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Abstract

Verification that agent communication protocols have desir-
able properties or do not have undesirable properties is an
important issue in agent systems where agents intend to com-
municate using such protocols. In this paper we explore the
use of model checkers to verify properties of agent communi-
cation protocols, with these properties expressed as formulae
in temporal logic. We illustrate our approach using a recently-
proposed protocol for agent dialogues over commands, a pro-
tocol that permits the agents to present questions, challenges
and arguments for or against compliance with a command.
Keywords: agent communication, command dialogues, CDP,
interaction protocols, model checking, NuSMV.

Introduction

The last two decades have seen considerable research on
agent communication languages and agent interaction pro-
tocols. In the typical formulation, such as the generic agent
language FIPA ACL, developed by FIPA (FIPA 2002), agent
utterances are represented as two-layers: an inner layer of
material directly related to the topic of the discussion, and
an outer- (or wrapper-) layer comprising a speech act. An
example of such a wrapper is the FIPA ACL locution, in-
form(.), which allows the agent uttering it to tell another
agent some statement which the first agent believes to be
true. With such a structure, the same set of locutions may
be used for dialogues on many different topics, on each oc-
casion wrapping different content. Such generic languages
create state-space explosion problems for intending agent di-
alogue participants, however, and so research attention has
also been given to the design of agent interaction protocols.
These may be viewed as agent communication languages de-
signed for more specific purposes than is a generic language,
in the same way, say, that a standard (human) ascending-
price auction protocol is more specific than is a natural hu-
man language, such as English. For a recent review of re-
search in agent interaction protocols, see (McBurney and
Parsons 2009).

As with any software, verification that agent interaction
protocols have desired properties (or do not have undesired
properties) is important. In this paper, we explore the use of
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model checking technologies for verification of properties of
agent interaction protocols. In order for model checking ap-
proaches to be applied, we need to express the properties in
a logical formalism, and we use a branching-time temporal
logic for this. We illustrate the approach on an agent pro-
tocol designed for arguments over commands, called CDP
(Atkinson et al. 2009). This protocol was selected because it
allows for argument between the participants, and because it
is sufficiently complex that an automated approach to verifi-
cation of protocol properties should prove of value to human
software engineers.

The structure of the paper is as follows. The next section
summarizes the command dialogue protocol, CDP. This is
followed by a brief discussion of model checking and of
NuSMYV, the model checker we have used for this work.
After that, we present the results of model-checking CDP,
showing the graphical representation of the protocol, and the
temporal logical representation of the properties we desire to
verify. We finish with some concluding remarks and indica-
tions of areas for future work.

Command Dialogue Protocol

Commands are instructions issued by one agent to one or
more other agents to execute some action (or not), or to
bring about some state. Not all commands are issued le-
gitimately, and even those which are legitimate may require
subsequent elaboration or explanation before they can be ex-
ecuted. Thus, it is possible for agents to engage in an ar-
gumentative interaction over a command. As explained in
(Atkinson et al. 2009), the rise of distributed computer sys-
tems and rival centres of control of the elements of such sys-
tems make commands and agent dialogues over commands
increasingly common. Indeed, Hyper-Text Transfer Proto-
col (HTTP) (Network Working Group 1999) may be viewed
as a protocol for two-agent dialogues over commands, al-
though it is rather impoverished in terms of the commands
enabled to be represented and the arguments permitted over
them. In recent work (Atkinson et al. 2009), a formalism
for the representation of commands and a dialogue protocol
for argument over commands was presented, making use of
an argument scheme for action proposals. In this formal-
ism, the agent issuing the command was called Comman-
der, while the intended recipient was called Receiver. The
Command Dialogue Protocol (CDP) allowed Commander



to issue a command to Receiver, and allowed Receiver to
question, challenge, refuse or accept this command. If ques-
tioned or challenged, Commander could respond with ad-
ditional information or arguments in support of the original
command, and/or re-iterate it, modify it, or retract it.

Command dialogues are not explicitly mentioned in the
Walton and Krabbe typology of human dialogues (Walton
and Krabbe 1995). In a dialogue where a command has been
issued, but not yet refused or accepted, the participants may
enter into interactions which resemble those in the Walton
and Krabbe typology, for example, Information-seeking, In-
quiry, Persuasion Negotiation, Deliberation or Eristic dia-
logues. Not all command dialogues will have all such inter-
actions, however, and accordingly we believe it appropriate
to consider Command dialogues as a type of dialogue dis-
tinct from those in the Walton and Krabbe list.

