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Abstract

Defeasible Logic Programming (DELP) is a formal-
ism that extends declarative programming to capture
defeasible reasoning. Its inference mechanism, upon a
query on a literal in a program, answers by indicating
whether or not it is warranted in an argumentation pro-
cess. While the properties of DELP are well known,
some of its basic elements can be redefined in order to
shed light on some of the subtleties of the warrant pro-
cess. We will discuss these alternative definitions and
the cases in which they provide a better performance.

Introduction
The inference mechanism known as Defeasible Logic Pro-
gramming (from now on DELP) has been studied for some
time now, and applied to many fields. Many extensions have
been considered1. This paper intends to take a step back to
give a rigorous look at its formal foundations and suggest
some possible improvements.

We present here a redefinition of the basic elements of
DELP (Garcı́a and Simari 2004) in order to put this frame-
work in line with recent developments in defeasible rea-
soning. This version, by considering alternative character-
izations of those elements, provides a enhanced formal ap-
proach to DELP.

In DELP the goal is to determine whether literals in a
logic program including defeasible rules are warranted or
not. It proceeds by constructing arguments for and against
any given literal and drawing different argumentation lines
(i.e. sequences of arguments, in which each one attacks the
previous one). The whole family of argumentation lines for
a literal defines a dialectical tree. A marking procedure, fi-
nally, determines if the literal becomes warranted or not.

The basic issues in DELP involve the definition of argu-
ment, the condition of defeat among them as well as the ad-
missibility conditions for the construction of argumentation
lines. In the original version arguments regarded only defea-
sible rules, but this was a source for some problems in the
characterization of defeat, as we noted in (Viglizzo, Tohmé,
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1See (Tohmé and Simari 2004; Capobianco, Chesñevar, and
Simari 2005; Alsinet et al. 2008), among others.

and Simari 2008). In the current version, these problems
disappear, thanks to slight changes in the definitions. We
have chosen to introduce first our new system and left the
comparison with the existing one for the last section.

In the next section we present the motivations of the
present work. In the following one we introduce the new
definitions and then we compare our new proposal with the
existing framework. The main point is that this new ap-
proach provides a more flexible formal model, able to handle
some finer distinctions among arguments.

Preliminaries: A New Look at DeLP
A central topic in this paper is a new definition of argument
in DELP to include more structure. That will allow us to
enhance the notion of warrant. Nevertheless, we will main-
tain the intuitions behind the original presentation (Garcı́a
and Simari 2004; Garcı́a 2000; Garcı́a and Simari 1999) of
DELP. The motivation of the present work can be found
in some developments (Viglizzo, Tohmé, and Simari 2008;
Falappa, Kern-Isberner, and Simari 2002; Stolzenburg et al.
2003; Chesñevar et al. 2003; Chesñevar and Simari 2001)
that show that a finer, more structured, version of DELP
could enhance the possibilities of applying this framework
in Multi-Agent Systems.

The general approach to reasoning in DELP starts with
a defeasible logic program and takes a dialectical view of
the process of inference. In classical logic, proofs are undis-
puted. A well-formed formula, wff, L is said to be a con-
sequence of a set S of wffs if and only if there exists a se-
quence L1, L2, . . . , Ln of wffs such that L is Ln and, for
each i either Li is an axiom or Li is in S, or Li is a direct
consequence by some rule of inference of some of the pre-
ceding wffs in the sequence. The sequence L1, L2, . . . , Ln

is called a proof.
In DELP, some of the rules are defeasible and can be

challenged. A literal L will be warranted if there exists a
non-defeated argument supporting L. An argument A for a
literal L is a minimal and consistent set of rules that allows
to infer L. In order to establish whether the argument A
is a non-defeated argument, argument rebuttals or counter-
arguments that could be defeaters for the original argument
are considered and compared using some preference crite-
rion, to decide if they are better than the attacked argument.
Since counter-arguments are arguments, there may exist de-



featers for them, and defeaters for these defeaters, and so
on. Thus, a sequence of arguments called argumentation
line appears where each argument defeats its predecessor in
the line. In general, each argument has more than one de-
feater and therefore more than one argumentation line exists.
Considering all argumentation lines, a tree with arguments
as nodes is constructed. In that tree, called dialectical tree,
the root is the starting argument and each path from the root
to a leaf represents an argumentation line. Finally, a dialec-
tical analysis of this tree is used to decide whether the initial
argument is defeated or not. In case that argument A is un-
defeated,A is called a warrant and the literal L that supports
is said to be warranted. The set of warranted literals repre-
sents the semantics of the defeasible logic program.

