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Abstract
This paper presents a formal model of dialectical argument strength in terms

of the number of ways in which an argument can be successfully attacked in ex-
pansions of an abstract argumentation framework. First a model is proposed that
is abstract but designed to avoid overly limiting assumptions on instantiations or
dialogue contexts. It is then shown that most principles for argument strength pro-
posed in the literature fail to hold for the proposed notions of dialectical strength,
which clarifies the rational foundations of these principles and highlights the im-
portance of distinguishing between kinds of argument strength, in particular log-
ical, dialectical and rhetorical argument strength. The abstract model is then in-
stantiated with ASPIC+ to test the claim that it does not make overly limiting
assumptions on the structure of arguments and the nature of their relations.

Keywords: Computational argumentation, Expansion games, Dialectical argument
strength, Structured argumentation frameworks.

1 Introduction
Argumentation is a key topic in the logical study of nonmonotonic reasoning and the
dialogical study of inter-agent communication [7], and has received much attention
from the Artificial Intelligence (AI) community since the late 1980s. Argumentation
as a form of reasoning makes explicit the reasons for the conclusions that are drawn
and how conflicts between reasons are resolved. This provides a natural mechanism
to handle inconsistent and uncertain information and to resolve conflicts of opinion
between intelligent agents. In logical models of nonmonotonic reasoning, the argu-
mentation metaphor arguably overcomes some drawbacks of other formalisms. Many
of these have a mathematical nature that is remote from how people actually reason,
which makes it difficult to understand and trust the behaviour of an intelligent system.
The argumentation approach aims to bridge this gap by providing logical formalisms
that are rigid enough to be formally studied and implemented, while at the same time
being close enough to informal reasoning to be understood by designers and users [49].
This makes the formal study of argumentation very relevant to current research in ex-
plainable AI, which is the subfield of AI that studies how the behaviour and results of,
often non-transparent, AI algorithms can be explained to humans [46, 47, 72]. Formal
models of argumentation are also relevant as benchmarks of argumentative applications
of generative AI [67, 37].
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A recent trend in the formal study of argumentation is the development of gradual
notions of argument acceptability or argument strength. These notions are proposed
as alternatives to extension-based notions that are defined on top of the theory of ab-
stract [25] or bipolar [22] argumentation frameworks. The gradual notions are often
motivated by a discontent with the fact that extension-based notions of acceptability
only allow for rather coarse distinctions between degrees of acceptability, which would
not fit with the more nuanced ways in which humans evaluate arguments. Pollock
[57] was, to our knowledge, the first who addressed this issue and proposed a formal-
isation of gradual “justification”. The current developments arguably go back to [21]
and gained momentum with publications like [43] and [2]. The current studies include
probabilistic [41], gradual [33] and ranking-based [2] approaches.

Although the new developments are very interesting and the formal achievements
have been impressive, there are also reasons to take a step back. To start with, there
is a need to reflect on which notions or aspects of argument acceptability, or argument
strength, are modelled, and why proposed semantics or proposed sets of principles for
those semantics are good. What is needed is a conceptual and philosophical under-
pinning of the formal ideas and constructs. Furthermore, almost all work builds on
abstract or bipolar argumentation frameworks and thus does not give explicit formal
accounts of the nature of arguments and their relations, while yet this may be relevant
when evaluating the formal proposals. This paper1 addresses both issues.

Before doing so, a remark on terminology is in order. The use of the terms ‘strength’
and ‘acceptability’ in the literature varies. While e.g. [11, 4, 33] use these terms inter-
changeably, Amgoud [1] proposes that strength and acceptability are different concepts
in that acceptability is about which arguments can be (jointly) accepted by an agent,
where argument strength is one aspect that may determine argument acceptability. It
seems to us that Amgoud’s proposal is only about what we will below call contextual
argument strength, while we will distinguish several kinds of argument strength. Be-
cause of this and since there is no consensus in the literature yet about the use of these
terms, we will use ‘strength’ throughout the paper and leave open the possibility that
for contextual strength this is interpreted as degree of acceptability in the sense of [1].

1.1 Kinds of Argument Strength
As for the first issue mentioned above, which notions of argument strength are mod-
elled, we argue that work on gradual argument strength should make explicit which
kind of argument strength is modelled, since different kinds of strength may be subject
to different rationality constraints. In this paper we take Aristotle’s famous distinc-
tion between logic, dialectic and rhetoric as starting point. Very briefly, logic concerns
the validity of arguments given their form, dialectic is the art of testing ideas through
critical discussion and rhetoric deals with the principles of effective persuasion [71,
Section 1.4]. Accordingly, we distinguish between logical, dialectical and rhetorical
argument strength, where logical argument strength in turn divides into two aspects:
inferential and contextual argument strength.

1This paper combines, extends and generalises [61, 62, 63]. In particular, Section 1.1 is adapted from
[61], Section 3 generalises the ‘single-shot’ expansion approach of [62] to a setting with expansion games,
Section 4 extends and generalises the results of [62] for one generalised and one new contextual argument
ordering, while Sections 5.1 and 5.2 are based on definitions of [63]. Section 5 is fully new while Section 7
combines discussions of [62, 63] with new discussions.
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Inferential argument strength is about how well an argument’s premises support
its conclusion considering only the argument itself. Example criteria for argument
strength are that arguments with only deductive inferences are stronger than arguments
with defeasible inferences, or that arguments with only non-attackable premises are
stronger than arguments with attackable premises.

Contextual argument strength is about how well the conclusion of an argument is
supported in the context of a given set of arguments. Formal frameworks like Dung’s
theory of abstract argumentation frameworks, assumption-based argumentation, AS-
PIC+ and defeasible logic programming formalise this kind of argument strength [42].
Arguably some recent ranking and gradual semantics also aim to model contextual
strength, witness e.g. the following quote from [1]:

[An argument’s] strength depends on the plausibility of the premises, the
strength of the link between the premises and claim, and the prior accept-
ability of the claim. Attacks aim to highlight weaknesses in these three
components of an argument. Hence, the less an argument is attacked, the
stronger it is.

The reader might wonder why contextual strength is not called dialectical strength,
since after all, determining an argument’s contextual strength as defined here involves
the comparison of arguments and counterarguments. Yet this is not truly dialectical,
since the just-mentioned formalisms do not model principles of critical discussion but
define structural relations between (sets of) arguments on the basis of a given body of
information; likewise [30, 44].

Rhetorical argument strength looks at how capable an argument is to persuade
other participants in a discussion or an audience. Persuasiveness essentially is a psy-
chological notion: although principles of persuasion may be formalised, their valida-
tion as principles of successful persuasion is ultimately psychological (as acknowl-
edged in [40] and done in e.g. [34]).

Dialectical argument strength looks at how challengeable an argument is in the
context of a critical discussion. In [77, pp. 657] this is formulated as

(. . . ) the (un)availability of participant moves that constrain further in-
terlocutor moves. Minimally, argument strength thus is a function of the
(un)availability of non-losing future participant moves. In this sense, the
strongest proponent-argument leaves no further opponent-move except con-
cession (i.e., retraction of either a standpoint or of critical doubt), and
the weakest proponent argument constrains no opponent-move, given the
“move-space”.

Thus conceived, an important aspect of dialectical strength is the degree of vulner-
ability of an argument in that how many attacks are allowed in a given state that de-
crease the argument’s contextual strength. This reflects an intuition that many decision-
makers are aware of, namely, to justify one’s decisions as sparsely as possible, in order
to minimise the chance of successful appeal. It is this notion of dialectical strength that
is the focus of the present paper.

A separate study of dialectical argument strength is justified since the three aspects
of argument strength serve different purposes, so it may not be good to combine them
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into an overall notion. Another reason for this is that dialectical strength presupposes
contextual strength, since one aspect of dialectical strength is the extent to which an
argument’s contextual strength may be changed in the course of a dispute. In any case,
even if logical, dialectical and rhetorical strength are combined into an overall notion
of strength, they should first be separately defined, in order to make their combination
a principled one.

Being explicit about which aspects of argument strength are modelled is not only
important when formulating theories of argument strength but also when evaluating ap-
plications of computational argumentation. For instance, according to [67] the Debater
system was evaluated by twenty human annotators, who had to indicate to what extent
they agreed with the statement ‘The first speaker is exemplifying a decent performance
in this debate’. It is unclear which aspects the annotators had in mind when answering
this question or even whether all annotators looked at the same aspects and applied the
same criteria. With the present study, we aim to contribute to more principled methods
for evaluating argumentation tools like Debater.

1.2 Relating Abstract and Structured Approaches
To address the second issue mentioned above, relating abstract and structured ap-
proaches, we will first propose an abstract formal model of dialectical argument strength
in terms of the number of ways in which an argument can be successfully attacked in
expansions of an abstract argumentation framework, and we will then instantiate it with
the ASPIC+ framework [50, 51]. The choice for ASPIC+ is motivated by the facts that
it is well-studied and often applied (e.g. [10, 28, 60, 52, 53, 66, 68, 70]) while vari-
ants of assumption-based [69] and classical [31] argumentation can be reconstructed
as special cases of ASPIC+ [51].

The abstract model is defined in terms of a refined version of the notion of a normal
expansion of an abstract argumentation framework as proposed in [8], Although the
model is abstract, its design is motivated by the wish to avoid overly limiting assump-
tions on instantiations or dialogue contexts. Illustrating its adequacy in this respect is
one aim of the instantiation with ASPIC+. Another aim of the instantiation is to study
which properties that do not hold in general may hold if assumption are made on the
structure of arguments and the nature of their relations. Among other things, we will
show that most principles for argument strength proposed in the literature fail to hold
in general for this paper’s notion of dialectical strength, both for its abstract version
and its instantiation with ASPIC+. We will argue that this casts doubt on the rational
foundations of these principles.

1.3 Overview of the Paper
The rest of paper is organised as follows. In Section 2 we summarise the formalisms
used in this paper: the theory of abstract argumentation frameworks and the ASPIC+

framework. In Section 3 we present and study our abstract model of dialectical strength
in ranking-based form, which in Section 4 we alternatively combine with two semantics
for contextual strength: the standard semantics based on [25] and the ranking-based
burden semantics of [2]. We then instantiate our abstract approach with ASPIC+ in
Section 5 and we investigate the formal properties of this instantiation in Section 6. In
Section 7 we discuss related work and use it to make some preliminary observations
on computational complexity. We conclude in Section 8 with a discussion of what we
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have achieved and what is left to be done, and of the wider implications of our results
for AI research on models of argument strength.

2 Formal Preliminaries
In this section we summarise the formal preliminaries: the theory of abstract argumen-
tation frameworks and their expansions, and the ASPIC+ framework.

2.1 Abstract Argumentation Frameworks: Semantics and Expan-
sions

An abstract argumentation framework [25] is a pair AF = (AAF ,DAF ), where AAF

is a set of arguments and DAF ⊆ AAF × AAF is a relation of defeat.2 We write
A ∈ AF as shorthand for A ∈ AAF and we will omit the subscripts if there is no
danger for confusion. We will sometimes in text present an AF as A ← B ↔ C, to
denote that A = {A,B,C} and D = {(B,A), (B,C), (C,B)}. Let S ⊆ A. Then S
is conflict-free if no member of S defeats a member of S and S defends A ∈ A if for
all B ∈ A : if B defeats A, then some C ∈ S defeats B.

Then relative to a given AF , the following semantics were defined in [25], which
we will call classical semantics for abstract argumentation framework.

Definition 1 [Classical semantics for AF s] Let (AAF ,DAF ) be an AF and E,S ⊆
AAF . Then
• E is admissible if E is conflict-free and defends all its members;
• E is a complete extension if E is admissible and A ∈ E iff A is defended by E;
• E is a preferred extension if E is a ⊆-maximal admissible set;
• E is a stable extension if E is admissible and defeats all arguments outside it;
• E ⊆ A is the grounded extension if E is the least fixpoint of operator F , where
F (S) returns all arguments defended by S.

It holds that any preferred, stable or grounded extension is a complete extension. For
x ∈ {complete, preferred, grounded, stable}3, X is skeptically justified under the
x semantics if X belongs to all x extensions. For a notion of credulous justifica-
tion we distinguish between grounded semantics and the three other semantics. For
x ∈ {complete, preferred, stable} X is credulously justified under the x semantics if
X belongs to at least one x extension. Under grounded semantics, X is credulously
justified if X does not belong to the grounded extension but is not defeated by an
argument in the grounded extension.

In this paper we will often use an equivalent labelling way to define semantics
for AFs. A labelling of a set A of a set of arguments in an AF = (A,D) is any
partitioning (in,out,und) of A that satisfies the following constraints:

1. an argument is in iff all arguments defeating it are out;
2. an argument is out iff it is defeated by an argument that is in;
3. an argument is und (for ‘undecided’) iff it is neither in nor out.

2Dung used the term ‘attack’ but since we want to instantiate it with the ASPIC+ defeat relation, we
rename it to ‘defeat’.

3In later papers new semantics have been introduced, see Baroni, Caminada, and Giacomin [6], but we
only discuss these semantics of [25].
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Here und stands for ‘undecided’. Then stable semantics labels all arguments, while
grounded semantics minimises and preferred semantics maximises the set of arguments
that are labelled in and complete semantics allows any labelling. It has been shown for
x ∈ {complete, preferred, grounded, stable} that the set of x-extensions is equal to
the set of all sets S such that S is a set of all arguments labelled in in a particular
x-labelling [18].

Ranking-based semantics for abstract argumentation frameworks are defined as fol-
lows [11]:

Definition 2 [Ranking-based semantics for AF s] A ranking-based semantics for an
AF = (AAF ,DAF ) is a preorder ≥AF on AAF , that is, a transitive and reflexive
ordering. That A ≥AF B means that A is at least as acceptable as B (Henceforth, the
subscript AF will be omitted if there is no danger for confusion.) As usual, A > B is
defined as A ≥ B and B 6≥ A and A ≈ B as A ≥ B and B ≥ A.

In our paper we will define comparisons between arguments that possibly are in
different AFs. Accordingly, we will later generalise the notion of ranking-based se-
mantics as applying to sets of argument-framework pairs.

The following definition is from [11], adapted to our notation and terminology, and
defines several notions used in postulates proposed in the literature for ranking-based
semantics.

Definition 3 Let AF = (A,D) and A,B ∈ A. A path P from B to A, denoted
P (B,A), is a sequence S = (A0, . . . , An) of arguments such that A0 = A, An = B
and ∀i < n, (Ai+1, Ai) ∈ D. We denote by lP = n the length of P . A defender
(resp. defeater) of A is an argument situated at the beginning of an even-length (resp.
odd length) path ending with A. We denote the multiset of defenders and defeaters of
A by R+

n (A) = {B | ∃P (B,A) with lP ∈ 2N} and R−n (A) = {B | ∃P (B,A) with
lP ∈ 2N+ 1} respectively4. An argument A is defended if R+

2 (A) 6= ∅.
The direct defeaters, (resp. direct defenders) ofA are the arguments inR−1 (A) (resp

R+
2 (A). Below we will simplify the notations R−1 (A), respectively, R+

2 (A) to A−,
respectively, A+. Also, henceforth we will use the term ‘defeater’ for direct defeaters
and call all other defeaters ‘indirect defeaters’.

A defense root (resp. defeat root) is a non-defeated defender (resp. direct or indirect
defeater). We denote the multiset of defense roots and defeat roots of argument A by
BR+

n (A) = {B ∈ R+
n (A) | |B−| = 0} and BR−n (A) = {B ∈ R−n (A) | |B−| =

0} respectively. A path from B to A is a defense branch (resp. defeat branch) if B
is a defense (resp. defeat) root of A. Let us denote BR+(A) =

⋃
nBR

+
n (A) and

BR−(A) =
⋃

nBR
−
n (A).

Finally, Baumann and Brewka [8] define various kinds of expansions of abstract
argumentation frameworks as follows.

Definition 4 [Expansions] An abstract argumentation frameworkAF ′ is an expansion
of an abstract argumentation framework AF = (A,D) iff AF ′ = (A∪A′,D∪D′) for
some nonempty A′ disjoint from A. An expansion is

1. normal iff for all A,B: if (A,B) ∈ D′ then A ∈ A′ or B ∈ A′,
2. strong iff it is normal and for all A,B: if (A,B) ∈ D′ then it is not the case that
A ∈ A and B ∈ A′,

42N denotes the set of all even natural numbers.
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3. weak iff it is normal and for all A,B: if (A,B) ∈ D′ then it is not the case that
A ∈ A′ and B ∈ A.

Normal expansions add new arguments and possibly new defeat relations, where new
defeats should involve at least one new argument. Strong, respectively, weak expan-
sions are normal expansions that do not add defeats from old to new, respectively, from
new to old arguments.

