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Abstract. The ASPIC+ framework is a general framework for argumentation-
based inference which aims to unifies two research strands: those in which argu-
ments can only be attacked on their defeasible inferences and those in which argu-
ments can only be attacked on their premises. The framework is meant to define a
wide class of instantiations of abstract argumentation frameworks and to support
the investigation of rationality postulates for argumentation-based inference.

Recently, it has been argued that the ASPIC+ framework suffers from several
weaknesses. In this paper these criticisms are argued to be based on a number of
misconceptions on the nature of the ASPIC+ framework.
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1. Introduction

In [19,15] a general framework called ASPIC+ is proposed for argumentation-based in-
ference with two kinds of inference rules, strict and defeasible ones. The framework is
meant to define a wide class of instantiations of [10]’s abstract argumentation frame-
works, and to integrate and further develop two main research strands in the study
of argument-based inference. The first research strand is work that locates all fallibil-
ity of arguments in the use of defeasible inference rules, such as John Pollock’s work
[18], Vreeswijk’s abstract argumentation systems [22] and Defeasible Logic Program-
ming [11]. The second approach is work that locates all fallibility of arguments in their
premises, such as assumption-based argumentation [7] and variants of classical argumen-
tation [6,13].

An important use of the ASPIC+ framework is to investigate whether special cases
or instances satisfy the four rationality postulates for argumentation-based inference pro-
posed by [8]. To this end, [19,15] identify a number of jointly sufficient conditions under
which these postulates are satisfied by special cases or instances of ASPIC+, extending
conditions identified by [8] for a special case of ASPIC+ without preferences and with-
out a knowledge base. Existing frameworks or systems can then be translated into AS-
PIC+, and then investigated as to whether they satisfy these conditions. Likewise, new
systems can be designed as instances of ASPIC+ in such a way that they satisfy these
conditions. Thus ASPIC+ is not proposed as a framework superior to other approaches to
argumentation. Rather, the aim of ASPIC+ is to provide a framework in which to analyse



existing and formalise new approaches, and identify conditions under which they satisfy
rationality postulates (while possibly being extended with preferences over arguments).

Recently, it has been argued in [1] that the ASPIC+ framework suffers from several
weaknesses. We believe that the criticisms in [1] are based on a number of misconcep-
tions on the nature of ASPIC+. Among other things, our definitions and theorems are
misread, our account of consistency is incompletely presented, claims that certain exam-
ples are counterexamples to our results are incorrect, claims are ascribed to us that we
have not made, and more generally, the nature of ASPIC+ as a framework rather than a
particular system is not appreciated. We think it important that [1]’s criticisms are pub-
licly rebutted, so that the research community can make an informed assessment of their
quality.1

We first in Section 2 review the ASPIC+ framework and comment in more detail
on its nature and possible uses. We then in Section 3 present the criticisms of [1] and
discuss why we think they are not justified.

2. Preliminaries

2.1. Abstract argumentation frameworks

An argumentation framework (AF) [10] is a tuple (A, C), where C ⊆ A × A is a binary
attack relation on the argumentsA. The status of arguments is then evaluated as follows:

Definition 1 Let (A, C) be a AF. Then S ⊆ A is then said to be conflict free iff ∀X,Y ∈
S, (X,Y ) /∈ C. For any X ∈ A, X is acceptable with respect to some S ⊆ A iff ∀Y s.t.
(Y,X) ∈ C implies ∃Z ∈ S s.t. (Z, Y ) ∈ C. Let S ⊆ A be conflict free. Then:

• S is an admissible extension iff X ∈ S implies X is acceptable w.r.t. S;
• S is a complete extension iff X ∈ S iff X is acceptable w.r.t. S;
• S is a preferred extension iff it is a set inclusion maximal complete extension;
• S is the grounded extension iff it is the set inclusion minimal complete extension;
• S is a stable extension iff it is preferred and ∀Y /∈ S, ∃X ∈ S s.t. (X,Y ) ∈ C.