Basic Definitions
In this section, we build a refinement on the definitions for
DELP as presented in Garcı́a and Simari, 2004.

Definition 1 (Atoms, Literals, and Complements) Let At
be a set. The elements of At will be called atoms. If x is an
atom,∼x will be called a negated atom. Given a set X ⊆ At
of atoms, ∼X is the set {∼x : x ∈ X}. The set Lit is the
set of all literals in At∪ ∼At. The complement l̄ of a literal
l ∈ Lit is ∼ x if l is an atom x and x if l is a negated atom
∼x.

Definition 2 (Fact) A Fact is a literal, i. e. an atom, or a
negated atom.

Definition 3 (Strict Rule) A Strict Rule is an ordered pair,
denoted “Head← Body”, whose first member, Head, is a
literal, and whose second member, Body, is a finite, non-
empty set of literals. A strict rule with the head L0 and body
{L1, . . . , Ln} can also be written as: L0 ← L1, . . . , Ln

(n > 0) or L1 ∧ . . . ∧ Ln → L0.

Definition 4 (Defeasible Rule) A Defeasible Rule is an or-
dered pair, denoted “Head –≺Body”, whose first member,
Head, is a literal, and whose second member, Body, is
a finite non-empty set of literals. A defeasible rule with
head L0 and body {L1, . . . , Ln} can also be written as:
L0 –≺L1, . . . , Ln (n > 0), or L1 ∧ . . . ∧ Ln �– L0.

Definition 5 (Defeasible Logic Program) A Defeasible
Logic Program P , abbreviated delp, is the disjoint union of
three possibly infinite sets: a set of facts Πf , a set of strict
rules Πr and a set of defeasible rules ∆. When required, we
will denote P as (Π, ∆), where Π = Πf ∪Πr.

Example 1 The following programP=(Π,∆), written in the
traditional notation as:
Π = { r ← s; p; s}
∆ = { q –≺p; ∼q –≺p, r}
will be written as:
Πf = {p, s}
Πr = {s→ r}
∆ = {p�– q, p ∧ r �– ∼ q}

Definition 6 (Defeasible and Strict Derivation) Let P be
a delp and L a ground literal. A derivation of L from P , de-
notedP |∼ L, consists of a finite sequence L1, L2, . . . , Ln =
L of ground literals, and each literal Li is in the sequence
because:

(i) Li ∈ Πf , or
(ii) there exists a rule Ri ∈ Πr ∪ ∆ with head Li and body

B1, B2, . . . , Bk and every literal of the body is an element
Lj of the sequence appearing before Li, j < i.

If all the rules used in the derivations come from the set Πr,
then we say that the sequence is a strict derivation. In this
case we will write P ` L. If at least one of the rules comes
from ∆, we will say it is a defeasible derivation.

Definition 7 (Annotated Derivation) Let P be a delp and
L a ground literal. An annotated derivation of L
from P , consists of a finite sequence of rules and facts
[R1, R2, . . . , Rn], where L is the fact Rn or the head of the
rule Rn and if a rule Ri is in the sequence, then its body
Bi

1 ∧ . . . ∧ Bi
ki

, is such that for all Bi
j , 1 ≤ j ≤ ki, Bi

j is
a fact or it appears as the head Lm, for some rule Rm with
1 ≤ m < i.

Remark 1 Notice that facts could be added to the sequence
at any point prior to their appearance in the body of a rule.
Even so, we might endow the set of facts and rules with a to-
tal order so that there is a way to choose one of all the anno-
tated defeasible derivations of a literal that contain the same
rules, by using a lexicographical order on those sequences.

Definition 8 (Annotated Sub-derivation) Let P be a delp
and L a ground literal. Let D be an annotated derivation of
L from P . We will say that an annotated derivation D′ of L′

from P is a sub-derivation of D if every member of D′ is a
also a member of D.

