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Abstract

This paper investigates the relation between abstract and
structured accounts of probabilistic argumentation. The AS-
PIC+ framework is applied to default reasoning with proba-
bilistic generalisations, using the idea that the probability of
an argument is the probability of the conjunction of all its
premises and conclusions. Based on this idea, two notions
of internal and dialectical argument strength are defined and
compared. The resulting account is then related to Hunter &
Thimm’s epistemic approach to abstract probabilistic argu-
mentation.

Introduction
Recently there has been much research on probabilistic ab-
stract argumentation, e.g. (Dung and Thang 2010; Li, Oren,
and Norman 2012; Hunter and Thimm 2016; 2017). Its ab-
stract nature makes this work not easy to interpret. For ex-
ample, there is unclarity about what the probability of an ar-
gument means, since in probability theory probabilities are
assigned to the truth of statements or to outcomes of events,
and an argument is in general neither a statement nor an
event. For the same reason statements about whether an ar-
gument “is true” or “can be believed” (e.g. (Hunter 2013;
Hunter and Thimm 2017)) are in need of clarification. The
present paper aims to clarify such issues in terms of the
structure of arguments and the nature of attack.

Current approaches to probabilistic argumentation are of
two kinds, depending on whether the uncertainty is in or
about the arguments. Sometimes the probabilities are in-
trinsic to an argument in that they express uncertainty con-
cerning the truth of its premises or the reliability of its in-
ferences. An example is default reasoning with probabilis-
tic generalisations, as in Birds can typically fly, Tweety is
a bird, therefore (presumably), Tweety can fly. This is ar-
guably what (Hunter 2013) calls the ‘epistemic’ approach to
probabilistic argumentation. A second, extrinsic use of prob-
ability in argumentation (which arguably is what (Hunter
2013) calls the ‘constellations’ approach) is for expressing
uncertainty about whether arguments are accepted as exist-
ing by some arguing agent. (Hunter 2014) gives the example
of an enthymeme that could leave two alternative premises

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

implicit: if a listener assigns probabilities to these premises,
then these translate into probabilities on which argument the
speaker meant to construct. This uncertainty is independent
of the intrinsic strengths of the two possible arguments: one
might be stronger than the other while yet the other is more
likely the argument that the speaker had in mind.

This paper focuses on the intrinsic (epistemic) approach.
Related work is (Hunter 2013), who defines the strength of
classical-logic arguments as the probability of the conjunc-
tion of all their premises. While this makes sense when all
arguments are deductively valid, it does not apply to cases
where additional uncertainty arises from defeasible infer-
ences (as in the above example). This paper therefore gen-
eralises Hunter’s idea to arguments that apply defeasible
inference rules, and studies how the resulting account re-
lates to current abstract models of epistemic probabilistic
argumentation, in particular to (Hunter and Thimm 2016;
2017)’s rationality conditions. The problem will be stud-
ied in the context of a simple instantiation of the ASPIC+

framework for structured argumentation (Prakken 2010;
Modgil and Prakken 2013; 2018). An important idea will be
that arguments implicitly make probabilistic independence
assumptions and that the assumptions of different arguments
may be mutually inconsistent.

The proposal will be developed for probabilistic default
reasoning, where rules express probabilistic generalisations.
In nonmonotonic logic default reasoning is often (though not
always) studied in a qualitative way, where the rules are ex-
pressed with qualitative modalities, as in ‘If X then usually
/ normally / typically Y ’. However, with the rise of big-data
machine learning applications, statistical and probabilistic
arguments can be increasingly expected in many domains,
for example, in legal proof, medical diagnosis, customer ac-
ceptance procedures or employee selection procedures. This
justifies a quantitative probabilistic study of such arguments.

There have been two earlier attempts to model proba-
bilistic argumentation in ASPIC+. (Rienstra 2012) takes the
constellations approach and is therefore irrelevant to the
present paper. (Timmer et al. 2017) propose a method for ex-
plaining forensic Bayesian networks by deriving arguments
from them. Their method was by (Prakken 2017) related to
(Hunter and Thimm 2017)’s abstract approach. While this
work like us takes an epistemic approach, its concerns are
different in that explaining forensic Bayesian networks is a



different problem than the one studied in the present paper.
In particular, it assumes a single joint probability distribution
over the language over which arguments are constructed,
while the account developed in the present paper does not
make such an assumption, for reasons explained below.

This paper is organised as follows. After presenting the
formal preliminaries, we first define a notion of internal ar-
gument strength on the basis of only information pertaining
to the argument itself. We show that this notion is proba-
bilistically well-defined but can make that conflicting argu-
ments make jointly inconsistent probability assumptions, so
that using internal argument strength for resolving conflicts
between arguments is problematic. Then we study a notion
of dialectical argument strength according to which there are
no such probabilistic inconsistencies and which can there-
fore be used to resolve conflicts between arguments. We will
show that dialectical strength better respects (Hunter and
Thimm 2017)’s rationality conditions than internal strength
but is arguably harder to apply in practice. We end with a
discussion of other related research and concluding remarks.

Formal Preliminaries
In this section we summarise the formal frameworks used in
this paper. An abstract argumentation framework (AF ) is a
pair 〈A, attack〉, where A is a set of arguments and attack
⊆A×A. The theory of AFs (Dung 1995) identifies sets of
arguments (called extensions) which are internally coherent
and defend themselves against attack. An argument A ∈ A
is defended by a set by S ⊆ A if for all B ∈ A: if B attacks
A, then some C ∈ S attacksB. Then relative to a givenAF ,
E ⊆ A is admissible if E is conflict-free and defends all its
members; E is a complete extension if E is admissible and
A ∈ E iff A is defended by E; E is a preferred extension
if E is a ⊆-maximal admissible set; E is a stable extension
if E is admissible and attacks all arguments outside it; and
E ⊆ A is the grounded extension if E is the least fixpoint of
operator F , where F (S) returns all arguments defended by
S. It holds that any preferred, stable or grounded extension is
a complete extension. Finally, for T ∈ {complete, preferred,
grounded, stable}, X is sceptically or credulously justified
under the T semantics if X belongs to all, respectively at
least one, T extension.

We next specify the present paper’s instance of the AS-
PIC+ framework. It defines abstract argumentation systems
as structures consisting of a logical language L with nega-
tion and two sets Rs and Rd of strict and defeasible infer-
ence rules defined over L. In the present paper L is a lan-
guage of propositional or predicate-logic literals. Arguments
are constructed from a knowledge base (a subset of L) by
chaining inferences over L into acyclic graphs. Formally:

Definition 1 [Argumentation System] An argumentation
system (AS) is a pair AS = (L,R) where:
• L is a logical language consisting of propositional or

ground predicate-logic literals
• R = Rs ∪ Rd is a finite set of strict (Rs) and defeasible

(Rd) inference rules of the form {ϕ1, . . . , ϕn} → ϕ and
{ϕ1, . . . , ϕn} ⇒ ϕ respectively (where ϕi, ϕ are meta-
variables ranging over wff in L), such thatRs ∩Rd = ∅.

