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Abstract. This paper combines two recent extensions of Dung’s abstract argumen-
tation frameworks in order to define an abstract formalism for reasoning about
preferences in structured argumentation frameworks. First, extended argumentation
frameworks extend Dung frameworks with attacks on attacks, thus providing an
abstract dialectical semantics that accommodates argumentation-based reasoning
aboutpreferences over arguments. Second, a recent extension of the ASPIC frame-
work (ASPIC+) instantiates Dung frameworks with accounts of the structure of
arguments, the nature of attack and the use of preferences to resolve attacks. In this
paper, ASPIC+ is further developed in order to define attacks on attacks, resulting
in a dialectical semantics that accommodates argumentation based reasoning about
preferences in structured argumentation. Then, some recently proposed rationality
postulates for structured extended argumentation are proven to hold.
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1. Introduction

A Dung argumentation frameworkD F’) [6] consists of a binargttackrelation on a set

of arguments. The justified arguments are then evaluated under different semantics. The
abstract nature dDFs successfully provides for a general and intuitive semantics for the
consequence notions of argumentation logics and for nonmonotonic logics in general: a
DF can be instantiated by the arguments and attacks defined by a theory in a logic, and
the theory’s inferences are then defined in terms of the claims of the justified arguments.
On the other hand, the abstract naturéxdfs precludes giving guidance as to what kinds

of instantiation ensure that the instantiating theory’s defined inferences satisfy intuitively
rational properties. To address this issue, the ASIPC abstract framework for structured
argumentation [2] integrated work on rule-based argumentation [12,15,14] with [6]'s
abstract approach. ASPIC provides abstract accounts of the structure of arguments, the
nature of attack, and the use of a given preference ordering to determine which attacks
succeed aslefeats [5] then exploited this added expressiveness to formulate several
consistency and closure rationality postulates that cannot be formulated at Dung'’s fully
abstract level. These postulates were then proven to be satisfied for a special case of [2]'s
ASPIC framework; one in which preference orderings weseaccounted for.

1Corresponding Author: Sanjay Modgil, E-mail: sanjaymodgil@yahoo.co.uk.



More recently, [13] generalised the ASPIC framework to develop ASPIC+. The sig-
nificance of this work is that: 1) ASPIC+ is proven to capture a broader range of sys-
tems than ASPIC, e.g., assumption-based argumentation [4] and systems using argument
schemes; 2) ASPIC+, and so any existing or new argumentation logic instantiating AS-
PIC+, is shown to satisfy [5]'s postulates for the more general case in which preferences
are accounted for. Hence, for example, preferences can be applied to remove attacks de-
fined by an instantiation of ASPIC+, whilst guaranteeing that the claims of the arguments
in a complete extension are mutually consistent.

In a parallel development, [7] addressed a limitation of developmenid-gfthat
account for the relative strengths of attacking arguments in order to determine which
attacks succeed as defeats [1,3]. While [1] and [3] respectively asgumargpreference
and value orderings for valuating the relative strengths of arguments, in reality, such
valuations are often themselves the outcome of argumentation based reasoning. To model
this, [7] extendDFs so that arguments expressing preferences attack the attacks between
the arguments over which the preferences are expressed. [7] then defines evaluation of the
justified arguments of these Extended Argumentation FramewB#A&Bg under each of
the Dung semantics. However, while [7] investigates two specific instantiatidbAled
a general principled account of structured argumentation accommodating argumentation
about preferences has thus far been lacking.

In this paper we provide such an account. Section 2 reviews Dung’s tHeaRs
and ASPIC+. Section 3 then builds on ASPIC+ to allow for arguments that express pref-
erences over other arguments, and which then instantiate a version &ARSsin the
same general way &3Fs have been instantiated by ASPIC+. We then show that the re-
sultingstructured EAIS satisfy [5]’s rationality postulates. The significance of this work
is that it enables principled development of novel and existing instantiating logics (e.g.,
[4]) to incorporate reasoning about priorities; principled in the sense that these logics’ in-
ferences, defined now through instantiatiorstrfictured EAIS, are guaranteed to satisfy
[5]'s rationality postulates. For example, one can now guarantee that despite the fact that
the instantiating logic defines arguments that attack and so remove attacks, the claims of
arguments contained in a complete extension of the instantz¢dwill be mutually
consistent. In Section 3.3 we illustrate this with an example instantiation.