We now present an outline of the Command Dialogue
Protocol (CDP) of (Atkinson et al. 2009), which uses an
argument scheme for action proposals to specify commands.
In an argument scheme, arguments are presented as general
inference rules where, under a given set of premises, a
conclusion can be presumptively drawn (Walton 1996). The
argument scheme presented in CDP states that : given the
social context X, on the current circumstances R, action
A should be performed to achieve new circumstances S,
which will realise some goal G and will promote some
value V. This scheme allows commands to be justified
through the promotion or demotion of some social value or
interest, where a certain state or circumstance is achieved.
Justification is based on current circumstances and elements
of the social context. The CDP specifies the rules to
formally represent imperatives in a multi-agent dialogue
and provides means by which the participants may question,
challenge, justify, accept or reject a command. Commands
are represented as action proposals to the Receiver similar
to the representation in (Atkinson, Bench-Capon, and
McBurney 2004). In contrast with proposals or promises,
commands require a set of preconditions in a regulatory
environment to be executed validly. A command repre-
sents a presumptive argument attacked by a set of critical
questions whose answers may defeat the initial argument
or command. Critical questions represent questions the
Receiver could pose to the Commander either to question
or to challenge the command such that more evidence will
be needed to justify it. Questions about the appropriateness,
suitability, feasibility and normative rightness could be
posed to the Commander.

The CDP syntax enables agents to interact using seven
locutions: issue, accept, reject, question, challenge, justify
and retract (Atkinson et al. 2009). Locutions to issue or
retract a command are inherent to the Commander and are
comprised of options to state propositions defined in the ini-
tial argumentation scheme. As for the Receiver, the proto-
col defines locutions to respond to a command by accept-
ing, refusing, questioning or challenging it. Expanding the
‘question’ locution CDP grows to 76 locutions! available to

'In case this number of locutions is thought prolix, note that

Receiver when questioning or challenging a command. Lo-
cutions to challenge and provide information can be used by
both agents participating in the dialogue.

Model Checking

The verification of multi-agent systems showing that a sys-
tem is correct with respect to stated requirements is an in-
creasingly important issue (Bordini et al. 2006). Cur-
rently, the most successful approach to the verification of
computer systems against formally expressed requirements
is that of Model Checking (Clarke, Grumberg, and Peled
1999). Model checking is an automatic technique for ver-
ifying finite-state reactive systems, such as communication
protocols. Given a model of a system M and a formula ¢
(representing a specification), model checking is the prob-
lem of verifying whether or not ¢ is true in M (M = ¢).
In model checking, the design to be verified is modeled as
a finite state machine, and the specification is formalized by
writing temporal logic properties.

An efficient search procedure is used to determine
whether or not the state-transition graph satisfies the spec-
ifications (Clarke, Grumberg, and Peled 1999). The power
of model checking is that it is exhaustive, no regions of the
operating space are unexplored. Although model check-
ing techniques have been most widely applied to the ver-
ification of hardware systems, they also have been used
in the verification of software systems, protocols, (Wal-
ton 2004), agent dialogues (Endriss 2006; Endriss et al.
2004) and multi-agent-systems (Wooldridge et al. 2002;
Bordini et al. 2006).

NuSMV

The possibility of verifying systems with realistic complex-
ity changed dramatically in the late 1980s with the discov-
ery of how to represent transition relations using ordered
binary decision diagrams (BDD) (Clarke, Grumberg, and
Peled 1999). A BDD is a data structure that is used to repre-
sent a Boolean function. The original model checking algo-
rithm, with the new representation for transition relations, is
called symbolic model checking. The symbolic model veri-
fier (SMV) system is a tool for checking finite state systems
against specifications in the temporal logic CTL (Computa-
tion Tree Logic) (McMillan 1999). The input language of
SMV is designed to allow the description of finite state sys-
tems and allows a rich class of temporal properties, includ-
ing safety, fairness, liveness and deadlock freedom. NuSMV
2 is a reimplementation and extension of SMV and has been
designed as an open architecture for model checking. This

CDP is intended for machine-to-machine communications; for
comparison, the machine interaction protocol, Hypertext Trans-
fer Protocol (HTTP), defines 41 standard status-code responses to
a GET command, and allows for several hundred additional non-
standard codes (Network Working Group 1999).