ϕ1, . . . , ϕn are called the antecedents and ϕ the conse-
quent of the rule.1

We write ψ = −ϕ just in case ψ = ¬ϕ or ϕ = ¬ψ. Note that
− is not part of the logical language L but a metalinguistic
function symbol to obtain more concise definitions. Also,
for any rule r the antecedents and consequent are denoted,
respectively, with ant(r) and cons(r).
Definition 2 [Consistency] For any S ⊆ L, let the closure
of S under strict rules, denoted ClRs

(S), be the smallest
set containing S and the consequent of any strict rule in Rs

whose antecedents are in ClRs
(S). Then a set S ⊆ L is di-

rectly consistent iff @ ψ, ϕ ∈ S such that ψ = −ϕ, and
indirectly consistent iff ClRs

(S) is directly consistent.
Definition 3 [Knowledge bases] A knowledge base over an
AS = (L,R) is an indirectly consistent finite set K ⊆ L.
In this paper K corresponds to the ‘necessary premises’ in
other ASPIC+ publications, which are intuitively certain and
therefore not attackable. We will represent what intuitively
are uncertain premises ϕ as defeasible rules ⇒ ϕ. We also
assume that no element ofK occurs in the consequent of any
rule in R. The finiteness restrictions on K and R are to be
in line with (Hunter and Thimm 2017), who assume a finite
abstract argumentation framework.

As observed by (Modgil and Prakken 2018), ASPIC+ as
it has developed over the years is not a single framework
but a family of frameworks varying on several elements.
Some variations are in the definition of an argument. We
adopt a variant in which arguments cannot be circular in that
they cannot repeat conclusions of their proper subarguments
(a condition adopted by (Grooters and Prakken 2016)), in
which the set of all conclusions of an argument has to be
indirectly consistent (a condition explored by (Wu and Pod-
laszewski 2015)) and in which an argument cannot have
two different subarguments for the same conclusion. The as-
sumptions of non-circularity and internal consistency are ar-
guably reasonable requirements for any rational notion of an
argument. The assumption that an argument cannot have dif-
ferent subarguments for the same conclusion is a pragmatic
rationality constraint, expressing that in a single argument
one should commit to a single way to support a conclusion.
These three assumptions on arguments, besides being rea-
sonable rational constraints, also have technical reasons, as
will become apparent in the proof of Theorem 15.

To distinguish between the features of the definition that
are present in all work on ASPIC+ and the specific features
assumed in this paper, we below first define the notion of
a ‘general’ argument and then define arguments as studied
in the present paper as general arguments that exhibit the
specific features assumed in this paper.
Definition 4 [(General) arguments] A general argument
A on the basis of a knowledge baseK over an argumentation
system AS is a structure obtainable by applying one or
more of the following steps finitely many times:

1. ϕ if ϕ ∈ K with: Prem(A) = {ϕ}; Conc(A) = ϕ;
Sub(A) = {ϕ}; Rules(A) = ∅; DefRules(A) = ∅;
TopRule(A) = undefined.
1Below the brackets around the antecedents will be omitted.



2. [A1], . . . , [An] → ψ2 if A1, . . . , An are general argu-
ments such that Conc(A1), . . . , Conc(An) → ψ ∈ Rs

with:
Prem(A) = Prem(A1) ∪ . . . ∪ Prem(An);
Conc(A) = ψ;
Sub(A) = Sub(A1) ∪ . . . ∪ Sub(An) ∪ {A};
Rules(A) = Rules(A1) ∪ . . . ∪ Rules(An) ∪
{Conc(A1), . . . , Conc(An)→ ψ};
DefRules(A) = Rules(A) ∩Rd;
TopRule(A) = Conc(A1), . . . , Conc(An)⇒ ψ.

3. [A1], . . . , [An]⇒ ψ if A1, . . . , An are general arguments
such that Conc(A1), . . . , Conc(An)⇒ ψ ∈ Rd, with the
other notions defined as in (2).

A general argument A is an argument iff:
1. Conc(Sub(A)) is indirectly consistent; and
2. If A contains subarguments A′ and A′′ such that

Conc(A′) = Conc(A′′), then A′ = A′′.
An argument A is strict if DefRules(A) = ∅, otherwise A
is defeasible.
Each of the functions Func in this definition is also de-
fined on sets of arguments S = {A1, . . . , An} as follows:
Func(S) = Func(A1)∪ . . .∪Func(An). Note that we over-
load the⇒ symbol to denote an argument while it also de-
notes defeasible inference rules. This is common practice in
argumentation and originates from (Vreeswijk 1997).

Condition (2) of the definition of an argument implies
non-circularity, for which reason the formal definition leaves
the non-circularity condition implicit. However, the former
condition is not implied by the latter, since two different gen-
eral subarguments for the same conclusion need not have a
subargument relation between them. An example is
A = [[[p⇒ r], s]⇒ t, [[q ⇒ r], u]⇒ v]→ w

General argument A has two different subarguments for r,
one applying the rule p ⇒ r to p and the other applying
the rule q ⇒ r to q. Then r is used twice: once in a rule
r, s ⇒ t and once in a rule r, u ⇒ v. Then A ends with the
top rule t, v → w. Neither of its two subarguments for r is a
subargument of the other.

In general, ASPIC+ has three ways of attack: on an argu-
ment’s uncertain premises (undermining attack), on the con-
clusion of a defeasible rule (rebutting attack) and on a defea-
sible rule itself (undercutting attack). However, to keep our
present initial explorations as simple as possible, we assume
that all premises are certain and that there are no undercut-
ters, and leave the inclusion of undermining and undercut-
ting attack to future research. Thus:
Definition 5 [Attacks]A attacksB iffA rebutsB, whereA
rebuts argument B (on B′) iff Conc(A) = −ϕ for some B′
∈ Sub(B) of the form B′′1 , . . . , B

′′
n ⇒ ϕ.

The ASPIC+ counterpart of an abstract argumentation
framework is a structured argumentation framework.
Definition 6 [Structured Argumentation Frameworks]
Let AT be an argumentation theory (AS,K). A structured

2The square brackets make the presentation of examples more
concise. They will be omitted if there is no danger for confusion.

argumentation framework (SAF) defined by AT , is a triple
〈A, C, � 〉 where A is the set of all arguments on the basis
of K in AS, � is an ordering on A, and (X,Y ) ∈ C iff X
attacks Y .
The attack relation tells us which arguments are in conflict
with each other. If an argument A successfully attacks, i.e.,
defeats, B, then A can be used as a counter-argument to B.
Whether a rebutting attack succeeds as a defeat, depends on
the argument ordering �. In the following definition A ≺ B
is defined as usual as A � B and B 6� A.
Definition 7 [Defeat]. A defeats B if A rebuts B on B′ and
A 6≺ B′.
AFs are then generated from SAFs by letting the attacks
from an AF be the defeats from a SAF .
Definition 8 [AFs corresponding to SAFs] An abstract
argumentation framework (AF ) corresponding to a SAF
= 〈A, C, � 〉 (where C is ASPIC+’s attack relation) is a pair
(A, attack) such that attack is the defeat relation on A de-
termined by SAF .
A nonmonotonic consequence notion can then be defined as
follows. Let T ∈ {complete, preferred, grounded, stable}
and let L be from the AT defining SAF . A wff ϕ ∈ L
is sceptically T -justified in SAF if ϕ is the conclusion of a
sceptically T -justified argument, and credulously T -justified
in SAF if ϕ is not sceptically T -justified and is the conclu-
sion of a credulously T -justified argument.