2. Background
2.1. A Review of Abstract Argumentation

A Dung argumentation framewoi(DOF) [6] is a tuple (4,C), whereC C A x A is an
attack relation on the arguments.h An argumentX € A is then said to be acceptable
w.r.t. someS C A iff VY s.t. Y, X) € Cimplies3Z € Ss.t. (Z,Y) € C (i.e., Z rein-
statesX). A DF's characteristic functiotF is defined such that for any C A, F(S)

= {X|X is acceptable w.r.t. $. We now recall Dung’s definition of extensions under
different semantics:

Definition 1 Let (A4,C) be aDF, S C A beconflict free(i.e.,vX,Y € S, (X,Y) ¢ C):

S is anadmissibleextension iffS C F(.S); S is acompleteextension iffS = F(S); S'is
a preferred extension iff it is a set inclusion maximal complete extenSiga grounded
extension iff it is a set inclusion minimal complete extension (siidge monotonic there



is guaranteed to be a unigue grounded extension giveR'dyeast fixed point);S is a
stable extension iff it is preferred aM@” ¢ S, 3X € Ss.t. (X,Y) € C.

For s € {complete, preferred, grounded, stahl& < A is scepticallyjustified under
the s semantics, ifX belongs to alk extensions, andredulouslyjustified if X belongs
to at least one extension.

Extended Argumentation Framewor{SAFs) [7] extendDFs to include a second
attack pref-attach relation:

Definition 2 [EAF] An EAFis atuple 4, C, D), where 4,C) isaDF, D C A xC, and
if(Z,(X,Y)),(Z,(Y,X))eDthen(Z,2"),(Z',Z) € C.

Note the constraint on an¥, Z’, where given that they respectively pref-attack
(X,Y) and (Y, X), then they express contradictory preferendésq preferred toX,
respectivelyX is preferred td") and so themselves symmetrically attack.

Henceforth, we focus omounded hierarchical EA§that are stratified so that attacks
at some level are only pref-attacked by arguments in the next level up (&4&dFs have
been shown to suffice for many applications=#Fs [8,9,10]):

Definition 3 [bh-EAFS] A = (A, C, D) is abounded hierarchical EAEbh-EAR iff there
exists a partitiom g = (((A1,C1), D1), - - -, (A, Crn), Dy)) such thatD,, = (), and:

o A= A, C=U" .G, D=U;_,D;,and fori = 1...n, (A;,C;) is aDF.

o (C,(A,B)eD;implies4,B)eC;,C € A;41.

The notion of a successful attacttefea) is then parameterised w.r.t. preferences
specified by some given sgtof arguments:

Y defeatg X, denotedy” —s X, iff (Y, X) e Cand—3Z € Ss.t. (Z, (Y, X)) € D.

An EAF conflict freesetS is then defined as a set that does not admit arguments that
symmetrically attack, but can contain soli@nd X such thay” asymmetricallyattacks
X, given aZ € S that pref-attacks this attack. That &js conflict freeiff :

VX, Y e S:if(Y,X)eCthen(X,Y) ¢ C,and3Z € Ss.t. (Z, (Y, X)) € D.

The acceptability of an argumefitw.r.t. a setS requires that there israinstatement
setfor any reinstating defeat:

Definition 4 [EAF acceptability] LetS C A in (A, C, D). Let Rg = {X; —*°
Yi,..., X, —° Y,} where fori = 1...n, X; € S. ThenRg is a reinstatement set
for A —° B,iff A —=° B € Rg, andvVX —° Y € Rg, VY's.t. (Y, (X,Y)) € D,

3X’' —-5Y’' € Rg
X is acceptable w.r.t§ C Aiff VY s.t.Y —° X, there is aeinstatement séfor some
Z=5Y.

Given this definition of acceptability, admissible, preferred, complete, grounded and
stable extensions are defined in the same way a® s (except thatX —° Y’ re-
places (X,Y) € C’in the definition of stable extensions), and Dung’s fundamental
lemma [6] is shown to hold foEAFs. The domain of afEAFs characteristic function
F is limited to conflict free sets and is monotonic fan-EAFs, so that the grounded
extension is defined by the least fixed pointof.

