Learning policy constraints through dialogue

Chukwuemeka David Emele,
Timothy J. Norman, Frank Guerin
Department of Computing Science,

Simon Parsons
Dept. of Computer & Information Science,
Brooklyn College, City University of New York,

University of Aberdeen, Aberdeen. AB24 3UE. UK 2900 Bedford Avenue, Brooklyn,11210 NY, USA.

{c.emele, t.j.norman, f.guerin}@abdn.ac.uk

Abstract

An understanding of the policy and resource availability con-
straints under which others operate is important for effec-
tively developing and resourcing plans in a multi-agent con-
text. Such constraints (or norms) are not necessarily public
knowledge, even within a team of collaborating agents. What
is required are mechanisms to enable agents to keep track of
who might have and be willing to provide the resources re-
quired for enacting a plan by modeling the policies of others
regarding resource use, information provision, etc. We pro-
pose a technique that combines machine learning and argu-
mentation for identifying and modeling the policies of others.
Furthermore, we demonstrate the utility of this novel combi-
nation of techniques through empirical evaluation.

1. Introduction

Many problem solving scenarios usually require the forma-
tion of a team of collaborating agents. Members of the
team agree to collaborate and perform joint activities in
a mutually acceptable fashion. Often, agents in the team
represent different organisations, and so there are different
organisational constraints imposed on them. Even within
a single organisation, team members often represent sub-
organisations with different procedures and constraints. Ex-
amples of such constraints are constraints due to policies
that guide the behaviour of representatives of organisations
(or sub-organisations). Furthermore, team members may
possess individual interests and goals that they seek to sat-
isfy, which are not necessarily shared with other members
of the team. These individual motivations largely determine
the way in which members carry-out tasks assigned to them
while engaging in joint activities.

In this paper, we focus on policy and resource availabil-
ity constraints of coalition members, and define policy con-
straints as explicit permissions and prohibitions that mem-
bers of the coalition are required to adhere to (often re-
ferred to as norms (Vasconcelos, Kollingbaum, and Norman
2007)). These policy constraints may be coalition-wide or
individual. Coalition-wide policies are norms guiding the
operations of the team as a whole and are expected to be
public knowledge within the team. On the other hand, indi-
vidual policies are often private to that individual member or

Copyright (© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

parsons@sci.brooklyn.cuny.edu

subset of the coalition. In order to develop effective plans,
an understanding of the policy and resource availability con-
straints of other members in the coalition is beneficial. How-
ever, tracking and reasoning about such information is non-
trivial.

We envisage a system of agent support for human teams
in which software agents aid the decision making of team
members during collaborative planning (Sycara et al. 2009).
One area of support that has been identified as important in
this context is guidance in making policy-compliant deci-
sions. This prior research focuses on giving guidance to hu-
mans regarding their own policies. An important and open
question, however, is how can agents support human deci-
sion makers in developing models of others’ policies and
using these in guiding the decision maker?

We advocate a system where agents learn from practi-
cal dialogue by automatically extracting useful information
from the dialogue and using these to model the policies,
preferences and priorities of others in order to adapt their
behaviour in the future. We, therefore, propose a technique
that combines machine learning and argumentation for iden-
tifying and modeling the policies of others. We describe
an experimental framework and present initial results of our
evaluation which shows that an argumentation-based mech-
anism combined with a standard machine learning technique
out-performs the machine learning technique on its own.

The remainder of this paper is organised as follows: In
section 2 we introduce the problem domain. Learning with
argumentation is discussed in section 3 and section 4 briefly
describes our simulation environment. Experimental results
are reported in section 5 and section 6 discusses related work
and future direction. The paper is concluded in section 7.