2.2. The ASPIC+ framework for structured argumentation

The ASPIC+ framework [19,15] defines arguments, as in [22], as inference trees formed
by applying strict or defeasible inference rules to premises that are well-formed formulae
(wff) in some logical language. The distinction between two kinds of inference rules is
taken from [17,18]. Informally, if an inference rule’s antecedents are accepted, then if
the rule is strict, its consequent must be accepted no matter what, while if the rule is
defeasible, its consequent must be accepted if there are no good reasons not to accept it.
Arguments can be attacked on their (non-axiom) premises and on their applications of
defeasible inference rules. Some attacks succeed as defeats, which is partly determined
by preferences. The acceptability status of arguments is then defined by applying any of
[10]’s semantics for abstract argumentation frameworks to the resulting set of arguments
with its defeat relation.

1Early May 2012 Amgoud put an “updated and extended” version online at http://www.irit.fr/
˜Leila.Amgoud/. However, we choose to comment only on the version as officially published in [1].

http://www.irit.fr/~Leila.Amgoud/
http://www.irit.fr/~Leila.Amgoud/


ASPIC+ is not a system but a framework for specifying systems. It defines the notion
of an abstract argumentation system (a notion adapted from [22]) as a structure consisting
of a logical language L with a binary contrariness relation − and a naming convention n
for defeasible rules, a setR consisting of two subsetsRs andRd of strict and defeasible
inference rules, and a partial preorder ≤ onRd. ASPIC+ as a framework does not make
any assumptions on how these elements are defined in a given argumentation system,
except for some minimal assumptions on ≤ (the idea to abstract from the precise nature
of L/R is taken from [22] while the idea to abstract from − and n is taken from [7]
and [18], respectively). In many instantiations of ASPIC+ the set of strict rules will be
determined by the choice of the logical language L: its formal semantics will tell which
inference rules over L are valid and can therefore be added toRs.

The formal definitions of ASPIC+ differ on minor points between the various publi-
cations. Unless specified otherwise, we below present the version of [15].

Definition 2 An ASPIC+argumentation system is a tupleAS = (L,−,R, n,≤) where:

• L is a logical language.
• − is a contrariness function from L to 2L, such that:

∗ ϕ is a contrary of ψ if ϕ ∈ ψ, ψ 6∈ ϕ;
∗ ϕ is a contradictory of ψ (denoted by ‘ϕ = −ψ’), if ϕ ∈ ψ, ψ ∈ ϕ.

• R = Rs ∪ Rd is a set of strict (Rs) and defeasible (Rd) inference rules of the
form ϕ1, . . . , ϕn → ϕ and ϕ1, . . . , ϕn ⇒ ϕ respectively (where ϕi, ϕ are meta-
variables ranging over wff in L), and such thatRs ∩Rd = ∅.

• n : Rd −→ L is a naming convention for defeasible rules.
• ≤ is a partial preorder onRd.

We say that − corresponds to negation iff L contains a connective ¬ such that ψ ∈ ϕ
just in case ψ = ¬ϕ or ϕ = ¬ψ.

In the previous publications on ASPIC+ the idea of a naming convention n was instead
informally introduced when defining undercutting attack (see Definition 6 below). Infor-
mally, n(r) is a wff in L which says that rule r ∈ R is applicable.

Definition 3 For any S ⊆ L, let the closure of S under strict rules, denotedCl(S), be the
smallest set containing S and the consequent of any strict rule in Rs whose antecedents
are in Cl(S). Then a set S ⊆ L is

• directly consistent iff @ ψ, ϕ ∈ S such that ψ ∈ ϕ
• indirectly consistent iff Cl(S) is directly consistent.

This definition is generalised from [8], in which these two notions of consistency were
defined for the special case where − corresponds to negation. Moreover, in [8], and also
in [19,15], only direct consistency was explicitly defined (and called “consistency”),
while indirect consistency was implicitly defined in the definition of the rationality pos-
tulate of indirect consistency. Note that the definition of indirect consistency is in [8]
parametrised by the choice ofRs and in ASPIC+ also by the choice of −.

Definition 4 An ASPIC+knowledge base in an argumentation system (L,−,R, n,≤)
is a pair (K,≤′) where:



• K ⊆ L, and K = Kn ∪ Kp ∪ Ka where these subsets of K are disjoint, and: Kn

is the (necessary) axioms ; Kp is the ordinary premises; Ka is the assumptions.
• ≤′ is a partial preorder on the non-axiom premises K \Kn.

