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Abstract. Recently resolution of attacks has been studied in the context of abstract
argumentation frameworks. In this paper it is claimed that resolutions should be
studied under the assumption that they are generated through the acquisition of
preference information, and that this implies that the existing study of resolutions
has limited applicability. A formalisation of preference-based resolutions is defined
in the context of the ASPIC+ framework for structured argumentation, and several
properties of resolutions are proven or disproven. It is also argued that when resolu-
tions are modelled without specifying the structure of arguments, then it is easy to
overlook that assumptions made at the abstract level do not hold for all reasonable
instantiations of the abstract framework, thus reducing its significance.

1. Introduction

The idea of resolutions of abstract argumentation frameworks was first introduced in
[14]. Given a framework ∆ = (A, C) (whereA is a set of arguments and C a binary attack
relation onA), its resolution ∆′ = (A, C′) is such that C′ replaces one or more symmetric
attacks in C by an asymmetric relation in C′. This was motivated by the application of
preferences to symmetric attacks in C, to obtain the defeat relation C′. Then properties
were suggested that account for the dynamics of preference information; the intuition
being that an argument X should be sceptically justified (in all extensions of ∆) iff X
is sceptically justified irrespective of how the available preference information is aug-
mented to obtain a resolution ∆′ of ∆. This idea was then generalised in [3], where they
relate the sceptically justified arguments of frameworks and their resolutions, but without
motivating resolutions in terms of extending the existing preference information.

In this paper we argue that in light of [14]’s original motivation, the study of res-
olutions in [14] and [3] have limited applicability. Specifically, we argue that any such
study should account for the use of preferences in obtaining resolutions, and that this is
not possible if one restricts resolutions to those defined in [3,14] and if one exclusively
models resolutions at the abstract level.

Firstly, we argue that one must also account for the resolution of asymmetric attacks,
since many argumentation formalisms (e.g., [2,6,15,18]) apply preferences to deny the
success of asymmetric attacks as defeats. Furthermore, some formalisms apply prefer-
ences so that both attacks in a symmetric attack fail to succeed as defeats. We also ar-
gue that sometimes resolutions of symmetric attacks are impossible; for example when
two symmetrically attacking arguments are assigned equal strength. Resolutions can also
be impossible for another reason: preference relations have properties, so the addition



of preferences may imply further preferences and thereby make resolutions based on
conflicting preferences impossible. Finally, resolutions are impossible if some attacks
succeed irrespective of preferences (e.g., attacks on negation as failure assumptions).

In our opinion, such subtleties can only be fully appreciated in a setting where the
structure of arguments and the nature of attack and the use of preference to define defeats
is made explicit. To this end we study resolutions in the ASPIC+ framework [16,17,18],
a general framework for argumentation with preferences that integrates and further de-
velops AI models of structured argumentation. In [16,17,18] conditions have been iden-
tified under which a range of possible instantiations of ASPIC+ satisfy [9]’s rationality
postulates, while a number of existing approaches to structured argumentation have been
shown to be an instance or special case of ASPIC+. Therefore, studying resolutions in
this framework arguably makes the study as general as possible.

Section 2 reviews ASPIC+, after which Section 3 defines resolutions of ASPIC+

argumentation frameworks, defined under the assumption that these are induced by the
acquisition of further preference information. Section 4 then evaluates the grounded, pre-
ferred and stable semantics against [14]’s properties. We also show that while in general
the preferred and stable semantics fail these properties, one can identify specific instanti-
ations of ASPIC+ that satisfy them. Sections 3 and 4 also illustrate the above mentioned
limitations of considering only resolutions of symmetric attacks, and point to some limits
of abstract models of argumentation. In particular, if resolutions are modelled without
specifying the structure of arguments, then it is easy to overlook assumptions made at the
abstract level that do not hold for all reasonable instantiations of the abstract framework.

2. The ASPIC+ framework

We review the ASPIC+ framework as defined in [16,17]. ASPIC+ assumes an unspec-
ified logical language L, and defines arguments as inference trees formed by applying
strict or defeasible inference rules to premises that are well formed formulae (wff) in
L. A strict rule means that if one accepts the antecedents, then one must accept the
consequent no matter what. A defeasible rule means that if one accepts all antecedents,
then one must accept the consequent if there is insufficient reason to reject it. To define
attacks, minimal assumptions on L are made; namely that certain wff are a contrary or
contradictory of certain other wff, and that defeasible inference rules can be named in
the language L through the use of a naming convention n. Apart from this the frame-
work is still abstract: it applies to any set of strict and defeasible inference rules, and
to any logical language with a defined contrary relation. The basic notion of ASPIC+ is
an argumentation system. Arguments are then constructed w.r.t a knowledge base that is
assumed to contain three kinds of formulas.

