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Abstract

In this work we will present an integration of a query-
answering argumentation approach with an abstract agent
programming language. Agents will argumentatively reason
via queries, using information of their mental components.
Special context-based queries will be used to model the inter-
action between mental components. Deliberation and execu-
tion semantics of the proposed integration are presented.

Introduction
In this work, we present a declarative agent programming
language (APL) that uses argumentation as a reasoning
formalism. Agent mental components of the proposed
APL will be represented in Defeasible Logic Programing
(DeLP) (Garcia and Simari 2004). Hence, an agent devel-
oper will be able to represent conflicting goals and beliefs,
and the argumentation formalism will be used for deciding
which beliefs and goals are regarded as warranted. Our ap-
proach follows the spirit of 3APL, where interactions be-
tween mental components are made through queries in the
sense of logic programming; therefore we will use DeLP
contextual queries (Garcı́a et al. 2007) to connect the mental
components. We will propose semantic rules to show agent
execution dynamics and a set of properties.

Several articles in the literature recognize the relevance of
using argumentation as the reasoning mechanism of agent
systems (Bench-Capon and Dunne 2007). Since the be-
ginnings of BDI (Bratman, Israel, and Pollack 1991), the
use of defeasible reasoning to handle intentional reason-
ing was considered. Later, (Parsons, Sierra, and Jennings
1998) move forward in that direction and points the advan-
tages of using argumentation in BDI agents. Nowadays,
various papers (Amgoud, Devred, and Lagasquie 2008;
Rotstein, Garcia, and Simari 2007; Rahwan and Amgoud
2006) present important contributions in this area, connect-
ing argumentative approaches to BDI agent architectures.
These articles show clearly how agent mental components
can be benefited with the use of argumentation for reasoning
with conflicting information. However, in the field of APL,
although deliberation is an important topic, it is necessary
to establish execution semantics (or agent state dynamics).
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That is, in APLs area is important to specify rules that show
how actions will affect agent mental components, and thus
agent future reasoning. The above mentioned papers pro-
pose BDI architectures instead of APLs, therefore, they are
mainly focused in the argumentative support for agent de-
liberation and not in agent execution dynamics. Here, we
will present two contributions in the area of argumentation
and APLs: an integration of a concrete argumentation for-
malism to the deliberative model of an APL; and a set of
APL semantic rules for agent execution dynamics, which is
combined with the argumentation formalism.

Recently, logic based agent programming languages have
received special attention (Bordini, Braubach, and et al.
2006), (Dastani, van Riemsdijk, and Meyer 2005), (Bor-
dini, Wooldridge, and Hübner 2007). These languages pro-
vide interesting features like declarative agent specifica-
tions, clear semantics of agent reasoning mechanisms, and
verifiable agent development. However, none of them pro-
pose an argumentative formalism for agent reasoning. Since
the focus of this research is related to agent specification and
implementation, our approach will be inspired on these lan-
guages.

DeLP Basis
In order to provide an argumentative reasoning service for
multi-agent systems, an implementation of DeLP, called
DeLP-server, has been developed (Garcı́a et al. 2007). A
DeLP-server is a stand-alone program that can interact with
multiple clients. A public DeLP-program can be stored in a
server, and clients may send queries to the server and receive
the corresponding answer.

In DeLP (Garcia and Simari 2004), knowledge is repre-
sented using facts, strict rules or defeasible rules. Facts
are ground literals representing atomic strict information
or the negation of atomic information using the strong
negation “∼”. Defeasible Rules (d-rules) are denoted
L0 —< L1, . . . , Ln (where Li are literals) and represent de-
feasible knowledge, i. e. tentative information. In this paper
we will consider a restricted form of program that do not
have strict rules.

Definition 1 (Restricted Defeasible Logic Program) A
restricted defeasible logic program (de.l.p. for short) P is a
set of facts and d-rules. When required, P is denoted (Ψ,∆)



distinguishing the subset Ψ of facts and the subset ∆ of
d-rules.