Intuitively, axiomatic premises cannot be attacked, the success of attacks (as defeats)
on ordinary premises is contingent on preferences, while attacks on assumptions always
result in defeats (cf. assumptions in [7]).

Arguments are defined as in [22], where for any argument A, Prem returns all the
formulas ofK (premises) used to buildA, Conc returnsA’s conclusion, Sub returns all of
A’s sub-arguments, Rules and DefRules respectively return all rules and all defeasible
rules in A, and TopRule(A) returns the last rule applied in A.

Definition 5 An ASPIC+argument A on the basis of a knowledge base (K,≤′) in an
argumentation system (L,−,R, n,≤) is:

1. ϕ if ϕ ∈ K with: Prem(A) = {ϕ}; Conc(A) = ϕ; Sub(A) = {ϕ}; Rules(A) =
∅; TopRule(A) = undefined.

2. A1, . . . An →/⇒ ψ if A1, . . . , An are finite arguments such that there exists a
strict/defeasible rule Conc(A1), . . . , Conc(An)→/⇒ ψ inRs/Rd.
Prem(A) = Prem(A1) ∪ . . . ∪ Prem(An), Conc(A) = ψ,
Sub(A) = Sub(A1) ∪ . . . ∪ Sub(An) ∪ {A}.
Rules(A) = Rules(A1)∪ . . .∪Rules(An)∪{Conc(A1), . . . , Conc(An)→/⇒
ψ},
DefRules(A) = {r|r ∈ Rules(A), r ∈ Rd},
TopRule(A) = Conc(A1), . . . Conc(An)→/⇒ ψ

Furthermore, an argumentA is: strict if DefRules(A) = ∅; defeasible if DefRules(A) 6=
∅; firm if Prem(A) ⊆ Kn; plausible if Prem(A) 6⊆ Kn.

Note that classical-logic approaches to argumentation (e.g., [4,13]) require that the
premises of arguments are consistent. In order to formalise these approaches as instances
of ASPIC+, we in [15] defined an argument A to be c-consistent if Cl(Prem(A)) does
not contain contradictory conclusions.

Three kinds of attack are defined for ASPIC+ arguments. B can attack A by attack-
ing a premise (undermining attack) or a conclusion (rebutting attack) of A, or an infer-
ence step in A (undercutting attack). Rebutting and undercutting attack are only possi-
ble on applications of defeasible inference rules. This idea and the distinction between
rebutting and undercutting attack are taken from [17,18]. Some kinds of attack succeed
as defeats independently of preferences over arguments, whereas others succeed only if
the attacked argument is not stronger than the attacking argument. The partial preorders
on defeasible rules and non-axiom premises may be used in defining an ordering � on
the constructed arguments (we assume the strict counterpart ≺ of �). For example, [19]
presents definitions of � according to the weakest and last link principles.

Definition 6 A attacks B iff A undercuts, rebuts or undermines B, where:
• A undercuts argument B (on B′) iff Conc(A) ∈ n(r) for some B′ ∈ Sub(B) such that
B′’s top rule r is defeasible.2

2Note that in [19,15] we instead wrote “Conc(A) ∈ B′ for some B′ ∈ Sub(B)” and we stated that this
implicitly assumes a naming convention for applications of defeasible rules in L.



• A rebuts argument B (on B′) iff Conc(A) ∈ ϕ for some B′ ∈ Sub(B) of the form
B′′1 , . . . , B

′′
n ⇒ ϕ. In such a case A contrary-rebuts B iff Conc(A) is a contrary of ϕ.

• Argument A undermines B (on B′) iff Conc(A) ∈ ϕ for some B′ = ϕ, ϕ ∈
Prem(B) \ Kn. In such a case A contrary-undermines B iff Conc(A) is a contrary of ϕ
or if ϕ ∈ Ka.

An undercut, contrary-rebut, or contrary-undermine attack is said to be preference-
independent, otherwise an attack is preference-dependent.
A defeatsB iff (1)A attacksB onB′ and (2) ifA’s attack onB′ is preference-dependent
then A ⊀ B′.

