7. We say thatP
is a partial function defined byEAT , where:

P : X −→ Pow(A×A) (for someX ∈ A).

When instantiating abh-EAFC, we note that sinceA may rebut or undermineB on
more than one sub-argument, respectively premise, then by Definition 10,A does not
defeatB if A does not contrary-rebut/undermineB, andfor all rebutted sub-arguments
B′ and undermined premisesφ of B, A ≺ B′ andA � φ. This will be made explicit
when defining attacks on attacks in the following definition.

Definition 16 [bh-EAFC for structured arguments] Abh-EAFCEAT corresponding to
anEAT , henceforth referred to as astructured EAF, is abh-EAFC(A, C,D) such that:

1. A is the set of arguments defined byEAT as in Definition 7;
2. (A,B) ∈ C iff A undercuts, rebuts or underminesB according to Definition 9;
3. (φ, (A,B)) ∈ D iff (A,B) ∈ C, and:

(a) ∀B′ ∈ Sub(B) s.t.A rebuts or underminesB onB′, ∃φ′ ⊆ φ s.t.A ≺ B′ ∈
P(φ′), andφ is a minimal (under set inclusion) set satisfying this condition.

(b) A does not contrary undermine, contrary rebut or undercutB (since by Def-
inition 10 these attacks succeed as defeats irrespective of preferences).

(c) it is not the case thatA is firm and strict andB is plausible or defeasible
(since by the admissibility of argument orderings described prior to Definition
8, it must be thatB ≺ A).

We say thatE is an extension of anEAT iff E is an extension ofbh-EAFCEAT .

3.2. Satisfaction of Rationality Postulates by StructuredEAFs

In [13], DFAT s are shown to satisfy [5]’s rationality postulates. StructuredEAFs also
satisfy these rationality postulates. Firstly, the sub-argument closure and closure under
strict rules postulates are unconditionally satisfied:

Theorem 17 [Sub-argument Closure] Let(A, C,D) be abh-EAFCEAT andE any of
its extensions under a given semantics subsumed by complete semantics. Then for all
A ∈ E: if A′ ∈ Sub(A) thenA′ ∈ E.

Theorem 18 [Closure under strict rules] Let(A, C,D) be abh-EAFCEAT andE any
of its extensions under a given semantics subsumed by complete semantics. Then
{Conc(A)|A ∈ E} = ClRs({Conc(A)|A ∈ E}) 4.

In [13] it is shown thatDFAT s satisfy the consistency postulates under a number of
assumptions that are more fully described in [13]:

4ClRs (P ), whereP ⊆ L is the smallest set containingP and the consequent of any strict rule inRs

whose antecedents are inClRs (P )



(Ass1) the argumentation system’s strict rules are closed under ‘transposition’5.
(Ass2) the closure ofKn under strict rule application is consistent.
(Ass3) the argumentation theory is ‘well-formed’.
(Ass4) the argument ordering is ‘reasonable’.

In this paper we refer to assumptionsAss1-3straightforwardly applied to the ex-
tended argumentation theories of Definition 15. We discussAss4after first describing an
assumption that essentially expresses (at the level of the instantiatingEAT ) an analogue
of the omitted constraint on contradictory sets of preference arguments discussed earlier:

Definition 19 [Ass5] Let ∆ = (A, C,D) be abh-EAFCEAT , and supposeφ, ψ ⊆ A s.t.
B ≺ A ∈ P(φ), A ≺ B ∈ P(ψ). Then∆ satisfiesAss5 if for someX ∈ φ, Y ∈ ψ,
eitherX andY have contradictory conclusions, or there exists some set of strict rules
extendingX to the argumentX+ s.t.X+ andY have contradictory conclusions.

We informally illustrateAss5with Example 12, in which({C1, C2}, (B,A)) ∈ D
and ({D1, D2}, (A,B)) ∈ D. Assume the strict rules contain the axioms of a partial
order, including the rule for asymmetry:o4 : X > Y → ¬(Y > X), whereX andY
range over rule names. ThenD1 can be extended toD′

1 = [r7 :⇒ r3 > r2, o4 : r3 >
r2 → ¬(r2 > r3)] whose conclusion contradictsC2’s conclusion. HenceD′

1 asymmet-
rically attacksC2. Before discussingAss4, we recall some notation from [13]:

Notation 20 M(B) denotes the maximal fallible sub-arguments ofB, where for any
B′ ∈ Sub(B), B′ ∈ M(B) iff: 1) B′ final inference is defeasible orB′ is a non-axiom
premise; and 2) there is noB′′ ∈ Sub(B) s.t.B′′ 6= B andB′ ∈ Sub(B′′) andB′′

satisfies 1).