2For arbitraryEAFs, F is not monotonic. However [7] shows that iteratifigstarting from the empty set
does provide a fixed point that identifies the grounded extensions



2.2. A Framework for Structured Argumentation

As stated earlier, the ASPIC+ framework of [13] further develops [2,5]'s instantiation of
[6]'s abstract frameworks with accounts of the structure of arguments, the nature of attack
and the use of preferences to resolve attacks. The framework instantiates Dung’s abstract
approach by assuming an unspecified logical language and by defining arguments as
inference trees formed by applying strict or defeasible inference rules. The notion of an
argument as an inference tree naturally leads to three ways of attacking an argument:
attacking an inference, attacking a conclusion and attacking a premise. To resolve such
conflicts, preferences may be used, which leads to three corresponding kinds of defeat:
undercutting, rebutting and undermining defeat. To characterise them, some minimal
assumptions on the logical object language are made; namely that certain well-formed
formulas are a contrary or contradictory of certain other well-formed formulas. Apart
from this the framework is still abstract: it applies to any set of inference rules divided
into strict and defeasible, and to any logical language with a defined contrary relation.
The basic notion of [13]'s framework is that of an argumentation system.

Definition 5 [Argumentation system] Amargumentation systens a tuple AS =
(L,7,R,<)where
e Lis alogical language.
e — is a contrariness function froufi to 2% , such that ifp € 1) then ify) ¢ % then
@ is called acontraryof ¢, otherwisep andqy are calleccontradictory The latter
case is denoted by = — (i.e.,p € ¢ andy) € ).
e R =R,UR,isasetof strictR,) and defeasibleR ;) inference rules such that
RsNRqg=10.
e < is a partial preorder oR .

Henceforth, a sef C £ is said to be consistent iff 1, o € S such that) € , otherwise
it is inconsistent

Arguments are built by applying inference rules to one or more elemeuntsSifict
and defeasible rules are of the form, ..., ¢, — @ andpq, ..., p, = ¢, interpreted
as 'if theantecedents, . . ., ¢, hold, thenwithout exceptionrespectivelypresumably
theconsequenp holds’. As is usual in logic, inference rules can be specified by schemes
in which a rule’'s antecedents and consequent are metavariables ranging. duwgu-
ments are constructed from a knowledge base, which is assumed to contain three kinds
of formulas.

Definition 6 [Knowledge bases] Anowledge basi an argumentation system
(L,7,R,<)isapair(K, <) whereC C £ and<’is a partial preorder oft \ K.
Here, K = KC,, U K, U K, where these subsets kfare disjoint and:

e [, is a set of (necessargxioms Intuitively, arguments cannot be attacked on
their axiom premises.

e K, is a set ofordinary premisesintuitively, arguments can be attacked on their
ordinary premises, and whether this results in defeat must be determined by com-
paring the attacker and the attacked premise (in a way specified below).

e C, is asetobssumptiondntuitively, arguments can be attacked on their ordinary
assumptions, where these attacks always succeed.



The following definition of arguments is taken from [15], in which for any argument
A, the functionPren returns all the formulas ok (called premise} used to buildA,
Conc returnsA’s conclusionSub returns all ofd’s sub-argument®efRules returns all
defeasible rules iml, andTopRule returns the last inference rule useddn

Definition 7 [Argument] AnargumentA on the basis of a knowledge bagé, <’) in an
argumentation systeC, —, R, <) is:

1. pif p € K with: Prem(A) = {p}; Conc(A) = ¢; Sub(A) = {¢}; Rules(A) =
(); TopRule(A) = undefined.

2. Ay,... A, —I= v if Ay,..., A, are arguments such that there exists a
strict/defeasible rul€onc(A;), ..., Conc(A,) —/= ¥ N RJR,.
Prem(A) = Prem(A4;)U... UPrem(4,),
Conc(A) = 1,
Sub(A) = Sub(A4;) U...USub(A,) U {A4}.
Rules(A) = Rules(A;)U...URules(A4,,)U{Conc(A;1),...,Conc(4,) —/=
)}
DefRules(A) =DefRules(A;)U...UDefRules(4,),
TopRule(A) = Conc(A;),...Conc(4,,) —/= 1

FurthermorePefRules(A) = Rules(A)/R,. ThenA is: strict if DefRules(A) = 0;
defeasibldf DefRules(A) # 0; firm if Prem(A) C K,,; plausibleif Prem(A) < KC,,.