2. Problem Domain

Planning for joint action in team problem solving activities
is a complex problem on its own, and is further compli-
cated by the various constraints that members of the team
may have. Our conjecture is that machine learning tech-
niques may be employed to aid decision making in this re-
gard. Although this is not a new claim (Kelemen, Liang, and
Franklin 2002), it is novel to combine it with argumentation
analysis. Employing machine learning alone would enable
the development of a model of the other agent but in a do-
main where there are underlying constraints that could yield

similar results, standard machine learning techniques will
have limited efficacy (See Examples 2 and 3). We present
a technique for obtaining additional evidence (through dia-
logue) to indicate what constraints others may be operating
with. This additional evidence serves to improve the quality
of the models of the other agents that can be inferred from
their observable actions. It is worth noting that we do not
attempt to discuss planning but assume that the plans have
been generated and need to be resourced.

For the sake of this paper, we define argumentation as the
process whereby arguments are exchanged and evaluated in
the light of their interactions with other arguments. By argu-
ments, we refer to explanations/justifications offered in sup-
port of an action. Consider the following snippet of dialogue
that may occur between two agents ¢ and j:

Example 1:
1: Can I have R1?
7: No.

What can be inferred from the interaction? Why did agent
7 say no to agent 7’s request?

1. Could it be that there exists some policy X that forbids
agent j from providing R1 to agent ¢?

2. Could it be that R1 is not available at the moment?

There is very little that we can learn from the dialogue. On
the other hand, suppose we have an argumentation frame-
work that allows agents to ask for and receive explanations
as in examples 2 and 3 below then agent 7 can gather more
evidence regarding why agent j did not provide R1.

Example 2: Example 3:

1: Can I have R1? 1: Can I have R1?

7: No. 7: No.

1: Why? 1: Why?

7: I’'m not permitted to release R1. | j: R1 is not available.

From the above snippets, we see that example 1 is not very
helpful in terms of learning the underlying constraints of
agent j. However, employing argumentation, agent ¢ could
disambiguate the reason for the refusal, that is, whether it is
due to policy constraints or the resource is not available.

Integrating learning techniques into the agent support
framework will provide a level of support to human decision
makers. However, can the use of argumentation improve the
effectiveness and accuracy of the information learned about
the policy constraints of others? We claim that significant
improvements can be achieved because argumentation can
help clarify reasons behind decisions made by the provider.

Hypothesis Allowing agents to exchange arguments dur-
ing practical dialogue will mean that the proportion of cor-
rect policies learned during interaction will increase faster
than when there is no exchange of arguments.

3. Learning with Argumentation

Our multi-agent learning framework is based on the deci-
sion tree learner, which applies the C4.5 algorithm (Quinlan

1993) on a given set of examples and generates a decision
tree model. C4.5 builds decision trees from a set of train-
ing data, using the concept of information entropy (Mitchell
1997) (beyond the scope of this paper). The training data is
aset S = sq,89,..., 5, of already classified samples. Each
sample s; = 1,9, ..., Ty, 1S a vector where x1, 2, ..., Tpy,
represent attributes of the sample. The training data is aug-
mented with a vector C' = ¢y, ¢o, ..., ¢, Where c¢1, co, ..., Cp
represent the class to which each sample belongs. Agent
policies are represented as a vector of attributes (e.g. re-
source, purpose, location, etc.) and the C4.5 algorithm is
used to classify each policy instance into a class.
The C4.5 algorithm has three base cases.

o All the samples in the list belong to the same class. When
this happens, it simply creates a leaf node for the decision
tree saying to choose that class.

e None of the features provide any information gain. In this
case, C4.5 creates a decision node higher up the tree using
the expected value of the class.

e Instance of previously-unseen class encountered. Again,
C4.5 creates a decision node higher up the tree using the
expected value.

In pseudocode the C4.5 algorithm is outlined in Figure 1.

Step 1. Check for base cases
Step 2. For each attribute D,
Find the normalized information gain from
splitting on D
Step 3. Let D_best be the attribute with the highest
normalized information gain
Step 4. Create a decision node that splits on D_best
Step 5. Recurse on the sublists obtained by splitting on
D_best , and add those nodes as children of node

Figure 1: The C4.5 algorithm (Kotsiantis 2007).