Internal Argument Strength
In this section we define a probabilistic notion of ‘internal’
strength of arguments, where probabilistic generalisations
are expressed as rules in R. In doing so we abstract from
the distinction between frequentist and subjective interpre-
tations of probabilities; our approach is meant to equally
apply to both interpretations. We will assume that premises
and strict rules have strength 1 while defeasible rules have
a strength less than 1 but greater than 0.5. The premise
strengths are meant to be unconditional probabilities while
the rule strengths stand for the conditional probability of a
rule’s consequent given the conjunction of its antecedents.
Thus we give a probabilistic semantics to rules in line
with the ‘probability conditional theory’ (cf. [p. 119](Adams
1999)). In philosophy this theory is controversial because of
triviality results of (Lewis 1976) but these results assume
that probability conditionals can be embedded in a proposi-
tional language, which is not the case for ASPIC+ rules. The
constraint that defeasible rules have strength greater than 0.5
is taken from (Pollock 1995)’s modelling of his statistical
syllogism. The constraint agrees with the intuitive reading
of defeasible rules P ⇒ Q as ‘if P then usually/typically
Q’, which is the reading we want to explore in this paper.
Because of this reading, we do not allow that both a rule
S ⇒ ϕ and a rule S ⇒ −ϕ is inRd.

Definition 9 A probabilistic argumentation theory is a tuple
PrAT = (AS,K, s) where (AS,K) is an argumentation
theory such that if S ⇒ ϕ ∈ Rd then S → −ϕ 6∈ Rd and s
is a rule-premise strength function assigning a real number
r where 0.5 < r < 1 to all elements ofRd and r = 1 for all



elements of K and Rs. All notions defined above for AT s
are also defined for PrAT s.

At first sight, it would seem that the probabilistic strength
of an argument can, as in (Timmer et al. 2017), be defined
as the conditional probability of the argument’s conclusion
given its premises. However, this definition has some limita-
tions. First, it regards the uncertainty of the premises as irrel-
evant for the strength of an argument. Second, it ignores the
way in which the conclusion was derived from the premises.
Consider the following example:

Bart is Dutch, so Bart presumably likes cycling, so Bart
is presumably healthy
Bart is Dutch, so Bart presumably likes swimming, so
Bart is presumably healthy

formalised in ASPIC+ as

[Dutch ⇒ LikesCycling ]⇒ IsHealthy
[Dutch ⇒ Swimming ]⇒ IsHealthy

Since the rules applied in these arguments are defeasible,
they may well have different strengths, since the health
statistics may be different for swimmers than for runners.

Both limitations can be overcome by defining argument
strength as the probability of the conjunction of all premises
and conclusions of an argument. This is the definition that
will be investigated in this paper. According to probability
theory this notion of strength can be calculated with the gen-
eral version of the chain rule for probability distributions.
Consider any argument A with conclusions C1, . . . , Cn
(which include its premises) and consider any top-down
breadth-first order of the argument’s conclusions, starting
with its final conclusion Cn, when regarding an argument
as an acyclic directed graph with as nodes the premises and
conclusion of A and as links any application of an inference
rule in A. Then the general chain rule amounts to:

Pr(C1 ∧ . . . ∧ Cn) =

Pr(Cn|C1∧. . . Cn−1)×Pr(Cn−1|C1∧. . . Cn−2)×. . .×Pr(C1)

Interestingly, this definition is a direct generalisation of
(Hunter 2013)’s definition of the strength of classical-logic
arguments as the probability of the conjunction of all their
premises. In (Modgil and Prakken 2013)’s ASPIC+ recon-
struction of classical argumentation, classically valid argu-
ments only apply strict inference rules, which in the present
proposal have strength 1. So for the case of classical argu-
mentation the chain rule definition reduces to Hunter’s def-
inition. This holds even if, as in our approach, uncertain
premises are expressed as defeasible rules with empty an-
tecedents, since then the ASPIC+ reconstruction of classical
argumentation still succeeds.

However, we are not yet there, since a practical problem
with the chain rule definition of argument strength is that
in many cases the conditional probabilities needed for this
calculation will not be available. To see this, consider the
example argument I see smoke, my observations are usually
correct, therefore (presumably) there is smoke. Where there
is smoke, there usually is fire, therefore (presumably) there
is fire, abstracted to

[A⇒ B]⇒ C

The chain rule implies that Pr(C∧B∧A) equals Pr(C|A∧
B) × Pr(B|A) × Pr(A). However, the arguments were
constructed with the rules A ⇒ B and B ⇒ C, so the
only probabilities that are given are Pr(C|B) and Pr(B|A)
and Pr(A). This will arguably often be the case in prac-
tice, where people (or artificial agents) often specify a rule
X ⇒ Y with strength Pr(Y |X) without also specifying a
more specific rule X,Z ⇒ Y with strength Pr(Y |X ∧ Z).
So in practice the general chain rule will often not be appli-
cable since the required probabilities will not be available.

Fortunately, there is a way out. In many practical contexts,
agents will specify a rule X ⇒ Y since, as far as they know,
X is all that is needed to conclude Y . If they had thought
that Z is also needed to conclude Y , they would instead
have specified a rule X,Z ⇒ Y . More generally, it seems
reasonable to assume that default reasoning often operates
under the general assumption that the conclusion of an in-
ference step in an argument is, conditionally on its premises
(the antecedents of the applied rule), statistically indepen-
dent of anything else. In our abstract example, this assump-
tion amounts to saying that Pr(C|A∧B) equals Pr(C|B),
which allows us to apply the chain rule. Now according to
probability theory this assumption amounts to saying that
the general chain rule is equivalent to the following version
(where ant(Ci) denotes the set of antecedents of the top rule
of the subargument with conclusionCi, except that for every
ϕ ∈ K, Pr(ϕ|ant(ϕ)) = Pr(ϕ)):

Pr(C1 ∧ . . . ∧ Cn) =

n∏
i=1

Pr(Ci|ant(Ci))

And this means that the probabilistic strength of an argu-
ment can be calculated by simply multiplying all premise-
and rule strengths of any premise and rule in the argument.