The success of rebutting and undermining attacks thus involves comparing the con-
flicting arguments at the points where they conflict. The definition of successful under-
mining exploits the fact that an argument premise is also a subargument. The rationale
for distinguishing preference-independent attacks is discussed in detail in [21], where it
is argued that these attacks already embody a preference for the attacking over the at-
tacked argument (e.g. attacks on negation-as-failure assumptions in logic programming
which can be modelled as contrary-undermining attacks in ASPIC+).

Adding an argument ordering to an argumentation system and a knowledge base
yields an argumentation theory, which combined with the attack relation induces a struc-
tured argumentation framework. This framework in turn induces a Dung abstract argu-
mentation framework.

Definition 7 An argumentation theory is a tuple AT = (AS,KB) where AS is an ar-
gumentation system and KB is a knowledge base in AS.
A structured argumentation framework (SAF) defined by AT , is a triple 〈A, C, � 〉
where A is the set of all (or all c-consistent) arguments constructed from KB in AS, �
is a partial preorder on A, and (X,Y ) ∈ C iff X attacks Y .
Let ∆ = 〈A, C, � 〉 be a SAF, and D ⊆ A×A, where (X,Y ) ∈ D iff X defeats Y . The
extensions of the SAF ∆ are the extensions of the Dung framework (A,D), as defined
in Definition 1, with C replaced by D.

Note that in [15], a variation of the ASPIC+ framework is considered in which the
conflict-freeness of a set of arguments is defined with respect to attack instead of defeat.
For present purposes this variation is irrelevant and will henceforth be ignored.

Let us now formally state [8]’s rationality postulates for ASPIC+. For any set S of
arguments, let Conc(S) be the set of all conclusions of any argument in S. Then for any
∆ = (A, C,�):

• ∆ satisfies subargument closure iff for any complete extension E of ∆ it holds
that if A ∈ E, then Sub(A) ⊆ E.

• ∆ satisfies direct consistency iff for any complete extension E of ∆ it holds that
Conc(E) is directly consistent.

• ∆ satisfies indirect consistency iff for any complete extension E of ∆ it holds
that Cl(Conc(E)) is directly consistent.

• ∆ satisfies closure under strict rules iff for any complete extension E of ∆ it
holds that Conc(E) = Cl(Conc(E)).



In [8] the second and third postulate say “consistent” instead of “directly consistent”
but consistency is in [8] still defined in the same way as in our Definition 3 of direct
consistency. So these formulations of the postulates are equivalent to those of [8] except
that in ASPIC+ the notion of direct consistency is not defined in terms of negation but
is generalised to arbitrary contrariness functions. This difference does not play a role in
[1]’s criticisms.

2.3. On the nature and uses of ASPIC+

It is important to realise that ASPIC+ is not a system but a framework for specifying
systems, such that these systems can be analysed on their properties, for instance, on
whether they satisfy the above four rationality postulates. In future research we also want
to address [9]’s recently proposed additional postulates of so-called ‘non-interference’
and ‘crash resistance’.

One consequence of the framework-nature of ASPIC+ is that it cannot be criticised
by showing that it allows for instantiations that violate these postulates, since it is the
very aim of ASPIC+ to enable investigations of whether instantiations satisfy the postu-
lates. Moreover, in [19,15] much guidance is given to users of the ASPIC+ framework
to ensure that their instantiations satisfy the postulates, in the form of a set of jointly
sufficient conditions for their satisfaction, extending those identified in [8]. These con-
ditions state some intuitively rational conditions on the strict rules and axiom premises
(e.g., that strict rules admit contrapositive reasoning and the axiom premises are indi-
rectly consistent), and that the argument ordering � is ‘reasonable’ in that it respects,
for example, that strict and firm arguments are stronger than plausible and/or defeasible
arguments. This guidance can also be used to investigate existing systems on their prop-
erties, namely, by translating them as an instance or special case of ASPIC+ and by then
investigating whether they satisfy our sufficient conditions. For example:

• In [19] assumption-based argumentation was shown to be a special case of AS-
PIC+ with only strict inference rules, only assumption-type premises and no pref-
erences. Because of this result, the sufficient conditions identified in [8] and [19]
for satisfying [8]’s consistency postulates also apply to assumption-based argu-
mentation, which in general does not satisfy these postulates.