Example 2 From the program P:
Πf = {p, s}
Πr = {s→ r}
∆ = {p�– q, p ∧ r �– ∼ q},
the next annotated derivation D for ∼q can be constructed:

[s, s→ r, p, p ∧ r �–∼q]

and the annotated derivation D′ = [s, s → r] is a sub-
derivation of D.

From the point of view of the analysis of the process of
reasoning, interesting derivations must be concise.

Definition 9 (Minimal Derivation) Let P be a delp and L
a ground literal. Let D be an annotated derivation of L from
P , we will say that D is a minimal annotated derivation if
there is no proper sub-derivation D′ of D such that D′ is
also an annotated derivation of L.

Remark 2 Every derivation D for L contains at least a min-
imal sub-derivation D′ for that literal L.



As we will see, introducing unnecessary elements in a de-
feasible derivation weakens its ability to support its conclu-
sion. For that reason, we will only consider minimal deriva-
tions.

There are other ways in which derivations can be mini-
mal. Consider the following example:

Example 3 Let P be the program composed of Πf =
{a, b}; Πr = {a ∧ b → c, b → e, d → g, g → f}; ∆ =
{c�– f , a�– d, e�– f}.
We have the following minimal derivations for the literal f :

[a, b, a ∧ b→ c, c�– f ]

[a, a�– d, d→ g, g → f ]
[b, b→ e, e�– f ]

While the three of them are minimal in the sense defined
above, we can observe that the first two are longer than the
third one, and that the first one uses both facts a and b, while
the second one uses only a.

One may also want to avoid using defeasible rules as
much as possible. This adds yet another dimension to the
study of these derivations.

We can also observe that all three are minimal sub-
derivations for f of the annotated derivation:

[a, b, a ∧ b→ c, c�– f, a�– d, d→ g, g → f, b→ e, e�– f ]

One of the properties that a piece of reasoning should have
as such is internal consistency. The following definitions
characterize that property.

Definition 10 (Consequence Operators) For a given pro-
gram P , and sets X ⊆ Lit, R ⊆ Πr and D ⊆ ∆,
C(X,R,D) is the set of all literals derivable from X ∪
R ∪ D. For any subprogram A of P , we let CP (A) =
C(Πf , Πr,A ∩ ∆), while with CA(A), or just C(A), we
denote the set C(Πf ∩ A, Πr ∩ A, ∆ ∩ A).

Remark 3 The idea behind having two different operators
CP and C is that we will use the first one to determine the
acceptable derivations from a program, but we will after-
wards look only at the derivations on their own to compare
two of them.

Definition 11 (Contradictory and Consistent Sets)
Given a set X ⊆ Lit, let X+ = X ∩ At and
X− = {a ∈ At :∼ a ∈ X}. X is said to be contra-
dictory if X+ ∩ X− 6= ∅. A subprogram A of P is
contradictory if C(A) is contradictory, and inconsistent if
CP (A) is contradictory. If A is not inconsistent, it will be
called consistent.

It is clear that a contradictory program is inconsistent,
since the consequence operator is monotonic.

Example 4 In the program of example 2, CP (P) =
C(Πf , Πr, ∆) = {p, s, r, q,∼ q} is contradictory.

We assume that for all programs, the set Π of facts
and strict rules is not contradictory, that is, that CP (∅) =
C(Πf , Πr, ∅) is not contradictory.

Definition 12 (Consistent Derivation) Let D be an anno-
tated derivation. We will say that D is consistent if the set
of all facts and rules used in D is consistent.

Definition 13 (Brief) We call a minimal, consistent anno-
tated derivation a brief.

Definition 14 (Argument) Let P be a delp, and let D be a
brief for a literal L from P . We will say that the set A of
facts and rules, strict and defeasible, contained in the deriva-
tion D is an argument for L constructed from P .

So an argument for L constructed from P is the set ob-
tained from applying a forgetful operator Arg to a brief. If
D is a brief we can write the argument obtained as A =
Arg(D).

Remark 4 From the definitions above, we notice that given
an annotated derivation D, constructed from a program P ,
the set of rules and facts involved in that derivation repre-
sents a subprogram of P , and therefore an argument fo a
literal L is a minimal, consistent subprogram A of P from
which L can derived.