The notion of an argument ordering is used in the notion of an argument theory.
The argument ordering is a partial preordeion arguments (with its strict counterpart
< defined in the usual way), and is assumed to be ‘admissible’, i.e., firm-and-strict ar-
guments are strictly better than all other arguments, and a strict inference cannot make
an argument strictly better or worse than its weakest proper subargument. Note that [13]
investigates two example definitions ¢fin terms of the orderings oR; andK.

Definition 8 [Argumentation theories] Arargumentation theonjis a triple AT =
(AS, KB, <)whereAS is an argumentation systeti 3 is a knowledge base iAS and

=< is an admissible ordering on the set of all arguments that can be constructed fom
in AS.

As indicated above, when arguments are inference trees, three syntactic forms of at-
tack are possible: attacking a premise, a conclusion, or an inference. Below these attacks
will be called, respectively, undermining, rebutting and undercutting attack. To model
undercutting attacks on inferences, it is assumed that applications of inference rules can
be expressed in the object language; the precise nature of this naming convention will be
left implicit, unless indicated otherwise in examples.

Definition 9 [Attacks]

e ArgumentA undercutsargumentB (on B’) iff Conc(A) € B’ for someB’ € Sub(B)
of the formBY,..., B} = .

e ArgumentA rebutsargumentB on (B’) iff Conc(A) € » for someB’ € Sub(B) of
the formBY,..., B/ = ¢. In such a casd contrary-rebutsB iff Conc(A) is a contrary
of .

e ArgumentA underminesB (on ) iff Conc(A) € @ for somey € Prem(B) \ KC,,. In
such a casel contrary-undermine® iff Conc(A) is a contrary ofp or if ¢ € IC,.



Attacks combined with the preferences defined by an argument ordering yield three
kinds of defeat. For undercutting attack no preferences will be needed to make it result
in defeat, since otherwise a weaker undercutter and its stronger target might be in the
same extension. The same holds for the other two ways of attack as far as they involve
contraries (i.e., non-symmetric conflict relations between formulas).

Definition 10 [Successful rebuttal, undermining and defeat]

A successfully rebutB if A rebutsB on B’ and eitherA contrary-rebutd’ or A £ B’.
A successfully undermindsif A undermines3 ony and eitherA contrary-undermines
BorA £ .

A defeatsB iff A undercuts or successfully rebuts or successfully undernines

The success of rebutting and undermining attacks thus involves comparing the con-
flicting arguments at the points where they conflict. The definition of successful under-
mining exploits the fact that an argument premise is also a subargument.

In [13], structured argumentation theories are then linked to Dung frameworks:

Definition 11 An abstract argumentation framewoiRF 4 corresponding to an argu-
mentation theonAT is a pair(A, Def) such that4 is the set of arguments defined by
AT as in Definition 7, andDef is the relation on4 given by Definition 10.

Then any semantics for Dung frameworks can be used to define the acceptability status
of arguments and their conclusions.

3. Linking Structured Argumentation Theories to Extended Argumentation
Frameworks

3.1. Defining Structured Extended Argumentation Frameworks

We build on the previous section’s work in order to link structured argumentation theo-
ries to a modified version of [7]'s bounded hierarchig&lFs. The idea is that the previ-
ous section’s reference to the argument ordesirig removed; we instead assume a fully
abstract partial functiof? that extracts orderings frosets ofarguments that conclude
preferences (over other arguments). These sets of preference argumentdldatively
pref-attack attacks in order to undermine the success of the latter as defeats. In the fol-
lowing section, we then make more specific for an argumentation theory that defines
=< in terms of the two orderings on defeasible rules and’ on the knowledge base.