Once a model is built, an agent attempts to predict the
policies of the other agent from the observed actions of that
agent (assuming it abides by its policies). Over a number of
encounters if there is significant variance between the pre-
dicted and the observed actions then the agent seeks addi-
tional evidence (through dialogue) to disambiguate whether
the deviation was as a result of policy or resource availability
constraints. This additional evidence serves to improve the
quality of the models of the other agents that can be inferred
from their observable actions.

To achieve this, we have developed a simple dialogue
game' involving two players. The players take turns (Levin
and Moore 1980; Walton and Krabbe 1995) and a move in
the game involves issuing an utterance and may refer to a
commitment to perform an action. The game starts with an
agent, ¢, sending a request to another agent, j, for the use
of some resources needed to fulfill a plan. The other agent

'Dialogue games have proven extremely useful for model-
ing various forms of reasoning in many domains, including law
(Bench-Capon et al. 2003), and medicine (Perrussel et al. 2007).

Let A be the set of agents in the domain such that i, j € A. : Exaltnple 1}
A resource allocation , denoted as A! is a collection of ; igg:ls%s(](Z’Zj jegg))
resources that an agent, 4 has at its disposal at time ¢, i: why(s, j, refuse (Jeep)) .
where ¢ denotes the time step in the dialogue. J: inform(j, 4, Jeep, reason(resource-unavailable))
1. close-dialogue(z, j)
Assume agent ¢ has a plan (a subset of the joint plan) that i Example B
ires th £ 4 set of R to achi 1G 1. request(z, j, Helicopter)
requires the use of a set of resources R to achieve a goal G. j: refuse(j, i. Helicopter)
i: yvhy(i, Js rgfuse (Helicopter))
1. Attime ¢ = 0, agent 5 starts with initial allocation AY, J: inform(;, i, Helicopter, wont-tell)
o ;] . v i: request(z, 5, Van)
request(, j, r): agent ¢ requests j to provide resource r, J: agree(j, i, Van)
where € R and has not been requested of j before. it close-dialogue(i, j)

2. At the next time step, agent j either:
(a). agree(7, 1, r): agrees, and resource r is allocated to .
(b). refuse(y, i, r): refuses, and r is not allocated to <.
3. At the next time step,
if last received locution was agree(J, ¢,) then agent 7
records the evidence and moves to step 6.
otherwise (switches to argumentation-based dialogue.)
why(¢, 7, refuse(r)): ¢ asks j for underlying interests
or reasons why it has refused to provide resource 7.
4. At the next time step,
if last received locution was why(s, j,) then j either:
(a). inform(y, ¢, r, reason(x)): gives the reason for
refusing to provide r to i; or
(b). inform(y, ¢, r, wont-tell): gives no reason for
refusing to provide r to q.
otherwise inform(j, ¢, r, invalid-message): informs ¢
that the message is invalid in this context.
5. At the next time step,
if last received locution was inform(y, 7, r, reason(x))
then ¢ records the evidence and moves to step 6.
otherwise move to step 6.
6. At the next time step,
if there are resources in R that are yet to be requested
then move to step 1 with the current allocation.
otherwise
close-dialogue(s, 7): terminate the dialogue.

Figure 2: Dialogue Game Protocol

(y) responds with an agree or refuse based on the prevailing
context, e.g. policy constraints. The requesting agent could
ask for explanations and reasons for an action, and so on
until the game ends.

Figure 2 outlines the protocol for the dialogue game de-
veloped in this work and Figure 3 shows two examples of the
kind of dialogue that may occur between two agents, ¢ and
7 using the protocol. Note that although this is presented as
a dialogue between two agents, in reality the initiator (agent
1, the agent that wishes to resource its plan) may engage in
multiple instances of this dialogue with other agents.