Notation: We will use the notation 〈A, L〉P to represent
the fact that A is an argument for L constructed from P .
Usually, when the reference to the defeasible logic program
P is clearly understood, we will simplify the notation for
arguments as 〈A, L〉. Unless it is necessary, we will not
mention the defeasible program P . Given a defeasible logic
program P , we will denote the set of all arguments 〈A, L〉
that can be constructed from P as Args(P).

Remark 5 While we keep the notation above, we observe
that the literal L is redundant as the next proposition shows.

Proposition 1 Given an argument A, there is a unique lit-
eral L so that the facts and rules in a set A can be listed as a
brief for L.

Proof. Assume that there are two such literals L1 and L2.
Let [R1, R2, . . . , Rn] be a brief for L1. Assume that L2 is
the head of rule Ri. If i < n, then [R1, . . . , Ri] is a shorter
brief for L2, and this contradicts the minimality ofA. There-
fore Ri = Rn and L1 = L2. 2

Definition 15 (Sub-Argument) Let P be a delp, and let A
be an argument for a literal L constructed from a brief D
produced from P . If D1 is a brief for a literal L1 ∈ C(A)
and a sub-derivation of D, then A1 = Arg(D1) is a sub-
argument of A. It is clear that A1 ⊆ A and we will also use
the notation 〈A1, L1〉⊆ 〈A, L〉 to reflect this.

Proposition 2 Let P be a delp, and let A be an argument
for a literal L constructed from a brief D produced from
P . Then, L1∈ C(A) if and only if there is a unique sub-
argument 〈A1, L1〉 of 〈A, L〉.



Proof. Let L1 be a literal in C(A). Then, there is a deriva-
tion of L1 using the rules and facts inA. Furthermore, there
is a brief D1 for L1 that uses only those facts and is therefore
a sub-derivation of the brief that gives rise to the argument
A. ThenA1 = Arg(D1) is a sub-argument ofA. To see that
it is unique in these conditions, assume that there are two
different ones. Then there are in A redundant rules for the
derivation of L1, which contradicts the minimality of A.
On the other direction, if 〈A1, L1〉 is a sub-argument of
〈A, L〉, then there is a derivation for L1 using the facts and
rules of A, that is, L1 ∈ C(A). 2

Remark 6 Let P be a defeasible logic program. The rela-
tion of sub-argumentation is a partial order relation in the
set of all possible arguments that can be constructed from
P , i. e. (Args(P); ⊆) is a poset.

Definition 16 (Disagreement) Let P be a delp. We say
that two literals L1 and L2 disagree if and only if the set
CP ({L1, L2}) is contradictory.

Example 5 Let P be the program Πf = {a, c}, Πr =
{d→∼ b}, ∆ = {a�– b, c�– d}.

The literals d and b disagree, since ∼ b is a consequence
of d using a strict rule of the program.

Definition 17 (Counter-argument) Let 〈A1, L1〉 and
〈A2, L2〉 be two arguments. We say that 〈A1, L1〉 counter-
argues, rebuts, or attacks 〈A2, L2〉 at literal L if and only if
L ∈ C(A2) and literals L and L1 disagree.

We put in this case 〈A2, L2〉RL〈A1, L1〉. Thus, for each
literal L we have a binary relation RL and we can define the
attacking relation as R = ∪L∈LitRL.

Example 6 Let P be the program: Πf = {a, c}, Πr =
{d →∼ b}, ∆ = {a�– b, c�– d} and let A = {a, a�– b},
B = {c, c�– d}, C = {c, d→∼ b, c�– d}.

We can depict the attacking relation with arrows labeled
by the literals at which the attack occurs.