2.2 The ASPIC+ Framework
In this section we summarise the ASPIC+ framework for strructured argumentation.
Over the years several variants of the ASPIC+ framework have been developed and
studied. In this paper we use a special case of the ‘basic’ framework as formulated in
[59] and further studied in [49]. The special case is that we consider a language with
symmetric negation, noting that all new definitions proposed in Section 5 of this paper
can be easily adapted to the versions of ASPIC+ with asymmetric negation, while the
counterexamples given in Section 6 of this paper directly hold for these generalisations.
On the other hand, we generalise the basic system in that we do not consider specific
ways to define the preference relation on arguments. At the end of this section we will
briefly discuss other variants of ASPIC+ that have been proposed.

2.2.1 Basic Definitions

ASPIC+ defines abstract argumentation systems as structures consisting of a logical
language L and two sets Rs and Rd of strict and defeasible inference rules defined
over L. Arguments are constructed from a knowledge base (a subset of L) by chaining
inferences over L into acyclic graphs (which are trees if no premise is used more than
once). Formally,

Definition 5 [Argumentation System] an argumentation system (AS) is a tripleAS =
(L,R, n) where:

• L is a logical language with a negation symbol ¬;
• R = Rs ∪ Rd is a set of strict (Rs) and defeasible (Rd) inference rules of the

form ϕ1, . . . , ϕn → ϕ and ϕ1, . . . , ϕn ⇒ ϕ respectively (where ϕi, ϕ are meta-
variables ranging over well-formed formulas (wff) in L), such thatRs∩Rd = ∅.
Here, ϕ1, . . . , ϕn are called the antecedents and ϕ the consequent of the rule.

• n is a partial function such that n : Rd −→ L.

Informally, n(r) is a wff in L which says that the defeasible rule r ∈ R is applicable,
so that an argument claiming ¬n(r) attacks an inference step in the argument using r.
We write ψ = −ϕ just in case ψ = ¬ϕ or ϕ = ¬ψ. We use as a variable ranging
over {→,⇒}. Since the order of antecedents of a rule does not matter, we sometimes
write S  ϕ where S is the set of all antecedents of the rule.

Definition 6 [Knowledge bases] A knowledge base in anAS = (L,R, n) is a setK ⊆
L consisting of two disjoint subsets Kn (the axioms) and Kp (the ordinary premises).

Definition 7 [Argumentation theories] An argumentation theory is a pair (AS,K)
where AS is an argumentation system and K a knowledge base in AS.
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Definition 8 [Arguments] An argument A on the basis of an argumentation theory
AT is a structure obtainable by applying one or more of the following steps finitely
many times:

1. ϕ if ϕ ∈ K with: Prem(A) = {ϕ}; Conc(A) = ϕ; Prop(A) = {ϕ},
Sub(A) = {ϕ}; Rules(A) = ∅; DefRules(A) = ∅; TopRule(A) = undefined.

2. A1, . . . , An  ψ ifA1, . . . , An are arguments such thatψ 6∈ Conc({A1, . . . , An})
and Conc(A1), . . . , Conc(An) ψ ∈ R with:
Prem(A) = Prem(A1) ∪ . . . ∪ Prem(An);
Conc(A) = ψ;
Prop(A) = Prop(A1) ∪ . . . ∪ Prop(An) ∪ {ψ},
Sub(A) = Sub(A1) ∪ . . . ∪ Sub(An) ∪ {A};
Rules(A) = Rules(A1) ∪ . . . ∪ Rules(An) ∪ {Conc(A1), . . . , Conc(An)  
ψ};
DefRules(A) = Rules(A) ∩Rd;
TopRule(A) = Conc(A1), . . . , Conc(An) ψ.

Premn(A) = Prem(A)∩Kn and Premp(A) = Prem(A)∩Kp. Furthermore, argument
A is strict if DefRules(A) = ∅ and defeasible otherwise, and A is firm if Premp(A) =
∅, otherwise A is plausible.

The set of all arguments on the basis of AT is denoted by AAT .

Each of the functions Func(A) in this definition is also defined on sets of arguments
S = {A1, . . . , An} as follows: Func(S) = Func(A1)∪ . . .∪Func(An). Note that the
→ and⇒ symbols are overloaded to denote both inference rules and arguments.

Definition 9 [Attack] Argument A attacks argument B iff A undercuts or rebuts or
undermines B, where:
• A undercuts B (on B′) iff Conc(A) = −n(r) and B′ ∈ Sub(B) such that B′’s

top rule r is defeasible.
• A rebuts B (on B′) iff Conc(A) = −ϕ for some B′ ∈ Sub(B) of the form
B′′1 , . . . , B

′′
n ⇒ ϕ.

• A undermines B (on ϕ) iff Conc(A) = −ϕ for some ϕ ∈ Prem(B) ∩ Kp.

Definition 10 [Structured Argumentation Frameworks] A structured argumenta-
tion framework (SAF) defined by an argumentation theory AT is a triple (A, C, �)
where A is the set of all arguments on the basis of AT , � is an ordering on A and
(X,Y ) ∈ C iff X attacks Y .

The notion of defeat is now defined as follows. Undercutting attacks succeed as defeats
independently of preferences over arguments, since they express exceptions to defea-
sible inference rules. Rebutting and undermining attacks succeed only if the attacked
argument is not stronger than the attacking argument, where A ≺ B is defined as usual
as A � B and B 6� A and A ≈ B as A � B and B � A. Below we assume that ≺ is
asymmetric while, moreover, if A is strict and firm, then A ≺ B does not hold.

Definition 11 [Defeat] Argument A defeats argument B iff either A undercuts B; or
A rebuts or undermines B on B′ and A ⊀ B′.

Abstract argumentation frameworks are then generated from SAFs as follows:

Definition 12 [Argumentation frameworks] An abstract argumentation framework
(AF) corresponding to an SAF = (A, C,�) is a pair (A,D) such that D is the defeat
relation on A determined by SAF .
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2.2.2 Research on Consistency Postulates and Variants of ASPIC+

In [19] postulates were studied that say that the set of conclusions of all arguments
in an extension should be directly and indirectly consistent. Informally, a set of wffs
is directly consistent if it does not contain a formula and its negation and it is indi-
rectly consistent if its closure under strict-rule application is directly consistent. The
ASPIC+ framework as presented thus far leaves one fully free to choose a language,
what is an axiom and what is an ordinary premise, how to specify strict and defeasible
rules and how to define the preference relation between arguments. As a consequence,
ASPIC+ does not in general satisfy these consistency postulates. It has been shown
that ASPIC+ shares this feature with most other structured approaches to argumenta-
tion, such as Defeasible Logic Programming [19], classical-logic argumentation [31]
and assumption-based argumentation [49]. For ASPIC+ much research has been done
on identifying broad and well-behaved classes of instantiations that do satisfy direct
and indirect consistency; see e.g. [19, 59, 49, 26, 76, 32]. Since the way we will use
ASPIC+ in this paper does not depend on satisfaction of these postulates, our approach
and results will apply to all these classes of instantiations.

Furthermore, noted above, over the years several variants of the ASPIC+ frame-
work have been developed and studied, all with their strengths and weaknesses, and
all with new results on satisfaction of the consistency postulates. In [49] in fact four
variants are studied, along two axes: whether the premises of arguments have to be
indirectly consistent or not, and whether conflict-freeness of sets of arguments is de-
fined in terms of the attack or the defeat relation. In [19, 20, 36] variants of rebutting
attack called ‘unrestricted rebut’ are studied, in which arguments can also be rebutted
on conclusions of strict top rules, provided that at least one subargument of the at-
tacked argument is attackable. In [32] a variant is proposed to deal with the so-called
contamination problem when Rs is generated by classical logic. As explained in [17],
in such cases rebutting arguments give rise to unwanted further arguments because of
the Ex Falso property (a problem that can also arise in assumption-based argumenta-
tion). In [32] this problem is avoided by letting Rs be generated by so-called weak
consequence [65], which says that something weakly follows from a set iff it follows
classically from at least one consistent subset of that set. This requires that strict rules
cannot be chained in arguments, since weak consequence does not satisfy the cut rule.
Finally, in [23] a variant of ASPIC+ is proposed to deal with contamination problems
in a different way, namely, by modifying the definitions of arguments, attacks and de-
feats in order to allow for expressing whether premises or arguments are committed
to or instead supposed for the sake of argument. The resulting system can also model
argument evaluation under resource bounds.

In this paper we have chosen to work with the ‘basic’ variant of [59, 49] since it
is the simplest and most widely known and used variant and since the way we will
instantiate our abstract account of Sections 3 and 4 does not depend on the particular
features of the adopted variant of ASPIC+. Accordingly, we use the basic version as a
representative example and we conjecture that our approach and results easily extend
to the other variants.
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3 Dialectical Argument Strength: Abstract Ranking-
Based Semantics

In this section we define an abstract ranking-based semantics of dialectical strength of
arguments. As noted in Section 2, we will not as usual define it on the set of arguments
of a single given AF , but instead on the set of all argument-AF pairs given a set of
AFs.

3.1 Ideas
Dialectical argument strength has both static and dynamic aspects. A static aspect is
whether an argument has been successfully defended in a terminated dialogue, which
is a matter of applying a notion of contextual strength at termination. Dynamic aspects
concern how challengeable an argument is in a given non-final state of the dialogue.
Taking the formulation of [77] quoted above in the introduction literally, it should be
modelled by considering all possible ways to terminate the dialogue but in general
this is infeasible. First of all, such an approach would need a clear definition of when
and how dialogues terminate, but in many contexts (such as informal debate) such
a clear definition cannot be given. Moreover, it will often be impossible to foresee
which information will become available to construct arguments, how arguments will
be evaluated in the course of a dialogue and which procedural decisions (such as on
admissibility of evidence or termination of a dialogue) will be taken. And even if all
this can be foreseen in theory, there will in practice often be computational or resource
limitations. Although there can be specific contexts where considering all possible
completions of the current state is feasible, a general account cannot rely on this.

For these reasons, we propose the following flexible approach. We define the ex-
tent to which an argument can be successfully attacked in continuations of a dialogue
in terms of a dialogue game in which an opponent and proponent of a given focus
argument successively expand the current state in a way that, respectively, decreases
and increases the ‘current’ contextual status of the focus argument. Successful attack
is then defined in terms of the existence of a winning strategy for the opponent in this
game. The flexibility is given by the fact that the notion of a winning strategy is made
relative to a given maximal length of a dialogue game. The choice of a suitable maxi-
mum length depends on the context and the nature of the application.

Imagine a dialogue participant who can extend a given AF and who wants to make
a given argument F (the focus argument) dialectically as strong as possible. The par-
ticipant will consider all procedurally allowed expansions AF ′ of AF and determine
in which of these expansions F is the strongest. So in general we have to compare
arguments that are in different AFs. Moreover, our notion of strength will not boil
down to applying a notion of contextual strength to all these expansions, since we also
want to determine how vulnerable F is to defeat in all these expansions. To this end
we will define a notion of defeat points5 of an argument, which are minimal sets of
arguments that, if defeated in an allowed expansion, make the contextual strength of
the focus argument decrease. We will formally define this notion in Section 3.4. Let
us, to explain the intuitions, first focus on ‘single-shot’ games, which terminate after
the first move by the opponent (the setting of [62]).

Example 1 Consider anAF = A← B, letA be the focus argument and let arguments

5In [62] defeat points were called ‘attack points’.
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be evaluated using grounded semantics. Assume that the proponent of A can expand
AF with either C, resulting in AF ′ = A ← B ← C, or with D, resulting in AF ′′ =
A← B ← D. In both expansions A is in so at first sight it would seem that it does not
matter whether the proponent moves C or D. However, assume that the arguments are
generated in ASPIC+ and that C can be defeated since it is defeasible while D cannot
be defeated since it is strict and firm. Assume, moreover, that the opponent can expand
AF ′ to a framework AF ′′′ in which a defeat of C results in A being und or out. Then
A has two defeat points in AF ′, namely, {A} and {C}, while A has only one defeat
point in AF ′′, namely, {A}. So AAF ′′ is dialectically stronger than AAF ′ , therefore,
the dialectically better choice for the proponent is to expand AF to AF ′′ by adding D.

To model these ideas, we let dialectical strength be determined by a combination
of the ‘current’ contextual strength of an argument and its number of defeat points
as follows. To start with, we assume a contextual argument ordering for a (possibly
infinite) set of AF s. Since in general we want to compare arguments in different AFs,
we define it as an ordering on argument-AF pairs. Moreover, since we want to allow
for contextual orderings generated by different argumentation semantics, we make it
relative to a semantics x.

Definition 13 Given a semantics x for abstract argumentation frameworks, a contex-
tual ordering of argument strength for a set S of abstract argumentation frameworks is
a preorder ≥x

c defined on {(A,AF ) | AF ∈ S and A ∈ AF}.

Below, when S and/or x is clear from the context, it will be omitted, andAAF ≥c BAF ′

will stand for (A,AF ) ≥c (B,AF ′), where the subscripts of the arguments will be
left implicit if AF and AF ′ are clear from the context. As usual, B ≤c A stands
for A ≥c B while A >c B stands for A ≥c B and B 6≥c A, and A ≈c B stands for
A ≥c B andB ≥c A. In Section 4 several instantiations of x in≥x

c will be studied. For
now the nature of x will be left fully unspecified in the formal theory to be developed
while in examples the following simple contextual ordering for the labelling version of
grounded semantics (g) will be used (which was also assumed in [62]): in >g

c und >g
c

out.
Then, given the set of allowed expansions {AF ′, AF ′′, . . .} of a givenAF , the idea

is to say that if argumentAAF ′ is contextually better than argumentBAF ′′ then it is also
dialectically better than argument BAF ′′ , while if AAF ′ and BAF ′′ are contextually
equally strong, then AAF ′ is better than BAF ′′ if AAF ′ has fewer defeat points than
BAF ′′ , that is, if there are fewer ways to successfully lower the contextual strength of
A than that of B (in a way to be made precise below). So this notion of dialectical
strength presupposes and is a refinement of the notion of contextual strength. The
primacy of contextual strength is justified by our intended application scenario, where
a proponent of a focus argument F wants to move to a state where F is contextually as
strong as possible. Moreover, if contextual strength has primacy, then for terminated
disputes dialectical strength reduces as desired to how well an argument is defended at
termination.

3.2 Expansions and Expansion Games
We now define the notions of allowed expansions and an expansion game, which with
various other definitions will allow us to define defeat points of an argument.

11



3.2.1 Expansions in universal argumentation frameworks

To define defeat points, we now first define the notion of an allowed expansion of an
AF , which is a refinement of [8]’s notion of an expansion. The first refinement is to
make expansions relative to a given background universal argumentation framework
UAF = (Au,Du) from which expansions can take their new arguments and defeats.
Arguably any model of expansions needs to fix a universal background, otherwise there
is no way to identify possible expansions. Therefore, it is worthwhile to make notions
of background information explicit in order to develop a theory about them. Another
important reason for doing so is that the notion of a universal background AF helps
avoiding implicit assumptions at the abstract level that are not always satisfied by in-
stantiations, such as that all arguments can be defeated or that all defeats are indepen-
dent from each other. We will come back to this point below.

Definition 14 [Argumentation frameworks in a universal AF] Given a universal
argumentation framework UAF = (Au,Du), an argumentation framework in UAF is
any AF = (A,D) such that A ⊆ Au and D ⊆ Du

|A×A.

The fact that D is not required to equal Du
|A×A is to allow for instantiations with

systems like ASPIC+ that use preferences to resolve attacks. For example, suppose
A,B ∈ Au and (A,B), (B,A) ∈ Du. Then AF = ({A,B}, {(A,B)}) is an AF in
UAF that expresses a preference of A over B. Nevertheless, below we will sometimes
consider AFs in a UAF that do not omit defeats from a UAF in that D = Du

|A×A.
We must also distinguish between allowed and unallowed expansions. One reason

is that the dialogical protocol may impose constraints, such as admissibility of premises
or of types of arguments. For example, in some systems of criminal law analogical ap-
plications of criminal provisions are forbidden. The problem context may also impose
restrictions. For example, investigation procedures in which information gathering is
interchanged with argument construction may have a constraint that all and only rel-
evant arguments constructible from the gathered information are included. Finally,
underlying structured accounts of argumentation [42] may impose such constraints,
as will be shown in detail in Section 5 below. For now we give a simple example in
ASPIC+.

Example 2 Suppose we have an AF consisting of the following arguments:

A1: p, A2: p⇒ q

where p ∈ Kp. Suppose UAF contains the following defeater of A1:

B: ¬p

where ¬p ∈ Kn. Then expanding AF to AF ′ = ({A1, A2, B}, {(B,A1)}) should
not be allowed, since in ASPIC+ B also defeats A2. So this ‘implied’ defeat relation
(B,A2) must als be added to the expansion.

We now define (allowed) expansions relative to a given UAF as follows.

Definition 15 [Expansions given a universal argumentation framework] LetAF =
(A,D) and AF ′ = (A′,D′) be two abstract argumentation frameworks in a UAF. Then
AF ′ is an expansion of AF given UAF if AF ′ = (A∪A′,D∪D′) for some nonempty
A′ disjoint from A. The notions of a normal, weak and strong expansion in UAF are
defined as the corresponding notions in Definition 4.