Strong negation is allowed in the head of program rules,
and hence, may be used to represent contradictory knowl-
edge. From a program (Ψ,∆) contradictory literals could be
derived, however, the set Ψ must possess certain internal co-
herence (it has to be non-contradictory). Given a literal L the
complement with respect to strong negation will be noted L.

Definition 2 (DeLP-query) A DeLP-query is a ground lit-
eral that DeLP will try to warrant.

To deal with contradictory information, in DeLP, argu-
ments for conflicting pieces of information are built and then
compared to decide which one prevails. The prevailing argu-
ment provides a warrant for the information that it supports.
In DeLP, a query L is warranted from a program (Ψ,∆) if a
non-defeated argumentA supporting L exists. An argument
A for a literal L, denoted 〈A, L〉, is a minimal set A⊆∆,
such that A ∪ Ψ is non-contradictory and there is a deriva-
tion for L from A ∪ Ψ.

To establish if 〈A, L〉 is a non-defeated argument, de-
featers for 〈A, L〉 are considered, i.e., counter-arguments
that are preferred to 〈A, L〉 by some criterion. In DeLP the
argument comparison criterion is modular, thus, the most ap-
propriate criterion for the domain that is being represented
can be selected. In the examples in this paper we will use
generalized specificity, a criterion that favors two aspects of
an argument: it prefers (1) a more precise argument or (2) a
more concise argument

A defeater D for an argument A can be proper (D is pre-
ferred to A) or blocking (same strength). A defeater can at-
tack the conclusion of another argument or an inner point of
it. Since defeaters are arguments, there may exist defeaters
for them, defeaters for these defeaters, and so on. Thus,
leading to a exhaustive tree structure called dialectical tree
(for more details see (Garcia and Simari 2004)). In a dialec-
tical tree, every node (except the root) is a defeater of its
parent, and leaves are non-defeated arguments. In a dialecti-
cal tree every node can be marked as defeated or undefeated:
leaves are marked as undefeated nodes, and inner nodes are
marked defeated when there is at least a child marked un-
defeated, or are marked undefeated when all its children are
marked defeated.

Definition 3 (Warranting a DeLP-query) A DeLP-query
Q is warranted from a de.l.p. P (noted P|∼wQ) if there ex-
ists an argument A supporting Q such that A is the root of
a dialectical tree and it is marked as undefeated.

Next, we will show that the set of warranted queries in-
ferred by a de.l.p. are non-contradictory sets (a de.l.p. can
not warrant a literal and its complement simultaneously).

Proposition 1 Given a de.l.p. P = (Ψ,∆) where Ψ is con-
sistent, the set W = {Qi | P|∼wQi} is non-contradictory.
Proof Sketch: Let W be the set of warranted queries from
P and h1 ∈ W . Thus, there exists an argument 〈A1, h1〉
for h1 which is undefeated in a dialectical process. Suppose
h2 ∈ W , and h1 and h2 are complementary (h1 = h2).
As h2 is warranted there exists an argument 〈A2, h2〉 for h2

which is undefeated in the argumentation process. As h1

and h2 are contradictory 〈A1, h1〉 is a counter-argument for
〈A2, h2〉 and vice versa. Depending on the comparison cri-
terion used, 〈A2, h2〉 can be a proper defeater of 〈A1, h1〉(or
viceversa), or 〈A2, h2〉 and 〈A1, h1〉are blocking defeaters.
Since 〈A2, h2〉 is undefeated and is a defeater (blocking or
proper) 〈A1, h1〉, h1 is not warranted from P , which contra-
dicts our hypothesis.�

To answer queries, a DeLP-server will use the public
knowledge stored in it, together with individual knowledge
that clients can send attached to a query, creating a particular
context for that query (see (Garcı́a et al. 2007) for details).
This context is knowledge that the server will use for an-
swering the query and will not affect other future queries.
That is, a client agent cannot make permanent changes to
the public de.l.p. stored in a server. The temporal scope
of the context sent in a query [Context,Q] is limited and
disappears once the query Q has been answered. Since con-
textual information can be in contradiction with the informa-
tion stored in the server, different types of contextual queries
were defined. In this work we will use one kind of contex-
tual query, which will be used to model the interaction of
the mental components of the agent programming language
proposed in the next section. This query is specifically de-
signed for this work and was not presented in (Garcı́a et al.
2007).