To motivate the generalisation of [7]'s theory to accommodate collective pref-
attacks, consider the following informal example argumentation theory in which rules
express priorities over other rules (through the use of rule names as in [14]):

Example 12Let A =[r; := p,ro 1 p = ¢, B=[r3 := s,74 : s = —q], Cq =
[r5 : = r1 >3], Co =[re := ro >3], D1 = [r7 := 13 > 73], Do = [rg := 14 > 1a).
A and B attack each other, and is preferred toB since rulers in B is strictly
less than all rules i, as concluded by argument§ and Cs. Effectively then, it is
the argument€’; andC,, thatin combinationexpress a preference farover B. In [7]
the object level construction of arguments accounts for the conjoining of such arguments
C1 and(Cs, so as to obtain a super-argumefit ‘+ C>’ that attacks the attack from®



to A. This is somewhat inelegant, so that in this paper we conservatively modify [7]'s
extended theory to allow for argumentsdollectivelyattack attacks, and re-define the
notions of defeat, conflict free, and reinstatements sets accordingly. For arkifBsyit

can be shown that the results in [7] are preserved under this generalisation. In this paper
we are interested ibh-EAFs, and thus only present collective attacks on attacks (and
other modifications) for sucBAFs:

Definition 13 [bh-EAFQ

e A bh-EAFCis a tuple {4, C, D), where (4,C) is aDF andD C (24/0) x C, and
the hierarchical partition of4, C, D) is defined as in Definition 3, replacing a gebf
arguments for the single preference argunt@nt

e A defeatg B iff (A, B) € Cand—3¢ C Ss.t. (¢, (4, B)) € D.

e S C Ais conflict free iffvA, B € S, if (A, B) € C, thendp C Ss.t. (», (A,B)) € D
(i.e.,VA,B € S, A »° B).

eletRs={X; —-°Y,....,X,, =% Y,} wherefori = 1...n, X; € S. Rg is a
reinstatement set fal —° B, iff A —° B € Rg, andVX —° Y € Rg, V¢ s.t. (¢,
(X,Y)) e D,3X"' -9 Y’ € Rg for someY’ € ¢.

Acceptability and extensions bh-EAFG are then defined as in Section 2.1.

Two other modifications are worth noting in the above definition. Firstly, we have
not included what one would expect to be the following generalisation to the collective
case: If ¢, (A, B)), (¢, (B,A)) € D, then3dZ € ¢,Z' € ¢pst.(Z,72"),(Z',Z) € C.

As will be shown in Section 3.3, this is because when linking structured theori#s to
EAFCs one cannot always guarantee that this (or indeed the weaker constraint that an
asymmetric attack exists between sofhand Z’) follows from the definition of attacks

given in Definition 9. The second modification to note is that the definition of conflict
free drops the requirement that conflict free sets exclude mutually attacking arguments.
We do not want to impose such a constraint at the abstract level; rather we want that it
follows from the defined linkage of structured theoriebleEAFG, that no extension
under any of the semantics admits arguments that attack (this will be implied by showing
that the linked theories satisfy rationality postulates in Section 3.2). However, it can
be shown that despite both these modifications, the key results for the extended theory
defined in Definition 13 still hold (proofs of all the results in this paper can be found in

[11]):
Proposition 14 [Fundamental lemma and Monotonicity of Characteristic Function]

Let A = (A, C, D) be abh-EAFC Then:

1) If S'is an admissible extension &f, and A, A’ arguments acceptable w.§f then:S’
=S U {A} is admissibleA’ is acceptable w.r.t5".
2) Let S and.S’ be conflict free subsets of such thatS C S’. ThenF(S) C F(5').2

We are now ready to link structured theoriebtoEAFG.

3This result is to be expected given that the requirements that contradictory preference arguments symmet-
rically attack, and that conflict free sets exclude symmetrically attacking arguments, are only required to show
(in [7]) that iteratingF from the empty set yields a fixed point and so defines the grounded extensamifor
trary EAFs. Forbh-EAFG, it follows from 1) that all admissible extensions form a complete partial order w.r.t.
set inclusion, and 2) guarantees the existence of a least fixed poift thuat identifies a finitarpph-EAFCs
grounded extension.



Definition 15 [Extended Argumentation Theory, Arguments and Preference Function]
e An extended argumentation systema triple EAS = (£, 7, R)

¢ An extended knowledge baisea setl KB = K = K,, UK, U K,

e An extended argumentation thedsya tupleE AT = (EAS, EK B)

e Let A denote the set of arguments definediy 7" as in Definition 7. We say tha®

is a partial function defined bif AT, where:

P: X — Pow(A x A) (for someX € A).