Let XUAF (AF ) be the set of all expansions of AF given UAF. Then the set of
allowed expansions of AF given UAF is some designated subset of XUAF (AF ).
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3.2.2 Expansion games

Recall that we want to define the extent to which an argument can be successfully at-
tacked in continuations of a dialogue in terms of a dialogue game in which an opponent
and proponent of a given focus argument successively expand the current state in a way
that, respectively, decreases and increases the ‘current’ contextual status of the focus
argument. Successful attack can then defined in terms of the existence of a winning
strategy for the opponent in this game. To formalise these ideas, we must first define
an expansion game of length n between a proponent and an opponent of a given argu-
ment A in an initial AF . The opponent starts the game by expanding the AF to AF ′

in such a way that the contextual status of A is reduced in AF ′. Then the players take
turns. The proponent must extend the last expansion of the opponent in such a way that
A’s contextual status is increased to at least its original status, while the opponent must
extend the last expansion of the proponent in such a way that A’s contextual status is
reduced to below its original status. A player wins a finite game if the other player has
no legal reply.

These ideas are formalised as follows.

Definition 16 [Expansion game] LetA be any argument in aAF in a given UAF and
let n ∈ N ∪ {∞}.

1. An expansion dialogue of length n for AAF given UAF is a nonempty sequence
X = X0, . . . , Xj , . . . such that all of the following conditions hold:

(a) X0 = AF ;

(b) If n ∈ N then X = X0, . . . , Xj and 0 ≤ j ≤ n;

(c) For every i > 0, Xi is an allowed expansion of Xi−1 given UAF ;

(d) if i is odd then AXi <
x
c AAF ;

(e) if i is even then AXi ≥x
c AAF .

A finite expansion dialogueX0, . . . , Xi of length n is terminated if either n ∈ N
and i = n or else there are no allowed expansions of Xi satisfying the above
conditions.

2. An expansion game of length n about AAF given UAF is a game with two
players, a proponent and an opponent of A, who take turns after each move,
where the proponent starts with AF . A move is legal if the resulting sequence
of moves is an expansion dialogue of length n. A game is terminated iff it is
terminated as a dialogue. A terminated game is won by the player who made the
last move.

Let us consider some examples.

Example 3 Consider the AF and UAF in Figure 1. Clearly, in any game about B
of any length, the proponent has a winning strategy AF , since UAF does not contain
defeaters of B. However, in games about A things are more subtle. Assume first that
an expansion is allowed iff it does not omit defeats from UAF . Then the opponent
has a winning strategy in a game about A of length 1 but not in games of any length
n > 1. The winning strategy for length 1 is AF,AF ′ where AF ′ expands AF with
C and A ← C. However, in a game of any length n > 1 the proponent can reply by
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Figure 1: Illustrating the expansion game

extending AF ′ to AF ′′ with D and C ← D, after which the dialogue terminates with
a win by the proponent.

Assume next that all expansions are allowed, so omitting defeats from UAF is
allowed. Then the opponent has a winning strategy for all n, namely, AF,AF ′ where
AF ′ expands AF with C,D and A ← C, so AF ′ omits C ← D from UAF . The
proponent cannot expand AF ′ since there are no new arguments to be introduced.

At first sight, the second variant of this example would seem to imply that it is easy
to trivialise the game but this is not true. It all depends on the context provided by
the UAF and on what the definition of allowed expansions implies about omitting
defeats. Depending on the context and the nature of the application, omitting defeats
may always, never or sometimes make sense. For example, in Section 5.2 we will in
the context of ASPIC+ give a sensible definition in which omitting asymmetric defeats
is never allowed but omitting symmetric defeats may be allowed. For the same reasons
it is in general undesirable to require that the expansions in an expansion game are
minimal in their sets of arguments, since there is no a priori reason why expansions
such as in the second variant of Example 3 should never be constructed.

The following relation can be proven between the existence of winning strategies
in expansion games of length ∞ and the contextual status of an argument in an AF
compared to in UAF .

Proposition 4 For any AF in a given UAF , if all expansions are allowed if and only
if they do not omit defeats from UAF , then the following holds for all A ∈ AF .

1. If AUAF <x
c AAF then the opponent has a winning strategy in a game of length

∞ about A.

2. If the opponent has a winning strategy in a game of length ∞ about A, then
AUAF 6≥x

c AAF .

PROOF. For (1), if AUAF <x
c AAFAF 6= UAF , then AF , UAF is a winning strategy

for the opponent in a games of length∞ since there are no expansions of UAF .
For (2) assume that the opponent has a winning strategy S in a game of length

∞ about A. Suppose for contradiction that AUAF ≥x
c AAF . Then the proponent

can continue any dialogue X in S with UAF since AXi
<x

c AAF for any final move
Xi in such a dialogue X . But then S is not a winning strategy for the opponent.
Contradiction. QED

The condition that AF does not omit defeats from UAF is essential for this proposi-
tion. A simple counterexample without this condition is the following example.

Example 5 Consider a UAF consisting of A and B where A ↔ B and an AF in
UAF with the same arguments but with only A ← B. Then AUAF <x

c AAF but no
expansion ofAF exists, so so the opponent has no winning strategy in a game of length
1 about A.

14



It should be noted that the assumption that an expansion is allowed iff it does not omit
defeats from UAF excludes many realistic applications of the model. In Section 5
we will see that instantiating the abstract model with ASPIC+ imposes structural con-
straints and allows for sensible omissions of defeats. Moreover, there can be procedural
constraints on expansions. For example, a judge could rule particular evidence or ar-
guments inadmissible.

3.3 Attack Targets and Relevant Sets
To define defeat points, we also need notions of attack targets and relevant sets. First it
is important to note that a defeat point must be defined as (at least) consisting of a set
of arguments, as Example 6 shows.

Example 6 Consider Figure 2.

Figure 2: Multiple defeat points

Defeating justC or justD is not enough to lower the status ofA, so {C,D} should also
be, or at least be part of, a defeat point. Note, furthermore, that defeating F also lowers
the status of A, so {F} should also be (part of) a defeat point of A, so an argument can
have multiple defeat points.

This example suggests that defeat points must be defined as a set of arguments, but
in fact the definition must be more refined. Imagine an AF with two defeatable but
undefeated arguments A and B such that for both of them expansions exist that lower
their status. Then on the account given so far they should both have one defeat point,
namely, {A}, respectively, {B}. However, if A has just one premise on which it can
be defeated while B has two, or A uses one defeasible rule while B uses two, and their
status can be lowered by attacks on all these points, then A should still be dialectically
stronger than B.

Example 7 A simple formal example in ASPIC+ is the following two arguments, in
which both p and r are ordinary premises:

A: p⇒ q
B: p, r ⇒ s

Argument A has three points at which it can be attacked, namely, the ordinary premise
p, the conclusion q and the application of the defeasible rule p ⇒ q, while B has four
such ‘attack targets’, namely, the ordinary premises p and r, the conclusion s and the
application of the defeasible rule p, r ⇒ s.

Can we leave the handling of this difference to structured instantiations of our ac-
count? No, since we want that observations made at the abstract level are inherited by
instantiations, otherwise we run the risk of implicitly making assumptions that do not
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hold for all instantiations, such as that all arguments have the same number of ‘weak
spots’. Accordingly, we assume that each argument Y in a UAF comes with a finite
set of attack targets, and we assume that each argument X defeating Y defeats Y on
at least one of Y ’s attack targets. This will allow us to define defeat points as sets of
argument-attack-target pairs.

Definition 17 [Attack target function and attack targets] Given a set T , an attack
target function for a UAF = (Au,Du) is a function t : Au −→ 2T that assigns to each
argument in Au a set of attack targets. Each UAF is assumed to have a unique attack
target function. Moreover for each defeat relation (X,Y ) from Du a unique nonempty
set S ⊆ t(Y ) is assumed consisting of the points on which X defeats Y .

For now the nature of the set T and the function t will be left implicit; we hope that
Example 7 sufficiently illustrates the underlying ideas for the time being. In Section 5.3
we will give example instantiations for ASPIC+.

Given a set S of arguments, we write St for the set of all pairs (A, t) such that
A ∈ S and t ∈ t(A).

A further ingredient needed for defining defeat points is a notion of relevance of a
set of defenders to the status of the defended argument. This notion is needed since it
can happen that defeating a defender of A does not change the contextual status of A,
as Example 8 shows.

Example 8 In the AF in Figure 3, C and G are defenders of A but defeating either of
them does not lower the status of A; this only happens if either A or D is defeated, so,
assuming that all arguments have undefeated defeaters in UAF, (which is left implicit)
the only sets relevant to A are {A} and {D}.

Figure 3: (Ir)relevant sets

Accordingly, the following definition (which adapts the dialogical notion of relevance
proposed in [58] to AFs) says that a set S ⊆ A is relevant to A in AF iff AF can
be expanded with undefeated defeaters of all members of S such that A’s contextual
strength is lowered.

Definition 18 For any AF = (A,D) with A ∈ A, a set S ⊆ A is relevant to A in AF
iff S is a minimal set such thatAAF ′ <

x
c AAF for someAF ′ = (A∪S′,D′) such that:

• S′ ∩ A = ∅; and

• D′ consists of nothing else but defeat relations (B,B′) for all B ∈ S and some
B′ ∈ S′.

Note that this notion does not need to be defined relative to a UAF, in particular, S′

does not need to be from UAF, since all the notion of relevance needs to capture is the
sets of arguments to which an expansion that is meant to lower A’s status should be
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targeted. For this reason a set S′ as required by the definition always exists. Whether an
expansion that lowersA’s status is possible and, if so, whether it is allowed, depends on
the content of a UAF and the definition of allowed expansions as used in Definition 19
below.

3.4 Defeat points
We can now formalise when an allowed expansion is successful in lowering the status
of the focus argument. This will be done in terms of the existence of a winning strategy
for the opponent in an expansion game. More precisely, a defeat point of an argument
A is formally defined as a subset-minimal set S of argument-attack-target pairs that is
relevant to A and for which an allowed expansion exists that defeats all attack targets
in S and lowers A’s contextual strength, and is the first opponent move in a winning
strategy (in the usual game-theoretical sense) for the opponent in an expansion game.
The definition is parametrised by a variable n for the maximum length of a game.

Definition 19 [Defeat points] Let n ∈ N ∪ {∞}. Given an abstract argumentation
framework AF = (A,D) in UAF , an n-attack point of an argument A ∈ A is any
minimal set S ⊆ At relevant to A such that the opponent has a winning strategy in an
expansion game of length n about AAF given UAF , where the opponent’s first move
is X1 = (A1, C1) and is such that

• for all (B, t) ∈ S there exists an argument C ∈ A1 such that C defeats B on t
according to D1.

The set of n-defeat points of A given AF is denoted by dpnAF (A).

By definition of the expansion game A cannot have n-defeat points for n = 0. Below
we leave this implicit. Moreover, if S is a winning strategy for the opponent, then for
the final move Xi of any terminated dialogue in S it holds that AXi <c AAF . Then it
follows that the definition of ‘attack points’ in [62] is the special case of Definition 19
with n = 1, so our present approach formally generalises that of [62]. As for notation,
when an argument A has a single attack target t, we will often say that A has n-defeat
point {A} instead of saying that it has n-defeat point {(A, t)}. Also, if there is no
danger for confusion, we will speak of defeat points, leaving n implicit.

That St ⊆ At has to be minimal is for two reasons: to prevent that too many de-
feat points have to be computed, and to avoid trivialisation of our approach if UAF
is infinite. As regards the first reason, consider an AF with a large set of arguments
with undefeated defeaters in UAF, let n = 1 and let A be an argument in the AF with
just one minimal 1-defeat point {A}. Then without the requirement of minimality, any
subset of St containing A would be a 1-defeat point of A. As regards trivialisation in
case of infinite AFs, without the requirement of minimality it may be that two argu-
ments with different finite numbers of minimal n-defeat points both have an infinite
number of non-minimal n-defeat points, which would render meaningful comparison
impossible. The condition that the set of arguments of a defeat point of A is relevant to
A is to exclude examples like the following one.

Example 9 Consider the UAF and AF in Figure 4, where A and B are assumed to
have a single attack target. Without the relevance condition and if expanding AF with
C is only allowed if both defeat relations are included in the expansion, then {B}
would, for any n, be an n-defeat point of A, which is undesirable.
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Figure 4: Why the set of arguments of defeat points should be relevant

Example 10 To further illustrate Definition 19, assume in Examples 6 and 8 that all
arguments have a single attack target and that they all have undefeated defeaters in
UAF outside AF . Then in Figure 2 the n-defeat points of A are, for any n, {A}, {F}
and {C,D}. This holds for all n since all expansions that satisfy Definition 19 are such
that there is no reply to them in the expansion game. In Figure 3 the n-defeat points of
A are {A} and {D}, also for any n.

It is not required that all arguments in A′ defeat some argument in S, since including
a defeater of S in A′ might require putting other arguments in A′ as well, such as A’s
subarguments in systems in which arguments have subarguments. Also, Definition 19
allows for ‘side effects’ in that the new defeaters may also defeat arguments outside S,
or in that arguments in A but outside S may defeat them. For example, an argument
defeating another argument on its premise will usually also defeat all other arguments
using that premise (as in Example 2). Such side effects may be induced by an underly-
ing structured account of argumentation. These points will be illustrated in more detail
in Section 5 below.

The following proposition can be proven about the relation between being a 1-
defeat point and being an n-defeat point for arbitrary n.

Proposition 11 For any AF in a given UAF and all A ∈ AF it holds for all n that if
S is an n-defeat point of AAF then S is a 1-defeat point of AAF .

PROOF. For any expansion dialogue in any winning strategy for the opponent in an ex-
pansion game of length n about AAF , the opponent’s first move satisfies Definition 19
by Definition 16 of an expansion dialogue. QED

However, the converse does not hold. Example 3 is a counterexample.

3.5 Dialectical Argument Strength: Ranking-based Semantics
We can now give our definition of dialectical argument strength, by combining the
notion of contextual strength with the number of defeat points of arguments. Several
definitions are still possible and the ones given by us are not meant to be the final
answer but instead to initiate the discussion about what are good definitions. We give
primacy to the current contextual evaluation in that being contextually stronger implies
being dialectically stronger. If two arguments are contextually equally strong, then we
refine this ordering by comparing their sets of defeat points. Moreover, we parametrise
the definition with variables for the adopted contextual semantics and for the maximum
length of expansion games.

Definition 20 [Dialectical strength] Let AF = (A,D) and AF ′ = (A′,D′) be two
abstract argumentation frameworks in a given UAF with semantics x and let ≥x

c be a
contextual argument ordering for the set of all AFs in UAF. Let n ∈ N ∪ {∞}. For
any A ∈ A and B ∈ A′ we say that AAF ≥x,n

d BAF ′ iff
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1. AAF ≥x
c BAF ′ ; and

2. if BAF ′ ≥x
c AAF then |dpnAF (A)| ≤ |dpnAF ′(B)|.

The same notational conventions hold for ≥x,n
d as for ≥x

c .
The following examples illustrate this definition.

Example 12 Consider the AFs in Figure 5 and the example ≥g
c for grounded seman-

tics. Suppose a proponent of a claim ϕ has constructed an argument A with conclusion
ϕ and now finds itself in a dialogue state with AF0 = A← B. The proponent consid-
ers two options to defend claim ϕ in the dialogue: defending A against B with a defeat
C ofB (resulting inAF2), or constructing a new argumentA′ for conclusion ϕ (result-
ing in AF1). Which move results in the dialectically stronger position? This amounts
to comparing AAF2 and A′AF1. Note that A and A′ are both in so contextually they are

Figure 5: Comparing arguments in different AF s

equally strong, so what is decisive is how many defeat points they have. Many current
gradual accounts regardA′AF1 as stronger thanAAF2 based on the intuition that having
no defeaters is better than having defeaters (the principle of Void Precedence discussed
in Section 4.3 below). In our approach, this depends on several things. Suppose first
that all of A, A′, B and C have undefeated defeaters in UAF (not shown in the fig-
ure), that A, A′ and C each have one attack target, respectively, t, t′ and t′′, that both
A and A′ have other undefeated defeaters in UAF besides B, and that all expansions
are allowed. Finally, assume for simplicity that n = 1 (but the analysis holds for all
n). Then A′AF1 has just one 1-defeat point, namely, {(A′, t′)}, while AAF2 has two
1-defeat points, namely, {(A, t)} and {(C, t′′)}. So A′AF1 >

g,1
d AAF2, so in this case

having no defeaters is strictly better.
However, assume now that both A and A′ have no other defeaters in UAF besides

B, or that they do have other defeaters in UAF but that no expansion with these other
defeaters is allowed, perhaps for efficiency reasons. In both cases A′AF1 still has the
single 1-defeat point {(A′, t′)} but AAF2 now also has just one 1-defeat point, namely,
{(C, t′′)}. So AAF2 ≈g,1

d A′AF1, so here having no defeaters is not strictly better than
having defeaters.