Definition 4 (Contextual query) Let P = (Ψ,∆) be a
de.l.p., a contextual query for P is a pair [(Φ+,Θ−), Q]
where Q is a DeLP-query, Φ+and Θ−are non-contradictory
sets representing the context to be added and removed from
P respectively, in order determine the status of Q.

This special kind of contextual query will temporarily
add and remove elements from P . The literals of Φ+ will
be added as facts to Ψ in a way that Ψ consistency is not
harmed. The literals of Θ− will determine two actions: the
literals to be removed form Ψ and the rules to be removed
from ∆ (whose head coincides with them).

Definition 5 (Contextual query warrant) Let P= (Ψ,∆)
be a de.l.p., and [(Φ+,Θ−), Q] a contextual query.
P|∼w[(Φ+, Θ−), Q] iff Pcq|∼wQ where Pcq = (((Ψ ⊕ Φ+) \
Θ−, (∆ 	 Θ−)). Let C(Φ+) = {L|L ∈ Φ+}, then
(Ψ ⊕ Φ+) = (Ψ \ C(Φ+)) ∪ Φ+. Let (∆ 	 Θ−) =
{ri|ri = Lh —< L0, . . . , Lk ∈ ∆ ∧ Lh /∈ Θ−}

Example 1 Consider the de.l.p. PB1 = (ΨB
1 ,∆B

1 ), used
by an agent to determine if it can spend money and if it can
travel, where the elements of ΨB

1 = {d, s, gf, gs,∼a} rep-
resent that it has debts (d), has savings (s), has girlfriend
(gf), has a good salary (gs) and is not afraid to flight (∼a).
∆B

1 ={ (m —< s) (m —< d, gs, s) (∼m —< d) (∼m —< ∼s)
(t —< v) (∼t —< ∼m)}, where t, m, and v are abbrevia-
tions of can travel, can spend money, and has one week
vacation, respectively. From PB1, the contextual queries
[(∅, ∅),m], [(∅, {s}),∼t], [({v}, ∅), t] and [({v}, {∼t}), t]
are warranted.

Next, with the following propositions we will show that
temporary modifications made by the contextual query are



sound, and a de.l.p. cannot warrant complementary literals
for the same context.

Proposition 2 Let [(Φ+,Θ−), Q] be a contextual query for
a de.l.p. P= (Ψ,∆). Then the program Pcq used to deter-
mine the status of Q, is a de.l.p.
Proof: Let P = (Ψ,∆) a de.l.p. and [(Φ+,Θ−), Q] a contex-
tual query. By Def. 5 Pcq = (((Ψ⊕Φ+) \Θ−, (∆	Θ−))
will be used to determine the status of Q. Ψ is consistent be-
cause P is a de.l.p., Φ+ is consistent by Def. 4 and by Def. 5
⊕ will remove from Ψ all the complements of the literals of
Φ+ (removes all possible conflicts), then it will add all the
literals of Φ+ to Ψ, thus (Ψ ⊕ Φ+) is consistent. Remov-
ing literals does no harm consistency, then (Ψ ⊕ Φ+) \ Θ−

is consistent. Since the removal of d-rules do not interfere
with the integrity of a de.l.p., Pcq is a de.l.p.�

Proposition 3 Given a de.l.p. P = (Ψ,∆), if
P|∼w[(Φ+, Θ−), Q] then P 6|∼w[(Φ+, Θ−), Q].
Proof: Let P be a de.l.p. and [(Φ+,Θ−), Q] a contextual
query such that P|∼w[(Φ+, Θ−), Q]. By Prop. 2, we know
that the output Pcq of applying Φ+,Θ− to P is a de.l.p.By
Prop. 1 the set of warranted queries W from a de.l.p. Pcq is
non-contradictory, and by hypothesis Q ∈W , then Q /∈W .
Finally, P 6|∼w[(Φ+, Θ−), Q] �

APL Formal Concepts
In this section, we will show how the defeasible argumen-
tation can be integrated into agent programming languages
using DeLP-Servers. We will introduce a declarative BDI
agent programming language, called DeLPAP. This lan-
guage is partially inspired on 3APL (Dastani, van Riems-
dijk, and Meyer 2005), where the agent is composed by a
Belief Base, a Goal Base and a set of Reasoning Rules. Also
in these kind of APLs, interactions between each mental
component are made through queries in the sense of logic
programing. Following that approach we will use contex-
tual queries to model the interaction between agent internal
components. Next, we will introduce the formal concepts of
DeLPAP: syntax, semantics and framework properties.