• In [15] two forms of classical argumentation were shown to be a special case of
ASPIC+ with a propositional language, with only ordinary premises, with as strict
rules all propositionally valid inferences and with no defeasible rules, and with all
arguments being c-consistent. Then [19]’s weakest-link argument ordering was
used to yield a preference-based version of classical argumentation that satisfies
[8]’s rationality postulates.

• In [20] the Carneades system of [12] was shown to be an instance of ASPIC+

with no defeat cycles, so that Carneades theories always have a unique extension
in any of Dung’s semantics (this result requires the use of so-called issue premises
as included in ASPIC+ in [19]). Moreover, in [21] the translation was exploited
to show that Carneades satisfies all four rationality postulates of [8].

• Finally, in [16] it is shown that instantiations of ASPIC+ in which the set of strict
rules Rs is derived from a Tarskian abstract logic, and where preferences over
arguments may be included, are well-behaved with respect to [8]’s rationality
postulates (confirming informal conjectures made in [15]).



3. Amgoud’s criticisms of ASPIC+

3.1. ASPIC+ on consistency

[1] claims that ASPIC+’s notion of consistency (above called direct consistency) is too
restricted and leads to a number of problems. However, here the ASPIC+ framework is
incompletely presented, since as explained above, it also contains the notion of indirect
consistency (taken from [8]), and in [19,15] results are proven on [8]’s postulates for
both direct and indirect consistency. (In fact, indirect consistency immediately follows
from the proofs of direct consistency and closure under strict rules.)

3.2. Alleged counterexamples to consistency results for ASPIC+

[1] goes on to present three examples claimed to be counterexamples to our theorems
in [19,15] which state satisfaction of [8]’s consistency postulates. We now show that
these claims are false. To start with, we note that all three purported examples satisfy the
conditions under which our theorems hold, so if the extensions in the three examples are
inconsistent, then [1] is correct in saying that the examples are counterexamples to our
theorems. However, it can be shown that all extensions in the examples are both directly
and indirectly consistent.

Example 1 Consider Example 1 in [1], in which it is assumed that L contains propo-
sitional formulas and that X = {x, x ⊃ y,¬y}3 and that x = {¬x,¬¬¬x, . . .},
¬y = {y,¬¬y, . . .} and (x ⊃ y) = {x ∧ ¬y,¬¬(x ∧ ¬y), . . .}. Amgoud sets Kp = X
and leaves all other sets, includingR, empty.

SinceR is empty, the only arguments that can be constructed are the elements of X (i.e.,
each premise in Kp = X is an argument). Moreover, according to the given contrariness
relation, no two elements in X are a contrary or contradictory of the other, and so no
argument is attacked, and so in all of [10]’s semantics there is a unique extension, namely
X . Then, since R is empty, Conc(X) = X . So we must verify whether X is directly or
indirectly inconsistent.

[1] correctly observes that according to ASPIC+’s definition of (direct) consistency
the setX is consistent but then she adds “whereas it is not”. Apparently, when saying the
latter, L is being interpreted as a standard propositional language and ASPIC+’s notion
of consistency is accordingly being replaced with standard propositional-logic’s notion
of consistency. However, it is crucial to note that [8]’s rationality postulates of direct
and indirect consistency do not assume the standard propositional notion of consistency
but instead the notions of direct and indirect consistency as defined in [8] and above in
Definition 3. Now, as is indeed observed in [1], the set X is directly consistent, while
to determine whether X is indirectly consistent, not the standard propositional notion of
consistency must be used but instead [8]’s notion of indirect consistency as parametrised
by the choice of strict rules Rs. And since in [1]’s example Rs is empty, Cl(X) = X
and then it follows that X is also indirectly consistent. This example is therefore not a
counterexample to any of our results on [8]’s rationality postulates.

3[1] in fact uses the symbol→ here. In the context of this example→ is apparently interpreted as material
implication in the language L. Therefore, to disambiguate from the use of→ in strict inference rules, we write
the material implication as ⊃.