When instantiating &h-EAFG we note that sincel may rebut or underming& on
more than one sub-argument, respectively premise, then by DefinitioA #il0es not
defeatB if A does not contrary-rebut/undermirig andfor all rebutted sub-arguments
B’ and undermined premisesof B, A < B’ and A =< ¢. This will be made explicit
when defining attacks on attacks in the following definition.

Definition 16 [bh-EAFCfor structured arguments] Bh-EAFGCz 41 corresponding to
an E AT, henceforth referred to asstructured EAFis abh-EAFC(A, C, D) such that:

1. Ais the set of arguments defined BVAT as in Definition 7;
2. (A, B) € Ciff Aundercuts, rebuts or underminBsaccording to Definition 9;
3. (¢,(A,B)) e Diff (A,B) €C, and:

(a) VB’ € Sub(B) s.t. A rebuts or undermineB on B’, 3¢’ C ¢ s.t. A < B’ €
P(¢'), andg is a minimal (under set inclusion) set satisfying this condition.

(b) A does not contrary undermine, contrary rebut or undelc(gince by Def-
inition 10 these attacks succeed as defeats irrespective of preferences).

(c) it is not the case thatl is firm and strict andB is plausible or defeasible
(since by the admissibility of argument orderings described prior to Definition
8, it must be tha3 < A).

We say that is an extension of a AT iff E' is an extension abh-EAFGg 4.
3.2. Satisfaction of Rationality Postulates by Structusgd-s

In [13], DF4rs are shown to satisfy [5]'s rationality postulates. StructlEédrs also
satisfy these rationality postulates. Firstly, the sub-argument closure and closure under
strict rules postulates are unconditionally satisfied:

Theorem 17 [Sub-argument Closure] Lét4,C, D) be abh-EAFGz 41 and E any of
its extensions under a given semantics subsumed by complete semantics. Then for all
A€ E:if A’ € Sub(A) thenA’ € E.

Theorem 18 [Closure under strict rules] L&tA, C, D) be abh-EAFGCgz 4 and E any
of its extensions under a given semantics subsumed by complete semantics. Then
{Conc(A)|A € E} = Clg,({Conc(A)|A € E}) 4.

In [13] it is shown thatD F4 s satisfy the consistency postulates under a number of
assumptions that are more fully described in [13]:

4ClRr,(P), whereP C L is the smallest set containing and the consequent of any strict ruleRy
whose antecedents aredfiz  (P)



(Ass1) the argumentation system'’s strict rules are closed under ‘transpo3ition’
(Ass2) the closure ofC,, under strict rule application is consistent.

(Ass3) the argumentation theory is ‘well-formed’.

(Ass4) the argument ordering is ‘reasonable’.

In this paper we refer to assumptioAss1-3straightforwardly applied to the ex-
tended argumentation theories of Definition 15. We diséwss=lafter first describing an
assumption that essentially expresses (at the level of the instantiatifi an analogue
of the omitted constraint on contradictory sets of preference arguments discussed earlier:

Definition 19 [AssH Let A = (A,C, D) be abh-EAFGz a7, and suppose, i C A s.t.

B < A€ P(¢), A=< B e P(w). ThenA satisfiesAss5if for someX € ¢, Y € 1,
either X andY have contradictory conclusions, or there exists some set of strict rules
extendingX to the argumenk + s.t. X+ andY have contradictory conclusions.

We informally illustrateAss5with Example 12, in which{C;, C>}, (B, A)) € D
and ({D;, D2}, (A, B)) € D. Assume the strict rules contain the axioms of a partial
order, including the rule for asymmetry; : X > Y — —(Y > X), whereX andY
range over rule names. Thém, can be extended t®] = [r; := r3 > r9,04 : T3 >
ro — —(re > r3)] whose conclusion contradic%’s conclusion. Henc®] asymmet-
rically attacksC,. Before discussingss4 we recall some notation from [13]:

Notation 20 M (B) denotes the maximal fallible sub-argumentsifwhere for any
B’ € sub(B), B’ € M(B) iff: 1) B’ final inference is defeasible @&’ is a non-axiom
premise; and 2) there is nB” € Sub(B) s.t. B” # B andB’ € Sub(B”) and B”
satisfies 1).