Syntax
Agents in DeLPAP are characterized by three components:
belief and goal knowledge bases, and a set of plan rules.
Knowledge bases represent agent mental components, and
will be specified by de.l.p.s. These knowledge bases are
used to compute agents beliefs and goals in each delibera-
tive cycle. The plan rules will be used to generate plans in
order to achieve goals.

Beliefs The belief base, is used to represent the infor-
mation that the agent has and infers about the world. In
DeLPAP it will be represented by a de.l.p. and generally de-
noted PB = (ΨB ,∆B). Therefore an agent developer will
be able to specify potentially contradictory information us-
ing the d-rules. For instance, the de.l.p. PB1 of Ex. 1 can be
a belief base of an agent to determine, for example, if it can
travel or if it can spend money.

Perceptual information will be also considered as part of
the beliefs, and therefore it can appear in the body of belief

base d-rules. For instance, in Ex. 1, the literal v used to de-
note that the agent has one week vacation, can be considered
as a perception and it is used in one of the d-rules of that ex-
ample. All perceptual elements will be identified by the set
of literals E. However, we will explain how the PB inter-
acts with E in the semantics subsection, since E will change
dynamically as the world changes.

In order to refer to Beliefs from the other components, we
will use special literals B(L) (with L a literal) called actual
beliefs. These literals will denote that the agent believes in
L. In the semantics subsection we will explain how these
special literals are calculated from the belief base.

Goals Goals are used to denote situations of the world
that the agent want to realize. The goal base has knowl-
edge about agent goals, and it is used to determine which
of these goals are good options for the agent in each de-
liberative cycle. In agent programming, goals may be un-
conditional or conditional. Unconditional (or independent)
goals are always adopted. Conditional goals are not always
adopted, they depend on other goals and beliefs. Goals may
also be conflicting, i. e., some goals may not be adoptable at
the same time, therefore, a mechanism to decide which goals
the agent must adopt should be used. In DeLPAP goals will
be represented by a de.l.p., where: unconditional goals will
be modeled using facts, and conditional goals using d-rules.
Since strong negation can be in facts and d-rules, conflicting
goals will be representable. The formalism will identify the
goals that are in conflict, and the argumentation process will
be used for deciding which one to adopt. Actual beliefs in
the body of d-rules will be used to obtain belief information.

Definition 6 (Goal Base) The agent goal base is a de.l.p.
PG = (ΨG,∆G), where ∆G has rules of the form
(Lh —< B(L0), . . . , B(Lk), Lk+1, . . . , Ln), with k + n ≥ 0
and Li is a Literal

Example 2 Following the belief base of Ex.1, now con-
sider the goal base PG1 = (∅,∆G

1 ), used by the
agent to determine if want to visit a place or not.
Here, ∆G

1 ={ (p —< B(t), B(v), B(gf)) (h —< B(t), B(v))
(∼p —< h, B(v)) (∼h —< p, B(v))}. Letters p and h are ab-
breviations to denote “want to visit Paris” and “want to visit
Hong Kong”, and actual belief literals B(t),B(v) and B(gf)
denote agent beliefs of Ex.1. For example, the first rule ex-
presses that if it believes that it can travel, it has one week
vacation and it has a girlfriend there are good reasons to
visit paris; the fourth rule denotes that if there are reasons
to visit Paris and it believes that has one week vacation, it
will no be possible to visit Hong Kong.

Notice that not all rules need to denote reasons to adopt
goals, a rule can be used to denote reasons against adopt-
ing a goal. For instance, the third and fourth d-rules of Ex.2
denotes reasons against visiting Paris and Hong Kong re-
spectively.