Definition 1 An ASPIC+ argumentation system is a tuple AS = (L,−,R, n,≤)
where L is a logical language and − is a contrariness function from L to 2L, such that:

• ϕ is a contrary of ψ if ϕ ∈ ψ, ψ 6∈ ϕ;
• ϕ is a contradictory of ψ (denoted by ‘ϕ = −ψ’), if ϕ ∈ ψ, ψ ∈ ϕ.

R = Rs ∪Rd is a set of strict (Rs) and defeasible (Rd) inference rules of the form ϕ1,
. . . , ϕn → ϕ and ϕ1, . . . , ϕn ⇒ ϕ respectively (where ϕi, ϕ are meta-variables ranging
over wff in L), and such thatRs ∩Rd = ∅.



n : Rd −→ L is a naming convention for defeasible rules.
≤ is a partial pre-ordering onRd.

Definition 2 An ASPIC+knowledge base in an argumentation system (L,−,R, n,≤)
is a pair (K,≤′) where:

• K ⊆ L, and K = Kn ∪ Kp ∪ Ka where these subsets of K are disjoint, and: Kn

is the (necessary) axioms ; Kp is the ordinary premises; Ka is the assumptions.
• ≤′ is a partial pre-order on the non-axiom premises K \Kn.

Intuitively, axiomatic premises cannot be attacked, the success of attacks (as defeats)
on ordinary premises is contingent on preferences, while attacks on assumptions always
result in defeats (cf. assumptions in [7]).

Arguments are now defined, where for any argument A, Prem returns all the formu-
las of K (premises) used to build A, Conc returns A’s conclusion, Sub returns all of A’s
sub-arguments, and Rules returns all rules in A.

Definition 3 An ASPIC+ argument A on the basis of a knowledge base (K,≤′) in an
argumentation system (L,−,R, n,≤) is:
1) ϕ if ϕ ∈ K with: Prem(A)={ϕ}; Conc(A)=ϕ; Sub(A)={ϕ}; Rules(A) = ∅.
2) A1, . . . An →/⇒ ψ ifA1, . . . , An are arguments such that there exists a strict/defeasible
rule Conc(A1), . . . , Conc(An)→/⇒ ψ inRs/Rd.
Prem(A) = Prem(A1) ∪ . . . ∪ Prem(An); Conc(A) = ψ;
Sub(A) = Sub(A1) ∪ . . . ∪ Sub(An) ∪ {A};
Rules(A) = Rules(A1) ∪ . . . ∪ Rules(An) ∪ {Conc(A1), . . . , Conc(An)→/⇒ ψ},
DefRules(A) = {r|r ∈ Rules(A), r ∈ Rd}
A is strict if it contains no defeasible rules (i.e., DefRules(A) = {r|r ∈ Rules(A), r ∈
Rd} = ∅); defeasible otherwise. Also, A is firm if Prem(A)⊆Kn; plausible otherwise.

In [16], the notion of c-consistent arguments is also introduced, so that classical
logic approaches to argumentation (e.g., [2,13]) can be captured as instances of AS-
PIC+. These approaches require that the premises of arguments are consistent. Hence,
a c-consistent argument A is an argument whose premises cannot be extended by strict
rules to obtain arguments with contradictory conclusions (i.e., one cannot on the basis of
Prem(A) construct strict arguments B and B′ s.t. Conc(B) = ϕ, Conc(B′) = −ϕ).

Three kinds of attack are defined for ASPIC+ arguments. B can attack A by attack-
ing a premise or conclusion of A, or an inference step in A. Some kinds of attack are
preference-independent in that they result in defeats independently of preferences over
arguments. Other kinds of attack are instead preference-dependent in that they result in
defeats only if the attacked argument is not stronger than the attacking argument (see
[17] for a detailed discussion of the rationale for this distinction). The orderings on de-
feasible rules and non-axiom premises (we assume their usual strict counterparts, i.e.,
l < l′ iff l ≤ l′ and l′ � l) may be used in defining an ordering � on the constructed
arguments (we also assume the strict counterpart ≺ of �). For example, in [17,18] � is
defined according to the weakest or last link principles1.