Interestingly, the reduced version of the chain rule equals
the chain rule for Bayesian networks (Jensen and Nielsen
2007). This also means that to be probabilistically correct in
the present formal setting, we have to make counterparts of
the assumptions made for Bayesian networks (BN) that each
probabilistic variable occurs only once in the BN and that the
BN is acyclic. The corresponding assumptions in the present
setup are that no argument repeats a conclusion of one of its
proper subarguments, that the set of all conclusions of an
argument is assumed to be consistent, and that if two sub-
arguments of an argument have the same conclusion, these
arguments are the same. This justifies regarding arguments
in the present setup as partial Bayesian networks, that is, as
directed acyclic graphs with the nodes corresponding to the
argument’s conclusions (which includes its premises), with
the links corresponding to the applications of the inference
rules in the argument and with partially specified conditional
probability tables (only partially, since in general if, say, we
have a rule X ⇒ Y in Rd, the corresponding rule ¬X ⇒ Y
does not have to be in Rd, in which case the conditional
probability table for node Y cannot be fully specified).

This is not yet all there is to say, since the independence
assumption that justifies the use of the reduced chain rule
is clearly invalid in general. Consider the following exam-
ple. People who live in Denmark (D) usually speak Dan-
ish (S) but English-speaking university employees (E) who



live in Denmark usually do not speak Danish. The im-
plicit assumption of an argument using the first rule that
Pr(S|D) = Pr(S|D ∧ E) is contradicted by the second
rule strength, since all rules are assumed to have strength
greater than 0.5. Nevertheless, it seems reasonable to say
that the assumption holds in the absence of information to
the contrary. On this account, the independence assumption
is defeasible and its defeasibility is captured by the possibil-
ity of an attacking argument. In our example we have, for a
given English-speaking academic who lives in Denmark, the
following two arguments which rebut each other.

A1 = D ⇒ S
A2 = D,E ⇒ ¬S

A variant of this example is the following well-known ex-
ample: Adults are usually married but students are usually
adults and students are usually not married. For a given stu-
dent this yields the following arguments:

A1 = [Student ⇒ Adult ]⇒ Married
A2 = Student ⇒ ¬Married

Argument A1 assumes that

Pr(Married |Adult) =
Pr(Married |Adult ∧ Student)

while argument A2 assumes that

Pr(¬Married |Student) =
Pr(¬Married |Adult ∧ Student).

Since all rules are assumed to have strength greater than 0.5,
these two assumptions are jointly inconsistent.

There are several reasons to study the formal implications
of the independence assumption. First, without this assump-
tion, it seems hard to rationally justify the chaining of defea-
sible rules in arguments, as happens in our above examples
and as happens all the time in everyday default reasoning.
Furthermore, the assumption is the only way to utilise the
given rule strengths in calculating argument strength, and, as
argued above, these rule strengths are in many cases the only
available probabilities. For these reasons we believe that the
formal implications of the assumption are worth exploring,
even if it might not apply in all contexts.

In light of all this, the internal strength of an argument
(‘internal’ since it only depends on the argument itself) is
now defined as follows. (The definition deliberately over-
loads the symbol s.)

Definition 10 [Internal argument strength] For any
argument A on the basis of a PrAT its internal strength
s(A) is defined as follows:

1. If A ∈ K then s(A) = 1

2. If A = A1, . . . , An ⇒ ψ or A1, . . . An →, ψ then
s(A) = s(Toprule(A))× s(A1)× . . .× s(An)

We now formally relate this notion of argument strength,
which is defined over the set of arguments A of an argu-
mentation theory defined by an argumentation system AS,
to the notion of a probability distribution over models of the
propositional languageLpl composed from the propositional
atoms in the language L of AS. As noted by (Hunter 2013),

such a probability distribution over models of Lpl is equiv-
alent to a probability distribution over Lpl. Hence we will
from now on speak of a probability distribution over Lpl,
assuming that it is consistent in that it satisfies the axioms of
probability theory. We denote classical entailment over Lpl

with |=. Let furthermore Lpt stand for the set of all well-
formulas formulas in probability theory over Lpl. Then we
denote deductive consequence over Lpt according to proba-
bility theory with `. For any set of arguments S, we define
the set Π(S) of its probabilistic assumptions as follows:

For any set of arguments S the set Π(S) is defined as
{Pr(cons(r)|

∧
ant(r)) = x | r ∈ Rules(S) and

s(r) = x} ∪ {Pr(ϕ) = y | ϕ ∈ Prem(S) and s(ϕ) =
y} ∪ {C}, where C is the specific chain rule defined
over Conc(S).

The following proposition, which immediately follows from
Definition 10 and the definition of Π, means that the strength
definition for arguments is probabilistically well defined.

Proposition 11 For any argument A it holds that s(A) = x
iff Π({A}) ` Pr(

∧
Conc(Sub(A))) = x.

Corollary 12 For any argument A it holds that
Pr(Conc(A)) ≥ s(A).

Interestingly, if an argument has at most one defeasible
rule, then the definition of internal strength equates (Pollock
1995)’s weakest-link principle:

Proposition 13 If A contains at most one subargument B
with a defeasible top rule, then s(A) = s(B).

However, for arguments with more than one defeasible rule
this weakest-link principle does not satisfy Proposition 11.

Argument Strength and Conflict Resolution
We next study whether internal argument strength can be
used to resolve conflicts between arguments by defining
A � B iff s(A) ≤ s(B). At first sight, this would seem to
be a natural idea. After all, many approaches to preference-
based nonmonotonic logic and argumentation suggest that
probabilistic strength of rules or premises can be a source
of preferences. However, it turns out that using our notion
of internal argument strength for this purpose is problem-
atic. As illustrated in the previous section, internal argu-
ment strength has an important feature: different arguments
can make mutually inconsistent probabilistic assumptions.
For instance, in the speaking-Danish example the two argu-
ments make contradictory assumptions about the probabil-
ity of speaking Danish given that one is an English-speaking
academic living in Denmark, and in the student-adult ex-
ample the two arguments make contradictory assumptions
about the probability of being married given that one is an
adult who is a student. ArgumentA1 implicitly assumes that
Pr(E|A) = Pr(E|A ∧ S) while argument A2 implicitly
assumes that Pr(¬E|S) = Pr(¬E|E ∧ S). Given that rule
strengths exceed 0.5, these two assumptions are jointly in-
consistent. More generally the following can be shown:

Proposition 14 For any set S of arguments that is not
conflict-free, it holds that Π(E) ` ⊥.