Finally, suppose that only A′ has additional defeaters in UAF while A’s only de-
feater in UAF is B. Then AAF2 has no 1-defeat points while A′AF1 has one 1-defeat
point, namely, {(A′, t′)}. So AAF2 >

g,1
d A′AF1, so we have a case where an argument

that has defeaters is strictly better than an argument that has no defeaters. In conclu-
sion, whether having no defeaters is better than having defeaters depends on the nature
of the arguments and their relations and on the context in which they are evaluated.

Example 3 (Cont) Consider again the example≥g
c for grounded semantics and assume

first that expansions are allowed if and only if they do not omit defeat relations from
UAF . Then since the opponent has a winning strategy in a game of length 1 about
A, clearly {A} is a 1-defeat point of A. Since B has no defeaters in UAF , B has no
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n-defeat points for any n. Then AAF <g,1
d BAF . However, for n > 2 and n = ∞

instead the proponent has a winning strategy, namely, by further extending AF ′ with
D and C ← D, so A has no n-defeat points, so for n > 2 and n = ∞ we have that
AAF ≈g,n

d BAF .
Assume next that all expansions are allowed. Then for n = 1 the outcome is the

same but for n > 2 and n = ∞ it is different. As explained above, the opponent then
has a winning strategy in a game of length n about A by expanding AF with C and D
and A ← C but not C ← D. So now we have for all n > 0 that {A} is an n-defeat
point of A so for all n > n it holds that AAF <g,n

d BAF .

3.6 General Properties of Dialectical Argument Strength
In this section we investigate some general properties of Definition 20. In all four
propositions that we prove we leave the superscripts that denote the semantics and
game length used in defining contextual strength implicit, since the propositions hold
for any semantics and game length.

First, ≥d can be shown to be a preorder on the set of all argument-AF pairs.

Proposition 13 For all arguments A,B,C and argumentation frameworks AF , AF ′

and AF ′′ in a given UAF it holds that:

1. AAF ≥d AAF

2. If AAF ≥d BAF ′ and BAF ′ ≥d CAF ′′ then AAF ≥d CAF ′′

PROOF. For (1) we have thatAAF ≈c AAF since≥c is assumed to be a preorder. Then
also AAF ≈d AAF since |dpAF (A)| = |dpAF (A)|.

For (2), note first that if AAF ≥c BAF ′ , then either AAF >c BAF ′ or AAF ≈c

BAF ′ . Now assume that AAF ≥d BAF ′ and BAF ′ ≥d CAF ′′ . Then the following
cases must be considered.

If AAF >c BAF ′ , then if BAF ′ >c CAF ′′ then AAF >c CAF ′′ by transitivity of
≥c, so AAF >d C

′
AF ′ . If instead BAF ′ ≈c CAF ′′ , then AAF ≥c CAF ′′ by transitivity

of≥c. If also CAF ′′ ≥c AAF thenBAF ′ ≥c AAF by transitivity of≥c. Contradiction.
So AAF >c CAF ′′ but then AAF >d CAF ′′ .

If AAF ≈x
c BAF ′ , then if BAF ′ >c CAF ′′ then AAF ≥c CAF ′′ by transitivity

of ≥c. If also CAF ′′ ≥c AAF ′′ then CAF ′′ ≥c BAF ′ by transitivity of ≥c, which
contradicts that BAF ′ >c CAF ′′ . So AAF >c CAF ′′ but then AAF >d CAF ′′ .

Finally, if AAF ≈c BAF ′ and BAF ′ ≈c CAF ′′ then AAF ≈c CAF ′′ since ≥c is a
preorder. Then |dpAF (A)| ≥ |dpAF ′(B)| and |dpAF ′(B)| ≥ |dpAF ′′(C)|. But then
|dpAF (A)| ≥ |dpAF ′′(C)| so AAF ≥x

d CAF ′′ . QED

Next, strict contextual preference implies strict dialectical preference.

Proposition 14 If A >c B then A >d B.

PROOF. First, AAF ≥d BAF ′ holds since AAF >c BAF ′ implies AAF ≥c BAF ′ , so
condition (1) of Definition 20 is satisfied, and AAF >c BAF ′ implies BAF ′ 6≥c AAF ,
so condition (2) of Definition 20 is satisfied. Next, BAF ′ ≥d AAF does not hold
since AAF >c BAF ′ implies BAF ′ 6≥c AAF , so condition (1) of Definition 20 is not
satisfied. QED

Next, if no expansions are possible, then dialectical preference reduces to contex-
tual preference.
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Proposition 15 If no AF in UAF has an expansion in UAF, then A ≥d B if and only
if A ≥c B.

PROOF. Immediate from Definition 20. QED

Finally, the ordering of dialectical strength is total if and only if the embedded
ordering of contextual strength is total.

Proposition 16 ≥d is total if and only if ≥c is total.

PROOF. The only-if part follows since ifA ≥d B thenA ≈c B orA >c B. The if-part
follows from the fact that≤c has primacy in Definition 20 that for≈c cases it is refined
into ≤d by an ordering on the cardinality of sets, which is total. QED

We next investigate relations between the special case of [62] and the present gen-
eral case.

First, Example 3 (Cont) illustrated that the following does not hold in general: for
all n: if AAF ≥x,n

d BAF ′ then AAF ≥x,1
d BAF ′ . In the case in which expansions are

allowed iff they do not omit defeat relations from UAF we had AAF ≥g,2
d BAF but

AAF 6≥g,1
d BAF .

Next, the following modification of the example shows that it also does not hold in
general for all n > 0 that if AAF ≥x,1

d BAF ′ then AAF ≥x,n
d BAF ′ .

Example 17 Extend Example 3 as in Figure 6 and assume that expansions are allowed
iff they do not omit defeat relations from UAF . ThenA has a single 1-defeat point {A}
and B has a single 1-defeat point {B} which is also a 2-defeat point of B. However,
{A} has no 2-defeat point. Suppose the opponent expands AF to AF ′ by including C
and A ← C. Then the proponent can win by further extending AF ′ with D and C ←

Figure 6: Dialectical strength with expansion games of varying length

D. So AAF ≈g,1
d BAF but AAF >g,2

d BAF , hence BAF ≥g,1
d AAF but BAF 6≥g,n

d

AAF .

Finally, it might be thought that if all expansions are allowed, then dialectical
strength would equate contextual strength in the limit, for instance, ifAUAF <c BUAF

then AAF <x,∞
d BAF ′ . However, this does not hold. The following example is a sim-

ple counterexample.

Example 18 Consider the AF and UAF in Figure 7, where both A and B have a
single attack target, let x = g and assume that all expansions are allowed. Then we
have that AUAF <c BUAF but both for A and for B the opponent has a winning
strategy in a game of any length n by expanding AF with, respectively, C and A← C
(in a game about A) and D and either B ← D or B ↔ D (in a game about B), after
which the game terminates. So AAF ≈g,∞

d BAF .

However, the following relation can be proven.
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Figure 7: Dialectical strength versus contextual strength (1)

Proposition 19 For all AF and AF ′ in a given UAF , if all expansions are allowed iff
they do not omit defeats from UAF , then the following holds for all A ∈ AF and B ∈
AF ′: if AUAF <c AAF while BUAF ≥c BAF ′ , then for all n > 1: AAF <x,n

d BAF ′ .

PROOF. Note first that ifAUAF <c AAF thenAF 6= UAF , soAF , UAF is a winning
strategy for the opponent in all expansion games aboutA of any length. But then for all
such n it holds that AAF has at least one n-defeat point. Moreover, for all games AF ′,
X1 about B we have that X1 6= UAF since BX1 <c BAF while BUAF 6<c BAF ′ .
But then for all such games UAF is a continuation that terminates the dialogue with a
win for the proponent, so for no n > 1 does it hold that BAF ′ has an n-defeat point.
But then for all n > 1: AAF <x,n

d BAF ′ . QED

The following is a counterexample to Proposition 19 for n = 1.

Example 20 Consider the AF and UAF in Figure 8, where both A and B have a
single attack target, let x = g and assume that all expansions are allowed iff they
do not omit defeats from UAF . Then all other conditions of Proposition 19 hold but

Figure 8: Dialectical strength versus contextual strength (2)

AAF ≈1,n
d BAF , since both for A and for B the opponent has a winning strategy in

a game of length 1 by expanding AF with, respectively, C and A ← C (in the game
about A) and D and B ← D (in the game about B), after which the game terminates.

4 Dialectical Argument Strength with Particular Con-
textual Argument Orderings

In this section we explore the use of various particular contextual argument orderings
in Definition 20 of dialectical argument strength.

4.1 Contextual Strength with Dung’s Semantics for Abstract Ar-
gumentation Frameworks

We first consider a generalisation of the above contextual ordering for grounded seman-
tics to any of the four semantics defined in Dung’s seminal (1995) paper. Several such
generalisations are possible and the following one, stated in terms of labellings, seems
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a reasonable one and arguably improves two existing proposals in some respects. Let
us first, given an AF and A ∈ AF and a semantics x ∈ {grounded, preferred, stable,
complete}, define the following so-called labelling classes of arguments:

• A ∈ ∀ iff A is in in all x-labellings of AF and there exists such a labelling;
• A ∈ ∃∃¬∃ iff A is in in some x-labellings, und in some x-labellings but out in

no x-labellings of AF ;
• A ∈ ∃?∃ iff A is in in some x-labellings and out in some x-labellings of AF ;
• A ∈ ∀= iff A is und in all x-labellings of AF and there exists such a labelling;
• A ∈ ¬∃∃∃ iff A is in in no x-labellings, und in some x-labellings and out in

some x-labellings of AF ;
• A ∈ ∀∅ iff AF has no x-labellings;
• A ∈ ∀¬ iff A is out in all x-labellings of AF and there exists such a labelling.

It is easy to see that every argument is in exactly one of these classes. Then ≥x
c is a

classic contextual ordering iff x ∈ {grounded, preferred, stable, complete} and ≥x
c is

the transitive closure of the following statements (visualised in Figure 9):

Figure 9: The classic contextual ordering

• If AAF and BAF ′ are in the same class, then AAF ≈x
c BAF ′

• If AAF ∈ ∀ and BAF ′ 6∈ ∀ then AAF >x
c BAF ′

• If AAF ∈ ∀¬ and BAF ′ 6∈ ∀¬ then BAF ′ >
x
c AAF

• If BAF ′ ∈ ∀∅ and AAF 6∈ ∀∅ ∪ ∀¬ then AAF >x
c BAF ′

• If AAF ∈ ∀= and BAF ′ ∈ ¬∃∃∃ then AAF >x
c BAF ′

• If AAF ∈ ∃∃¬∃ and BAF ′ ∈ ∀= then AAF >x
c BAF ′

Note that the example contextual ordering for grounded semantics mentioned in Sec-
tion 3.1 is a special case of this definition.

There are, to the best of our knowledge, two alternative proposals for ordering
arguments in terms of labelling semantics. In [3] an ordering is proposed in which
∃∃¬∃ and ∃?∃ are one class. Let us denote this class with ∃??. Moreover, ¬∃∃∃ and
∀¬ are also one class. Let us denote this class with ¬∃?∃. Finally, in [3] ∀= and
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cases with no labellings are regarded as one class. Let us denote this with ∀=,∅. The
contextual ordering is then induced by ∀ > ∃?? > ∀=,∅ > ¬∃?∃ and is total. Note that
the present ordering is not just a refinement of [3]’s ordering, since [3] has ∀= < ∃?∃
while in the present ordering the relation between these classes is undefined. The latter
seems desirable since ∃?∃ is better than ∀= in that the argument is in in at least one
labelling, but worse in that the argument is out in at least one labelling. So arguments
in these two classes arguably are of incomparable contextual strength.

In [75] an ordering is proposed for complete semantics, so without the class ∀∅.
Apart from this, the only difference with our ordering is that while we have an unde-
fined relation between ∃∃¬∃ and ∃?∃, in [75] the first class is better then the second.
A similar line of reasoning as above motivates our design choice. Suppose we have
two arguments A and B from the same AF which has three labellings l1, l2 and l3 and
suppose we have

l1 l2 l3
A in in out
B und in und

We see that A has a better label than B in l1 but a worse label in l3. So all in all
they arguably are incomparable. The undefined relation between ¬∃∃∃ and ∃?∃ can be
justified in the same way. Finally, the place of ∀∅ is motivated by the fact that if an AF
has no labelling (which can only happen in stable semantics) then the only way to lower
the status of an argument is to make it out in all labellings, which seems reasonable.

Having said so, it would be interesting to explore the effect of differences in the
choice of ≥x

c for the classic semantics with respect to the results reported below.
The following result involves a so-called defeat property that an AFs in a UAF can

have.

Definition 21 An AF in a given UAF satisfies the defeat property iff for all arguments
A, B and C in AAF and for all attack targets t that are shared by A and B it holds that
C defeats A on t in AF iff C defeats B on t in AF .

Proposition 21 Let AF and all its allowed expansions satisfy the defeat property, let
A,B ∈ AAF and consider a classic contextual ordering ≥x

c . Then if t(A) ⊆ t(B) then
for all n:

1. A 6<x,n
d B.

2. If ≥x,n
c is total then A ≥x,n

d B.

PROOF. Proof of (1). Suppose for contradiction that A <x,n
d B for some n. We first

prove that (i) A ≈x
c B. Suppose for contradiction first that ≥x

c is undefined for A and
B. Then also ≥x,n

d is undefined for A and B. Contradiction.
Suppose next that A <x

c B. If A ∈ ∀¬, then there exists a labelling for AF so
B 6∈ ∀∅. Moreover, in any labelling there exists a defeater C of A that is in. But
then by the defeat property any such C also defeats B so B is out in all labellings, so
A ≈x

c B. So A 6∈ ∀¬.
If A ∈ ∀∅, then there exists no labelling for AF so B ∈ ∀∅, so A ≈x

c B. So
A 6∈ ∀∅.

If A ∈ ¬∃∃∃ then there exists a labelling of AF in which A is out. Then there
exists a defeater C of A that is in in that labelling so B is out in that labelling. So
B ∈ ∃?∃. But then there exists a labelling of AF in which B is in so all defeaters of B
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are out in that labelling. But among these are also all defeaters of A, so A is in in that
labelling. But then A ≈x

c B so A 6∈ ¬∃∃∃.
If A ∈ ∀= then in all labellings of AF there exists a defeater of A that is und and

there exists no defeater ofA that is in. Then in all such labellings there exists a defeater
of B that is in or und so in all such labellings B is out or und. Then AAF ≥x,n

d BAF

so A 6∈ ∀=.
Finally, ifA ∈ ∃?∃ orA ∈ ∃∃¬∃ then there exists a labelling ofAF in which some

defeater of A is not out. But this defeater also defeats B, so B 6∈ ∀ so B is in the same
labelling class as A, so A ≈x

c B. Contradiction.
This proves that A ≈x

c B. It implies that A and B are in the same labelling class.
We must now prove that all n-defeat points of A are also an n-defeat point of B.

We first prove (ii) that for all n, all winning strategies for the opponent in a game of
length n about A are winning strategies for the opponent in a game of length n about
B. Suppose for contradiction that there is a winning strategy S for the opponent about
A that is not a winning strategy for the opponent about B. Then for some minimal
dialogue X1, . . . , Xi in S it holds that the proponent has a reply Xi+1 to Xi in the
game about B but not in the game about A.

Consider any such reply Xi+1 of the proponent in the game about B. It is such that
BXi+1 >

x,i+1
d BXi and BXi+1 ≥x,i+1

d BAF . For any labelling of Xi+1 it holds that
if B is in in Xi+1 then all defeaters of B are out in Xi+1. But since A− ⊆ B− by
the defeat property, also all defeaters of A are out in Xi+1. But then A is in in Xi+1.
Next, if B is und in Xi+1 then no defeater of B is in in Xi+1. But then no defeater of
A is in in Xi+1, so A is und or in in Xi+1. So in all labellings of Xi+1 the labelling
value of A is at least as preferred as that of B. But then it is straightforward to prove
with Figure 9 that A is in a labelling class that is at least as preferred as B′s labelling
class, soA ≥x,i+1

d B. But thenXi+1 is also a valid reply for the proponent in the game
about A. Contradiction.

Next we must prove (iii) that for every relevant set A targeted by X1 in a winning
strategy for the opponent about A, either S is a relevant set targeted by X1 in the game
about B, or some subset S′ of S that is not a relevant set for A is a relevant set for
B. Then it follows from (ii) and (iii) that B has at least the same number of n-defeat
points as A. To prove this, note that defeating S also reduces the contextual status of
B. This holds since for any labelling of X1, If A is out in X1 then it has a defeater that
is in in X1 but then B also has this defeater so B is also out in X1. In the same way,
if A is und in X1 then both A and B a defeater that is not out in X1 so B is not in in
X1. But then if S is not minimal in the sense of Definition 19, some proper subset S′

of S is minimal in this sense so S′ is relevant to B. So B has at least the same number
of n-defeat points as A, so A 6<x,n

d B.
The proof of (2) immediately follows from the proof of (1) since the case where

≥x,n
c is undefined for A and B does not arise. QED

The following example illustrate that at the end of the proof we could not simply as-
sume that all sets relevant to A defeated by X1 are also relevant to B.