Figure 3: Two simple dialogues between agents 7 and j

4. Simulation Environment

Each agent has two main layers, the communication layer
and the planning and reasoning layer (See Figure 4).
The communication layer embodies the dialogue controller,
which handles the communication with other agents in the
domain. The planning and reasoning layer consists of three
modules: the planner, the policy modeler, and the learner.
The planning module of the agent uses some heuristics (be-
yond the scope of this paper) to generate a plan that is con-
sistent with the individual policies of the agent. For the sake
of brevity, the term plan will be used to mean a complete
plan, partial plan, and/or a plan step. Once a plan of action
is constructed, the agent is ready to communicate with other
agents in the domain to identify and gain commitments for
the resources required to execute the plan. The dialogue con-
troller module sends (and receives) messages to (and from)
other agents and reasons over the dialogue. The policy mod-
eller looks up policy constraints from the knowledge-base
and generates the appropriate utterance (or action) for the
agent. Policy constraints are stored in the policy constraint
knowledge-base while other (non-policy) constraints (e.g.
resource constraints) are captured in the “other constraints”
knowledge-base. The learner uses decision trees to learn
policies based on the perceived actions of other agents.

! Planning & | Communication
] layer

: Reasoning layer \

Knowledge Store

Dialogue
Controller

Planner

L

Policy
Modeller
FCEE Y

S==— ‘s i

Learner

messages

4 send & receive
messages /-

send & receive

Communication,
Coordination &

Collaboration
Mechanisms

Figure 4: Architecture of the framework for learning policy
constraints in team-based activities using dialogue.

Implementation

To test our hypothesis, we have developed a simulation en-
vironment for agent support in coalition missions and inte-
grated our learning and argumentation mechanisms into the
framework. The policies are captured as rules and imple-
mented in a post production engine (Friedman-Hill 2003).
The application programming interface in Weka (Witten and
Frank 2005) was used to integrate a machine learning algo-
rithm into the framework. We note that, although decision
trees were used, the framework is configured such that other
machine learning algorithms can be plugged in.

Agents in this domain play the role of a seeker, provider,
or both in different interactions. For simplicity, we consider
a setup with one seeker and one provider. The seeker sim-
ulates an agent that has a plan (the planning mechanism of
the agent is beyond the scope of this paper) and needs to
resource this plan. The plan is resourced by convincing a
provider to commit resources from its resource pool. The
seeker identifies the resources required for a task and sends
a request message to the provider. The provider evaluates
the request and responds accordingly. If the resources are
available for use and releasing them to the seeker does not
conflict with the policies of the provider then the provider
agrees, otherwise it refuses. By availability we mean the re-
source is not committed to another task (or agent) at the time
requested and the resource is in a usable state.

Suppose a seeker A sends a request for resource R to
provider P then we can represent the decision function of
the provider generally as follows:

IF (is_available(R) A NOT (forbidden(release(R, A)))
THEN agree(release(R, A))
ELSE refuse(release(R, A))

Figure 5: A simple decision function

Policies

The providers operate under a set of policies which govern
how resources are deployed to others. In other words, the
provider can make resources available to other agents if the
resources are available and there is no policy forbidding that
course of action. The policies in this framework are based
on the following factors:

e Organisation - refers to the organisation of the request-
ing agent. An agent represents an organisation, therefore,
the policies associated with that organisation are enacted
whenever that agent makes a request for resources.

e Resources - generally denote physical equipment, capa-
bilities or information that are required to carry out a task.

e Purpose - indicates the purpose for which the resource
is being requested. For example, the provider may be
obliged to release any resource to a member of the coali-
tion if the resource is required for reconnaissance.

e Location - denotes the particular location or zone where
the resource is to be deployed.

e Day - refers to the day the resource is to be deployed.

You are permitted to release resource R to team member X
if his affiliation is O and the resource is to be deployed
at location L for purpose P on day D.

Figure 6: An example of a policy

S. Experiments and Results

A variety of experiments were conducted to test the perfor-
mance and behavior of our framework. In this section, we
describe our experimental scenario and present the results.