1Informally, the last-link principle compares arguments in terms of their last-applied defeasible rules or
(if there are no such rules) in terms of their non-axiom premises, while the weakest link principle compares
arguments both in terms of all their defeasible rules and their non-axiom premises.



Definition 4 A attacks B iff A undercuts, rebuts or undermines B, where:
• A undercuts argument B (on B′) iff Conc(A) ∈ n(r) for some B′ ∈ Sub(B) such that
B′’s top rule r is defeasible.
• A rebuts argument B (on B′) iff Conc(A) ∈ ϕ for some B′ ∈ Sub(B) of the form
B′′1 , . . . , B

′′
n ⇒ ϕ. In such a case A contrary-rebuts B iff Conc(A) is a contrary of ϕ.

• Argument A undermines B (on B′) iff Conc(A) ∈ ϕ for some B′ = ϕ, ϕ ∈
Prem(B) \ Kn. In such a case A contrary-undermines B iff Conc(A) is a contrary of ϕ
or if ϕ ∈ Ka.
An undercut, contrary-rebut, or contrary-undermine attack is said to be preference-
independent, otherwise an attack is preference-dependent.
Then, A defeats B (denoted A → B) iff A attacks B (denoted A ⇀ B) on B′, and
either: A ⇀ B′ is preference-independent, or; A ⇀ B′ is preference-dependent and
A ⊀ B′.

The success of rebutting and undermining attacks thus involves comparing the con-
flicting arguments at the points where they conflict. The definition of successful under-
mining exploits the fact that an argument premise is also a subargument.

Adding an argument ordering (which may or may not be defined on the basis of
the partial preorders on defeasible rules and non-axiom premises) to an argumentation
theory consisting of an argumentation system and a knowledge base, yields a structured
argumentation framework:

Definition 5 Let AT be an argumentation theory (AS,KB). A structured argumen-
tation framework (SAF) defined by AT , is a triple 〈A, C, � 〉 where A is the set of all,
or only c-consistent, arguments constructed from KB in AS, � is a partial preorder on
A, and (X,Y ) ∈ C iff X attacks Y .

The justified arguments under Dung semantics [11] can then be defined. To recap, a
Dung framework consists of a binary relation B over a set of arguments A. Then:

• S ⊆ A is conflict free iff ∀X,Y ∈ S, (X,Y ) /∈ B;
• X ∈ A is acceptable w.r.t. some S ⊆ A iff ∀Y s.t. (Y,X) ∈ B implies ∃Z ∈ S

s.t. (Z, Y ) ∈ B.

Then, a conflict free set S is:

• an admissible extension iff X ∈ S implies X is acceptable w.r.t. S;
• a complete extension iff X ∈ S whenever X is acceptable w.r.t. S;
• a preferred extension iff it is a set inclusion maximal complete extension;
• the grounded extension iff it is the set inclusion minimal complete extension;
• a stable extension iff it is preferred and ∀Y /∈ S, ∃X ∈ S s.t. (X,Y ) ∈ B.

For s ∈ {complete, preferred, grounded, stable},X is sceptically or credulously justified
under the s semantics if X belongs to all, respectively at least one, s extension.

If ∆ = 〈A, C, � 〉 is a SAF, and D the defeat relation obtained from C and the
preference ordering �, then letting D be the binary relation B, the justified arguments
of ∆ are the justified arguments of the Dung framework (A,D). In [18] it is shown that
under some intuitive assumptions on the strict inference rules, axiom premises and the
preference relation �, instantiations of ASPIC+ satisfy [9]’s rationality postulates for
argumentation.



In [16,17], it is argued that unlike [18] and other works that derive defeats from
attack relations, conflict free-ness should be defined w.r.t. attacks (B = C in the above
definition of conflict-free), and the defeat relation should only be used to define the ac-
ceptability of arguments (B = D in the above definition of acceptability). [16,17] then
show that under the above mentioned assumptions, the key results for Dung’s theory
are preserved, and [9]’s rationality postulates are satisfied. Henceforth we will assume
evaluation of justified arguments as defined in [16,17].

In summary, [16,17,18] show that ASPIC+ provides a general structured account of
argumentation with preferences. We identify conditions under which a range of possible
instantiations satisfy [9]’s rationality postulates, and formally show that the framework
captures a number of existing approaches to argumentation, including assumption based
argumentation [7], Carneades [12] (as proven in [20]), and instances of Tarskian [1] (and
in particular classical [2,13]) logic approaches extended with preferences.