Example 22 Consider the modification of Example 2 depicted in Figure 10 (where
B,C and D are duplicated for visual clarity). Then {C,D} is not relevant to A′ since
{C} is relevant to A′. This outcome seems reasonable since there is no way to reduce
A′’s contextual status by defeating C and D without defeating C.

Proposition 21 is what one would expect from dialectical strength as degree of vulner-
ability of an argument, since it says that extending an argument with additional attack
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Figure 10: Non-minimal ‘defeat points’

targets makes the new argument at best equally strong as the extended argument and
possibly weaker. Its more general version where A and B can be from different AFs
does not hold. A counterexample is displayed in Figure 11. Here {(A, t)} is (for a

Figure 11: Counterexample to general version of Proposition 21

given t and all n) an n-defeat point of A in AF1 but not in AF2 since B protects A
in AF2 against an expansion with C. This illustrates that for dialectical strength the
dynamic context is important.

4.2 Positive Results on Principles for Ranking-based Semantics for
the Classic Contextual Ordering

Technically our proposal is in the class of ranking-based semantics. We therefore next
investigate principles proposed in the literature on ranking-based semantics, basing
ourselves on [11], which is a comprehensive study of principles for ranking-based se-
mantics. In this section we confine ourselves to the classic contextual ordering. How-
ever, we should first discuss the possible objection that these principles were never
intended for dialectical strength, so that investigating them would for present purposes
be irrelevant. Against this, it should first be noted that authors are generally not ex-
plicit about the kind of strength for which their principles are intended. Moreover,
some principles compare different AFs, just as our notion of dialectical strength does,
so their underlying intuitions might involve dialectical elements. For these reasons it
still makes sense to investigate whether the principles proposed in the literature are
suitable for notions of dialectical argument strength. For cases where the underlying
intuitions of the proposed principles are not made explicit, our investigation will reveal
to which extent they can be based on intuitions concerning dialectical strength.

Most principles discussed in [11] evaluate arguments in a single AF . Therefore we
can only verify these principles for the special case that AF = AF ′ in Definition 20.
Furthermore, below we leave the superscripts of ≥c and ≥d implicit if there is no dan-
ger for confusion. In definitions the omission indicates that the notion is defined for
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any pair of semantics x and expansion dialogue length n while in propositions it in-
dicates that the proposition holds for all such pairs. It turns out that of all principles
discussed by [11], Definition 20 with classic contextual strength only satisfies the fol-
lowing principle, which say that an argument without defeat6 branch is ranked higher
than an argument only defeated by one undefeated argument.

Defeat vs Full Defense says for acyclic AFs that if argument A ∈ AF has no defeat
branches and argument B ∈ AF is defeated by only one argument, which moreover, is
undefeated in AF , then A >d B.

Proposition 23 Definition 20 of dialectical argument strength with classic contextual
strength satisfies Defeat vs Full Defense.

PROOF. This holds since any argument that has no defeat branch is in while any ar-
gument only defeated by one non-defeated argument is out in any labelling for any of
the four classic semantics. Note that since AFs are assumed to be acyclic, in all these
semantics at least one such labelling exists. QED

Counterexamples to the other principles will be given in Section 4.3. For three of the
principles that do not hold in general, we have verified special cases in which they hold,
while for one further principle we have identified a weaker version that holds in special
cases.

Total says that all pairs of arguments can be compared: for any AF and all A,B ∈
AF : A ≥d B or B ≥d A.

Proposition 16 stated a special case in which the Total principle holds, namely, when
≥c is total.

Quality Precedence says that the higher the rank of a defeater of A in an AF , the
lower the rank of A. Formally:

For all A,B ∈ AF , if there exists a C ∈ B− such that for all D ∈ A− it
holds that C >d D, then A >d B.

Quality precedence holds in the following special case.

Proposition 24 Let ≥c be determined by grounded or stable semantics. Then for any
AF and any A,B,C ∈ AF such that C defeats B and C >c D for all defeaters D of
A, it holds that A >d B.

PROOF. Consider any AF and any A,B,C ∈ AF such that C defeats B and for all
D ∈ A− it holds that C >c D. For grounded semantics the classic contextual ordering
reduces to ∀ >c ∀= >c ∀¬. Suppose first that C ∈ ∀. Then B ∈ ∀¬. Moreover,
no defeater D of A is in ∀, so A 6∈ ∀¬. So A >c B so A >d B. Suppose next that
C ∈ ∀=. Then B ∈ ∀= ∪ ∀¬. Moreover, all defeaters D of A are in ∀¬, so A ∈ ∀ so
A >c B so A >d B.

For stable semantics the classic contextual ordering reduces to ∀ >c ∃?∃ >c ∀¬
given the assumption that C >c B, which implies that there exists at least one stable
labelling. Then the proof is similar as for grounded semantics. QED

6In [11] ‘attack’ is used where this paper uses ‘defeat’.
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For a counterexample to the special case of Quality Precedence for preferred and com-
plete semantics under the assumptions of Proposition 24, consider theAF in Figure 12.
It has two preferred labellings, one with E in and E′ out and one with E′ in and E out.
In the first labelling D is out and D′ is und so A is und. In the second labelling D′ is
out and D is und so A is und. Moreover, in both these labellings B and C are und. So

Figure 12: Counterexample to Quality Precedence for preferred and complete seman-
tics

we have that all defeaters of A are inferior to C according to ≥c since C ∈ ∀= while
all defeaters of A are in ¬∃∃∃, while yet A ≈c B. Then if both A and B have a single
attack target and if UAF further only consists of undefeated defeaters of A and B, we
have our counterexample.

Furthermore, we have proven a special case of Distributed Defense Precedence.
This principle assumes definitions that the defense of an argument A is simple iff every
direct defender ofA defeats exactly one defeater ofA, and distributed iff every defeater
of A has at most one defeater. Then Distributed Defense Precedence says:

If |A−| = |B−| and |A+| = |B+|, and the defense of A is simple
and distributed while the defense of B is simple but not distributed, then
AAF >d BAF .

Proposition 25 Definition 20 of dialectical argument strength with classic contextual
strength satisfies Distributed Defense Precedence for any argument A 6∈ ∀¬ ∪ ∀∅.

PROOF. Consider an AF with A,B ∈ AF such that A 6∈ ∀¬ ∪ ∀∅, and let x be any of
the four classic semantics. Then there exists an x labelling in which A is not out, so all
defeaters of A in AF have a defeater in AF . But then if the defense of both A and B
is simple while the defense of A is distributed, then all defeaters of A have exactly one
defeater, so if A and B have the same numbers of defeaters and defenders, the defense
ofB can only be not distributed if one of its defeaters has no defeaters (since another of
its defeaters has at least two defeaters). But then B is out in all x labellings so A >c B
so A >d B. QED

Finally, the following weak version holds of Defense Precedence (see Section 4.3).

Weak Defense Precedence says that if AAF and BAF have the same number of de-
featers in AF but AAF has direct defenders in AF while BAF has no direct defenders
in AF , then B is not strictly stronger than A. Formally:

If |A−| = |B−| and A+ 6= ∅ and B+ = ∅ then AAF 6<d BAF .
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Proposition 26 Definition 20 with classic contextual strength satisfies Weak Defense
Precedence for grounded, preferred and complete semantics but not for stable seman-
tics.

PROOF. This holds since a defeated argument with no defenders is out in all grounded,
preferred and complete labellings, while for all these semantics at least one labelling
exists. So BAF ∈ ∀¬, so AAF 6<d BAF .

A counterexample for stable semantics is an AF with two arguments A and B
where B defeats itself, and UAF containing a single further argument C that defeats
A. Then both A and B are in ∀∅, so A ≈c B. Moreover, A has one defeat point,
namely, {A}, while B has no defeat points, since, even though {B} is relevant to B
and extending AF with C lowers the contextual strength of B to ∀¬, C does not defeat
B. So A <d B. QED

4.3 Negative Results on Principles for Ranking-based Semantics
for the Classic Contextual Ordering

In this section we give counterexamples to principles proposed in the literature on
ranking-based semantics, again based on [11] and for the case of classic contextual
argument strength. Note that these counterexamples also hold for the general case
of Section 3. All of the given counterexamples also hold for the special case where
all considered expansions are allowed, and they hold for all four classic contextual
semantics. Note that many counterexamples that at first sight would only seem to hold
for length n = 1 of the expansion dialogue game, hold for all n since the expansions
that they contain as the first and only move of the opponent have no further expansions
that the proponent could move in reply.

Recall that most principles proposed in the literature are meant for evaluating ar-
guments in a single AF and can therefore only be verified for the special case that
AF = AF ′ in Definition 20. Unless indicated otherwise, this special case is assumed
below.

Abstraction says that different AFs of the same form should evaluate arguments hav-
ing the same structural relations in the AFs equally. For a counterexample in all four
classic semantics, consider AF1 with just A and AF2 with just B and both A and B
having one attack target, where UAF further consists of C defeating B. Abstraction
says that A and B are of the same rank but we have A >n

d B for all n.

Void Precedence says that a non-defeated argument is ranked strictly higher than any
defeated argument in the same AF . Formally:

If A− = ∅ and B− 6= ∅, then AAF >d BAF .

A counterexample can be constructed from Example 12 by merging AF1 and AF2,
letting A′ = AAF and A = BAF . It holds for all n and for all four classic semantics.

Independence says that the ranking between two arguments in the same AF should
be independent of arguments that are connected to neither. More formally [11] this is
expressed in terms of the notion cc(AF ) of the connected components af anAF , which
is the set of largest subgraphs of AF , where two arguments are in the same component
of AF if and only if there is some path (ignoring the directions) between them. Then
independence means:
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Figure 13: Counterexamples for ranking-based with classic contextual ordering (1)

For all AF ′ ∈ cc(AF ) and all A,B ∈ AAF ′ : if AAF ′ ≥d BAF ′ then
AAF ≥d BAF .

This does not hold. A counterexample for all four classic semantics is in the top-
left part of Figure 13. Here cc(AF ) = {AF ′, AF ′′} where AF ′ = A ↔ B while
AF ′′ = C and all arguments have a single attack target. Then in AF ′ we have
for all n that {A} is an n-defeat point of A and {B} is an n-defeat point of B so
AAF ′ ≈d BAF ′ . However, in AF , while {A} still is an n-defeat point of A, argument
B has no n-defeat points, since C protects B against E, so there is no expansion that
lowers B’s status. So BAF >n

d AAF for all n.

Self-Contradiction says that a self-defeating argument is ranked strictly lower than
any non-self-defeating argument in the same AF . A counterexample for all four se-
mantics is an AF with A defeating itself and C defeating B. Then in grounded, pre-
ferred and complete semantics A >c B so A >d B while in stable semantics A ≈c B.
Then if, for any n, A and B have the same number of n-defeat points, then A ≈n

d B.
Rather than considering changes of our definition to satisfy Self-contradiction, we leave
the treatment of self-defeating arguments to structured accounts of contextual argument
strength, since there may be defensible semantic reasons why self-defeating arguments
should not always have the lowest contextual strength.

Cardinality Precedence says if A has a strictly greater number of direct defeaters
than B in the same AF , then A is strictly weaker than B. Formally:

If |A−| > |B−| then BAF >d AAF .

This holds for no n. The counterexamples in Example 12 to Void Precedence are also
counterexamples to Cardinality Precedence.

Quality Precedence, for which Proposition 24 stated a special case in which it holds,
does not hold in general. A counterexample for all four classic semantics and all n is
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in the top-right part of Figure 13. For all n it holds that C >n
d D since D has {D} as

n-defeat point while C has no n-defeat points. However, it also holds that B >n
d A

since A has {A} as n-defeat point while B has no n-defeat points. So A 6>n
d B.

Defense Precedence says that if two arguments A and B in the same AF have the
same number of defeaters but A has direct defenders while B has no defender, then A
is strictly stronger than B. Formally:

If |A−| = |B−| and |A+| 6= ∅ and |B+| = ∅ then A >d B.

This does not hold for any n, not even when dialectical strength reduces to contextual
strength. A counterexample for all four classic semantics and all n is in the bottom part
of Figure 13. Assume that all arguments have a single attack target. Then both A and
B are out so A ≈n

d B for all n.

Counter-Transitivity says that if the direct defeaters of B are at least as numerous
and strong as those of A in the same AF , then A is at least as strong as B. Formally,
let ≥S be a ranking on a set of arguments A. For any S1, S2 ⊆ A, S1 ≥S S2 is a
group comparison iff there exists an injective mapping f from S2 to S1 such that for
all A ∈ S2 it holds that f(A) ≥d A. And S1 >S S2 is a strict group comparison iff
S1 >S S2 and (|S2| < |S1| or there exists an A ∈ S2 such that f(A) ≥d A). Then
Counter-Transitivity says:

B− ≥S A
− ⇒ A ≥d B

The counterexample against Defense Precedence in Figure 13 also holds against Counter-
Transitivity, since Counter-Transitivity implies Defense Precedence [2].

Strict Counter-Transitivity says that if the defeaters of B are either more numer-
ous or stronger than those of A in the same AF , then A is strictly preferred over B.
Formally:

B− >S A
− ⇒ A >d B

The counterexample against Defense Precedence also holds against Strict Counter-
Transitivity, since Strict Counter-Transitivity implies Defense Precedence.

Distributed Defense Precedence, for which Proposition 25 stated a special case in
which it holds, does not hold in general. A counterexample is displayed in Figure 14.
The defense of A is simple and distributed while the defense of A′ is simple but not

Figure 14: Counterexample to Distributed Defense Precedence

distributed. Moreover, A andA′ have the same number of defeaters and the same num-
ber of defenders. Yet both are out in all labellings for all four classic semantics, so for
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all n we have A ≈n
d B.

Non-Defeated Equivalence says that all non-defeated arguments are of equal strength:

If A− = B− = ∅ then AAF ≈ BAF .

The above counterexample to Abstraction is also a counterexample to Non-defeated
equivalence.

The following five principles can be verified in general since they compare different
AFs. The first four of them consider expansions that consist of adding a defense or

Figure 15: Counterexamples to Addition and Increase Principles

defeat branch to an isomorphic copy AF ′ of an AF . Note that a special case is when
AF ′ = AF and A′ = A, so when the isomorphism is from AF to itself and it relates
all arguments and defeat relations to themselves. Since for all four principles there are
counterexamples for this special case, we will for simplicity formulate the principles
for this special case. They assume the following definition from [11], adapted to our
notation.

Definition 22 Let AF = (A,D) and A ∈ A. The defense branch added to A is
P+(A) = (A′,D′) with A′ = {x0, . . . , xn}, n ∈ 2N, x0 = A, A ∩ A′ = {A}, and
D′ = D ∪ {(xi, xi−1) | i ≤ n}. The defeat branch added to A, denoted P−(A), is
defined similarly except that the sequence is of odd length, i.e. n ∈ 2N+ 1.

Strict Addition of Defense Branch says that adding a defense branch to any argument
improves its ranking.
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If AF ′ = AF ∪ P+(A) then AAF ′ >d AAF

Strict Addition of Defense Branch does not hold. A counterexample is displayed in
the top-left part of Figure 15. For both AF and AF ′ we have that A ∈ ∀ for all
four classical semantics. If, moreover, all three arguments have one attack target and
have undefeated defeaters in allowed expansions, then A in AF has for all n just one
n-defeat point, viz. {A}, while A in AF ′ has an additional n-defeat point {C}. So
AAF >n

d AAF ′ for all n.

Addition of Defense Branch says that adding a defense branch to any attacked ar-
gument improves its ranking:

If AF ′ = AF ∪ P+(A) and A has defeaters in AF , then AAF ′ >d AAF

This principle also does not hold. A counterexample is displayed in the top-right part
of Figure 15. If all arguments except C have defeaters in UAF and if all these defeaters
are undefeated, then (assuming all arguments have a single attack target) A in AF has,
for all n, just one n-defeat point, viz. {A}, while A in AF ′ has an additional n-defeat
point {E}. So AAF >d AAF ′ .

Addition of Defeat Branch says that adding a defeat branch to any argument degrades
its ranking:

If AF ′ = AF ∪ P−(A) then AAF >d AAF ′

This does not hold either. A counterexample is displayed in the bottom-left part of
Figure 15. For both AF and AF ′ we have that A ∈ ∀ for all four classical seman-
tics. If, moreover, all arguments have undefeated defeaters in UAF, then A has, for
all n, the same n-defeat points in AF and in AF ′, namely, {A} and {C}. So then
AAF ≈n

d AAF ′ . Note that D is irrelevant to the status of A given that C already de-
fends A against B, so {D} is not an n-defeat point of A.