Experimental scenario

We present an illustrative scenario that will serve as a ve-
hicle for testing our hypothesis. The scenario involves two
software agents collaborating to complete a joint activity in
a region over a period of three days. The region is divided
into five zones/locations. There are five resource types and
five purposes that a resource could be used to fulfill. A task
involves the seeker identifying resource needs for a plan and
collaborating with the provider to see how that plan can be
resourced.

For the purpose of the experiment, the seeker simulates
an agent that has a plan and needs to collaborate with the
provider to resource it. The seeker predicts (based on the
model of the provider) whether the provider has a policy that
forbids/permits the provision of such resource in that con-
text. The seeker requests for the resource from the provider
and the provider uses a simple decision function (described
earlier) to decide whether to grant or deny the request. The
dialogue follows the protocol specified in Figure 2 and at the
end of the interaction the outcome is learned by the seeker
and the model of the provider is updated accordingly.

Three agent support configurations were investigated and
the performance of the seeker was evaluated. The configu-
rations include:

i. Random Selection (RS): Here, the seeker does not
employ any machine learning nor argumentation tech-
nique, rather it randomizes its choice of attributing the
refusal to policy or resource availability constraints.

ii. Learning without Argumentation (LOA): In this setup,
the seeker applies the C4.5 decision tree learner to learn
the provider’s policy. This setup does not use argumen-
tation in any way.

iii. Learning with Argumentation (LWA): Here, argumen-
tation is employed as a mechanism to augment the C4.5
learner in learning the policy of the provider. In other
words, dialogue is used to gather additional evidence
that serves to improve the quality of the models learned
by disambiguating between underlying constraints that
may have similar observable actions.

Results

This section presents the results of the experiments carried
out to evaluate this work. Table 1 shows the average per-
centage of policies classified correctly and the standard de-
viations at the end of 6000 tasks.

Table 1: Average percentage of policies classified correctly

at the end of 6000 tasks

Tasks RS LOA LWA
1000 | 50.0+18 | 57.3+11.7 | 573 £ 11.7
2000 | 500+14 | 680+£94 | 70.5+10.3
3000 | 4994+0.8 | 73.7+4.8 77.4 £ 6.1
4000 | 50.1 1.7 | 745+49 80.6 = 5.0
5000 | 500£1.6 | 73.9+7.0 843 +£3.5
6000 | 499+2.0 | 67.9+5.0 84.3 £ 4.7
85 T T T R e |
80 -

- nr ,////,x ————— ememmmnn Rommme =X

: v -
451 000 20‘00 30‘00 4(;00 50‘00 6000

No. of Tasks

Figure 7: Graph showing the effectiveness of learning poli-
cies using the three configurations (RS, LOA & LWA).

12
]
1 Y
e b Y
o 10T . N Line of fit for LWA -
s N Line of fit for LOA ---O---
T 9t ALY Standard Deviation of LWA ~ H
5 ©. Standard Deviation of LOA @
o N
> 8
3 =R
s S
5 7 o]
s e
s O
§ 6 . >
g -)
& O
5 2 [
n -
. K
4l K
.
3r %
2
0 1000 2000 3000 4000 5000 6000

No. of Tasks

Figure 8: Graph showing the convergence of the policy pre-
dictions using LOA & LWA respectively.

Figure 7 illustrates the effectiveness of learning policies
in the three configurations. These include: (1) random se-
lection (RS), (2) standard machine learning approach only
(LOA) and (3) combining machine learning with argumen-
tation (LWA). It shows the percentage of the policies that the
seeker predicted correctly in each configuration. The graph
also shows that the argumentation-based approach enabled
the agent to learn and build a more accurate model of the

other agent’s policies and thereby increased the accuracy of
predictions. It is easy to see that the argumentation-based
approach constantly out-performed the standard learning ap-
proach.

The standard deviations of the results were plotted and the
trend line (using linear regression) shows that as the num-
ber of tasks increases, the argumentation-based approach
(y = 12.5333 — 0.0016x) consistently converges at 95%
confidence interval, with a F' value of 18.9133 and signif-
icance p = 0.0122. (See Figure 8). On the other hand,
with a significance p = 0.0808, there is no statistical signifi-
cance as to whether the standard machine learning approach
(y = 11.1933 — 0.0012x) converges or not.