In order to refer to Goals from the other components, we
will use special literals G(L) (with L a literal) called ac-
tual goals. These literals will denote that the agent wants to
achieve L. In the semantics subsection we will explain how
to obtain these literals from the goal base.



Plan Rules In order to decide how to act DeLPAP agents
will use planing rules, which are based in the reasoning rules
used in 3APL. These rules will establish a mapping between
goals and plans. Basically, a plan rule will determine the
plan to execute with the objective of achieving its associ-
ated goals, when some belief preconditions are met. We will
capture these notions in the following definition:

Definition 7 (Plan Rule) a plan rule has the form ρ =
κ← β | π, where κ = {G(K0), . . . , G(Kn)}, β =
{B(P0), . . . , B(Pm)} with Ki,i>0, Pj,j>0 literals and π a
plan. The set of all planing rules available for the agent is
called plan rule base and denotedR

In this work we will assume that plans will be simple se-
quences of actions of the form [a1, . . . , am]. Clearly, more
complex plan structures like the ones presented in 3APL
can be easily adapted to DeLPAP. However, to simplify
the explanation of the basis of DeLPAP, we will leave the
plan structure as elementary as possible. Actions can be
used to interact with the environment or dynamically modify
the mental components. The former will be represented by
atoms and the later will be defined next:

Definition 8 (Mental Action) A Mental Action (or Ma for
short) is a triplet Ma = (Base, β, Pos), where Base is a
de.l.p. representing the mental component that will be af-
fected by the action, β = {B(L0), . . . , B(Lk)} with k ≥ 0,
and Pos = {[X1, . . . , Xn, not Y1, . . . , not Ym]} with n ≥
0, m ≥ 0, where Xi is an element to be added to Base and
Yj is an element to be removed from Base. Xi and Yj can
be a literal or a d-rule.

Example 3 Continuing Ex. 1 and Ex. 2, consider
that the agent has the following plan rules set R1:
G(p)← B(∼a) | [flightParis, (PB, {B(s)}, {p,∼s})]
and G(h)← B(∼a) | [flightHK, (PB, {B(s)}, {h,∼s})]

For instance, the first plan rule expresses that if the agent
wants to visit Paris, and believes that it is no afraid to flight,
then it should first execute an external action of flying to
Paris and then execute a mental action to denote that he has
spent its savings and that he has visited Paris.

As in most declarative agent programming languages, to
program a DeLPAP agent means to specify the de.l.p.s of the
mental components, and the plan rule base. For instance,
a DeLPAP agent can be specified using the belief base of
Ex.1, the goal base of of Ex.2, and the plan rule base of
Ex. 3. However, the initial beliefs and goals of individual
agents and their environment can change during the execu-
tion of the agent, while the plan rules will remain the same.
In the following subsection we will give the operational se-
mantics of a DeLPAP agent dynamics.

Semantics
In this section, we will define DeLPAP formal semantics.
As in most cognitive agent programming languages, practi-
cal reasoning involves two fundamental processes: to de-
cide which goals are going to be pursued, and to choose
plans to achieve them. Semantics of DeLPAP will describe
these processes. The decision process requires considering
alternative goals, and the selection and commitment to some

of them. Selected goals will have an influence on its ac-
tions, restrict future practical reasoning, and persist in time.
The planning process consists on selecting a set of actions
that will allow to satisfy the committed goal. Basically,
in DeLPAP this behavior consists on determining the war-
ranted goals and beliefs, use them to establish which plans
are executable, and finally execute a plan.

Following the style from the semantics specification of
other BDI agent programming languages such as AgentS-
peak(L) and 3APL, the semantics will be given using a tran-
sition system. A transition system is a set of derivation rules
for deriving transitions. A transition is a transformation of
one system configuration C into another C’ if a condition
holds, and it corresponds to a single computation step. The
configuration of a DeLPAP agent is a snapshot of its current
mental components at a certain moment. Since the agent
will be executing plans to achieve its goals, the dynamic
model of a DeLPAP agent will also have an adopted plan
or currently executing plan, denoted Π. Also, the dynamic
model of a DeLPAP agent will be characterized by a set of
literals E denoting the current perception.