Increase of Defeat Branch says that increasing the length of a defeat branch of an
argument improves its ranking:

If B ∈ BR−(A), B 6∈ BR+(A) and AF ′ = AF ∪ P+(B) then
AAF ′ >d AAF .

This does not hold. For a counterexample, consider AF = A ← B and assume that
AF can be expanded to AF ′ by adding B ← C ← D after which there are no further
expansions. Then in all four classical semantics A ∈ ∀¬ for both AF and AF ′, so
AAF ≈n

d AAF ′ for all n.

Increase of Defense Branch says that increasing the length of a defense branch of
an argument degrades its ranking:

If B ∈ BR+(A), B 6∈ BR−(A) and AF ′ = AF ∪ P+(B) then
AAF >d AAF ′ .

This does not hold. A counterexamples is displayed in the bottom-right part of Fig-
ure 15. Assume that E has no defeaters in UAF. Then no new defeat points for A are
created so AAF ≈n

d AAF ′ for all n.
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Finally, Total, which says that all pairs of arguments can be compared, was above
shown to hold for the special case where ≥c is total (Proposition 16). Figure 9 illus-
trates that ≥c is not in general total; then Proposition 16 implies that, for all n, ≥n

d is
not in general total.

Why do most principles fail to hold? This is for several reasons. One reason is that
several principles have been shown to be incompatible [11]: Cardinality Precedence
is incompatible with Quality Precedence, with Defeat vs Full Defense and with Addi-
tion of Defense Branch, while Void Precedence is incompatible with Strict Addition
of Defense Branch. Apart from this, some principles fail since they just consider the
topology of an AF while dialectical strength also depends on the dynamic context in
which an AF can evolve. Some principles (also) fail since they make implicit assump-
tions on the nature of arguments and their relations that do not hold in general, such as
that all arguments have an equal number of attack targets. Finally, some principles fail
since they in one way or another compare numbers or sets of defeaters of arguments,
while our definition of dialectical strength instead looks at the points at which an ar-
gument can be defeated, regardless of how many defeaters it actually has. As further
explained below in Section 8, this is for good reasons. These observations suggest
that with the classical contextual ordering there is not much room for adjusting these
principles in ways that fit with our notion of dialectical strength.

4.4 Contextual Strength with Burden Semantics
It is interesting to study cases where Definition 20 is combined with some ranking-
based semantics proposed in the literature as the basis x for the contextual ordering
≥x

c . This illustrates the generality of our approach but it may also shed light on the
extent to which failure of principles is due to the extension-based nature of Dung’s
classical semantics.

First, the following proposition is implied by Proposition 14 and the definition of
the mentioned properties.

Proposition 27 The following principles are, for any contextual semantics x and for
all n, satisfied by ≥x,n

d if they are satisfied by ≥x
c : Void Precedence, Cardinality

Precedence, Quality Precedence, Defense Precedence, Strict Counter-Transitivity, Dis-
tributed Defense Precedence, Defeat vs Full Defense, Strict Addition of Defense Branch,
Addition of Defense Branch, Addition of Defeat Branch, Increase of Defeat Branch,
Increase of Defense Branch.

PROOF. This holds since all these principles require a >x
c relation to hold under speci-

fied conditions. Then Proposition 14 implies that the corresponding>x,n
d relation holds

under the same conditions. QED

Let us by way of example consider the ranking-based semantics that satisfies the high-
est number of principles discussed in [11], namely, [2]’s burden semantics. Accord-
ing to [11], burden semantics satisfies all principles except Self-contradiction, Quality
Precedence, Defeat vs Full Defense, Addition of Defense Branch and Strict Addition
of Defense Branch. Therefore, counterexamples to these 5 principles for dialectical
strength with burden semantics can be constructed by assuming that no expansion is
allowed, or that no expansion exists that defeats any argument in a given AF . Further-
more, Proposition 27 implies that dialectical strength with burden semantics satisfies
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Cardinality Precedence, Defense Precedence, Strict Counter-Transitivity, Distributed
Defense Precedence, Addition of Defeat Branch, Increase of Defeat Branch and In-
crease of Defense Branch. Moreover, Proposition 16 implies that dialectical strength
with burden semantics satisfies Total. Finally, our new postulate Weak Defense Prece-
dence is satisfied since it is implied by Defense Precedence, which is satisfied by bur-
den semantics. It is left to investigate Abstraction, Independence, Counter-Transitivity
and Non-defeated Equivalence.

We first repeat the definitions for burden semantics as presented in [11], adapted to
the present notational conventions. The idea of burden semantics is that it recursively
assigns a burden number to arguments based on the burden numbers of its defeaters.
This is formalised as a step-wise process.

Definition 23 Let AF = (A,D) be an abstract argumentation framework, A ∈ A and
i ∈ N.

Bur i(A) =

{
1 if i = 0;

1 + ΣB∈(A−)
1

Buri−1(B) otherwise

Here ΣB∈A−
1

Buri−1(B) = 0 by convention if A− = ∅. The Burden number of A is
denoted Bur(A) = 〈Bur0(A),Bur1(A), . . .〉.

Two arguments are then lexicographically compared on the basis of their Burden num-
bers.

Definition 24 For any AF = (A,D) and all A,B ∈ A it holds that A ≥b
c B iff

Bur(B) ≥Lex Bur(A).

In step 1 the definition counts the number of defeaters of each argument (and increases
the number with 1). The higher this number, the worse. Then in step 2 these numbers
are lowered to the extent that the argument’s defeaters themselves have defeaters, and
so on. The following example, taken from [2], illustrates burden semantics.

Example 28 Let AF = A← B ← C. Then the burden numbers are as follows:

A B C
step 1 2 2 1
step 2 1.5 2 1
. . . .

The lexicographic ordering on these burden numbers yield that A <b
c B, unlike in the

classic contextual ordering, where A and C are of equal rank, whatever semantics is
adopted.

The next example (also taken from [2]), shows that there are no clear relations between
burden semantics and the classic contextual ordering and that they in fact behave very
differently.

Example 29 In the AF in Figure 16 we have the following burden numbers:

A B C D E F G
step 1 3 2 2 1 1 1 2
step 2 2 2 2 1 1 1 2
. . . . . . . .

Burden semantics gives A <b
c G (since A has more defeaters than G) while the classic

contextual ordering instead yields G <c A whatever semantics is adopted, since A is
successfully defended against all its defeaters while G is not defended against F .
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Figure 16: Burden semantics v. classical contextual ordering

For Abstraction it is easy to see that the counterexample given in Section 4.3 for
classic contextual strength also holds for burden semantics as the contextual ordering,
since Burden semantics satisfies Abstraction.

Recall that Independence says that the ranking between two arguments in the same
AF should be independent of arguments that are connected to neither. This does not
hold. The counterexample for all four classic semantics in Figure 13 also holds here.
Recall that cc(AF ) = {AF ′, AF ′′} where AF ′ = A ↔ B while AF ′′ = C. Then
we have AAF ′ ≈b

c BAF ′ and AAF ≈b
c BAF since they defeat each other and have no

other defeaters in AF ′ or AF . So then we have to look at their defeat points just as in
Figure 13, so we again have AAF ′ ≈n

d BAF ′ but BAF >n
d AAF for all n.

Recall that Counter-Transitivity says that if the direct defeaters of B are at least as
numerous and strong as those of A in the same AF , then A is at least as strong as B.
This does not hold. A counterexample is displayed in Figure 17, where we assume
that A has one attack target while B has two, and that both of them have undefeated
defeaters in UAF on all their attack targets. It is easy to see thatA andB have the same
burden number so A ≈b

c B. However, A has, for all n, one defeat point while B has
two, so A >n

d B.

Figure 17: Counterexample to Counter-Transitivity with Burden semantics

Finally, recall that Non-Defeated Equivalence says that all non-defeated arguments
are of equal strength. It is easy to see that the above counterexample to Abstraction is
still a counterexample to Non-defeated equivalence.

This analysis is summarised in the following proposition.

Proposition 30 When combined with burden semantics as contextual strength ≥b
c,

Definition 20 of dialectical argument strength satisfies Void Precedence, Cardinal-
ity Precedence, Defense Precedence, Strict Counter-Transitivity, Distributed Defense
Precedence, Total, Addition of Defeat Branch, Increase of of Defeat Branch and In-
crease of Defense Branch while it violates Abstraction, Independence, Counter-Transitivity,
Self-contradiction, Quality Precedence, Defeat vs Full Defense, Strict Addition of De-
fense Branch, Addition of Defense Branch and Non-Defeated Equivalence.

Table 1 summarises the results of Sections 4.2, 4.3 and 4.4. Since the results, respec-
tively, counterexamples hold for all n, there is no need to refer to n in the table. While
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Ranking with Ranking with
Principle classical burden
Abstraction × ×
Independence × ×
Void Precedence × X
Self-Contradiction × ×
Cardinality Precedence × X
Quality Precedence s ×
Counter-Transitivity × ×
Strict Counter-Transitivity × X
Defense Precedence × X
Weak Defense Precedence X X
Distributed-Defense Precedence s X
Strict Addition of Defense Branch × ×
Addition of Defense Branch × ×
Increase of Defeat Branch × X
Addition of Defeat Branch × X
Increase of Defense Branch × X
Total s X
Non-Defeated Equivalence × ×
Defeat vs Full Defense X ×

Table 1: Overview of results for classical and burden semantics. A Xindicates that the
principle is satisfied in general, an ‘s’ indicates that it does not hold in general but that
we have identified a special case in which it holds, and a × indicates that it does not
hold in general and that we have not identified a special case in which it holds, although
such special cases may exist.

these are more positive results than with classic contextual strength, for all the prin-
ciples that dialectical strength with burden semantics satisfies except Total, the reason
why it satisfies the principle is that strict contextual preference implies strict dialectical
preference (Proposition 14). Does this mean that burden semantics is a better choice
for our purpose than classical contextual strength? We believe not, since as shown
by Example 29, burden semantics does not properly model the effect of defending ar-
guments against defeaters, which we believe is an essential feature of argumentation,
so beautifully captured in Dung’s semantics of abstract argumentation frameworks.
Furthermore, we have seen that with burden semantics as contextual strength, ≥b,n

d vi-
olates, for all n, four principles in addition to those violated by burden semantics as
≥b

c, namely, Abstraction, Independence, Counter-Transitivity and Non-defeated Equiv-
alence. In conclusion, we can say that our negative results can only to a limited extent
be attributed to the choice of classic instead of burden semantics as contextual strength.

5 Instantiating the Abstract Notions of Expansions with
ASPIC+

We next study how the abstract framework of the previous sections can be instantiated
with ASPIC+. This first requires an instantiation of the abstract definitions of (allowed)
expansions of Section 3.2 (Definitions 14 and 15). This in turn requires a specification

37



of how the UAF can be generated by a universal structured argumentation framework
USAF to which it corresponds. Since an SAF is in ASPIC+ determined by an argu-
mentation theory, we must also specify the notion of a universal argumentation theory
UAT. Figure 18 visualises how we have refined the abstract theory of expansions in
Definition 15 (on the left, repeated bottom right) and how we now will instantiate this
definition with structured expansions (on the right). On the right, the only things that
are nontrivial to define are what is a UAT, how to go from a UAT to an AT and how
to expand an AT into an AT ′. The rest follows from the way ASPIC+ is defined (the
black arrows follow directly, the blue ones by straightforward counterparts of existing
definitions).

Figure 18: Expansions: abstract versus structured

5.1 Universal Structured Argumentation Frameworks
A UAF is now defined as corresponding to a universal structured argumentation frame-
work, which is in turn defined by a universal argumentation theory. Together, they de-
fine the space of possible knowledge bases, possible sets of inference rules and possible
argument orderings and thus define the space of possible argumentation frameworks.

Definition 25 [Universal Argumentation theories and universal structured AFs] A
universal argumentation theory is a tuple UAT = ((Lu,Ru

s ∪Ru
d , n

u),Ku
n∪Ku

p ) where
all elements are defined as for ASPIC+ argumentation theories except that Ku

n and
Ku

p do not have to be disjoint. Then a universal structured argumentation framework
defined by UAT is a tuple USAF = (Au, Cu,�u) defined according to Definition 10,
where �u is some preference ordering on Au. A UAF = (Au,Du) that is the abstract
argumentation framework corresponding to some given USAF is denoted by sUAF.

Example 31 Consider a UAT with

Lu = {p,¬p, q,¬q, r,¬r, d,¬d, d′,¬d′},
Ru

s = ∅,
Ru

d = {p⇒ q;¬r ⇒ ¬q},
nu = {(p⇒ q, d), (¬r ⇒ ¬q, d′)},
Ku

n = {p},
Ku

p = Lu
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The arguments and direct attack relations of the USAF defined by this UAT are visu-
alised in the top part of Figure 19, in which the argument names are placed next to the
argument’s conclusion. Assuming the empty argument ordering, all attacks succeed
as defeats. Then the corresponding UAF is visualised in the bottom part of the figure,
which also displays the indirect defeat relations.

Figure 19: USAF defined by UAT and corresponding UAF

Note that the setsRu
s andRu

d of a UAT are not required to contain all well-formed
strict, respectively, defeasible rules over Lu. This is to allow for instantiations where
the strict rules are defined by a logical interpretation of Lu and/or the defeasible rules
correspond to some set of argument schemes. The limiting case where Ru

s and Ru
d

do contain all well-formed rules over L is suitable for applications where the choice
of strict and/or defeasible rules is fully free, as in online debate settings. For similar
reasons Ku

p and Ku
p are not required but are allowed to equal Lu. The reason why Ku

n

andKu
p can overlap is to allow that the type of a premise is unspecified until determined

when constructing an AT in UAT . Accordingly, to keep the notion of an argument on
the basis of a UAT well-defined, we now assume that in Definition 8(1) it is explicitly
indicated whether a premise is taken from Ku

n or from Ku
p .

The structural counterpart of Definition 14 is as follows.

Definition 26 [Argumentation theories and structured AFs in a universal AT] An
argumentation theory in a given UAT is an ASPIC+ argumentation theory AT =
((L,Rs ∪Rd, n),Kn ∪ Kp) where

• L ⊆ Lu;
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• R ⊆ {S  ϕ ∈ Ru | S ⊆ L and ϕ ∈ L};
• n = nu ∩ {(r, ϕ) | r ∈ Rd};
• Kn ⊆ Ku

n;
• Kp ⊆ Ku

p .

A structured argumentation framework in UAT is a structured argumentation frame-
work SAF = (A, C,�) defined by an AT in UAT for some ordering � on A such
that for the AF = (A,D) corresponding to SAF it holds that D ⊆ Du.

Example 31 (Cont.) Consider the following AT in the above UAT :

L = {p,¬p, q,¬q, r,¬r, d},
Rs = ∅,
Rd = Ru

d ,
n = nu,
Kn = ∅,
Kp = {p, r}

Combined with any argument ordering, the SAF defined by this AT contains three
arguments:

A1: p A2: A1 ⇒ q B: r

and no attack relations; see also Figure 20 below on the left. The corresponding AF
equals ({A1, A2, B}, ∅).

In our approach, the constraints of Definition 26 are the minimal constraints on formu-
lating ATs in a UAT . If desired, further constraints can be imposed in the definition
of allowed expansions in terms of preserving a given type of AT (see Definition 27
below). Some possible types of AT in a UAT can be defined as follows.

An argumentation theory in UAT is

• objective iff Kn = Ku
n ∩ L;

• logic-based iffRs = {S → ϕ ∈ Ru
s | S ⊆ L and ϕ ∈ L};

• strongly logic-based iffR = {S  ϕ ∈ Ru | S ⊆ L and ϕ ∈ L}.

Clearly, every strongly logic-based AT is logic-based.

Example 31 (Cont.) AT is trivially strongly logic-based since it has no strict rules,
but it is not objective.

Objective ATs are called objective since they accept all necessary premisses from
UAT that can be expressed in their language. Objective ATs may be suitable for
knowledge-based systems (such as for medical diagnosis or crime investigation), in
which the general knowledge is fixed but investigations must be done to gather specific
observations (such as medical tests on a person who is ill, or searching for evidence
predicted by a crime scenario). (Strongly) logicalATs are called thus since they accept
all (defeasible and) strict inference rules from UAT that can be expressed over their
language. This feature can be used to encode a logic (in Ru

s ) or a recognised set of
argument schemes (in Ru

d ). Consider, for example, a UAT with Lu a propositional
language and Ru

s = {S → ϕ | S ⊆ Lu and S is finite and ϕ ∈ Lu and S ` ϕ} where
` denotes propositional-logical consequence. Then all logic-based AT s in UAT allow
for deductive reasoning with the full power of propositional logic over their language.
Further constraints on ATs can be formulated. For instance, they could be required to
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be well-formed in the sense of [49], who impose restrictions on the type of argument
ordering, the consistency of Kn and the syntax of Rs in order to make the system
satisfy consistency and closure postulates. Or if the UAT has the language restriction
of assumption-based argumentation, then AT s can, if desired, be required to be ‘flat’
in that an assumption cannot appear in the consequent of a strict rule [69].