3. Preference-based Resolutions in ASPIC+

Abstract argumentation frameworks are instantiated by logical formalisms where an at-
tack from X to Y denotes that the claim of X is in a relationship of logical conflict with
an element in the support (or conclusion) of Y , thus underpinning the definition of con-
flict free. An attack fromX to Y additionally licenses its use in the dialectical evaluation
of the acceptability of an argument. The former denotation of an attack is fully deter-
mined by the instantiating logic and contrariness relation (that generalises negation), so
that questioning its validity amounts to questioning the logical axiomatisation of conflict
2 (demarcating these distinct roles of attacks motivates [16]’s retention of attacks when
defining conflict free sets in ASPIC+). It follows then, that the notion of a resolution
should be interpreted under the understanding that the removal of an attack equates with
denying its dialectical use. The latter has been extensively studied in the context of ar-
gumentation with preferences (e.g., [2,6,15]), where X’s attack on Y fails to succeed as
a defeat if Y is preferred to X . We therefore argue that the notion of a framework and
its resolutions should be studied under the assumption that the latter are generated by
augmenting the preference information in the former, and, as will be shown, any such
study must account for the structure of arguments and the nature of attacks. As discussed
in Section 1, this implies that the study of semantics with respect to the extensions gen-
erated by purely abstract frameworks and resolutions in which only symmetric attacks
are resolved [3,14] has limited applicability. Note that a similar criticism also applies to
the resolution based semantics of [5].

We are therefore interested in the case where given a SAF ∆ = (A, C,�) and
its defined defeat relation, what is the relationship, under different semantics, between
the sceptically justified arguments of ∆ and the sceptically justified arguments of ∆′ =
(A, C,�′), where ∆′ is a resolution of ∆ obtained by extending’ � to the preference
relation �′.

2More informal instantiations may sanction disagreement regarding relationships of conflict. However, this
paper assumes the established understanding of abstract argumentation theory as a formalism for instantiation
by logical formalisms, as originally conceived in [11].



Definition 6 Let � be a partial preorder over a set Γ. Then �′ extends � iff �⊆�′ and
∀X,Y ∈ Γ, X ≺ Y implies X ≺′ Y .
Let ∆ = (A, C,�) be a SAF. Then ∆′ = (A, C,�′) preference-extends ∆ iff �′ extends
�.

To motivate the definition of extends, recall that � is a partial preorder. Thus it does
not suffice to define extends in terms of the condition X ≺ Y implies X ≺′ Y alone. To
see why, suppose X � Y and Y � X , which implies X ≈ Y ; that is they are effectively
assigned the same strength. Hence, it might be that �′ preserves the strict preferences in
�, but X � Y and Y � X . But we certainly want to preserve the assignment of equal
strength to X and Y . On the other hand, it does not suffice to define extends in terms of
the condition �⊆�′ alone. This is because given only X � Y and so X ≺ Y , we want
that this strict preference be preserved in the extended argument ordering. However, if
X �′ Y and Y �′ X , then this strict preference would not be preserved.

It is straightforward to then show that if (A, C,�′) preference-extends (A, C,�),
and D′ and D are the defeat relations respectively defined by �′ and �, then D′ ⊆ D.
Furthermore:3

Proposition 1 Let ∆ = (A, C,�) be defined by (K,≤1) in (L,−,R,≤2), and� defined
on the basis of ≤1 and ≤2 according to the weakest or last principles (as defined in Sec-
tion 5.1 in [17]). For any ≤′1 that extends ≤1, and any ≤′2 that extends ≤2, the SAF ∆′

= (A, C,�′) defined by (K,≤′1) in (L,−,R,≤′2), preference-extends ∆.

We can now define the notion of a preference-based resolution:

Definition 7 Let ∆′ = (A, C,�′) be a SAF that preference-extends ∆ = (A, C,�),
and let D′ and D be defeat relations respectively defined by �′ and �. Then ∆′ is a
preference-based resolution of ∆ iff D′ ⊂ D.