Definition 9 (Configuration) A configuration of a
DeLPAP agent is a tuple 〈E,PB,PG,Π〉 where E is
a set of literals denoting agent perceptions, PB is a belief
base, PG is a goal base, and Π is the adopted plan.

The setR of plan rules is not included in the agent config-
uration, because it will not change during agent execution.
We will just assume that the set E changes over time. How-
ever we will not proceed any further with the dynamics and
semantics of E, since it is mainly domain dependent. We
will use ε (the empty plan) to denote that the agent has not
an adopted plan. The initial configuration of an agent speci-
fies the initial goal and belief bases and the initial plan base
empty, that is 〈E,PB,PG, ε〉.

From a given configuration it is possible to determine
what the agent believes in (actual beliefs), which will be
literals warranted from the belief base. In actual beliefs war-
ranting process perceptions should be taken account. For
that purpose we will use the contextual queries (Def. 4) to
add (and revise if necessary) the perpetual information to
the belief base, as we will show next:

Definition 10 (Actual belief) Let C = 〈E,PB,PG,Π〉 be
an agent configuration, a literal L will be an actual belief
〈E,PB,PG,Π〉 `B B(L) iff PB|∼w[(E, ∅), L]. The set of
all the actual beliefs will be denoted B

Example 4 Suppose an agent configuration C1 =
〈E,PB1,PG1, ε〉, where PB1 and PG1 correspond to Ex.1
and Ex.2 respectively, E = {v}. Then in C1 actual beliefs
will be B(gs), B(s), B(d), B(gf), B(∼a), B(m), B(t) and B(v).

The following propositions, show that perceptual items
are considered as beliefs, and that the set of actual beliefs is
non contradictory.

Proposition 4 Let C = 〈E,PB,PG,Π〉 be an agent con-
figuration, if L ∈ E then C `B B(L).
Proof: Let C = 〈E,PB,PG,Π〉 be an agent configuration
and L ∈ E. By Def.5, L ∈ (ΨG ⊕ E), therefore, there will



be an undefeated argument for L in (((ΨG ⊕E) \ ∅, (∆G 	
∅)). Then, PB|∼w[(E, ∅), L], and C `B B(L) �

Proposition 5 Let C = 〈E,PB,PG,Π〉 be an agent con-
figuration, if C `B B(L) then C 0B B(L).
Proof: Straight forward from Prop.3 and Def. 10.

Goal semantics describe the goals that an agent want to
achieve in a given configuration. These goals are called ac-
tual goals, and will be the warranted literals of the goal base.
However, using the information of the goal base alone is not
enough to determine these goals: goal arguments may in-
volve beliefs and already achieved goals should not be con-
sidered as actual goals. Therefore, actual beliefs are needed.
We will capture these notions using contextual queries as it
will shown next:

Definition 11 (actual goal) Let 〈E,PB,PG,Π〉 be an
agent configuration, a literal L will be an actual goal
〈E,PB,PG,Π〉 `G G(L) iff PG|∼w[(B, A), L], where A =
{Li|B(Li) ∈ B}. The set of actual goals will be denoted G
Example 5 Suppose an agent conf. C1 of Ex.4. The actual
goal of C1 will be G(p), that is the agent wants to visit Paris.

As introduced above, the semantics of actual goals should
only consider those unachieved goals. Remember that goals
represent situations of the world that the agent wants to re-
alise. Therefore, if an agent believes in a literal L, the goal
for L should be considered as achieved and ignored in the
actual goals warranting process. Next, we will show that
our agent programming framework follows these semantics.