Proof: Suppose A and B directly rebut each other and
consider their top rules S → ϕ and S′ → ¬ϕ. Then
Π(S) contains both Pr(ϕ|

∧
S) = Pr(ϕ|

∧
S ∪ S′) and

Pr(¬ϕ|
∧
S′) = Pr(¬ϕ|

∧
S ∪ S′). But this contradicts

that rule strengths exceed 0.5. 2

The converse does not hold. For a counterexample, consider
the following arguments:

A1: [p→ q]⇒ r
A2: p, [p→ q]⇒ r

Here A1 uses defeasible rule q ⇒ r while A2 uses defeasi-
ble rule p, q ⇒ r. If the two defeasible rules have different
strengths s1 and s2, then Π(A1) implies Pr(r|p ∧ q) = s1
while Π(A2) implies Pr(r|p ∧ q) = s2 6= s1. Yet the argu-
ments do not attack each other.

All this implies that resolving conflicts between defeasi-
ble arguments by just resorting to their internal argument
strengths is problematic, since the arguments assume differ-
ent and jointly inconsistent probability distributions. Con-
sider again the speaking-Danish example and assume that
s(D ⇒ S) > s(D,E ⇒ ¬S). For instance, 90% of the peo-
ple who live in Denmark speak Danish while only 75% of
the English-speaking academics who live in Denmark does
not speak Danish. Do we then want to accept argument A1

that our English-speaking academic who lives in Denmark
presumably speaks Danish? Of course not, since the second
statistic is about a more specific class than the first one, so
the generally accepted principle to adopt the statistic about
the more specific reference class requires that we instead
conclude that our person presumably does not speak Dan-
ish. For this reason, probability-based comparisons between
arguments should, either explicitly or implicitly, involve a
kind of specificity principle, which implies that conflicts be-
tween defeasible arguments cannot in general be resolved by
just resorting to their probabilistic argument strengths. For
example, (Pollock 1995)’s so-called subproperty defeater of
his statistical syllogism is such a specificity principle.

These observations can be extended to cases in which the
attacking arguments do not have a specificity relation. Con-
sider the following well-known example from nonmono-
tonic logic: Quakers are usually pacifists, Republicans are
usually not pacifists, Nixon was a quaker and a republican.
This yields the following rebutting arguments.

A1: Quaker ⇒ Pacifist
A2: Republican ⇒ ¬Pacifist

Here argument A1 implicitly assumes that
Pr(Pacifist |Quaker) =
Pr(Pacifist |Quaker ∧ Republican)

while argument A2 implicitly assumes that
Pr(¬Pacifist |Republican) =
Pr(¬Pacifist |Quaker ∧ Republican)

which is inconsistent given that rule strengths exceed
0.5. Suppose, furthermore, that Pr(Pacifist |Quaker) <
Pr(¬Pacifist |Republican). Are we then forced to ac-
cept argument A2? No, since what we want to know is
Pr(Pacifist |Quaker ∧ Republican) and this probability

may be assumed independent of the former probabilities. So
in the absence of information about Pr(Pacifist |Quaker ∧
Republican) it seems just as rational to regard both argu-
ments as defensible as preferring A2 over A1. For this rea-
son we will below explore an approach which allows this
example to have multiple extensions. This approach does
not preclude that argument strengths are used to derive ar-
gument preferences (this might still be a useful heuristic in
some practical cases) but it does not force this either.

Our analysis thus far suggests that conflict resolution in
the setting of probabilistic default reasoning may be seen as
the adjustment of probabilities to obtain a consistent proba-
bility distribution over Lpl that can be used to resolve con-
flicts between arguments. We will explore this approach in
the penultimate section. In the present section we study a dif-
ferent question, namely, whether any rational way to resolve
the conflict between arguments while leaving their internal
strengths as they are yields a consistent set of probabilis-
tic assumptions in that for any resulting extension the set of
rule and premise strengths of any argument in the extension
is probabilistically consistent. This does not hold in general,
as illustrated by the above counterexample to the converse
of Proposition 14. However, the consistency result can be
proven on the assumption thatR does not contain two differ-
ent rules with the same consequent, or formally: if r, r′ ∈ R
and cons(r) = cons(r′) then r = r′. This assumption will
below be called the accrual assumption.

We now consider any argumentation theory AT that de-
fines a structured argumentation framework SAF that sat-
isfies the rationality postulate of indirect consistency in that
for all complete extensions E of the AF corresponding to
SAF the set Conc(E) is indirectly consistent (which im-
plies that it is directly consistent). That is, we abstract from
the specific way the argument ordering is defined, as long as
it makes the SAF satisfy indirect consistency. The argument
ordering may in part be based on a notion of specificity, as
recommended above, but we also abstract from this. Then
for such SAF s the following can be proven.
Theorem 15 Let AT be any argumentation theory satisfy-
ing the accrual assumption and let SAF be a structured ar-
gumentation framework defined by AT satisfying indirect
consistency. For any complete extensionE = {A1, . . . , An}
of SAF it holds that Π(E) 6` ⊥.

Proof: Note first that any complete extensionE corresponds
to a partial Bayesian network (BN) in the manner explained
above, with as nodes all formulas occurring as antecedent or
consequent in Rules(E), the links corresponding to appli-
cations of any rule in Rules(E) and the conditional prob-
ability tables filled in as far as possible with the premise
strengths of nodes that are elements of K and the rule
strengths for nodes that are consequents of rules in R. That
the network is indeed a well-defined partial BN follows from
our assumptions about Definitions 1 and 3 that no element
of K occurs in the consequent of any rule in R, from the
assumptions in Definition 4 that arguments have indirectly
consistent conclusion sets and do not have different subar-
guments for the same conclusion and from the present as-
sumptions that AT satisfies the accrual assumption and that



E is indirectly consistent.
Then recall that the theory of Bayesian networks (Jensen

and Nielsen 2007) implies that the BN expresses a prob-
ability distribution over its set of variables (which equals
Conc(E)) and, moreover, that for any variable V with value
v in the BN the probability Pr(V = v) can be calculated
with the specific version of the chain rule, where for any
variable V the set ant(C) is the set of all parents of V . Since
Conc(E) is indirectly consistent and we only calculate for
expressions v = true (where V ∈ L), such expressions can
without danger of confusion be shortened to V .

We then prove with induction on the graph structure of the
BN that the probability for a given variable V computed by
the chain rule for Bayesian networks equals the strength of
the argument corresponding to the subgraph consisting of V
and all its ancestors in BN (henceforth denoted as arg(V )).
Then the result follows from the fact that each BN expresses
a probability distribution.

For the base case, note that for any node V in BN without
ancestors it holds that V ∈ Prem(E), so V ∈ K so s(V ) =
Pr(V ) as specified in the probability table for V in the BN.
Let anc(V ) for any BN node V be the set of all ancestors of
V in the BN.

The induction hypothesis is that for any given node V
of the BN and any parent V ′ of V in BN the probability
Pr(

∧
{V ′} ∪ anc(V ′)) equals s(arg(V ′)).