The resolutions defined here differ from the resolutions in [3,14], which only re-
solve symmetric relations between arguments. Firstly, preferences may result in denying
the dialectical success of an asymmetric attack as a defeat, both in abstract approaches
to argumentation (e.g., Value Based Frameworks [6]), but also in structured approaches.
For example, in ASPIC+ an argument with a strict top rule can asymmetrically attack an
argument with a defeasible top rule while being weaker than its target, so that the attack
does not result in a defeat. Also, classical logic approaches to argumentation with pref-
erences [2] (and their formulation in ASPIC+ [16,17]) define only asymmetric attacks
from the conclusion of an attacking argument to the premise of the attacked argument.
Secondly, some resolutions may not be possible. If X and Y in ∆ are equally strong
(X ≈ Y ), and X and Y attack and so defeat each other, then any further preferences,
and thus any further resolution, preserves the assignment of equal strength and thus the
symmetric defeat. For example, if two contradicting witnesses or experts were deemed
to be equally credible, then no further preferences can change this. Likewise, if two con-
flicting laws were regarded of equal hierarchical status then no further preferences can
change this. Thirdly both attacks in a symmetric attack may fail to succeed as defeats, as
illustrated by the following example 4.

3Space limitations preclude inclusion of proofs for all but the key results in this paper. All results not formally
proven in this paper, can be found in Section 9, [17]

4Results of [16,17,18] imply that [9]’s consistency postulates hold for this and all our further examples.



Example 2 Let (L,−,R, n,≤) be an argumentation system where:

• L is a language of propositional literals, composed from a set of propositional
atoms {a, b, c, . . . } and the symbols ¬ and ∼ respectively denoting strong and
weak negation (i.e., negation as failure). α is a strong literal if α is a propositional
atom or of the form ¬β where β is a propositional atom. α is a wff of L, if α is a
strong literal or of the form ∼ β where β is a strong literal.

• For any wff α, α and ¬α are contradictories and α is a contrary of ∼ α.
• Rs = ∅, Rd = {¬c ⇒ ¬b; a, b ⇒ c}, and ≤ = ≈ (since partial pre-orders are

reflexive ≤ = ≈ denotes {r ≤ r|r ∈ Rd})

(K,≤′) is the knowledge base such that Kn = ∅, Kp = {a, b,¬c}, Ka = ∅, and ≤ =
{a <′ ¬c <′ b}.
We obtain arguments X = [¬c;¬c ⇒ ¬b] and Y = [a; b; a, b ⇒ c]. Then X attacks
Y on Y ′ = [b], and Y attacks X on X ′ = [¬c]. Under the Elitist ordering on sets
whereby S ≺Eli S

′ if an element in S is ordered below all elements in S′, we have
the following orderings on non-axiom premises: {¬c} ≺Eli {b} and {a, b} ≺Eli {¬c}.
These orderings respectively determine (by the weakest or last link principles as defined
in [17]) that X ≺ Y ′ and Y ≺ X ′. Hence neither X or Y defeat each other.

4. Evaluating Semantics Against Properties of Preference-based Resolutions

[14] states properties which capture the intuition that a sceptical reasoner should consider
an argument to be justified iff it is justified irrespective of how her current preference in-
formation may be extended. We restate these properties for preference-based resolutions,
and then evaluate the grounded, preferred and stable semantics with respect to them 5.

Property 3 [Left to Right Sceptical] If X is a sceptically justified argument of ∆ =
(A, C,�), thenX is a sceptically justified argument of every preference-based resolution
∆′ = (A, C,�′) of ∆.

Property 4 [Right to Left Sceptical] If X is a sceptically justified argument of every
preference-based resolution ∆′ = (A, C,�′) of ∆ = (A, C,�), then X is a sceptically
justified argument of ∆.

The grounded semantics fails Right to Left Sceptical, as illustrated by the following:

Example 5 Let (L,−,R, n,≤) be the argumentation system where L and the contrary
relations are defined as in Example 2, and:

• Rs = ∅, Rd = {¬q ⇒ p;¬p ⇒ q;∼ p,∼ q ⇒ r;∼ r ⇒ s}, and ¬q ⇒ p ≤
¬p⇒ q and ¬p⇒ q ≤ ¬q ⇒ p (i.e., ¬q ⇒ p ≈ ¬p⇒ q)

• (K,≤′) is the knowledge base Kn = ∅, Kp = {¬p,¬q}, Ka = {∼ p,∼ q}, and
≤′ = ≈

Figure 1-a) shows the induced arguments and defeats (� = ≈ given that ≤′ = ≈). Note
the attacks on R and S are contrary attacks and so are preference independent, and since
α is a contrary of∼ α, the arguments [∼ p] and [∼ q] do not attack and so defeat P andQ

5Properties 3 and 4 are generalised respectively to skepticism adequacy and resolution adequacy in [3].



respectively. Figures 1-b) and 1-c) show the two possible preference-based resolutions,
obtained respectively by extending ≤′ to include ¬q <′ ¬p (and so P ≺ P ′, P ≺ Q,
Q′ ≺ Q) and ¬p <′ ¬q (and so P ′ ≺ P , Q ≺ P , Q ≺ Q′). Argument S is in the
grounded extension of both resolutions, but not in the grounded extension of Figure 1-a).