〈B, d〉
b

22 〈A, b〉
drr

d,∼b
11 〈C,∼b〉

brr

Given a pair of arguments it is interesting to have a com-
parison criterion that would allow to decide which one is
better in some sense. We will assume there is a binary rela-
tion ≺ that is a subset of the attacking relation R. We call
this relation pre-defeating, since we will extend it as follows:

Definition 18 (Defeaters) 〈A1, L1〉 is a proper defeater
of 〈A2, L2〉 (at literal L) if 〈A2, L2〉RL〈A1, L1〉 and
the unique sub-argument 〈A, L〉 of 〈A2, L2〉 is such that
〈A, L〉 ≺ 〈A1, L1〉. We denote this by 〈A2, L2〉 <
〈A1, L1〉.
〈A1, L1〉 is a blocking defeater of 〈A2, L2〉 (at literal

L) if 〈A2, L2〉RL〈A1, L1〉 and the unique sub-argument
〈A, L〉 of 〈A2, L2〉 is such that 〈A, L〉 6≺ 〈A1, L1〉 and
〈A1, L1〉 6≺ 〈A, L〉. Whenever this is the case we use the

notation 〈A2, L2〉 ≈ 〈A1, L1〉, but we must keep in mind
this is not necessarily a symmetric relation.

We call defeaters of an argument to all proper and block-
ing defeaters. If 〈A2, L2〉 is a defeater of 〈A1, L1〉 we write
〈A1, L1〉 ≤ 〈A2, L2〉.

For the sake of completeness we present next the defi-
nitions, taken from Garcı́a and Simari, 2004 that conform
the DELP system, although we have not made significant
changes on them.

Definition 19 (Argumentation Line) Let P be a delp and
〈A0, L0〉 an argument obtained from P . An argumenta-
tion line for 〈A0, L0〉 is a sequence of arguments from P ,
denoted Λ= [〈A0, L0〉, 〈A1, L1〉, 〈A2, L2〉, 〈A3, L3〉,. . . ],
where each element of the sequence 〈Ai, Li〉, i > 0, is a
defeater of its predecessor 〈Ai−1, Li−1〉.

Definition 20 (Supporting and Interfering Arguments)
Let Λ = [〈A0, L0〉, 〈A1, L1〉, 〈A2, L2〉 〈A3, L3〉, . . .] be
an argumentation line. We define the set of supporting
arguments as ΛS= {〈A0, L0〉,〈A2, L2〉, . . . }, and the set of
interfering arguments ΛI= {〈A1, L1〉, 〈A3, L3〉, . . .}.

Definition 21 (Concordance) Let P be a delp. Two argu-
ments 〈A1, L1〉 and 〈A2, L2〉 are concordant if and only if
the set CP (A1 ∪ A2) is non-contradictory. More generally,
a set of arguments {〈Ai, Li〉}ni=1 is concordant if and only
if CP (

⋃n
i=1Ai) is non-contradictory.

Definition 22 (Acceptable Argumentation Line) An
argumentation line Λ = [〈A1, L1〉, . . ., 〈An, Ln〉] is an
acceptable argumentation line if and only if:

1. Λ is a finite sequence.
2. The sets ΛS and ΛI , of supporting and interfering argu-

ments are concordant.
3. No argument 〈Ak, Lk〉 in Λ is a sub-argument of an argu-

ment 〈Ai, Li〉 appearing earlier in Λ (i < k.)
4. For all i such that the argument 〈Ai, Li〉 is a blocking

defeater for 〈Ai−1, Li−1〉, if 〈Ai+1, Li+1〉 exists, then it
is a proper defeater for 〈Ai, Li〉.

Definition 23 (Dialectical Tree) A dialectical tree for an
argument constructed from a program P for 〈A, L〉, denoted
T〈A,L〉, is formed taking all the acceptable argumentation
lines that start with 〈A, L〉: the line [〈A, L〉] is the root of the
tree and a line [〈A, L〉, 〈A1, L1〉, . . . , 〈An, Ln〉] is the child
of [〈A, L〉, 〈A1, L1〉, . . . , 〈An−1, Ln−1〉] for all n ≥ 1.

Procedure 1 (Marking of a Dialectical Tree) Let T〈A,L〉
be a dialectical tree for 〈A, L〉. The corresponding marked
dialectical tree, denoted T ∗〈A,L〉, will be obtained marking
every node in T〈A,L〉 as follows:

1. All leaves in T〈A,L〉 are marked as “U”s in T ∗〈A,L〉.
2. Let Λ be an inner node of T〈A,L〉. Then Λ will be marked

as “U” in T ∗〈A,L〉 if and only if every one of its children is
marked as “D”. Otherwise, Λ will be marked as “D”.



Definition 24 (Warranted Literal) A literal L is war-
ranted if and only if for some argument 〈A, L〉, the root of
T ∗〈A,L〉 is marked as “U”. We will say that A is a warrant
for L.