Then for the induction step consider any node V in the
BN. According to the chain rule Pr(

∧
{V } ∪ anc(V ))

equals the product of Pr(V |
∧
par(V )) as specified in

the conditional probability table for V and all probabilities
Pr(

∧
{V ′} ∪ anc(V ′)). But given the induction hypothesis

that the latter probabilities correspond to s(arg(V ′)) and the
fact that Pr(V |

∧
par(V )) = s(par(V ) ⇒ V ), it follows

that Pr(
∧
{V }∪anc(V )) equals s(arg(V ), from which the

result follows. 2

Internal Argument Strength and Hunter &
Thimm’s Rationality Conditions

We next investigate how internal argument strength fares
with (Hunter and Thimm 2017)’s rationality conditions for
epistemic abstract probabilistic frameworks. Given an ab-
stract argumentation framework 〈A, attack〉 where A is fi-
nite, they assume a probability distribution which to each
subset of A assigns a real number between 0 and 1. They
then define the probability of an argument A ∈ A as

Pr(A) =
∑

A∈S⊆A

Pr(S)

At first sight, this definition would seem to prevent instan-
tiation with the above-made proposal, since we do not de-
fine probabilities of sets of arguments. However, according
to Proposition 12 of (Hunter and Thimm 2017) any assign-
ment of numerical strengths between 0 and 1 to arguments
in a finite set S can be extended to a probability function on
the powerset of S. Moreover, Hunter & Thimm formulate all
their rationality conditions in terms of the probabilities of in-
dividual arguments. For these reasons (and since we assume

that R and K are finite) our above proposal is fully within
Hunter & Thimm’s formal framework.

(Hunter and Thimm 2017)’s rationality conditions are as
follows (below A− denotes the set of all attackers of A):

COH Pr is coherent if for every A,B ∈ A, if A attacks B then
Pr(A) ≤ 1− Pr(B).

RAT Pr is rational if for every A,B ∈ A, if A attacks B and
Pr(A) > 0.5, then Pr(B) ≤ 0.5.

INV Pr is involutary if for every A,B ∈ A, if A attacks B
then Pr(A) = 1− Pr(B).

SFOU Pr is semi-founded if Pr(A) ≥ 0.5 for every unattacked
A ∈ A.

FOU Pr is founded if Pr(A) = 1 for all unattacked A ∈ A.
SOPT Pr is semi-optimistic if Pr(A) ≥ 1 − ΣB∈A−Pr(B)

whenever A− 6= ∅.
OPT Pr is optimistic if Pr(A) ≥ 1−ΣB∈A−Pr(B) for every

A ∈ A.

As observed by (Prakken 2017), these conditions are, when
applied to ASPIC+ instantiations, ambiguous between AS-
PIC+’s notions of attack and defeat and also between direct
attack on an argument’s final conclusion and indirect attack
on a proper subargument. So for ASPIC+ these properties
must be independently verified for attack and defeat and for
both their direct and general versions.

It turns out that all properties fail in general for all cases.
A counterexample to COH and RAT is A: q ⇒ p and B:
r ⇒ ¬p (note that both top rules are assumed to have
strength > 0.5). A counterexample to INV, SOPT and OPT
is A: [e1 ⇒ p] ⇒ q and B: e2 ⇒ ¬p where all three rules
have strength 0.6. Finally, a counterexample to SFOU and
FOU is an unattacked argument chaining two rules that both
have strength 0.7. For some special cases positive results
hold. INV and FOU hold for strict arguments, since strict
arguments have no attackers. SFOU, SOFT and OPT hold if
both A and B apply at most one defeasible rule, since then
their strengths exceed 0.5. One reason for the failures is that
the strength function s is not based on a single probabil-
ity distribution on Lpl since different arguments may make
jointly inconsistent probabilistic assumptions. Another rea-
son is that several properties implicitly make assumptions
on the nature of arguments. For example, INV and FOU are
arguably meant for deductively valid arguments only.

The question arises whether the negative results indicate
weaknesses of the present approach or instead of (Hunter
and Thimm 2017)’s rationality conditions. An answer to this
question will be postponed to the concluding section, ex-
cept for the failure of SFOU, which might at first sight seem
counterintuitive. However, note that s(A) < 0.5 does not
imply that Pr(Conc(A)) < 0.5, since the probability of a
conjunct may exceed the probability of the conjunction in
which it appears. Moreover, in practical applications an ar-
gument can be very uncertain even if no attacker can be con-
structed, for instance, if it chains several defeasible rules. In
such cases the probabilistic strength of an argument gives
useful additional information to an argument evaluator. For
example, the evaluator might in the end decide to only accept
the arguments in extensions that have strength greater than



0.5. At the end of the next section we will further explore
this idea.

Dialectical Argument Strength based on a
Single Probability Distribution

In this section we study the case of a single consistent prob-
ability distribution Pr over Lpl, which can be used to re-
solve conflicts between arguments by defining A � B as
Pr(Conc(A)) ≤ Pr(Conc(B)). There are two reasons for
studying this case. First, it allows us to see more clearly
some of the assumptions underlying Hunter & Thimm’s ra-
tionality conditions. Second, there may be contexts in which
it is feasible to adjust the internal arguments strengths in a
way compliant with a single probability distribution overLpl

(although the feasibility of this is doubtful in general, since
as argued above, in many applications only the given rule
strengths will be available).

Before studying the idea of consistency adjustments, it
should be noted that this idea is not the same as (Hunter
and Thimm 2017)’s study of restoring consistency of what
they call ‘contradictory’ probability assessments, since they
define contradictory probability assessments as probability
functions on the powerset A2 of A in a PrAF that do not
satisfy a given subset of their rationality conditions. Here it
is also relevant that our notion of (in)consistent probability
functions is not at the level of A2 of a PrAF but at the
level of the propositional language Lpl generated by the lan-
guage L of an AT . A probability assessment at the latter
level may well be consistent (according to probability the-
ory) while the induced probability assessment at the former
level is inconsistent (in Hunter & Thimm’s sense) and vice
versa. Below we assume that the probability assessment at
the level of Lpl is consistent according to probability theory
and investigate the consequences at the level of A2.

The new notion of argument strength generated by a
single probability distribution over Lpl will henceforth be
called dialectical argument strength and will be denoted
with d. As with s(A) above we assume that d(A) equals
Pr(

∧
Conc(A)) but we initially abstract from specific ways

to define Pr: all we initially assume is that Pr is a probabil-
ity distribution over Lpl.
Proposition 16 For any PrAT = (AS,K, s) where AS =
(L,R), let Lpl be a propositional language defined from the
atoms in L and let Pr be a probability distribution over L.
Let d(A) for any A ∈ A be defined as Pr(

∧
Conc(A)).

Then:
1. If A rebuts B then d(A) ≤ 1− d(B).
2. If A ∈ Sub(B) then d(B) ≤ d(A).
3. d satisfies COH and RAT for direct and indirect attack and

defeat.