The following proposition captures that Definitions 25 and 26 indeed instantiate
Definitions 14 and 15 since it implies that every AF that can be generated from a
universal argumentation theory is an AF in the same universal AF as required by
Definition 14 (which is used in Definition 15).

Proposition 32 Given a USAF = (Au, Cu,�u) in a UAT = ((Lu,Ru
s∪Ru

d , n
u),Ku

n∪
Ku

p ), an AF = (A,D) corresponding to an SAF = (A, C,�) in UAT is an AF in
sUAF = (Au,Du), where sUAF corresponds to USAF .

PROOF. It holds that A ⊆ Au by definition of an SAF in UAT . Furthermore, by the
same definition it holds that D ⊆ Du, so no additional defeat relations are possible.
QED

5.2 Allowed Expansions
So far all we have done is instantiating the notion of an AF in a UAF for ASPIC+(as
captured by Proposition 32). The next step is to define the allowed expansions of an
AF that corresponds to an SAF in a universal argumentation theory. The main task is
to ensure that the result of such an expansion still corresponds to a structuredAF in the
universal argumentation theory, in order to respect the structural constraints imposed
by ASPIC+. A natural way to achieve this is to require that an expansion of AF is
the result of additions to the AT that defines the SAF to which the AF corresponds:
the extended AT will define a new SAF that will in terun induce a corresponding
expanded AF , as illustrated in Figure 18. This is directly stated by the following
definition. It assumes that the argument ordering � of an SAF comes with a definition
of its type, as, for example, the definitions of a basic, weakest- or last link ordering [51].
Likewise, it assumes a definition of an allowed type of AT (see the above discussion
of types of AT in Section 5.1). Note that this definition only captures the structural
constraints following from the ASPIC+ definitions; if required by the nature of the
application, further constraints on allowed expansions can be added.

Definition 27 [Allowed expansions] Consider any AF in a given sUAF that corre-
sponds to an SAF = (A, C,�) in UAT defined by AT = ((L,R, n),K), and con-
sider any AF ′ in sUAF that expands AF . Then AF ′ is an allowed expansion of
AF given UAF iff AF ′ corresponds to an SAF ′ = (A′, C′,�′) in UAT defined by
AT ′ = ((L′,R′, n′),K′) such that:

1. L ⊆ L′;
2. R ⊆ R′;
3. Kn ⊆ K′n and Kp ⊆ K′p;
4. for �′ it holds that

(a) � ⊆ �′;
(b) A ≺′ B if A ≺ B;

5. AT ′ is of the same type as AT .

41



Note that the constraints on �′ together make that SAF ′ extends SAF in the sense
of Modgil and Prakken [48]. In this case we also say that �′ extends �. The con-
straints ensure that symmetric defeats can be ‘resolved’ into asymmetric defeats but
that asymmetric defeats remain untouched.

Example 31 (Cont.) Suppose that someone wants to extend AT in a way that makes
B overruled. Then given UAT this can only be done by adding r to Kp and adding
(r,¬r) to �. This results in

L′ = L,R′s = Rs,R′d = Rd, n′ = n, K′n = Kn,
K′p = {p, q,¬r}
�′=� ∪{(r,¬r)}

The arguments and direct attacks in the SAF’ defined byAT ′ are visualised in Figure 20
on the right. Combined with �′ the corresponding AF ′ is as visualised on the right of

Figure 20: SAF defined by AT and SAF’ defined by AT’

the figure. As regards the correspondingA’s, theAF corresponding toAT is visualised
on the left of the Figure 21. At first sight, it would seem that the addition of r to AT

Figure 21: Allowed and unallowed abstract expansions

at the abstract level results in expanding with only argument C1 from Figure 19 and
a single defeat relation from C1 to B. This would yield AF ′ in Figure 21. However,
this expansion is unallowed: since the rule ¬r ⇒ ¬q is in AT ′, argument C2 must also
be added. Moreover, on the basis of �′, which contains no preference between C2 and
A2, a mutual defeat relation between A2 and C2 has to be added. The result is AF ′′ in
Figure 21. Assuming � and �′ are of the same type, it is easy to see that AF ′′ is an
allowed expansion ofAF . Note that if no preference was added, then the defeat relation
between B and C1 would also be mutual while, moreover, a defeat relation from B to
C2 would have to be added. Example 31 further illustrates that purely abstract accounts
of expansions like [8] implicitly make assumptions that are not in general satisfied by
instantiations.
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5.3 Defining Attack Targets for ASPIC+ Arguments
Finally, an argument’s attack targets (cf. Definition 17) must be defined. This paper
adapts a definition of [38] (who did not embed the definition in a setting with expan-
sions as in this paper). All subarguments on which an argument can be attacked are
attack targets but an issue is whether a distinction should be made between targets of
undercutting and rebutting attack. Such a distinction seems reasonable since arguing
that a rule does not apply to the case at hand is a fundamentally different kind of attack
than arguing that there are reasons against its consequent [38]. Hence:

Definition 28 Given a sUAF = (Au,Du), for anyA ∈ Au we define t(A) as Premp(A)∪
{(B,ϕ) | B ∈ Sub(A) and ϕ = Conc(B) and TopRule(B) ∈ Rd} ∪ {(B, r) | B ∈
Sub(A) and r = TopRule(B) and r ∈ Rd}.

Whenever B defeats A, we say that B defeats A on t ∈ t(A) iff B successfully
undermines or rebuts A on t or B undercuts A on t.

It holds that the number of attack targets of an argument equates the number of its or-
dinary premises plus twice its number of subarguments with a defeasible top rule.

Property: | t(A) | = | Premp(A) | + 2× | {A′ ∈ Sub(A) | TopRule(A′) ∈ Rd} |.

We can now state that Definition 18 is well-defined for the ASPIC+ setting in that
a set S′ as required in that definition always exists (recall that such existence is not
relative to a UAF). A set S′ can always be constructed since for each attack target t of
an ASPIC+ argument an argument −t can be constructed where −t is assumed to be
in Kn.

5.4 Examples: Dialectical versus Rhetorical Strength
We next discuss two realistic examples that also illustrate that it is good to have sep-
arate accounts of dialectical and rhetorical strength. First, consider the following two
natural-language examples.

A: You are not allowed to do a retake since you missed too many lectures.
B: You are not allowed to do a retake since you missed too many lectures,

so you made insufficient effort.

We formalise this in an AT with Rs = ∅,Rd = {r1, r2, r3} where

r1: missed⇒ ¬ retake
r2: missed⇒ ¬ effort
r3: ¬ effort⇒ ¬ retake

and with Kn = {missed} and Kp = ∅. The SAF defined by AT consists of the ar-
guments A1, A2, B2, and B3 displayed in the top right part of Figure 22, which have
no attack relations. Then with any � the corresponding AF = ({A1, A2, B2, B3}, ∅),
shown in the bottom-left part of Figure 22. Focusing on A2 and B3, both are scepti-
cally acceptable in any classical semantics, so A2AF ≈c B3AF , while they have the
following attack targets:

t(A2) = {(A2,¬retake), (A2, r1)}
t(B3) = {(B2,¬effort), (B2, r2), (B3,¬retake), (B3, r3)}.
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Figure 22: Dialectical versus rhetorical strength

So |t(A2)| < t|(B3)|. Assume furthermore that UAF (not shown in Figure 22) con-
tains undefeated defeaters on all these attack targets which, moreover, have no defeat
relations with any other argument. Then for all n the sets of n-defeat points of A,
respectively, B, consist of, respectively, all their attack targets as singleton sets. So,
applying Definition 20, it holds that A2 >

x,n
d B3 for all classic x and all n.

Consider next a definition of rhetorical strength of arguments for an audience in
the spirit of [39], where the audience is conceived as a set S of rules and premises,
where X is at least as persuasive as Y if (Prem(Y )∪Rules(Y ))∩ S ⊆ (Prem(X)∪
Rules(X)) ∩ S. That is, persuasiveness is measured in terms of the overlap of the
elements of an argument with what the audience believes. Consider then an audience
S = {missed, r3}. Then the overlap of A2 with S is {missed} while the overlap of 3
with S is {missed, r3}, so B3 is more persuasive than A2. This illustrates that while
sparsely justifying one’s claims or decisions may be dialectically good, it may at the
same time make an argument less persuasive.

Another illustration of this possibility is the rhetorical principle of procatalepsis,
which says that speakers can strengthen their argument by dealing with possible coun-
terarguments before the audience can raise them [12]. Consider the following two
further arguments.

C: Missing too many lecturers is not a reason for not being allowed to do
a retake if one is ill, and I was ill.

D: Although this is true in general, this does not hold if you did not
report being ill.

We formalise this by letting AT ′ add r4 and r5 toRd where

r4: ill⇒ ¬r1,
r5: ¬ reported ill⇒ ¬r4

and lettingAT ′ add ill and reported ill toKn. The resulting SAF ′ is shown in the entire
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top part of Figure 22, while the corresponding AF ′ is shown in the bottom-right part
of the figure. Assume that all arguments in AF ′ have undefeated defeaters in UAF (not
shown). ThenA2 is skeptically acceptable in bothAF andAF ′. Moreover,A2 has, for
all n, two n-defeat points in AF , namely, {(A2,¬retake)} and {(A2, r1)}, while A2

has two additional n-defeat points in AF ′, namely, {(D2,¬r4)} and {(D2, r5)}. So
A2 is, for all n, dialectically stronger in AF than in AF ′. Yet the idea of procatalepsis
as formalised in [12] is that A2 is more persuasive in AF ′ than in AF , since D2 in
AF ′ defends A2 against the objection C2 that might be raised by the audience.

6 Properties of the Instantiated Model
Since the model of the previous section is an instantiation of the abstract models pro-
posed in this paper, it inherits the properties proven about these abstract models. In this
section we investigate which additional properties can be proven because of the spe-
cific nature of our instantiation. All results and counterexamples stated in Sections 6.2
and 6.3 hold for all of the four classic contextual semantics.

6.1 General Results on Expansion Games and Dialectical Argu-
ment Strength

In Section 3 Propositions 4 and 19 were proven on the condition that all expansions
are allowed if and only if they do not omit defeat relations from UAF . Our ASPIC+

instantiation does not satisfy this condition for two reasons. First, Definition 27 rules
out expansions that do not satisfy the structural constraints of ASPIC+, and second, it
allows omitting defeats as long as this is done by extending an argument ordering and
respecting the structural constraints of ASPIC+.

6.2 The Defeat Property
Next, our instantiation of the abstract model with ASPIC+ can be shown to satisfy the
defeat property in the following sense (see Section 4.1).

Proposition 33 AnyAF corresponding to a SAF in a UAT satisfies the defeat property
if attack targets are defined as in Definition 28.

PROOF. Consider an arbitraryAF satisfying the conditions and with argumentsA,B,C ∈
AF , and let attack target t be shared byA andB. If t ∈ L then t is an ordinary premise
of both A and B. But then C defeats A on ϕ iff C defeats B on ϕ by definition of
defeat by undermining. If t is of the form (A′, ϕ) where ϕ = Conc(A′) then C defeats
A on A′ iff C defeats B on A′ by definition of defeat by rebutting. Finally, if t is of the
form (A′, ϕ) where ϕ = TopRule(A′) then C defeats A on A′ iff C defeats B on A′

by definition of defeat by undercutting. QED

6.3 Principles for Ranking-based Semantics with ASPIC+

We next investigate which of the principles for ranking-based semantics discussed in
Section 4 that fail in general do hold for our ASPIC+ instantiation. Failure in general
does not imply failure for our ASPIC+ instantiation, since it may be that particular ab-
stract counterexamples cannot be instantiated with ASPIC+. Below, when we specify
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anAF by a set S of arguments only, we leave implicit thatAF corresponds to an SAF
in an AT that is extended with all elements of the arguments. When a defeat relation
requires a preference relation between arguments, we leave that relation implicit. Fi-
nally, when relevant we will in the figures indicate the type of premise in a given AF
with superscript n or p while we indicate the name of a defeasible rule as a subscript
of⇒.

Abstraction still does not hold. The abstract counterexample given in Section 4.3
can be instantiated with A = p and B = q and C = ¬q where p,¬q ∈ Kn while
q ∈ Kp.

Void precedence still does not hold. We instantiate the abstract counterexample of
Figure 13 as in the top left of Figure 23.

Figure 23: Counterexamples for ASPIC+ (1)

Independence still does not hold. We instantiate the abstract counterexample of
Section 4.3 as in the top right of Figure 23.

Below we will leave implicit that all given counterexamples instantiate the abstract
counterexamples of Section 4.3 except when stated otherwise.

Self-Contradiction still does not hold. Let A = ⇒ ¬r where r = n(⇒r ¬r) for
any B and C.

Cardinality Precedence still does not hold. The instantiated counterexample to
V P also holds for CP .

Quality Precedence still does not hold. See the bottom left of Figure 23 for an
instantiated counterexample.

Defense Precedence still does not hold. See the bottom right of Figure 23 for an
instantiated counterexample.

Counter-Transitivity does not hold. A simple instantiated counterexample is an
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AF with just A and B where A = p and B = q where UAF further only consists of
C = ¬p (here ¬p ∈ Ku

n while p, q ∈ Kp).
Strict Counter-Transitivity does not hold since it implies Defense precedence,

which does not hold.
We extend and instantiate the abstract counterexample to Distributed Defense

Precedence as shown in Figure 24. Here we leave the six additional arguments b, c, d, q, s, t ∈

Figure 24: Counterexample to Distributed Defense Precedence

Kp implicit. Moreover, ¬b ∈ Kn.
The instantiated counterexamples to Abstraction are also instantiated counterexam-

ples to Non-Defeated Equivalence.
Strict Addition of Defense Branch still does not hold. See the top left of Figure 25

for an instantiated counterexample. The only modification of the abstract counterex-
ample is that all arguments in AF do not have one but two attack targets.

The abstract counterexample to Addition of Defense Branch can be instantiated
as in the top right of Figure 25.

The abstract counterexample to Addition of Defeat Branch can be instantiated as
in the middle left of Figure 25, where we assume that B ≺ D.

For a counterexample to Increase of Defeat Branch, change E in the counterex-
amples to Addition of Defeat Branch as in the bottom right of Figure 25 and add F and
G as in the figure.

Finally, for a counterexamples to Increase of Defense Branch, addD and E to the
counterexample to Strict Addition of Defense Branch as in the bottom left of Figure 25.

In conclusion, apart from the fact that the condition of Proposition 21 is satisfied, no
new positive results are obtained for the instantiation of our ranking-based semantics
with ASPIC+.

7 Related Research
In this section we discuss several strands of related research.

7.1 Related Research on Aspects of Argument Strength
Throughout this paper we have made detailed comparisons with existing work on prin-
ciples for models of argument strength. As noted above, most of this work does not
indicate which aspect(s) of argument strength is or are modelled. A recent exception
is [12], who model two aspects of “persuasiveness”, i.e., of rhetorical strength. The

47



Figure 25: Counterexamples for ASPIC+ (2)

first is procatalepsis, the attempt of a speaker to strengthen their argument by deal-
ing with possible counter-arguments before the audience can raise them (discussed
above in Section 5.4). The second aspect is fading, the phenomenon that long lines
of argumentation are less persuasive. Bonzon et al. claim that “current ranking-based
semantics are poorly equipped to be used in a context of persuasion”. Among other
things, they show that procatalepsis violates the Void Precedence principle. While we
agree with their observation, we note that in the end they do not give a separate model
of persuasiveness but combine these two aspects with existing strength principles into
an overall measure of argument strength, thereby still conflating the three kinds of ar-
gument strength. We instead prefer to separately study different notions of argument
strength, since these notions may serve different purposes and may therefore evaluate
the same arguments differently. For example, procatalepsis may conflict with the di-
alectical principle to motivate a decision as sparsely as possible, as illustrated above in
Section 5.4.

48



In the abstract account of [62] not just a ranking-based but also a weighted seman-
tics for dialectical argument strength was developed. In a weighted AF , arguments
have an initial numerical weight between 0 and 1 and argument strength is also defined
as a number between 0 and 1. In [62] two semantics were shown to be equivalent and
the weighted semantics was also instantiated with ASPIC+. Then properties proposed
in the literature on weighted semantics (in particular those from [5]), were investigated,
which similar largely negative results as for ranking-based semantics. In the present
paper we have not included a weighted account in order to make the paper not too long
and complex. Instead, we leave this for future research.