The definition of warrant ensures the non-monotonicity
of DELP. If a new rule is added to a program P , the dialec-
tical tree for 〈A, L〉 may change and consequently, instead
of being marked “U”, its root may become marked as “D”:

Example 7 Let P be the program: Πf = {p}, Πr = {p →
b}, ∆ = {b�– f} and let A = {p, p → b}, B = {p, p →
b, b�– f}.

It follows trivially that f is warranted by B.
Now consider P ′, in which Π′f = Πf , Π′r = Πr while

∆′ = ∆ ∪ {p�–∼f}. Then, a new argument obtains,
C = {p, p�–∼f}. If furthermore, 〈B, f〉 ≺ 〈C,∼f〉, then
〈B, f〉 < 〈C,∼f〉 so in P ′, T ∗〈B,f〉 is such that f is no longer
warranted.

Comparison with the previous framework
In this section we want to compare the newly introduced sys-
tem with the one originally presented in Simari and Loui,
1992 and Garcı́a and Simari, 2004. In order to do this, we
must distinguish the arguments as defined in Definition 14
of this paper from the original ones, which we’ll call d-
arguments. Here the letter d stands to emphazise that only
the defeasible rules are regarded in this kind of arguments.

Definition 25 (d-arguments) Let P=(Π, ∆) be a delp. A
d-argument is a pair 〈A, L〉 such that there is a brief D for
L and A = ∆ ∩ Arg(D).

The definition above is not the original one but one can
readily see it is equivalent to it, and uses the machinery in-
troduced in this paper.

Now we can be recover d-arguments from our arguments.

Definition 26 (Equi-defeasibility) Let P=(Π, ∆) be a delp
and Args(P) the corresponding set of arguments. Let
〈A1, L1〉, 〈A2, L2〉 ∈ Args(P) . We will say that A1 and
A2 are equi-defeasible if an only if A1 ∩∆ = A2 ∩∆. We
will denote this relation as A1 ≡ A2.

That is, A1 and A2 are equi-defeasible if they coincide
on the set of defeasible rules they use. It is easy to see that
equi-defeasibility is an equivalence relation.

There is a correspondence between argumentsA support-
ing a literal L and d-arguments 〈[A], L〉, where [A] denotes
the equivalence class of A under the equi-defeasibility rela-
tion. We will identify the class of an argument A, [A] with
the set A ∩ ∆. Together with d-arguments, we have the
corresponding definitions of d-sub-argument, d-attack and
d-defeating relation:

Definition 27 Let dArgs(P) be the set of all d-arguments of
a program P . The d-argument 〈A1, h〉 is a d-sub-argument
of 〈A2, h

′〉 iff A1 ⊆ A2.

Definition 28 For each literal h we define the binary rela-
tion Rd

h on dArgs(P) by 〈A1, h1〉Rd
h〈A2, h2〉 iff there ex-

ists 〈A, h〉 ∈ dArgs(P) such that A ⊆ A1 and h and h2

disagree. We say in this case that the argument 〈A1, h1〉 is
d-attacked by 〈A2, h2〉 at h or that 〈A2, h2〉 d-attacks or d-
rebuts 〈A1, h1〉 at h. We also say that 〈A2, h2〉 is a counter-
d-argument of 〈A1, h1〉.

Definition 29 〈A1, L1〉 is a proper d-defeater of 〈A2, L2〉
(at literal h) if 〈A2, L2〉Rd

h〈A1, L1〉 and there exists a sub-d-
argument 〈A, L〉 of 〈A2, L2〉 such that 〈A, L〉 ≺ 〈A1, L1〉.
We denote this by 〈A2, L2〉 <d 〈A1, L1〉.
〈A1, L1〉 is a blocking d-defeater of 〈A2, L2〉 (at lit-

eral h) if 〈A2, L2〉Rd
h〈A1, L1〉 and there exists a sub-d-

argument 〈A, L〉 of 〈A2, L2〉 such that 〈A, L〉 6≺ 〈A1, L1〉
and 〈A1, L1〉 6≺ 〈A, L〉. Whenever this is the case we use
the notation 〈A2, L2〉 ≈d 〈A1, L1〉.