Assds reasonable ordering assumption captures the intuition that given arguments
A andB, both of which are plausible or defeasible and such ihat A, then there must
be someB’ € M(B) such that:
i B’ is not stronger than any maximal fallible sub-argumentiB) (i.e., M (B)
contains a< minimal element);
i) B’ < A (since otherwise it cannot be th&t< A given thatB consists of\/ (B)
extended by strict rules that by the admissibility-efcannot weaken the argu-
ments inM (B))

Articulating a counterpart to thass4in the context oktructured EAIS, recall that
we are interested in cases whéve (B, A)) € D, where for each sub-argument of
A rebutted or undermined b, there is a subset @f that expresses a preference for
over B. Also, since contradictory preferences can be expressed, and so the existence of
=< minimal arguments cannot be guaranteed, we also need to express the assumption in
the context of some set of argumetitsn which such a minimal argument does exist:

Definition 21 [Ass§ Let A = (A,C, D) be abh-EAFCgar, E C A, A,B € E, and
(¢,(B,A)) € D. Let there exist at least one arguménte M (B) that is a< minimal
argument in¥ in the sense that:

forall B” € M(B),~3¢y C Est.B" < X € P(¢).
ThenA satisfiesAss6if VA’ s.t. A’ is a sub-argument ol and B rebuts or undermines
AonA’,3B’" € M(B) thatis< minimal in £, 3¢’ C ¢ s.t. B’ < A’ € P(¢')

Sie,s=01,...,on =W ERsIFfOr i =1...1,01,...,0i—1, =0, Pit1,.+Pn — —0i € Rs




Notice that if for a finite M (B) there is no argument id/(B) that is < mini-
mal in E, thenVB’ € M(B),3B"” € M(B),3¢ C Est.B” < B' € P(¢). This
in turn implies that for some3’, B” € M(B), 3¢, C E s.t. B’ < B" € P(¢),
B"” < B’ € P(¢). Then byAss§ there must be som& € ¢, Y € ¢ such thatt’, and
X or X+ extendingX with strict rules, have contradictory conclusions. HeAcs5
effectively implies that a2 minimal X € M (B) exists in a set free of arguments with
contradictory conclusions. We can now state the following theorems:

Theorem 22 Let (A, C, D) be abh-EAFG: 41 satisfyingAss1-3 Ass5 andAssG Let
E be any of its extensions under a given semantics subsumed by complete semantics.
Then{Conc(A)|A € E} is consistent.

Theorem 23 Let (A, C, D) be abh-EAFGg 47 satisfyingAss1-3 Ass5 andAssG Let
E be any of its extensions under a given semantics subsumed by complete semantics.
ThenClg, ({Conc(A)|A € E}) is consistent.

3.3. An Example Extended Argumentation Theory

In this section we describe an extended argumentation th&#y)(and itsstructured

EAF. As in Example 12 we assume arguments constructed from named rules that may
express priorities over other rules. We also assume thaEAycontains (in its compo-
nentEAS strict rules axiomatising a partial order (x,y,z are meta-variables ranging over
rule names and2 ando3 are the transpositions of ):

eo1:(y>x)N(z>y)— (2> x) eoy:(y>x)A(2>x)— (2 >y)
eo3:(z>y)AN—(z>x) = (y>2x) eo0s:(y>x)— (z>y)

We then assume th& < A € P(¢) if the arguments i conclude rule priorities such
that A is stronger tharB under the last link principle [2]:

Definition 24 [Conclusion of<, by a set of arguments] L&t = {ry : l1,...,7, : I}
be a set of objects named by wif df, and> a partial ordering ol (with its strict
counterpart> defined in the usual way). L&t C I',T" C I'. Then for some sep of
arguments:

¢ is said to conclude that’ <, I/, iff 3r; : [; e IV s.t.Vr: 1 € T, r > r; is the
conclusion of an argument if

Definition 25 [P defined under the last link principle] Lé#, C, D) be abh-EAFCgy a7,
A, Be A ¢ C A ThenB < A € P(¢) under the last link principle iff

1. ¢ concluded.astDefRules(B) <, LastDefRules(A); or
2. LastDefRules(B) andLastDefRules(A) are empty ang conclude®rem(B) <
Prem(A)

Let us now illustrate how atructured EAHRSs instantiated by arguments constructed
from anEAT. For simplicity, our example is with domain-specific inference rules, mostly
with empty antecedents. Consider the following defeasible rules:

r. =a p1. =>Tr3>T] mi. = p3>p1
To. = Ta p2. =T >T3 meo. = P1 = P2
r3. =b P3. =>T1 >T9