Proof: (1) follows since Conc(A)∪Conc(B) is proposition-
ally inconsistent by definition of rebutting attack. (2) follows
since if A ∈ Sub(B) then

∧
Conc(B) |=

∧
Conc(A). Fur-

thermore, (3) follows for direct attack and defeat by (1) and
then for indirect attack and defeat by (2). 2

We next consider probability distributions on Lpl that assign
probabilities in a way similar to in Definition 9.

Proposition 17 Let in addition to everything stated in
Proposition 16 Pr be such that Pr(ϕ) = 1 for all ϕ ∈ K,
that Pr(ϕ|

∧
S) = 1 whenever S → ϕ ∈ Rs and that

Pr(ϕ|
∧
S) < 1 whenever S → ϕ ∈ Rd. Then:

1. d(A) = 1 iff A is strict.
2. d satisfies SFOU, FOU, INV for strict arguments for di-

rect and indirect attack and defeat.

Proof: For the only-if part of (1), consider a strict rule
r = S → ϕ such that S ⊆ K. Since s(r) = 1 we
have by definition of conditional probabilities that Pr(

∧
S∧

ϕ)/Pr(
∧
S) = 1. Moreover, Pr(

∧
S) = 1, so Pr(

∧
S ∧

ϕ) = 1. Then the general result follows by induction on the
structure of a strict argument. The if-part of (1) follows since
if A is defeasible, it contains a defeasible rule r = S ⇒ ϕ
and since s(r) < 1 we have that Pr(

∧
S ∧ ϕ)/Pr(

∧
S) <

1, so Pr(
∧
S ∧ ϕ) < 1. Property (2) follows for SFOU

and FOU from property (1), for INV from property (1) and
the fact that strict arguments have no attackers and for OPT
since strict arguments have no attackers. 2

For all other rationality conditions the counterexamples
given in the previous section still hold.

Next we informally note two results given further assump-
tions. First, if every unattacked argument has the same di-
alectical as internal strength, then SFOU holds for argu-
ments with at most one defeasible rule, since the rule’s
strength exceeds 0.5. Second, if Pr satisfies the indepen-
dence assumption underlying internal strength, so that di-
alectical strength is computed as internal strength (although
defeasible rules can now have strength 0.5 or less), then the
weakest-link principle holds for the same special case as
for internal strength (see Proposition 13). Further properties
may be provable under further assumptions but we leave this
for future research.

We can conclude that whether Hunter & Thimm’s ratio-
nality conditions hold depends on various assumptions on
the underlying probability assignment to Lpl and the nature
of the arguments and attacks.

Finally, we come back to the suggestion at the end of
the previous section to only accept arguments in an exten-
sion with strength greater than 0.5. When argument strength
is based on a single probability distribution over Lpl, then
(Hunter 2013)’s notion of an epistemic extension of a prob-
abilistic abstract argumentation framework can be used,
which is defined as {A ∈ A|Pr(A) > 0.5}. The follow-
ing can be shown for dialectical strength:

Proposition 18 For any SAF = (A, C,�) with A � B iff
d(A) ≤ d(B), any A ∈ A such that d(A) > 0.5 is in E.

Proof: Consider any A such that d(A) > 0.5 and consider
any rebuttal B of A on its subargument A′. Then d(A′) ≥
d(A) so by satisfaction of COH it holds that d(B) < d(A),
so B does not defeat A′. But then B does not defeat A. So
A is admissible with respect to E, so A ∈ E. 2

So the policy to accept only those arguments that have di-
alectical strength > 0.5 only accepts arguments that are in



all extensions. Note that the same result does not hold for in-
ternal strength, since then arguments with internal strength
> 0.5 might not be in some or all extensions.

Conclusion and Related Work
This paper aimed to clarify the epistemic approach to proba-
bilistic abstract argumentation by relating it to an account of
probabilistic structured argumentation. In addressing these
aims, we have established relations between probabilistic ar-
gumentation and probability theory, including the theory of
Bayesian networks. Our account is based on the ideas that
the probability of an argument is the probability of the con-
junction of all its premises and conclusions and that argu-
ments implicitly make probabilistic independence assump-
tions. Together these ideas imply that the probabilistic as-
sumptions of conflicting arguments are jointly inconsistent.
This in turn implies that resolving conflicts between argu-
ments in terms of their internal strengths is problematic.

The latter observation gives one reason why internal argu-
ment strength fails to satisfy several of (Hunter and Thimm
2017)’s rationality conditions for epistemic probabilistic ar-
gumentation, since these conditions arguably assume a sin-
gle probability distribution over the language over which ar-
guments are constructed. To also capture this assumption we
distinguished between an argument’s internal and dialecti-
cal strength and we showed that dialectical strength better
respects Hunter & Thimm’s rationality conditions than in-
ternal strength (though not fully). However, it is arguably
harder to apply in practice, since it cannot utilise the given
rule strengths in the way internal argument strength does.

Our approach is ‘bottom up’ in that the formalism is based
on an arguably sensible account of probabilistic structured
argumentation, which satisfies properties that arguably in-
dicate that the formalism is well-behaved. If these claims
about sensibility and well-behavedness are justified, then
the partly negative results on the satisfaction of Hunter &
Thimm rationality conditions indicate that these conditions
cannot all be regarded as minimum rationality conditions for
epistemic probabilistic argumentation. More generally, we
have shown that modelling probabilistic argumentation at
the level of structured argumentation can yield insights that
may not be obtained when remaining at the abstract level.

Two topics for future research are generalising our ap-
proach to the case where the strict rules encode classical
logic, and including undermining and undercutting attacks.
Note that with undercutters several results proven above
(e.g. on satisfaction of RAT and COH by d) cease to hold,
since the conclusion sets of an undercutter and its target
may be jointly consistent. This illustrates another reason for
the partly negative results on Hunter & Thimm’s rational-
ity conditions, namely, that these conditions implicitly make
assumptions on the nature of the arguments and attacks.

Some related work was discussed throughout this paper.
As noted above, our idea to equate argument strength with
the probability of the conjunctions of all premises and con-
clusions of an argument generalises (Hunter 2013)’s idea
to define argument strength for classical-logic argumenta-
tion as the probability of the conjunction of the premises
of an argument. Apart from Hunter’s work and (Prakken

2017), we do not know of any other (epistemic) approach
that relates structured to abstract probabilistic argumenta-
tion. (Dung and Thang 2010) propose an extension of (Dung
1995)’s abstract frameworks with probability and then in-
stantiate it with assumption-based argumentation. They add
to AFs a set W of worlds, where each world is a set of
arguments. In each world an argument A has a probabil-
ity that it is accepted (according to a given semantics). The
overall probability that A is accepted is then the sum of the
probabilities in each world that A is accepted. In the struc-
tured part, each world is a set of assumptions, determining
which assumption-based arguments can be constructed in
that world. The probabilities are then defined on the assump-
tions. Interesting as this work is, it concerns the constellation
approach, since worlds may contain different AFs. So this
work is irrelevant for the present paper.