We call d-defeaters of an argument to all proper and
blocking d-defeaters. If 〈A2, L2〉 is a d-defeater of 〈A1, L1〉
we write 〈A1, L1〉 ≤d 〈A2, L2〉.

We now proceed to analyze three cases where we can see
the difference between the formalisms in action.

Spurious Attacks
Example 8 Using the program from example 6, we see that
the equivalence class of argumentsB and C is the same so the
d-arguments are 〈[A], b〉, 〈[B], d〉 and 〈[B],∼b〉 . These two
last d-arguments are each other’s sub-d-arguments as well.
This enables that 〈[A], b〉 d-attack 〈[B], d〉 at the literal ∼ b,
which does not appear in the deduction for d. Since ∼ b /∈
C(B), this attack does not happen in the new framework.

Proper and blocking defeaters
Remark 7 Notice that our notion of sub-argument is more
restrictive than that of (Garcı́a and Simari 2004), since all
that is required for A to be a sub-d-argument of B is that
A ∩∆ ⊆ B, while we now demand that A ⊆ B. This elim-
inates some undesirable effects like the one in the following
example.

Example 9 Let P2 be the program with Πf = {a},
Πr = {b → h, c → h, b ∧ c → h1}, while ∆ =
{a�– b, a�– c, a�– ∼ h}. Here we had that the d-argument
〈{a�–∼h},∼ h〉 d-attacks 〈{a�– b, a�– c}, h1〉 at literal
h, but we have two sub-d-arguments at which the at-
tack can happen: 〈{a�– b}, h〉 and 〈{a�– c}, h〉. If we let
〈{a�– b}, b〉 ≺ 〈{a�–∼h},∼h〉 then we obtain:

〈{a�– b}, b〉 <d 〈{a�–∼h},∼h〉
〈{a�– b}, h〉 <d 〈{a�–∼h},∼h〉

〈{a�– b, a�– c}, h1〉 <d 〈{a�–∼h},∼h〉
〈{a�– c}, c〉 ≈d 〈{a�–∼h},∼h〉
〈{a�– c}, h〉 ≈d 〈{a�–∼h},∼h〉

〈{a�– b, a�– c}, h1〉 ≈d 〈{a�–∼h},∼h〉

So in this case 〈{a�–∼h},∼ h〉 was both a proper and a
blocking d-defeater for the same argument and at the same
literal.



Under the new definitions presented in this paper, the ar-
gument {a, a�– b, a�– c, b ∧ c → h1} for h1 has no sub-
arguments for h, so the conflict does not occur.

Discerning the facts
When one uses d-arguments, the facts and strict rules used
for a derivation are not recorded. This ends up meaning that
all of them are implicit in each d-argument. One may as
well consider a unique fact fP , logically equivalent to the
conjunction of all the facts in a program P , and obtain an
equivalent program. With the proposed definition of argu-
ments given here, the information on which facts are used
to support a conclusion is recorded, and may later be used
for comparing the relative weight of competing arguments.
We think this adds to the flexibility of DELP, in particular
when applied in the field of interacting agents (Capobianco,
Chesñevar, and Simari 2005), where different agents may
trust information on facts in different degrees.

Conclusions
This paper introduced a new version of DELP in which the
central notion of argument has been modified. It contains
now both defeasible and facts and strict rules. Problems that
arose from restricting arguments to include only defeasible
rules disappear. On one hand, now each argument supports
a unique literal, so the attack relation is more transparently
defined. On the other, the derived relation of defeat (be it
proper or blocking) obtains in an unambiguous way.

These slight modifications of the DELP formalism en-
sure a leaner non-monotonic inference mechanism, mainly
because each argument now supports a unique literal. Fur-
thermore, the information carried by each argument is richer
than in previous versions.

The new system has not yet been implemented, so we
make no claims about its computational cost. We suspect,
however, that it might be less than the classical version of
DELP because of the closer correspondence between argu-
ments an literals. This should ease the calculation of the
attack and defeat relations. Manipulating lists (as the anno-
tated derivations) may also be easier than dealing with sets.

Finally, the explicitness of the representation promoted
here facilitates the interaction of several sources of informa-
tion. This feature is particularly appropriate in multi-agent
environments.
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