Proposition 6 Let C = 〈E,PB,PG,Π〉 be an agent con-
figuration, if C `B B(L) then C 0G G(L).
Proof: Let C = 〈E,PB,PG,Π〉 be an agent configuration,
with PG = (ΨG,∆G) such that C `B B(L). By Def.10
B(L) ∈ B. Let A = {Li|B(Li) ∈ B}, then L ∈ A. From
the de.l.p. PGcq = (((ΨG ⊕ B) \ A, (∆G 	 A)) there is
no argument for L, since by Def.5 there will be no fact L in
(ΨG⊕B) \A or a d-rule with head L in ∆G	A. Therefore
PGcq 6|∼wL, PG 6|∼w[(B, A), L], and C 0G G(L) �

Example 6 Suppose that the agent of Ex.4 is in a new situ-
ation, it has achieved the goal of visiting Paris. This situa-
tion is described by the conf. C2 = 〈E,PB2,∆B

1 ,PG1, ε〉,
where PB2 = (ΨB

1 ∪ {p},∆
B
1 ) and E,∆B

1 ,PG1,Π are the
same as in Ex.4. Therefore from C2 its actual goals will be
{G(h)}, that is the agent wants to visit Hong Kong. Note
that now B(p) is an actual belief of C2, thus, p was not be
considered in goal warranting process.

Next, we will show that actual goals for a given configu-
ration are non-contradictory

Proposition 7 Let C = 〈E,PB,PG,Π〉 be an agent con-
figuration, if C `G G(L) then C 0G G(L).
Proof: Straight forward from Prop.3 and Def. 11

Using the actual beliefs and goals, the agent will be able
to determine which of its plan rules are applicable, which
will establish plans to execute. Basically, a plan rule will
be applicable iff its associated goals are actual goals and its
associated beliefs are actual beliefs.

Definition 12 (Plan Selection) Let C = 〈E,PB,PG, ε〉 be
an agent configuration, R the agent plan rules set, and ρ =
κ← β | π ∈ R

C `B bi ∀bi ∈ β ∧ C `G gi ∀gi ∈ κ
〈E,PB,PG, ε〉→〈E,PB,PG, π〉

For example, suppose the conf. C1 of Ex.4 and
the set R1, Since C1 `B B(∼a) and C1 `G G(p),
then first rule of R1 will be applicable and the plan
[flightParis, (PB, {B(s)}, {p,∼s})] will be adopted.

This plan selection semantics completes the agent com-
mitment model. When a plan from a plan rule ρ is adopted,
the agent commits to the goals of ρ. However, it is important
to notice that the execution of the plan does not ensure that
ρ goals will be achieved. The achievement status of a goal
is only determined by agent beliefs.

Clearly an agent might have more than one applicable
plan rule. In this case it has to select one among those using
some strategy, for instance, prefer the shorter plan or the one
that tries to achieve its more important goals. However, this
topic is left for future work.

The actions of the adopted plan will be executed in a
sequential fashion. Mental actions introduce permanent
changes in the mental components. Next we will present
a function where their effects are described:
Definition 13 (Update Function) Let (P , Pre, Pos) be a
Ma, where Pos= { [X1, . . . , Xn, not Y1, . . . , not Ym],C),
and P = ((Ψ, ∆), C) a de.l.p.Using the elements in Pos we
define AddS = {Xi | ∀Xi literal }, DelS= {Xi | ∀Xi lit-
eral } ∪ {Yj | ∀Yj literal }, AddD= {Xi | ∀Xi d-rule },
DelD = {Yj | ∀Yj d-rule }. Then, the mental action up-
date function is: T (Ma,P) = (((Ψ \ DelS) ∪ AddS),
((∆ \ DelD)∪ AddD))

During the plan execution, if the mental action precondi-
tions are met, the update function will be applied. In con-
trast, if the preconditions are not met, we say the plan is
blocked and it will be removed from execution. Thus, with
this behavior, the agent will drop the adopted plan when it is
not achievable. Next we will formally show these notions.
Definition 14 (Mental Action Execution) Let C =
〈PB,PG, [ma, a0, . . . , am]〉 be an agent configuration,
where [ma, a0, . . . , am] is the adopted plan, and ma =
(PB, β, Pos) a mental action. The execution of ma is
defined in two cases:

C `B bi ∀bi ∈ β ∧ (T (ma,PB) = PB′)
〈E,PB,PG, [ma, a0, . . . , am]〉→〈E,PB′,PG, [a0, . . . , am]〉

∃bi ∈ β C 0B bi

〈E,PB,PG, [ma, a0, . . . , am]〉→〈E,PB,PG, ε〉
When a plan is finished, ε is set as the adopted plan
For instance, suppose that the configuration