There is also related work in structured argumentation
using alternatives to standard probability theory. (Pollock
1995) uses his ‘nomic’ theory of probability to assign
strengths to inference rules and he defines the strength of
arguments with a weakest-link principle. He then uses argu-
ment strength to resolve attacks into defeats in a way com-
pliant with Dung’s theory of abstract argumentation frame-
works. (Verheij 2014) revisits this approach in the light of
probability theory and classical logic. (Pollock 2002) devi-
ates from Dung’s theory by using the rule strengths for defin-
ing a gradual notion of argument justification. (Chesñevar et
al. 2004) use possibilistic logic in the context of defeasible
logic programming (Garcia and Simari 2004). Possibilistic
strengths are added to rules, which are propagated through
arguments according to possibilistic logic. Then the propa-
gated strengths are used to resolve attacks into defeats. This
idea is not related to standard or probabilistic abstract ar-
gumentation. Neither (Pollock 1995) nor (Chesñevar et al.
2004) address the possibility of mutually inconsistent prob-
ability assumptions of conflicting arguments.

Recent work on gradual argumentation semantics (re-
viewed by (Baroni, Rago, and Toni 2018)) may also be rel-
evant to our approach. Some of this work distinguishes be-
tween notions of ‘base’ and ‘dialectical’ strength of argu-
ments, where only the latter depends on an argument’s (sup-
port or attack) relations with other arguments. It would, for
instance, be interesting to study the extent to which the “ba-
sic ideas” discussed by (Baroni, Rago, and Toni 2018) (e.g.
that basic strength equates dialectical strength just in case an
argument is not attacked) are satisfied by particular ways to
adjust internal to dialectical probabilistic argument strength.

Relevant work outside argumentation is the body of work
on nonmonotonic probabilistic semantics for defeasible con-
ditionals (reviewed in (Beierle 2016)). This work yields
many interesting insights but, unlike argumentation ap-
proaches, conceals the interaction between reasons for and
against a conclusion in the semantics. As noted earlier by
(Caminada 2004, p. 96), this makes conclusions sometimes
hard to explain. Moreover, to the best of our knowledge,
none of this work deals with inconsistent underlying prob-
ability assessments, as in our notion of internal argument
strength. In future research it would be interesting to inves-
tigate how both approaches can contribute to each other.
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Chesñevar, C.; Simari, G.; Alsinet, T.; and Godo, L. 2004.
A logic programming framework for possibilistic argumen-
tation with vague knowledge. In Proceedings of the 18th
Conference on Uncertainty in Artificial Intelligence, 76–84.
Dung, P., and Thang, P. 2010. Towards (probabilistic) argu-
mentation for jury-based dispute resolution. In Baroni, P.;
Cerutti, F.; Giacomin, M.; and Simari, G., eds., Computa-
tional Models of Argument. Proceedings of COMMA 2010.
Amsterdam etc: IOS Press. 171–182.
Dung, P. 1995. On the acceptability of arguments and
its fundamental role in nonmonotonic reasoning, logic pro-
gramming, and n–person games. Artificial Intelligence
77:321–357.
Garcia, A., and Simari, G. 2004. Defeasible logic program-
ming: An argumentative approach. Theory and Practice of
Logic Programming 4:95–138.
Grooters, D., and Prakken, H. 2016. Two aspects of rele-
vance in structured argumentation: minimality and paracon-
sistency. Journal of Artificial Intelligence Research 56:197–
245.
Hunter, A., and Thimm, M. 2016. On partial information
and contradictions in probabilistic abstract argumentation.
In Principles of Knowledge Representation and Reasoning:
Proceedings of the Fifteenth International Conference, 53–
62. AAAI Press.
Hunter, A., and Thimm, M. 2017. Probabilistic reasoning
with abstract argumentation frameworks. Journal of Artifi-
cial Intelligence Research 59:565–611.
Hunter, A. 2013. A probabilistic approach to modelling
uncertain logical arguments. International Journal of Ap-
proximate Reasoning 54:47–81.
Hunter, A. 2014. Probabilistic qualification of attack in ab-
stract argumentation. International Journal of Approximate
Reasoning 55:607–638.
Jensen, F., and Nielsen, P. 2007. Bayesian Networks and
Decision Graphs. New York: Springer Verlag, second edi-
tion.

Lewis, D. 1976. Probabilities of conditionals and condi-
tional probabilities. Philosophical Review 85:297–315.
Li, H.; Oren, N.; and Norman, T. 2012. Probabilistic argu-
mentation frameworks. In Modgil, S.; Oren, N.; and Toni,
F., eds., Theory and Applications of Formal Argumentation.
First International Workshop, TAFA 2011. Barcelona, Spain,
July 16-17, 2011, Revised Selected Papers, number 7132 in
Springer Lecture Notes in AI, 1–16. Berlin: Springer Verlag.
Modgil, S., and Prakken, H. 2013. A general account
of argumentation with preferences. Artificial Intelligence
195:361–397.
Modgil, S., and Prakken, H. 2018. Abstract rule-based ar-
gumentation. In Baroni, P.; Gabbay, D.; Giacomin, M.; and
van der Torre, L., eds., Handbook of Formal Argumentation,
volume 1. London: College Publications. 73–141.
Pollock, J. 1995. Cognitive Carpentry. A Blueprint for How
to Build a Person. Cambridge, MA: MIT Press.
Pollock, J. 2002. Defeasible reasoning with variable degrees
of justification. Artificial Intelligence 133:233–282.
Prakken, H. 2010. An abstract framework for argumenta-
tion with structured arguments. Argument and Computation
1:93–124.
Prakken, H. 2017. On relating abstract and structured prob-
abilistic argumentation: a case study. In Proceedings of
the 14th European Conference on Symbolic and Quantita-
tive Approaches to Reasoning with Uncertainty (ECSQARU
17), number 10369 in Springer Lecture Notes in AI, 69–79.
Berlin: Springer Verlag.
Rienstra, T. 2012. Towards a probabilistic Dung-style argu-
mentation system. In Proceedings of the First International
Conference on Agreement Technologies, 138–152.
Timmer, S.; Meyer, J.-J.; Prakken, H.; Renooij, S.; and Ver-
heij, B. 2017. A two-phase method for extracting explana-
tory arguments from Bayesian networks. International Jour-
nal of Approximate Reasoning 80:475–494.
Verheij, B. 2014. Arguments and their strength: Revisit-
ing Pollock’s anti-probabilistic starting points. In Parsons,
S.; Oren, N.; Reed, C.; and Cerutti, F., eds., Computational
Models of Argument. Proceedings of COMMA 2014. Ams-
terdam etc: IOS Press. 433–444.
Vreeswijk, G. 1997. Abstract argumentation systems. Arti-
ficial Intelligence 90:225–279.
Wu, Y., and Podlaszewski, M. 2015. Implementing crash-
resistence and non-interference in logic-based argumenta-
tion. Journal of Logic and Computation 25:303–333.