[ ¬q ; ¬q ⇒ p ]  [ ¬p ; ¬p ⇒ q ]

 [ ~ p , ~ q ;  ~ p , ~ q ⇒ r ]

 [ ~ r ; ~ r  ⇒ s ]

 [ ¬ p ]

a)

P' Q' [ ¬ q ]

P Q 

R

S 

P' Q'

 P  Q

R

 S

b)

P' Q'

 P  Q

R

 S

c)

Figure 1. b) and c) are the two preference-based resolutions of a)

However, one can prove Left to Right Sceptical for finitary frameworks:

Theorem 6 If X is in the grounded extension of ∆ = (A, C,�), then X is in the
grounded extension of every preference-based resolution ∆′ of ∆.

PROOF. Let D and D′ be the defeat relation defined by ∆ and ∆′ respectively.
Let

⋃n
i=1 Fi be the grounded extension obtained by iterative application of the charac-

teristic function F to (A,D) (i.e., F1 = F(∅), Fi = F(Fi−1)).
Let

⋃m
i=1Gi be the grounded extension obtained by iterative application of the charac-

teristic function F to (A,D′).
We show by induction on i, that X ∈ Fi implies X ∈ Gi:
Base case (i =1) : F1 = {X|¬∃Y, (Y,X) ∈ D}. Hence, since D′ ⊂ D, G1 ⊆ F1.
Inductive Hypothesis : For j < i, X ∈ Fj implies X ∈ Gj .
General Case : Suppose X ∈ Fi, Y →D X . Then ∃Z ∈ Fi−1, Z →D Y . By inductive
hypothesis Z ∈ Gi−1. Suppose Y →D′ X , Z 9D′ Y (since Z ≺′ Y ). By Lemma
34 in [17], either ∃Y ′ ∈ Sub(Y ) s.t. Y ′ →D′ Z, or ∃Y +

Z′ s.t. Y +
Z′ →D′ Z on some

defeasible sub-argument Z ′ of Z (Y +
Z′ is an argument strictly extending the defeasible

sub-arguments of Y and all the defeasible arguments of Z except Z ′). Since Z ∈ Gi−1,
then ∃W ∈ Gj , j < i, W →D′ Y . QED

The preferred and stable semantics fail Left to Right Sceptical. To illustrate, consider
the argumentation system where L and the contrary relations are defined as in Example
2, and the arguments (built from assumption premises) and defeats are shown in Figure
2-a). We assume no ordering on the defeasible rules and non-axiom premises, and so �
= ≈ (recall that attacks on assumption premises are preference independent). {D,B} is
the single preferred/stable extension and so set of sceptically justified arguments. Now,
consider the preference-based resolution in Figure 2-b) obtained by adding the ordering



∼ e⇒ ¬a <∼ c⇒ a, and so D ≺ A (under the last link principle as defined in Section
5.1 [17]). The single preferred/stable extension of this resolution is ∅.

[ ~ e ; ~ e ⇒ ¬a ]  [ ~ c ; ~ c ⇒ a ]

a)

D A 

b)

 D  A

B
 C[ ~ a ; ~ a ⇒ b ]

B

[ ~ b ; ~ b ⇒ c ]
C

Figure 2. b) is a preference-based resolution of a)

In [14] and subsequently [3], it is shown that Right to Left Sceptical holds for the
preferred semantics, for resolutions as defined in [3,14]. We now show that once we
account for preference-based resolutions, Right to Left Sceptical fails, even in the case
where such resolutions only resolve symmetric attacks.

Example 7 Consider the argumentation system where L and the contrary relations are
defined as in Example 2, and where:
• Rs = ∅,Rd = {∼ b,∼ c⇒ a, ∼ a⇒ x}.
• The knowledge base consists of Kn = ∅, Kp = {¬b, b,¬c, c}, Ka = {∼ b,∼ c,∼ a},
and ¬b <′ c, ¬c <′ b.
Based on either the weakest or last link principles, D ≺ C, E ≺ B. We obtain the
arguments and defeats shown in Figure 3-a). {D,E,A} is one of the preferred/stable
extensions, and so X is not sceptically justified. We now enumerate all possible ways
of extending the ordering ≤′ on the ordinary premises, and thus (by Proposition 1) �
(defined under either the weakest or last link principles), and the resultant resolutions.
Note that extending the ordering on defeasible rules will make no difference as only the
attacks between B and D, and E and C are preference dependent):