6. Discussion and Related Work

To the best of our knowledge no other work has attempted
to combine machine learning and argumentation in the way
described in this paper. We have demonstrated the effective-
ness of using argumentation enriched approaches to learn
underlying social characteristics (e.g. policies) without as-
suming that those underlying features are public knowledge.
Having said that, there are several related works that inspired
this work. We discuss some of them in this section.
Rahwan et al. (2007) present a formal framework for
analysing the outcomes of interest-based negotiation (IBN)
dialogues and established that providing further information
(especially about underlying interests) improves the likeli-
hood and quality of an outcome. Policy constraints can
be captured as underlying goals that agents are hoping to
achieve (by adhering to them) and so argumentation can be
used to tease out information regarding those constraints.
In circumstances where knowledge is incomplete or imper-
fect, argumentation has proven to be effective in reaching
some goals that would have otherwise been unreachable. It
is worth noting that our work differs from Rahwan et al.
(2007) in that while the authors are interested in gathering
meta-information and using it to support interest-based ne-
gotiation, we are interested in learning the policies that other
agents are operating with and using this knowledge to guide
how a plan is resourced. Our framework neatly combines
machine learning and argumentation in predicting what the
other’s policies are. Furthermore, our work is aimed at sup-
porting human decision making in team-based activities.
MozZina et al. (2007) combined machine learning with
concepts of argumentation to produce a new machine learn-
ing technique called Argumentation-Based Machine Learn-
ing (ABML). With this framework, an expert can provide
arguments for some learning examples and thereby en-
hance the predicting power of the learner. The work imple-
mented an argument-based extension of CN2 rule learning
(ABCN?2) and was able to show that ABCN2 out-performed
CN2 in most tasks. However, the framework is another kind
of learning algorithm and will struggle to disambiguate be-
tween constraints that may produce similar outcome/effect
and that is the main issue we are addressing in our work.
Atkinson and Bench-Capon (2007) treated reasoning
about what action an agent should select as presumptive ar-
gumentation. The framework captured situations where the
effect of an action is partially dependent upon the choices

of another agent. In other words, an agent chooses a move,
proposes presumptive reasons for the action and subjects it
to critiquing in order to establish suitability or otherwise.
This kind of framework is useful in our work as we argue
that policy constraints impact on the behaviour (or action)
of an agent and that, in turn, could be learned and used to
infer what the policies of that agent are.

In our future work, we plan to develop strategies for ad-
vising human decision makers on how a plan may be re-
sourced and who to talk to on the basis of policy and re-
source availability constraints learned (Oren, Norman, and
Preece 2006). Parsons et al. (2003) investigated the prop-
erties of argumentation-based dialogues and examined how
different classes of protocols can have different outcomes.
We plan to explore ideas from this work to see which class
of protocol will yield the “best” result in this kind of task.
We are hoping that some of these ideas will drive the work
on developing strategies for choosing who to talk to (and
also which class of protocol to present first, and so on). Fur-
thermore, we plan to incorporate the ability to suggest alter-
native resources based on the preferences of team members
and to see what effect this will have on the learning of poli-
cies.

7. Conclusions

In this paper, we have presented a technique that combines
machine learning and argumentation for learning policies in
a team of collaborating agents engaging in joint activities.
Individual policies are private but through the use of argu-
mentation, we have been able to tease out certain informa-
tion that can improve the performance in learning the poli-
cies of other agents. In our approach, an argumentation layer
was built over a standard learning mechanism such that di-
alogue interactions enabled our agents to disambiguate be-
tween resource and policy constraints, thereby fine-tuning
the policies learned. We have also shown that integrating ar-
gumentation into systems empowers agents with incomplete
or imperfect knowledge to (potentially) perform better than
they would have without argumentation in learning.