NuSMYV is a symbolic model checker developed as a joint
project between the Formal Methods group in the Automated Rea-
soning System division at ITC- IRST, the Model Checking group
at Carnegie Mellon University, the Mechanized Reasoning Group
at University of Genova and the Mechanized Reasoning Group at
University of Trento (Cimatti et al. 2000).



new version is aimed at reliable verification of industrially
sized designs, for use as a back-end for other verification
tools and as a research tool for formal verification techniques
(Cimatti et al. 2000). NuSMV2 uses a technique called
Bounded Model Checking (BMC), which uses a proposi-
tional SAT solver rather than BDD manipulation techniques.
SAT or propositional satisfiability is the problem of deter-
mining if the variables of a given Boolean formula can be
assigned in such a way as to make the formula evaluate to
TRUE (Biere et al. 1999).

Model Checking CDP

Rather than propose a new model checking algorithmic ap-
proach to verify agent-communication protocols as in (Ben-
tahar, Moulin, and Ch. Meyer 2006) our aim is to use ex-
isting model checkers to validate properties on a dialogue
protocol.

In (Walton 2004) a Multi-Agent Dialogue Protocol
(MAP) is used to define the communicative process between
agents considering complex, concurrent and asynchronous
patterns. To verify the MAP protocols Walton uses the SPIN
Model checker (Holzmann 2004) translating the MAP rep-
resentation into the PROMELA language that SPIN uses as
input language and then construct LTL formulas to validate
against the PROMELA representation. This is probably the
most similar approach to what we intended here. The main
difference is that the MAP is a generic language to define
communicative processes and we are focusing on a single
protocol.

Agent dialogue protocols exhibit behaviour characterized
in terms of execution traces which can be represented as
branching trees. Trees can be represented in terms of a state-
transition system and then translated into the NuSMV input
language. The NuSMV model checker uses an exhaustive
search procedure to determine whether or not a specification
or property satisfies the modeled system. We aim to take the
advantages of the NuSMV model checker to validate prop-
erties of the protocol.

We focus on the CDP (Atkinson et al. 2009) and its
desirable properties. The protocol is represented with the
NuSMYV input language, and properties we want to validate
in the model are temporal CTL formulae. CTL formulae
can be evaluated in transition systems (Clarke, Grumberg,
and Peled 1999) where the states are dialogue states and
the transitions are the protocol valid locutions. In case
the property is not valid, a counterexample is generated
in the form of a sequence of states. In general, properties
are classified to “safety” and “liveness” properties. Safety
properties express what should not happen (equivalently,
what should always happen), and liveness properties declare
what should eventually happen.

Among the properties we want to verify for the protocol are:

1. Does any infinite loop or deadlock 3 situation exist in the
protocol? If a deadlock or loop does exist, which dialogue
sequence leads to that loop or deadlock?

3A deadlock is a situation wherein two or more competing ac-
tions are waiting for the other to finish, and thus neither ever does.

2. Can we reach every outcome state? The motivation be-
hind this property is to ensure the protocol has valid paths
in all the possible combinations of the dialogue.

3. Is it possible to utter a particular locution in a particular
state? This approach suggests a way to validate locutions
in a dialogue.

4. Given a particular state (either an end-state or not), is
there a valid dialogue sequence to reach that state?

5. Given a particular state, is there a dialogue sequence
which avoids that state? An agent may wish to know if it
can enter into a dialogue while avoiding particular states,
e,g. concessions to other participants.

6. If the dialogue has reached a particular state, is a partic-
ular outcome state still reachable?. It could be the case,
for example, that certain intermediate states in a dialogue
preclude some outcome states.

State-transition diagrams

The CDP can be modeled as a high level state-transition di-
agram where states represent dialogue states and transitions
represent valid locutions. The diagrams presented in this
section represent a command dialogue in an abstract way,
leaving out explicit details about the content of messages,
concurrency and the environment. Dialogue states are rep-
resented as circles and locutions as directed arrows labelled
with valid locutions. Diagrams capture the protocol rules for
agents engaged in a command dialogue specifying the path
to reach any outcome state.