Indexing the inferences with the names of the rules applied, we have the mutually rebut-
ting argumentsX; : =, a, X5 ! =2 —a, and:

A =T > Bi: =31 > C: =mip1 <p3

Agt =pare >3 Byt By —os(r2>11) Di =n2p1 =D

Azl A, A —o1m2 >
Applying the last link principleP({As}) = {X1 < X2} hence({43}, (X1, X32)) € D,
andP({B1}) = {X2 < X1} hence({B:}, (X2,X1)) € D, asillustrated in Figure 1.

Cwd— ¢@~\ ®
r2>ri

B2 : B1 —

o2

Figure 1. Structured EAFRor exampleE AT

Now note thatB; and A3 do not attack each other. Furthermore, althodigjhcan
be extended with a strict rule tB,, with A3 and B, having contradictory conclusions
(illustrating satisfaction oAss5, A3 and By do not attack each other since both have a
strict top rule. However, with transpositions of these strict top rules, both can be extended
to attack the other on a defeasible subargument:

Ayt Az —pq (1 > 1) (rebuttingB;, and soBs, B3 andBj on By)
Bs: By, A; —e2 —(r2 >13) (rebuttingAs, and sod; and A4 on A,)
B Ba, A —,3 (r3 >1r1) (rebuttingA;, and soA; and A4 on 4;)

Now, LastDefRules(Ay) = {p1,p2}, LastDefRules(B;) = {p3}, and fori =
1,2,3,3', A4 < B; € P({C}) and so({C}, (A4, B;)) € D. Also, LastDefRules(B3)
= {p1,p3} andLastDefRules(A3) = {p2}. Then it is easy to verify that n¢ pref-
attacksBs's attack onA,. Similarly, LastDefRules(Bj) = {p2, ps} andLastDefRules
(A2) = {p1}, s0 nog pref-attacksBs’s attack onA,. This means thati; will not be in
any extension: in grounded semantics this is since nedharor A; is in the grounded
extension, while in the other semantics this is since each extension containsither
or As but not both (since each extension contalfysor B). So in all extensions(;’s
attack onXs is successful. Sinc€ and D are not attacked, they will be in all extensions.
Hence all attacks from, on By, B, B3 and B3’ are attacked by, so that each ex-
tension will containB;, B, and B; or Bj. Hence, in no extension i¥,’s attack onX;
successful, and so for adyunder any of [6]'s semantics; —# X, but notX, —£Xj;.
So all such extensions contalfy but notX,.

Finally, for thestructured EAR obtained by the instantiatingAT’s in this section,
the theorems in the previous section imply that all the rationality postulates hold, given
that we can show thatss5andAss6hold under the last link principle:

Proposition 26 Let (A, C, D) be abh-EAFCg 41, Where the strict rules iR AT include
ol...o04. Let P be defined under the last link principle. Thed, C, D) satisfiesAss5
andAss6



4. Conclusions

In this paper we have presented an abstract formalism for reasoning about preferences
in structured extended argumentation frameworks. We motivated modifications to [7]'s
extended argumentation, dropping [7]'s constraints on conflict free sets and (sets of) ar-
guments expressing contradictory preferences, and enabling collective pref-attacks on
attacks. We showed that the fundamental results that hold for bounded hieraizhisal

also hold for the modified theory. We then instantiated the modHEia#s with [13]'s
structured argumentation theories modified so as to allow for sets of arguments to ex-
press preferences over other arguments. We then showed that the obtained instantiated
structured EAB satisfy [5]'s closure and consistency postulates, and described an in-
stantiation by arguments built from rules that can express priorities over other rules. The
abstract specification of the instantiating structured argumentation theories means that
our work enables principled development of novel and existing systems. In future work
we will thus investigate how various existing argumentation systems (e.g. [4]'s assump-
tion based argumentation) that are shown to be a special case of [13]'s instantiaton of
DFs, can now be extended in a principled way to enable argumentation based reasoning
about preferences over other arguments. Future work will also investigate the more gen-
eral case of non-hierarchicBAFs, and application of preference criteria other than the
last link principle (such as the weakest link principle).
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