Ass4’s reasonable ordering assumption captures the intuition that given arguments
A andB, both of which are plausible or defeasible and such thatB ≺ A, then there must
be someB′ ∈M(B) such that:

i B′ is not stronger than any maximal fallible sub-argument inM(B) (i.e.,M(B)
contains a� minimal element);

ii) B′ ≺ A (since otherwise it cannot be thatB ≺ A given thatB consists ofM(B)
extended by strict rules that by the admissibility of� cannot weaken the argu-
ments inM(B))

Articulating a counterpart to theAss4in the context ofstructured EAFs, recall that
we are interested in cases where(φ, (B,A)) ∈ D, where for each sub-argumentA′ of
A rebutted or undermined byB, there is a subset ofφ that expresses a preference forA′

overB. Also, since contradictory preferences can be expressed, and so the existence of
� minimal arguments cannot be guaranteed, we also need to express the assumption in
the context of some set of argumentsE in which such a minimal argument does exist:

Definition 21 [Ass6] Let ∆ = (A, C,D) be abh-EAFCEAT , E ⊆ A, A,B ∈ E, and
(φ, (B,A)) ∈ D. Let there exist at least one argumentX ∈ M(B) that is a� minimal
argument inE in the sense that:

for all B′′ ∈M(B), ¬∃ψ ⊆ E s.t.B′′ ≺ X ∈ P(ψ).
Then∆ satisfiesAss6if ∀A′ s.t.A′ is a sub-argument ofA andB rebuts or undermines
A onA′, ∃B′ ∈M(B) that is� minimal inE, ∃φ′ ⊆ φ s.t.B′ ≺ A′ ∈ P(φ′)

5i.e.,s = ϕ1, . . . , ϕn → ψ ∈ Rs iff for i = 1 . . . n, ϕ1, . . . , ϕi−1,−ψ, ϕi+1, . . . , ϕn →−ϕi ∈ Rs



Notice that if for a finiteM(B) there is no argument inM(B) that is� mini-
mal in E, then∀B′ ∈ M(B), ∃B′′ ∈ M(B), ∃φ ⊆ E s.t.B′′ ≺ B′ ∈ P(φ). This
in turn implies that for someB′, B′′ ∈ M(B), ∃φ, ψ ⊆ E s.t.B′ ≺ B′′ ∈ P(φ),
B′′ ≺ B′ ∈ P(ψ). Then byAss5, there must be someX ∈ φ, Y ∈ ψ such thatY , and
X or X+ extendingX with strict rules, have contradictory conclusions. HenceAss5
effectively implies that a� minimalX ∈ M(B) exists in a set free of arguments with
contradictory conclusions. We can now state the following theorems:

Theorem 22 Let (A, C,D) be abh-EAFCEAT satisfyingAss1-3, Ass5, andAss6. Let
E be any of its extensions under a given semantics subsumed by complete semantics.
Then{Conc(A)|A ∈ E} is consistent.

Theorem 23 Let (A, C,D) be abh-EAFCEAT satisfyingAss1-3, Ass5, andAss6. Let
E be any of its extensions under a given semantics subsumed by complete semantics.
ThenClRs

({Conc(A)|A ∈ E}) is consistent.

3.3. An Example Extended Argumentation Theory

In this section we describe an extended argumentation theory (EAT) and itsstructured
EAF. As in Example 12 we assume arguments constructed from named rules that may
express priorities over other rules. We also assume that anyEAT contains (in its compo-
nentEAS) strict rules axiomatising a partial order (x,y,z are meta-variables ranging over
rule names ando2 ando3 are the transpositions ofo1):

• o1 : (y > x) ∧ (z > y) → (z > x) • o2 : (y > x) ∧ ¬(z > x) → ¬(z > y)
• o3 : (z > y) ∧ ¬(z > x) → ¬(y > x) • o4 : (y > x) → ¬(x > y)
We then assume thatB ≺ A ∈ P(φ) if the arguments inφ conclude rule priorities such
thatA is stronger thanB under the last link principle [2]:

Definition 24 [Conclusion of≺s by a set of arguments] LetΓ = {r1 : l1, . . . , rn : ln}
be a set of objects named by wff ofL, and≥ a partial ordering onΓ (with its strict
counterpart> defined in the usual way). LetΓ′ ⊆ Γ,Γ′′ ⊆ Γ. Then for some setφ of
arguments:

φ is said to conclude thatΓ′ ≺s Γ′′, iff ∃ri : li ∈ Γ′ s.t.∀r : l ∈ Γ′′, r > ri is the
conclusion of an argument inφ.