The dialogue states for the CDP are: [nitial, Receiver-
Commanded, CommanderQuestioned, CommanderChal-
lenged, ReceiverwithEvidencel, ReceiverwithEvidence?2,
CommandRetracted, CommandAccepted and Comman-
dRefused (we number the ReceiverwithEvidence status
because we want to distinguish the state where evidence
comes from a question from that where it comes from a
challenge). The locutions for the CDP are: command,
question, challenge, provide, refuse, retract and accept. We
are excluding from the model for now the mental states
of the agents and the environment state. We also have not
yet considered the critical questions from (Atkinson et al.
2009) within our model.

The diagram in Figure 1 represents dialogue states num-
bered from s0 to s8 and the valid transitions for each state.
The diagram shows how locutions are constrained depend-
ing upon the dialogue state, for example, we can only ac-
cess the state where the command has been accepted (s7)
from the states { sl1, s5, s6 }, where the Receiver has been
commanded or has been provided with evidence. From the
moment an Agent C (the Commander) issues a command a
range of valid locutions is available for each agent. Valid
Commander locutions are represented with doted arrow-
lines and Receiver locutions are represented with normal
arrow-lines.

The CDP assumes a strict-turn-taking only for the Re-
ceiver that needs to wait for the Commander’s locution. As-
suming the agent is rational and because of a change in
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Figure 1: State-Transition Diagram for CDP

the environment the commander could retract or reissue the
command at any time. If we assume a strict-turn-taking for
the commander arrows, 2a, 2d and 2e would be left out the
diagram.

As we have discussed, the finite state transition dia-
gram can be expressed as a tree. We do this transforming
outcome-states in final nodes of a tree repeating states as
necessary. The tree-diagram representation is presented in
Figure 2.

With this second diagram we can visualize all the possible
computation paths for the protocol. Instead of representing a
state just once, we repeat the state to avoid locutions return-
ing to the same state. Loops are now represented as infinite
paths and the paths to reach an outcome state are clearer.
Since we are using a branching time temporal logic (CTL)
this model is useful to construct temporal formulae to vali-
date. To represent how the dialogue advances we associate
a propositional value with each state and specify where the
expression is true in each state. For the initial state, for ex-
ample, we assign propositional variable ‘a’ and make it true
only in that state. In this way we can construct temporal for-
mulae with propositional variables representing each state.
We also assign a variable related to the ‘turn’ of each agent
in the dialogue, represented by ‘tc’ in the case where the
Commander is allowed to issue a locution, and ‘tr’ in the
case of the Receiver. These variables allow us to construct
temporal formulae related to the turn of an agent to issue a
locution.

The properties we want to validate for the protocol could
be rephrased as temporal properties related to the tree-model
in Figure 2. In Table 1 the properties presented earlier are
now rephrased and a temporal formula is associated for
each one. CTL is built from path quantifiers and temporal
operators. There are two path quantifiers, A and E, where A
means “for every path” and E means “there exists a path”

in the tree. A path is an infinite sequence of states such
that each state and its successor are related by the transition
relation. CTL has four temporal operators presented as
follows: ()¢ meaning “¢ holds at the next time step”
(where ¢ is a propositional formula), G, “¢ holds at some
time step in the future”, O¢ , “¢ holds at every time step in
the future” and ¢U1, “¢ holds until ¢ holds” (Biere et al.
1999).

Tree-oriented property | Temporal property

|

1. Do infinite paths exist in the
tree-diagram?

AS(AORVAQgY)

la. Which is the path?

Counterexample from 1

2. Is there a valid path to reach EOR
every outcome state?

3. Is a transition valid from a AD(c— EFQd)
specific node?

4. Given a node, is there a path EOg

which leads to that node?

5. Given a node, is there a path
which avoids that node?

AO(—c — E<C1)

6. If a command has been issued
and questioned can the dialogue
still reach a state where the com-
mand is accepted?

Ad(c — E1)

Table 1. Properties and Temporal formulae.