[ ~ a ; ~ a ⇒ x ]

 [ ~ b, ~ c ;  ~ b, ~ c ⇒ a ]

a)

X

A 

[ ¬b ]
D

[ ¬c ]
E

 [ b ]
B

 [ c ]
C

b)

 D

B

 E

C

A

X

c)

 D

B

 E

C

A

X

d)

 D

B

 E

C

A

X

e)

 D

B

 E

C

A

X

Figure 3. b) is a preference-based resolution of a)



1. Extending with ¬b <′ b yields D ≺ B and the resolution in Figure 3-b). The
preferred/stable extensions are {B,E,X} and {B,C,X}.

2. Extending with ¬c <′ c yields E ≺ C and the resolution in Figure 3-c). The
preferred/stable extensions are {C,D,X} and {B,C,X}.

3. Extending with ¬b <′ b and ¬c <′ c yields D ≺ B, E ≺ C, and the resolution
(not shown) with preferred extension {B,C,X}

4. Extending with b <′ ¬b, then by transitivity ¬c <′ c, yielding B ≺ D, E ≺ C,
and the resolution in Figure 3-d). The preferred/stable extension is {C,D,X}.

5. Extending with c <′ ¬c, then by transitivity ¬b <′ b, yielding D ≺ B and C ≺
E, and the resolution in Figure 3-e). The preferred/stable extension is {B,E,X}

6. Extending with ¬b <′ ¬c, then by transitivity ¬b <′ b, and we are in case 1.
7. Extending with ¬c <′ ¬b, then by transitivity, ¬c <′ c, and we are in case 2.
8. Extending with b <′ c, then by transitivity ¬c <′ c, and we are in case 2.
9. Extending with c <′ b, then by transitivity ¬b <′ b, and we are in case 1.
The counter-example thus shows that for all preference-based resolutions, X is a

sceptically justified argument. However X is not a sceptically justified argument of ∆.

Example 7 illustrates the impossibility of constructing a resolution ∆′ withD asym-
metrically defeating B and E asymmetrically defeating C, which would yield a pre-
ferred/stable extension {D,E,A} that excludes X , and thus would preserve Right to
Left Sceptical. The only reason Right to Left Sceptical holds for preferred semantics in
[3,14] is that in the abstract setup all resolutions are possible, including ∆′. However the
ASPIC+ instantiation (cases 4 and 5) illustrates that given the existing premise ordering,
any extension making B ≺ D (and so D → B) then implies E ≺ C (and so C → E),
and any extension making C ≺ E (E → C) then implies D ≺ B (B → D).

The results for preferred/stable semantics are negative. However, the question natu-
rally arises as to whether particular ASPIC+ instantiations satisfy the desired properties,
and under what restrictions. In what follows we show that the properties are satisfied by
particular classical logic instantiations of ASPIC+.

Consider an argumentation system (L,−,R, n,≤) where L is a standard proposi-
tional or first-order language, − is defined as classical negation,R consists only of strict
inference rules Rs which consists of all valid first-order inferences over L, and ≤ = ≈.
Let (K,≤′) be any knowledge base with Kn = Ka = ∅, Kp = Γ, Γ ⊆ L, and ≤′ a total
preorder over Kp (Γ). Let ∆ = (A, C,�) where A is the set of c-consistent arguments
and � defined under the weakest or last link link principle. We write ∆(Γ,≤′) to denote
such a SAF. Then, for the stable semantics, Left to Right Sceptical and Right to Left Scep-
tical can be shown by exploiting an equivalence (Theorem 32 in [17]) between the above
classical logic instantiation of ASPIC+ and Brewka’s preferred subtheories [8]:

Definition 8 A default theory is a tuple (Γ,≤), where Γ is a set of classical first order
formulae, ≤ is a total pre-order and (Γ1, . . . ,Γn) the ≤ induced partition into equiva-
lence classes, such that ∀α, β ∈ Γ, α < β iff α ∈ Γi, β ∈ Γj , i > j.
A preferred subtheory is a set Σ = Σ1 ∪ . . .∪Σn such that for i = 1 . . . n, Σ1 ∪ . . .∪Σi

is a maximal (under set inclusion) consistent subset of Γ1, . . . ,Γi. Henceforth we write
PS((Γ,≤)) to denote the set {Σ1, . . . ,Σn} of all preferred subtheories of Γ.