At first sight, it would seem that the only reason why this is not a counterexample to
our consistency results is that ASPIC+’s notions of consistency are non-standard (since
X is clearly inconsistent if L is interpreted as in standard propositional logic and if
consistency is defined as standard propositional consistency). However, here it is crucial
to note that there is no reason whatsoever why L should be interpreted according to
standard propositional logic. As is well known in logic, a given logical language can be
interpreted in many different ways. For example, the language of Amgoud’s example
can be interpreted as in standard propositional logic but also as in intuitionistic logic,
paraconsistent logics, relevant logics, many-valued logics, and so on. This also means
that a given logical language does not come with a fixed notion of consistency. For this
reason ASPIC+ as a general framework cannot assume a fixed interpretation of a given
logical language and must, as in [8], parametrise the notion of indirect consistency with
the choice of strict rules. The fact that ASPIC+ thus allows for non-standard notions of
consistency is not a weakness of ASPIC+ but a strength, since this makes a wide range
of alternative logical instantiations of ASPIC+ possible.

Moreover, it is very well possible in ASPIC+ to interpret Amgoud’s choice of L in
such a way that ASPIC+’s notion of indirect consistency coincides with standard propo-
sitional consistency. One way to do so is to let − correspond to negation and to let Rs

consist of all inference rules over L that are valid in standard propositional logic. Let
S ` ϕ mean that there is a strict argument for ϕ constructible from the premises in S
and let S `PL ϕ denote that S logically implies ϕ in standard propositional logic. Then
let ‘S is PL-consistent’ mean that for no ϕ it holds that S `PL ϕ and S `PL ¬ϕ. Then

Theorem 1 Let L be any propositional language such that − corresponds to negation
and S → ϕ ∈ Rs iff S `PL ϕ. Then S is indirectly consistent iff S is PL-consistent.

PROOF. (Sketch) It suffices to prove for any S ⊆ L and any ϕ ∈ L that S ` ϕ iff
S `PL ϕ. From right to left is immediate from the choice ofRs, while from left to right
is proven with induction on the construction of a strict argument for ϕ from S. QED

Let us illustrate this theorem by modifying [1]’s example, letting − correspond to nega-
tion and letting Rs be {S → ϕ | S `PL ϕ}. Then an infinite number of further argu-
ments can be constructed, including the following arguments that undermine-attack any
element of X , namely

A = ¬y, x ⊃ y → ¬x
B = ¬y, x→ ¬(x ⊃ y)
C = x, x ⊃ y → y

By conflict-freeness of extensions, at most two of these three arguments can be in the
same extension. Moreover, it immediately follows from Theorem 32 of [16, p. 45] that
there are three preferred-and-stable extensions, having the following conclusion sets

Conc(E1) = Cl({x,¬y})
Conc(E2) = Cl({x, x ⊃ y})
Conc(E3) = Cl({¬y, x ⊃ y})

which are all three both indirectly consistent and PL-consistent. Finally, it can be shown
that there is one grounded extension, with the conclusion set

Conc(E4) = Cl(∅)



which is also both indirectly consistent and PL-consistent.
Exactly the same analysis applies to [1]’s second alleged counterexample:

Example 2 [1] again assumes that L contains propositional formulas, and sets Rd =
{⇒ x;⇒ ¬x ∨ y;⇒ ¬y}. All other sets are empty (including Rs) and apparently it is
assumed that the contrariness relation corresponds to negation.

This example has a single complete extension E, in which all three defeasible rules are
applied, so Conc(E) = {x,¬x ∨ y,¬y}. Again [1] claims that this is a counterexample
to our consistency results but again this is false, for the same reasons as above. Moreover,
once again, ifRs is chosen to consist of all valid propositional inferences, then the result
coincides with standard propositional logic. We then obtain four complete extensions: in
three of them (which are stable and preferred) two of the defeasible rules are applied and
in the fourth (the grounded extension) none of them is applied. And again all extensions
are both indirectly consistent and PL-consistent.

[1] finally claims to have a counterexample to our results in [15] stating that if AS-
PIC+ is instantiated with classical logic, then (if the axiom premises are indirectly con-
sistent and the argument ordering is reasonable) all four of [8]’s rationality postulates are
satisfied. This claim is also false, since in the alleged counterexample as constructed in
[1] several arguments rebut on the conclusions of strict inferences in other arguments,
which is explicitly precluded by ASPIC+’s Definition 6 of attack.