C3 = 〈E,PB1,PG1, [(PB1, {B(s)}, {p,∼s})]〉 de-
notes the situation were the agent is commited to visit
to Paris and has already executed the first action of
the plan. Since C3 `B B(s), then first action of the
plan will executable and it will produce the belief base
PB3 = ({∼s, p, gs, d, gf},∆B

1 ) leading to the configura-
tion 〈E,PB3,PG1, ε〉



Notice that we have only defined the transition of a men-
tal action to modify the agents belief base. The transi-
tion rules to modify goal base can be analogously defined.
Next with the following property we will show that in the
DeLPAP framework the strict knowledge always remains
non-contradictory.
Proposition 8 Given a DeLPAP agent configuration
〈E,PB,PG,Π〉 where the sets of facts of PB and PG are
non-contradictory. After any possible transitions, these sets
will remain non-contradictory.
Proof: Let 〈E, (ΨB ,∆B), (ΨG,∆G),Π〉 be the agent con-
figuration, where ΨB and ΨG are non-contradictory. Basi-
cally, the only transition capable of harming the consistency
of ΨB or ΨG is the execution of a mental action α which
modifies them. Let ΨX be the set affected by α, then: if α
removes a literal L from ΨX , then clearly ΨX remains non-
contradictory. if α adds a literal L to ΨX and L 6∈ ΨX , then
clearly ΨX remains non-contradictory. if α adds a literal L
to ΨX and L ∈ ΨX , then ΨX remains non-contradictory
because by definition 13 L will be removed from ΨX �

The previous propositions show that although the knowl-
edge representation language allows strong negation, if an
agent starts with its Ψ sets consistent, regardless the action
the agent executes or the changes in the environment, the in-
ferences of the agent will be non-contradictory. Thus, with
these properties we have shown that DeLPAP agents can use
strong negation and be safe of inconsistencies.

Related Work and Conclusion
In this work we presented a 3APL style agent programming
language where mental components are represented and use
defeasible argumentation logic programming as the reason-
ing mechanism. For the proposed APL we have shown how
deliberation is made using the argumentation mechanism,
and how this deliberation is affected by actions. In order
to do this we present syntax, semantics and some proper-
ties of this APL. In particular, we used delp-server contex-
tual queries to handle mental component interaction. We
have shown that contextual queries were really handy in that
task because they modularise the interaction: they provide
all the perceptual, belief and goal information that a compo-
nent needs to answer the query, and the query itself, in one
step. Also the special contextual query that we presented
allowed to represent the correct semantics for goal queries.
That is, an agent will only pursue unachieved goals. We have
also shown that through its life span an agent will be safe of
inconsistency.

The idea of using defeasible argumentation in the rea-
soning process of cognitive agents is not new, and there
exists previous approaches that relate cognitive agents to
argumentation frameworks (Rahwan and Amgoud 2006;
Rotstein, Garcia, and Simari 2007; Amgoud, Devred, and
Lagasquie 2008). However, none of these approaches pro-
pose an agent programming language, they present agent ar-
chitectures. Their main objective is to determine what is
the best thing to do in a given situation. Therefore, their
mainly focus is in the impact of argumentation into delib-
eration, and they put little attention to the dynamics of the

model. For example, these works do not specify how actions
modify agent mental components, or what happens with the
arguments for an achieved desire. In this work, we address
these issues presenting semantics rules for actions and de-
activating arguments for achieved goals. Another difference
resides in the aim of this work, since we wanted to present an
implementation friendly approach we used DeLP contextual
queries concrete mechanism for mental components interac-
tion. In the architecture presented (Amgoud, Devred, and
Lagasquie 2008) intentions are computed in one step, which
is a very interesting property of the deliberative model. In
this work, since our focus was on presenting the complete
dynamic model, some deliberative elements were simplified.

As future work, we plan to study different goal types
(maintenance, achievement and procedural) and determine
their impact in the dynamics of the arguments. We are also
planning on providing the agent with argumentative tools to
reason with its committed goals. Also, we want to connect
an argumentative planning system to the APL.
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