Acknowledgements

This research was sponsored by the U.S. Army Research
Laboratory and the U.K. Ministry of Defence and was ac-
complished under Agreement Number W911NF-06-3-0001.
The views and conclusions contained in this document are
those of the author(s) and should not be interpreted as repre-
senting the official policies, either expressed or implied, of
the U.S. Army Research Laboratory, the U.S. Government,
the U.K. Ministry of Defence or the U.K. Government. The
U.S. and U.K. Governments are authorized to reproduce and
distribute reprints for Government purposes notwithstanding
any copyright notation hereon.

References
Atkinson, K., and Bench-Capon, T. 2007. Action-based
alternating transition systems for arguments about action.
In Proc. of the 22nd Conference on Artificial Intelligence
(AAAI 2007), 24-29. Vancouver, Canada: AAAI Press.

Bench-Capon, T. J. M.; Freeman, J. B.; Hohmann, H.; and
Prakken, H. 2003. Computational models, argumentation
theories and legal practice. In Reed, C., and Norman, T. J.,
eds., Argumentation Machines. New Frontiers in Argument
and Computation, 85-120. Dordrecht, The Netherlands:
Kluwer Academic Publishers.

Friedman-Hill, E. 2003. Jess in Action. Manning.

Kelemen, A.; Liang, Y.; and Franklin, S. 2002. A compara-
tive study of different machine learning approaches for de-
cision making. In Mastorakis, N. E., ed., Recent Advances
in Simulation, Computational Methods and Soft Comput-
ing, 181-186. Piraecus, Greece: WSEAS Press.

Kotsiantis, S. B. 2007. Supervised machine learning: A
review of classification techniques. Informatica 31(3):249—
268.

Levin, J., and Moore, J. 1980. Dialogue-games: meta
communication structure for natural language interaction.
Cognitive Science 1(4):395-420.

Mitchell, T. M. 1997. Machine Learning. McGraw Hill.

Mozina, M.; Zabkar, J.; and Bratko, I. 2007. Argument
based machine learning. Artif. Intell. 171(10-15):922-937.

Oren, N.; Norman, T. J.; and Preece, A. 2006. Loose lips
sink ships: A heuristic for argumentation. In In Proceed-
ings of the Third International Workshop on Argumentation
in Multi-Agent Systems (ArgMAS 2006, 121-134.

Parsons, S.; Wooldridge, M.; and Amgoud, L. 2003. Prop-
erties and complexities of some formal inter-agent dia-
logues. Journal of Logic and Computation 13(3):347-376.

Perrussel, L.; Doutre, S.; Thevenin, J.; and McBurney, P.
2007. A persuasion dialog for gaining access to informa-
tion. In Proc. of the AAMAS International Workshop on
Argumentation in Multi-Agent Systems (ArgMAS 2007).

Quinlan, J. R. 1993. C4.5: programs for machine learning.
San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc.

Rahwan, I.; Pasquier, P.; Sonenberg, L.; and Dignum, F.
2007. On the benefits of exploiting underlying goals in
argument-based negotiation. In Proc. of the 22nd Interna-
tional Conference on Artificial Intelligence (AAAI). Cali-
fornia, USA: AAAI Press.

Sycara, K.; Norman, T. J.; Giampapa, J. A.; Kollingbaum,
M. J.; Burnett, C.; Masato, D.; McCallum, M.; and Strub,
M. H. 2009. Agent support for policy-driven collaborative
mission planning. The Computer Journal bxp061.

Vasconcelos, W.; Kollingbaum, M. J.; and Norman, T. J.
2007. Resolving conflict and inconsistency in norm-
regulated virtual organizations. In Proc. of the 6th Interna-
tional Joint Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS 2007).

Walton, D. N., and Krabbe, E. C. W. 1995. Commitment
in Dialogue: Basic Concepts of Interpersonal Reasoning.
Albany, NY, USA: SUNY Press.
Witten, 1. H., and Frank, E. 2005. Data Mining: Practi-
cal machine learning tools and techniques. San Francisco:
Morgan Kaufmann, 2nd edition.