NUSMY implementation

We use NuSMYV for model checking because the input lan-
guage allows us to represent the dialogue as a finite-state
diagram and we can verify temporal properties in it. If the
property specified does not satisfy the NuSMV model, the
model checker offers a counterexample specifying the path
where the formula fails to be true. Input to NuSMYV is via
a file which describes the state transition system in terms of
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Figure 2: Tree diagram for CDP

variables and value assignments. Dialogue states are repre-
sented with a variable stafe that can obtain the value of any
of the 9 states defined in the CDP, plus an error state to spec-
ify non-valid moves. Transitions are represented using the
NuSMYV case expression. For each state we define a set of
possible next states that represent the valid transition rela-
tions. Expressions are evaluated sequentially and the first
one that is true determines the resulting value.

We use the keyword SPEC in NuSMV to specify CTL
properties to be checked. For example, to express if it is
true that at some path there is a case where the command is
retracted, we use the CTL formula E<i. Variable i repre-
sents the retracted state. In the NuSMYV input language it is
represented as SPEC EF (i).

As for the variables related to the turn-taking we can
specify a property to check if there is an option to is-
sue a locution at every state (except on final states)
AO((te|tr)|(—te&e—tr&h)|(—tcde—tré&i)).

Preliminary Results

All the properties presented were translated to the NuSMV
language and validated against the model. For the first prop-
erty we are trying to check if there exists any infinite path
on the model. The idea is to construct a formula that rep-
resents that eventually on all paths the final nodes could be
reached. The property constructed in the NuSMV input lan-
guage is SPECAG(AXh | AXi). The formula is false
for the model since the protocol allows the participants to
engage in an infinite loop in several situations. Another way
to construct this property without making reference to a par-
ticular state is AGEX T which states that there exist a path
such that every node on that path still has some immediate
successor.

Property number two (“Is there a valid path to reach ev-
ery outcome state?”) is True. The protocol allows to reach

an outcome state in all paths. Property number three (“Is a
transition valid from a specific state?”’) depends on the state
we are choosing. In the example we are validating if issuing
a locution from state “c” (commander questioned) is valid
to a state “d” (commander challenged), in this case is False.
This seems obvious if we analyse the diagram, but human
visual inspection will not scale to larger and more complex
protocols, nor operate at runtime. Property four (“Given a
node is there a path which leads to that node?”) tries to con-
firm if a valid path exists to reach a specific state. In the
example the formula is true for state “g”. Property number
five (“Given a state is there a path which avoids that state?”’)
is true for state “i” avoiding state “c”. Finally property six
(“If a command has been issued and questioned can the di-
alogue still reach a state where the command is accepted?”)
is True for the specified states.

Properties are closely related to the CDP protocol and the
states that emerge from it; a more generic set of formulae
may be desirable to develop. Nevertheless, we need to take
into account that for dynamic verification, on-the-fly models
need to be constructed and validated.

Conclusions

In this paper we have explored the possibility of using
model-checking methods to automatically verify that a com-
plex agent interaction protocol using argumentation has de-
sired properties (or does not have undesired properties). Our
key contribution has been to show by example that this is
possible, using the model checker NuSMYV to verify spe-
cific properties of the command dialogue protocol, CDP.
Because this protocol supports multi-agent argumentation, it
is reasonably complex and thus the value of automated ver-
ification approaches is likely to be considerable. Such ver-
ification could take place well prior to implementation, for
example, as part of the human-led protocol design process.



Or it could take place at run-time just prior to invocation of
the protocol, if agents were enabled to select and verify pro-
tocols on-the-fly at the moment before they enter into dia-
logue, as in (Miller and McBurney 2008). For agents having
dynamic goals, on-the-fly verification of protocols will be
important to ensure that protocols they use to engage in di-
alogue are able to achieve states currently desired or avoid
states currently not desired.

In future work we intend to extend our model to ac-
count for the critical questions associated with the argument
scheme as given in CDP since we have not considered them
here. Our approach would be much more complex if we
add rules and states considering the critical questions where
more states and variables need to be added to the model. We
also hope to investigate how our model can be extended to
handle different types of dialogue in addition to CDP. For
example, in (Atkinson, Bench-Capon, and McBurney 2004)
a protocol is given for persuasion dialogues based on a sim-
ilar argument scheme that is used for CDP, so this would
be a good candidate protocol to model next. Additionally,
some recent work (Atkinson and Bench-Capon 2009) has
looked at how the argument scheme for practical reasoning
discussed here can be formalised in terms of action-state se-
mantics (Reed and Norman 2007). It would be also inter-
esting to see how our approach to model checking dialogues
could be applied to this representation.
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