3.3. Domain-specific inference rules

As explained in Section 4 of [19], the inference rules from Rs and Rd can be used in
two ways. They can be used to express domain-specific knowledge, such as ‘birds fly’
or ‘all penguins are birds’, or they can be used to express general patterns of reasoning
such as the valid inferences of classical logic (Rs), Pollock’s [18] principles of epistemic
cognition (Rd) or argumentation schemes (Rd). However, in both uses their logical role
remains the same. Quoting from [19, p. 104]:

The inference rules of argumentation systems are not part of the logical language L
but are metalevel constructs.

This does not change if the inference rules are used in a domain-specific way. Yet [1, pg.
2] thinks that by using ASPIC+’s inference rules to encode domain-specific information,
they somehow move fromR to L:

Prakken claims that strict and defeasible rules may play two roles: either they encode
information of the knowledge base, in which case they are part of the language L,
or they represent inference rules, in which case they are part of the consequence
operator ...

This is another misreading of our definitions. We therefore need not discuss Section 4 of
[1], in which ASPIC+’s inference rules are assumed to be part of L.

3.4. ASPIC+ and abstract logics

Amgoud next discusses ASPIC+ in the light of [2,3]’s logical framework for argumen-
tation. This framework is built on Tarski’s notion of an abstract logic, which is a pair
(L, Cn), where L is a language and the consequence operator Cn is a function from 2L

to 2L satisfying the following conditions for all X ⊆ L:



1. X ⊆ Cn(X)
2. Cn(Cn(X)) = Cn(X)
3. Cn(X) =

⋃
Y⊆fX

Cn(Y )

4. Cn({p}) = L for some p ∈ L
5. Cn(∅) 6= L

Here Y ⊆f X means that Y is a finite subset of X . A set X ⊆ L is defined as consistent
if Cn(X) 6= L. [2,3] then define arguments and various kinds of attack relations, and
investigate consistency properties of various types of attack relations under Dung’s [10]
semantics.

In [1] the claim is ascribed to [15] that ASPIC+ “captures even Tarskian monotonic
logics”. What is apparently meant by this that we would claim that the ‘logic’ as cap-
tured by the sets Rs and Rd is Tarskian. [1] then attempts to prove that this is not true.
However, the claim ascribed to [15] cannot be found in that paper. As noted above at
the end of Section 2, we do in [15] informally make a number of other claims about the
relation between ASPIC+ and abstract logics and we have meanwhile formally proved
these claims in [16].

In discussing these issues, [1] defines two “possible” ASPIC+-likeCn operators and
then proves that neither of them is Tarskian. However, it is not shown in [1] that these
two Cn operators correspond to anything in ASPIC+, so strictly speaking it is not yet
known whether [1]’s results are relevant for ASPIC+. Nevertheless, [1]’s claim is true
for an obvious definition of Cn that is clearly related to ASPIC+, namely:

• p ∈ Cn(X) iff there exists an ASPIC+ argument A, with Conc(A) = p and
Prem(A) = X .

With this definition ofCn, condition (4) of the definition of an abstract logic is in general
not satisfied. Consider an AT with Kp = {p}, Rs = ∅ and Rd = {p ⇒ q}. Also,
condition (5) is not in general satisfied. Consider any AT with K = ∅ and Rd = {⇒ p |
p ∈ L}. So if the ‘logic’ as expressed in the sets of inference rulesRs andRd is equated
with the existence of an ASPIC+ argument, then [1] is right in claiming that ASPIC+’s
underlying ‘logic’ is in general not Tarskian. However, recall that we never claimed the
opposite.

Moreover, we do not regard this as a flaw of the ASPIC+ framework. Instances of
ASPIC+ can be defined that are not Tarskian but that still satisfy all rationality postu-
lates. Choose, for example, L to be a set of propositional or first-order literals as in e.g.
Defeasible Logic Programming [11]. This instantiation may, depending on the choice of
strict and defeasible rules, not correspond to a Tarskian abstract logic. Yet if all strict
rules are transposed and any reasonable argument ordering is chosen, our results imply
that all four of [8]’s postulates are satisfied.