Definition 25 [P defined under the last link principle] Let(A, C,D) be abh-EAFCEAT ,
A,B ∈ A, φ ⊆ A. ThenB ≺ A ∈ P(φ) under the last link principle iff

1. φ concludesLastDefRules(B) ≺s LastDefRules(A); or
2. LastDefRules(B) andLastDefRules(A) are empty andφ concludesPrem(B) ≺s

Prem(A)

Let us now illustrate how astructured EAFis instantiated by arguments constructed
from anEAT. For simplicity, our example is with domain-specific inference rules, mostly
with empty antecedents. Consider the following defeasible rules:

r1: ⇒ a p1: ⇒ r3 > r1 m1: ⇒ p3 > p1

r2: ⇒ ¬a p2: ⇒ r2 > r3 m2: ⇒ p1 ≈ p2

r3: ⇒ b p3: ⇒ r1 > r2



Indexing the inferences with the names of the rules applied, we have the mutually rebut-
ting argumentsX1 : ⇒r1 a,X2 : ⇒r2 ¬a, and:

A1: ⇒p1 r3 > r1 B1: ⇒p3 r1 > r2 C: ⇒m1 p1 < p3

A2: ⇒p2 r2 > r3 B2: B1 →o4 ¬(r2 > r1) D: ⇒m2 p1 ≈ p2

A3: A1, A2 →o1 r2 > r1

Applying the last link principle,P({A3}) = {X1 ≺ X2} hence({A3}, (X1, X2)) ∈ D,
andP({B1}) = {X2 ≺ X1} hence({B1}, (X2, X1)) ∈ D, as illustrated in Figure 1.

X1 : ⇒  ar1

X2 : ⇒  ¬ar1

A3 : A1,A2 →  o1
r2 > r1

B1 : ⇒p3r1 > r2 A4

B3 B3'

B2 : B1 →  o4¬r2 > r1

C

Figure 1. Structured EAFfor exampleEAT

Now note thatB1 andA3 do not attack each other. Furthermore, althoughB1 can
be extended with a strict rule toB2, with A3 andB2 having contradictory conclusions
(illustrating satisfaction ofAss5), A3 andB2 do not attack each other since both have a
strict top rule. However, with transpositions of these strict top rules, both can be extended
to attack the other on a defeasible subargument:

A4: A3 →o4 ¬(r1 > r2) (rebuttingB1, and soB2,B3 andB′3 onB1)
B3: B2, A1 →o2 ¬(r2 > r3) (rebuttingA2, and soA3 andA4 onA2)
B′3: B2, A2 →o3 ¬(r3 > r1) (rebuttingA1, and soA3 andA4 onA1)

Now, LastDefRules(A4) = {p1, p2}, LastDefRules(B1) = {p3}, and for i =
1, 2, 3, 3′, A4 ≺ Bi ∈ P({C}) and so({C}, (A4, Bi)) ∈ D. Also,LastDefRules(B3)
= {p1, p3} andLastDefRules(A2) = {p2}. Then it is easy to verify that noφ pref-
attacksB3’s attack onA2. Similarly,LastDefRules(B′3) = {p2, p3} andLastDefRules
(A2) = {p1}, so noφ pref-attacksB3’s attack onA2. This means thatA3 will not be in
any extension: in grounded semantics this is since neitherA1 norA2 is in the grounded
extension, while in the other semantics this is since each extension contains eitherA1

or A2 but not both (since each extension containsB3 or B′3). So in all extensionsX1’s
attack onX2 is successful. SinceC andD are not attacked, they will be in all extensions.
Hence all attacks fromA4 onB1, B2, B3 andB3′ are attacked byC, so that each ex-
tension will containB1, B2 andB3 orB′3. Hence, in no extension isX2’s attack onX1

successful, and so for anyE under any of [6]’s semantics,X1 →EX2 but notX2 →EX1.
So all such extensions containX1 but notX2.

Finally, for thestructured EAFs obtained by the instantiatingEATs in this section,
the theorems in the previous section imply that all the rationality postulates hold, given
that we can show thatAss5andAss6hold under the last link principle:

Proposition 26 Let (A, C,D) be abh-EAFCEAT , where the strict rules inEAT include
o1 . . . o4. Let P be defined under the last link principle. Then(A, C,D) satisfiesAss5
andAss6.



4. Conclusions

In this paper we have presented an abstract formalism for reasoning about preferences
in structured extended argumentation frameworks. We motivated modifications to [7]’s
extended argumentation, dropping [7]’s constraints on conflict free sets and (sets of) ar-
guments expressing contradictory preferences, and enabling collective pref-attacks on
attacks. We showed that the fundamental results that hold for bounded hierarchicalEAFs
also hold for the modified theory. We then instantiated the modifiedEAFs with [13]’s
structured argumentation theories modified so as to allow for sets of arguments to ex-
press preferences over other arguments. We then showed that the obtained instantiated
structured EAFs satisfy [5]’s closure and consistency postulates, and described an in-
stantiation by arguments built from rules that can express priorities over other rules. The
abstract specification of the instantiating structured argumentation theories means that
our work enables principled development of novel and existing systems. In future work
we will thus investigate how various existing argumentation systems (e.g. [4]’s assump-
tion based argumentation) that are shown to be a special case of [13]’s instantiaton of
DFs, can now be extended in a principled way to enable argumentation based reasoning
about preferences over other arguments. Future work will also investigate the more gen-
eral case of non-hierarchicalEAFs, and application of preference criteria other than the
last link principle (such as the weakest link principle).
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