Intuitively, a preferred subtheory is obtained by taking a maximal under set inclusion
consistent subset of Γ1, extending this with a maximal consistent subset of Γ2, extending
this with a maximal consistent subset of Γ3, and so on.



Theorem 8 Let ∆(Γ,≤) = (A, C,�) be a SAF, and for any Σ ⊆ Γ, let Args(Σ) ⊆ A be
the set of all arguments with premises taken from Σ. Then:
1) If Σ is a preferred subtheory of (Γ,≤), then Args(Σ) is a stable extension of ∆(Γ,≤).
2) If E is a stable extension of ∆(Γ,≤), then

⋃
A∈E Prem(A) is a preferred subtheory of

(Γ,≤).

We now present the following properties of preferred subtheories (formally proven
in Section 9, [17]) in which we say that a default theory (Γ,≤′) extends (Γ,≤) iff ≤′
extends ≤ (as defined in Definition 6).

Proposition 9 Let (Γ,≤′) be any default theory extending (Γ,≤). Then Σ is a preferred
subtheory of Γ′ implies Σ is a preferred subtheory of Γ.

Proposition 10 Let (Γ,≤′1), . . . , (Γ,≤′n) be all the default theories extending (Γ,≤).
Suppose that for i = 1 . . . n, α ∈ ∩PS((Γ′i,≤′i)). Then α ∈ ∩PS((Γ,≤)).

Theorem 11 Let ∆(Γ,≤) = (A, C,�) be a SAF. Then Left to Right Sceptical and Right
to Left Sceptical are satisfied under the stable semantics.

PROOF. Left to Right Sceptical: Suppose X ∈ A sceptically justified. By Theorem 8-
2), for every preferred subtheory Σ of (Γ,≤), Prem(X) ⊆ Σ. Assume some extension
(Γ,≤′), Σ′ a preferred subtheory of (Γ,≤′), Prem(X) * Σ′. Then by Proposition 9, Σ′

is a preferred subtheory of (Γ,≤). By Theorem 8-1), Args(Σ′) is a stable extension, and
by assumption X /∈ Args(Σ′), contradicting X is sceptically justified.
Right to Left Sceptical: Suppose X sceptically justified in any preference-based resolu-
tion ∆′(Γ,≤′) = (A, C,�′). By Theorem 8-2), Prem(A) ⊆ ∩PS((Γ,≤′)). By Proposition
10, Prem(X) ⊆ ∩PS((Γ,≤)). By Theorem 8, Σ ∈ PS((Γ,≤)) iff Args(Σ) is a stable
extension of ∆. Hence X is in every stable extension of ∆. QED

5. Conclusions

We have argued that resolutions and the related properties should more properly be
studied under the assumption that resolutions are induced by extensions of the prefer-
ence relation, and that any such study must account for the structure of arguments. Our
work points to the limited applicability of existing approaches to resolutions which do
not allow for removal of asymmetric relations, and do not allow for the fact that some
preference-based resolutions may not be possible.

Properties proven at the abstract level [3,14] are disproved here, since the abstract
approaches make assumptions that do not hold for instantiations (in particular that all
resolutions are always possible). That our instantiations do not satisfy these assumptions
is not, we argue, to be viewed as an anomaly, given that all the example argumentation
theories described in this paper satisfy [9]’s rationality postulates, and our modelling of
preference-based resolutions seems entirely plausible. This paper echoes [19]’s similar
critiques of preference-based abstract argumentation frameworks [2], and so further sup-
ports the ASPIC+ view that a general model of preference handling in argumentation
cannot be given at the abstract level, but must make the structure of arguments explicit.
Furthermore, the limitations we show for abstract accounts of resolutions, apply more
generally to any abstract account of adding or deleting attacks or arguments (e.g., [4,10]).



All this work implicitly assumes that such additions or deletions are independent of each
other, an assumption that may not hold for instantiations.

We conclude by pointing to future work. The instance of ASPIC+ that is shown in
Section 4 to satisfy both properties, suggests investigating other conditions under which
properties are satisfied. Also, the intuitions underlying the properties, suggest other prop-
erties by which semantics could be evaluated. For example, ‘X is a credulously justified
argument of ∆ iff X is a sceptically justified argument of some preference-based reso-
lution ∆′’, and the weaker postulate ‘X is a credulously justified argument of ∆ iff X is
a credulously justified argument of some preference-based resolution ∆′’.
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