Finally, we note that [2,3]’s abstract-logic approach like ASPIC+ allows for instan-
tiations in which its notion of consistency deviates from that of classical logic. Consider
a language L closed under ¬ and with a distinguished element⊥, and define Cn(S) = S
for every S ⊆ L that does not contain ⊥ and Cn(S) = L otherwise. Such a Cn is
Tarskian but is such that for every ϕ ∈ L that does not equal ⊥ we have that {ϕ,¬ϕ} is
consistent in the sense of the abstract-logic approach. We do not regard this as a flaw of
[2,3]’s abstract-logic approach, since just as ASPIC+ it is not a particular system but a
general framework. However, if in [1] ASPIC+ is criticised for allowing non-standard in-
terpretations of consistency, then the question arises why [2,3]’s abstract-logic approach
is not criticised for the same reason.



3.5. Some other misconceptions

We briefly discuss some other misconceptions in [1]. First, it is claimed that in ASPIC+

preferences can only be applied to symmetric attacks, but this is not true. Consider an
argument A with a strict top rule for p and an argument B with a defeasible top rule
for ¬p and let the contrariness relation correspond to negation. Then A asymmetrically
rebuts B but preferences can be applied to this attack.

Next, [1] claims that our condition on the argument ordering being reasonable
(which among other things requires that strict-and-firm arguments are strictly preferred
to plausible or defeasible arguments) is limiting. In particular, [1] notes that ASPIC+ can-
not capture instances of [5]’s value-based argumentation frameworks (VAFs) in which
an argument that is plausible or defeasible promotes a more important value than an ar-
gument that is strict and firm. We claim that, if such an instantiation of VAFs can be
realistically given at all (which we doubt), then this is a flaw of the VAF instantiation and
not of ASPIC+.

Then [1] gives another example (her Example 3) with an alleged counterintuitive
outcome, namely, an argumentation system allowing the following two arguments:

A: ⇒ p, p⇒ q, q ⇒ r, r → x
B: → d, d→ e, e→ f, f ⇒ ¬x

[1] correctly observes that A asymmetrically attacks B so that x rather than ¬x is
concluded, which [1] regards as counterintuitive since A applies many more defeasible
rules thanB. Here the framework-nature of ASPIC+ is relevant, which as said above, im-
plies that ASPIC+ as a framework cannot be criticised by giving problematic instances.
In particular, in this example the strict rules are not closed under transposition or contra-
position, which are identified in [19,15] as conditions for satisfying the consistency pos-
tulates. If the transpositions of all strict rules are added toRs, then the outcome criticised
in [1] is not obtained, since then B can be extended with ¬x→ ¬r (the transposition of
r → x) to an argument that rebuts A on its subargument for r.

[1] further claims that our definition of contrary-rebuts in Definition 6 is flawed since
it would mean that if an argument A contrary-rebuts B on B’s final conclusion, then B
cannot contrary-rebut A on A’s final conclusion (and so A asymmetrically attacks B).
But the reason why [1] thinks this is flawed, is because she appeals to an alternative def-
inition of contraries and contradictories that is taken from some other paper, and which
does not allow for such asymmetry.

[1] then criticises ASPIC+ for blurring the relation between object and metalanguage
in the definition of undercutting attack. However, in [15] we say: “To model undercutting
attacks on inferences, it is assumed that applications of inference rules can be expressed
in the object language; the precise nature of this naming convention will be left implicit.”
(a similar phrase is in [19]). Incidentally, as mentioned above, we have meanwhile incor-
porated the naming convention in Definition 2 to avoid possible confusion.

Finally, [1] claims that ASPIC+ would be at odds with [14]’s principle of right weak-
ening of defeasible consequence, which would require that extensions are closed under
defeasible rules. However, here she misreads [14]: their principle of right weakening
instead says that defeasible consequences should be closed under classical entailment,
which corresponds to [8]’s rationality postulate of closure under strict rules. Note also
that in general extensions should not be closed under defeasible rules.



4. Conclusions

In this paper we have shown that Amgoud’s criticisms of the ASPIC+ framework are
based on a number of misconceptions on the nature of ASPIC+. We have shown that in
[1] our account of consistency is incompletely presented, that our definitions and theo-
rems are misread, that claims that certain examples are counterexamples to our results
are incorrect, that claims are ascribed to us that we have not made, and more generally,
that the nature of ASPIC+ as a framework rather than a particular system is not appreci-
ated. We sincerely hope that the research community will take our rebuttal into account
when assessing whether [1]’s criticism of the ASPIC+ framework is justified.
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