Recently, Heyninck et al. [35] have studied ranking-based semantics applied to
variants of logic-based argumentation without preferences in which arguments can
have an inconsistent set of premises. In terms of ASPIC+, argumentation is logic-
based in their sense if there are no defeasible rules and if Rs corresponds to all valid
inferences from finite set according to a Tarskian consequence notion. For this setting
Heyninck et al. propose several new postulates. Among other things, they define a
property of monotony for ranking-based semantics, which in our notation says that if
A,B ∈ AF and A− ⊆ B− then A ≥d B. Heyninck et al. remark that monotony is
implied by counter-transitivity and by cardinality precedence. Monotony for ranking-
based semantics does not hold for our approach, neither for the abstract case nor for the
instantiation with ASPIC+. The counterexamples to Void Precedence in Sections 3.5
and 6.3 are also counterexamples to the ranking-based versions of Monotony. Heyn-
inck et al. also establish relations between particular classes of ranking semantics for
ABFs and so-called culpability measures, which quantify the degree of responsibility
of a formula in making a set of formulas inconsistent. They observe that this result is
only meaningful in settings where arguments can have inconsistent premises. In con-
clusion, the relevance of Heyninck et al.’s work for the present paper is limited, since it
studies a very limited special case of structured argumentation and in particular since
it does not distinguish between kinds of argument strength; because of its static setting
their approach does not seem meant for dialectical argument strength.

7.2 Related Research on Explanations and Relevance
There has been some work on notions of relevance of arguments for the status of an-
other argument in order to give explanations for that status. Our notion of a relevant
set (Definition 18) is conceptually similar but formally unrelated to [29]’s notion of
an explanation. This notion is defined in terms of related admissible sets. Given an
AF = (A,D), a set S ⊆ A is related admissible if there exists an A ∈ S such that S
defends A and S is admissible. Then any related admissible set containing A is an ex-
planation ofA. That the two notions are formally unrelated follows from the following
example AF with A← B ← C, where we assume that all arguments have undefeated
defeaters in the UAF. Then {A} is relevant to A but is not related admissible since it is
not admissible. Moreover, {A,C} is related admissible (and a subset-minimal expla-
nation of A) but this set is not relevant to A. Instead the sets relevant to A are {A} and
{C}.

Other work in this vein is [14]. One of their notions of relevance that is conceptually
close to our notion of a relevant set is that of (sets of) arguments necessary for the
acceptance of an argument. This notion is defined relative to a givenAF . An argument
B ∈ AF is relevant for the acceptance of to an argument A if, firstly, B is a direct or
indirect defender of A and, second, all extensions of AF that contain A also contain
B. Although conceptually close, this notion is also formally unrelated to our notion
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of a relevant set. First, in all of our above examples where {A} is relevant to A and
does not defeat one of its defeaters, {A} is not necessary for the acceptance of A, since
A does not defend itself. Second, in Example 8 the set {D,G} is necessary for the
acceptance of A but it is not relevant to A.

7.3 Related Research on Argumentation Dynamics
To the best of our knowledge there is no earlier formal work that explicitly addresses
dialectical argument strength. Arguably, work on enforcing, preserving or realising a
particular argument status in dynamic contexts [8, 24, 9] implicitly addresses aspects
of dialectical argument strength. In particular, the notion of expansions of argumenta-
tion frameworks introduced in [8] is part of our formal model of dialectical argument
strength. Compared to the work on enforcement, we are interested in how the con-
textual strength of an argument can decrease, which can be seen as the opposite of
enforcement. Furthermore, while most work on argumentation dynamics remains at
the abstract level, we have tried to instantiate our abstract model with a structured ac-
count of argumentation, namely, ASPIC+. A key ingredient here was our notion of a
universal argumentation framework, which defines the space of possible expansions of
a given argumentation framework. This notion bears some resemblance to the notion
of incomplete argumentation frameworks [9], which will be discussed below.

There is some recent work that respects that there can be structural constraints on
argumentation dynamics. Wallner [74] proposes the general notion of constraints for
dynamic operations on abstract or dialectical [16] argumentation frameworks, and dis-
cusses its application to structured accounts of argumentation. His ideas are motivated
by similar considerations as ours, namely, that abstract approaches can make implicit
assumptions that are not satisfied by all structured instantiations.

A similar motivation underlies Rapberger and Ulbricht’s [64] study of enforcement
in assumption-based argumentation (ABA). Rapberger and Ulbricht introduce ABA
counterparts of the abstract notion of expansions and enforcement and relate them to a
generalisation of abstract AFs called cvAFs, in which ‘instantiated’ arguments x are
defined as pairs (cl(x), vul(x)) where cl(x) is the argument’s conclusion while vul(x)
is its set of vulnerabilities. A cvAF is well-formed iff for every x, y ∈ A it holds that
x attacks7 y iff the conclusion of x equals a vulnerability of y. The authors then prove
complexity results and necessary-and-sufficient conditions for enforceability of single
arguments in well-formed cvAFs. Rapberger and Ulbricht then instantiate cvAFs with
ABA, where an argument’s vulnerabilities are the contraries of its assumptions. This
by definition results in well-formed cvAFs. They observe that, like for AFs, results for
cvAFs do not automatically apply to ABA and they separately prove complexity results
for enforceability of single ABA arguments.

It is interesting to see how ASPIC+ could generate cvAFs. For conclusions this is
obvious, while the vulnerabilities are the contradictories of all ordinary premises plus
the contradictions of all conclusions of any subargument with a defeasible top rule plus
the contradictories of all names of defeasible rules used in the argument. Defining at-
tack is then straightforward, namely,A attacksB iff cl(A) = −v for some v ∈ vul(B).
Defining defeat is less straightforward, since the proper application of preferences for
determining defeat depends on the structure of arguments, which is lost in a cvAF en-
coding (contrary to Definition 12, which puts the original ASPIC+ arguments in an
AF ). The most sensible way is to record which original ASPIC+ argument gave rise to

7Rapberger and Ulbricht use ‘attack’ instead of ‘defeat’.
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the cvAF argument and then define defeat as between the original arguments. Note that
the thus generated cvAFs are guaranteed to be well-formed with respect to the attack
relation but for the defeat relation this is only guaranteed if the argument ordering is
empty or simple (the simple ordering says that thatA � B iffB is strict-and-firm while
A is defeasible or plausible). This is one reason why the approach of Rapberger and
Ulbricht is not in general applicable in the present setting. Another reason is that they
do not explicitly work with notions like universal (structured) argumentation frame-
works. Instead they assume that every potential argument can be added to a cvAF and
they leave possible restrictions on the space of expansions for future research.

There is other recent structured work on enforcement and related problems. Borg
and Bex [13] develop a structured account of enforcement in argumentation dynam-
ics in Borg and Strasser’s [15] ‘general argumentation setting’, in which, among other
things, a special case of ASPIC+ with no ordinary premises and no preferences was
translated. This work is also in part motivated by the observation that abstract ap-
proaches can make implicit assumptions that are not satisfied by all structured instan-
tiations. Within the setting of [15], Borg and Bex define several notions of expansions
and enforcement. Unlike in our case, these notions of expansions are not formally
related to abstract accounts of expansions, nor are they defined in the context of a
universal background framework. In particular, unlike in the present paper no charac-
terisation is given of the conditions under which an expansion is allowed. The main
focus of Borg and Bex is on enforcement results. They prove such results for several
classes of argumentation settings. Most of these results assume that the setting is con-
trapositable, which notion is very similar to the notion in ASPIC+ of closure of strict
consequence under contraposition (capturing what can be derived from sets of formu-
las with only strict-rule application). However, unlike in ASPIC+, in Borg and Bex’s
work as applied to Borg and Strasser’s [15] translation of ASPIC+, contraposition is
not restricted to the strict part of ASPIC+. Thus most of the results of Borg and Bex
only apply to special cases of ASPIC+ with no defeasible rules (and no preferences and
ordinary premises).

Odekerken et al. [54, 53, 56] study in the context of ASPIC+ whether argument
and conclusion statuses can change under expansions of the knowledge base, to find
out whether searching for further information makes sense. This work is especially mo-
tivated by crime investigation scenarios. In this work the set of future argumentation
theories is defined as the set of all argumentation theories that extend the knowledge
base of a given argumentation theory AT = ((L,R, n),K) with a subset of a set
Q ⊂ L of queryables. In [54, 53] no argument ordering is assumed so attack equates
defeat, while in [56] the setting is extended with rule preferences and a last-link ar-
gument odering. This approach can be reconstructed as an instance of our approach
in Section 5 by letting UAT be ((L,R, n),K ∪ Q) and by imposing the further con-
straint on Definition 27 that an expansion can only add elements to K and can only
take these elements from Q. Formally this makes any (future) argumentation theory
strongly logic-based but this is only since the rules capture domain-specific knowledge;
no logic is encoded in the rules. Since the knowledge base equates Kn and can grow,
the ATs are not objective.

The work of Odekerken et al. was abstracted by Mailly and Rossit [45] and Odek-
erken et al. [55] in terms of incomplete argumentation frameworks [9]. Such frame-
works divide an AF in a certain and an uncertain part. Incomplete AFs can be ‘com-
pleted’ or ‘specified’ by making uncertain arguments or attacks certain. An important
difference with our notion of universal AF s is that the notion of specification of an
incomplete AF assumes that all arguments and attacks are independent of each other,
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so that there are no constraints on specifying an incomplete AF . An important theme
of our paper has been that this assumption is in general not warranted.

It would be interesting to investigate how all this work on argument dynamics can
be combined with studies of dialectical argument strength.

7.4 Preliminary Observations on Computational Complexity
Since the present paper’s main focus has been on formal modelling, we have chosen
to leave a study of complexity and algorithms to future research. Nevertheless, some
of the work discussed above in this section allows us to make some preliminary ob-
servations on the computational complexity of our abstract ranking-based semantics
with the classic contextual ordering (Sections 3 and 4.1). We consider the special case
that all expansions are allowed. Clearly, since our approach involves the determination
of an argument’s contextual status as a key element, all known complexity results for
this problem are lower bounds for the problem of determining a relation of dialectical
strength between two arguments. See, for instance, [73] for a study in the context of
labelling semantics. Another key element for our semantics is finding an expansion of
AF that lowers the contextual status of an argument A ∈ AF . This problem can be
mapped onto the problem of stability in incomplete argumentation frameworks (IAFs)
[45, 55]. The combination of the certain and uncertain part of an IAFs can be seen as
a UAF and the certain part of an IAF is then an AF in a UAF. Then for arguments that
have maximal contextual strength, that is, that are in ∀, the problem of finding a normal
expansion of AF that lowers the contextual status of A is equivalent to the problem of
IN-stability of [55] (in [9] called the problem of necessary skeptical acceptance of A in
the IAF) in that a normal expansion that lowers the status of A exists if and only if A
is not IN-stable. Actually, since we assume that all expansions are normal, this holds
on the condition that all specifications of an IAF add at least one argument and do not
add new certain relations between old certain arguments. It is known that for grounded
semantics IN-stability is CoNP-complete even if all attacks in an IAF are certain [55],
which result therefore also holds for our problem of finding a normal expansion of AF
that lowers the contextual status of A. So this provides a lower bound for our prob-
lem of determining a relation of dialectical strength between two arguments. Since the
problem of determining whether an argument is in the grounded extension is known
to be in P [27], this shows that there are cases where computing dialectical strength is
substantially harder than computing contextual strength. Moreover, this lower bound
is likely to be loose, among other things since it is known that computing the labelling
class of an argument (as is necessary for our notion of contextual strength) is often
harder than computing extension membership [73], and also since our model contains
other non-trivial computational subproblems, such as determining whether a set of ar-
guments is relevant to a given argument.

8 Conclusion
In this paper we presented the first formal study of dialectical argument strength, mod-
elled as the number of ways in which an argument can be successfully attacked in
expansions of an argumentation framework. We showed that most principles for mod-
els of argument strength proposed in the literature fail to hold for our model. Moreover,
we noted that there seems not much room for adjusting these principles in ways that
fit with our approach to dialectical strength. This reveals something about the possible
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rational foundations of these principles and highlights the importance of distinguishing
between kinds of argument strength, something that in the formal literature on argu-
ment strength is not always done. This is a first lesson to be drawn from our study. An
important aspect of our approach was that we did not only propose an abstract model
but also instantiated it with an account of the structure of arguments and the nature
of their relations. This was to avoid overly limiting assumptions at the abstract level
that may not hold for all instantiations. A key concept here was the notion of an al-
lowed expansion of an argumentation framework, which turned out to be useful for
capturing constraints induced by the structured account of argumentation. This was in
turn made possible by making expansions relative to a given universal argumentation
framework. A second lesson to be drawn from our study is therefore that an important
way to validate abstract models of argumentation is to instantiate them with more con-
crete accounts of argumentation. This is also something that in the formal literature on
argument strength is not always done.

Are our partly negative results on satisfaction of the principles proposed in the lit-
erature bad for our approach or for the principles? There is no easy answer to this
question but we note that in the literature most principles are based on intuitions in-
stead of on philosophical insights. Therefore it is not obvious why they should hold;
it may just as well be that if a semantics based on philosophical insights and arguably
reflecting good properties does not satisfy some principle, then this indicates that the
principle may not be suitable for the modelled notion. This raises the question how our
dialectical semantics should be evaluated in these respects. We believe our semantics
does well. It is based on the well-known philosophical distinction between logical,
dialectical and rhetorical argument strength and more specifically on [77]’s description
of dialectical argument strength. Moreover, our semantics arguably satisfies desirable
properties. Proposition 21 says that under reasonable assumptions, if the set of attack
targets of argument A is a subset of the set of attack targets of argument B, then A
cannot be weaker than B. This captures quite directly the intuition that justifying a
decision more sparsely is better. It should be noted that similar results do not hold for
cardinality relations between sets of attack targets or defeaters. It would be interest-
ing to investigate whether such relations do hold in particular contexts, perhaps of a
probabilistic nature and to be verified experimentally.

Another key feature of our approach is that it does not look at the number or sets
of potential or actual defeaters of an argument. A main reason for this is to discourage
obstructive behaviour in discussions by launching as many counterarguments as pos-
sible, even if they are clearly nonsensical or based on fake facts. Clearly, a rational
model of argumentation should not encourage such behaviour. This also justifies our
negative results for principles that in one way or another give the actual number of
defeaters or subset relations between sets of defeaters an influence on an argument’s
strength, which are Void Precedence, Cardinality Precedence, Counter-Transitivity,
Strict Counter-Transitivity, Non-Defeated Equivalence and Addition of Defeat Branch.

Note also that in general such obstructive behaviour cannot be avoided by imposing
constraints on the UAF. In many applications the idea of an UAF will be that it contains
all ‘logically’ possible arguments, that is, all arguments that are constructible in the
given language and from the given set of rules from any knowledge base expressible in
the language. This can be generalised even further by allowing any set of rules that can
be expressed over the language. Moreover, as soon as the language is infinite, every
defeatable argument may have an infinite number of potential defeaters in the UAF.
Finally, in many contexts poor quality of arguments is supposed to be established in
the course of a dialogue instead of to be determined beforehand.
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All this is, of course, not a definitive proof that our approach is the right one.
One benefit of our proposal is that it is now formulated so that it is open for critical
examination and possible improvements or alternatives. This brings us to topics for
future research.

In Section 7.4 we already mentioned a study of complexity and algorithms as a
topic for future research. Another research topic is to vary elements of the present
model. For instance, other ranking-based semantics can be used for contextual strength.
Also, the definitions of an expansion game, relevant sets and defeat points could treat
undefined relations of contextual strength differently, by allowing, for instance, that a
given relation is changed from defined to undefined. As mentioned above in Section 7,
it may also be interesting to investigate how research on enforcement, preservation and
realisability can be incorporated in notions of dialectical strength, and how a structured
account of weighted approaches to argument strength can be developed and compared
to the present ranking-based approach.

Our model is flexible in various ways. For instance, AFs can omit defeats from a
UAF , not all expansions may be allowed and, above all, the definition of dialectical
argument strength is parametrised by the maximum length of an expansion dialogue.
These are three reasons why dialectical argument strength cannot simply be defined
relative to contextual status in UAF . This is desirable when it comes to applications:
of all three ways of flexibility we have argued in our paper that they are needed in many
realistic applications. For example, which maximum length of expansion dialogues is
appropriate will depend on the nature of the application. However, a downside of this
flexibility is that not many strong results can be proven about the general model. An
important topic for future research therefore is to investigate properties if particular
choices on the various choice points in our approach are made. For example, it would
be interesting to investigate whether additional formal properties can be established in
contexts where a UAF is generated from particular bodies of knowledge or where ex-
pansions have to respect particular argument orderings. More generally, embeddings
of our model in dialogical or investigative contexts can be studied, in particular, how
these embeddings give rise to additional constraints on allowed expansions. Finally,
our formal model could be used as a basis for experimental research, to investigate
whether properties that do not hold formally can still be verified empirically and prob-
abilistically in particular contexts. Ultimately, we hope that our model and its further
developments will aid in building and especially evaluating artificial arguing agents,
even those that are not based on formal but on natural-language-processing methods,
such as Debater, ChatGPT and their successors.
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