
Inductive data types with negative occurrences in

HOL�

Tanja E.J. Vos

ITI, Universidad Polit�ecnica de Valencia, tanja@iti.upv.es

S. Doaitse Swierstra

Informatica Instituut, Utrecht University, doaitse@cs.uu.nl

March 12, 2002

Abstract

We identify that a useful inductive data type ty with negative occurrences like ty!bool

in the arguments of its constructors can have a set-theoretic interpretation when the nega-

tive occurrence models only �nite sets. Subsequently, we show how such data types can be

manually added to higher order logic using equivalence sets.

1 Introduction

In theorem proving systems for higher order logics such as HOL [GM93], Isabelle [NPW02] and

PVS [ORR+96], tools are provided that automatically generate the theorems and de�nitions nec-

essary to add inductive (or recursive) data types. Systems like PVS [OS93] use an axiomatic

approach, i.e. the properties are generated syntactically only and introduced into the theory as

axioms. In HOL [Mel89] and Isabelle [BW99] these tools use a de�nitional approach, meaning

that the desired theorems are derived from the de�nitions within the system. However, not all

inductive type descriptions have a solution in higher order logic and not all inductive type de-

scriptions that have a solution can be automatically added to higher order logic [Gun93b]. In this

paper we identify a useful inductive type of the latter kind and show how to manually add it to

higher order logic.

Consider the following inductive type de�nition

ty = C1 �
1

1 : : : �
k1
1
j : : : j Cm �

1

m : : : �
km
m (1.1)

Melham [Mel89] describes a set of tools in HOL that automatically carries out all the formal proofs

necessary to add concrete recursive types, that is data types like (1.1) where each �
j
i :

(1) is non-recursive, i.e. a type expression that does not include ty or

(2) is the name ty itself.

This is later on extended in [Mel91, Gun93a, Gun93b] to data types similar to the ones that can

be automatically de�ned in Isabelle [BW99], i.e. data types like (1.1) where each �
j
i should be an

admissible type de�nition, meaning that each �
j
i satis�es (1) or (2) or

(3) is of the form (� 0

1; : : : ; �
0

n)t
0 where t

0 is an existing inductively de�ned data type1 like (1.1)

and �
0

1; : : : ; �
0

n are admissible, or

�This work has been partially supported by CICYT grants TIC99-0280-C02-01 and TIC2000-1246.
1That means there exists an initiality theorem [Gun93b] (or paramorphism [Mee90]) for the (initial) data type

1

(4) is of the form �!�
0, where � 0 is an admissible type description and � is non-recursive.

The last condition states that all occurrences of the newly de�ned type must be strictly positive.

It is easy to see that violating this condition leads to inconsistencies [Gun93b]. For example, if

one of the �
j
i equals ty!bool this would yield a contradiction since the cardinality of ty!bool is

that of the power-set of ty (i.e. P(ty)) which by Cantor's theorem must be strictly greater than

the cardinality of ty. However, this does not hold for Pfin(ty) { the subset of P(ty) that consists
of only the �nite sets { that, for in�nite ty, has the same cardinality as ty. Consequently, we are

able to assign a set-theoretic interpretation to a data type ty that has a �
j
i equal to a "negative

occurrence" like ty!bool, when this negative occurrence only represents the �nite sets of ty. In

this paper, we will show, using a de�nitional approach, how to manually add such a data type to

HOL. More speci�c, we will describe how to de�ne the following inductive data type Val:

Val = SET Val!bool j NUM num j LIST (Val)lists j TREE (Val)ltree (1.2)

where arguments of the the constructor SET are restricted to be �nite sets. This is somewhat

smaller version of the data type used in [Vos00]:

Val = SET Val!bool j NUM num j BOOL bool j REAL real j STR string j LIST (Val)lists j TREE (Val)ltree

to model the state-space of programs that have di�erent variables taking di�erent types (e.g. the

Floyd-Warshall algorithm is an example of a program that needs variables of type set and variables

of type number to solve the all-pairs shortest-path problem). In this paper we will not consider

the booleans, reals and strings since these generate many proof obligations similar to those of the

numerals.

2 Concepts and notation needed

This section gives a quick overview of the concepts we need in this paper. Function application

is represented by a dot, function composition is de�ned as usual: 8f g :: f Æ g = (�x: f:(g:x)),

and 8f x :: split:f:x = (f:x; x). Hilbert's "-operator in (�x � P:x), denotes some value, say v,

such that P:v holds. If there is no such value, a �xed but arbitrary value is returned. The type

('a)set is an abbreviation for the the type 'a!bool and elements of this type model �nite sets if

the predicate �nite.s is true. For the type ('a)lists the empty list is denoted by [] and cons is the

list constructor, and 2 is used for both set and list membership. We assume to have a function

s2l that converts �nite sets to lists, for its exact construction the reader is referred to [Vos00].

Moreover there is a function l2s that converts lists to sets. Theorems and de�nitions about sets

and lists needed in this paper can be found in Appendix A. The type tree denotes ordered trees

of which the nodes can branch any (�nite) number of times. The size of a tree t (size.t) is de�ned

to be the number of nodes in that tree. The function INL and INR are constructor functions for

sum types, OUTR and OUTL project out of the right and left summand respectively, and ISL and

ISR tests for membership of the left respectively right summand. Finally, fst and snd extract the

�rst respectively second component of a pair (i.e. value of product type).

3 The general approach for de�ning a new type in HOL

De�ning a new data type ty in HOL involves three steps [Gor85, Mel89]. First, �nd an appropriate

subset predicate P of an existing type ety (the representing type) to represent the new type and

show that P is not empty (i.e. 9x :: P:x). Second, extend the syntax of logical types to include a

new type symbol ty, and use the type de�nition axiom mechanism to add a de�nitional axiom to

the logic asserting that the new type is isomorphic to the non-empty subset P of ety. The SML

function new type definition fname = " ty", pred = P , inhab thm = ` 9x :: P x g invoked in

HOL, results in ty being a new type symbol characterised by the following de�nitional axiom:

2

` 9rep :: (8x y :: (rep:x = rep:y)) x = y) ^ (8r :: P:r = (9x :: r = rep:x)) (ty TY DEF)

where rep can be thought of as a representation function that maps a value of the new type ty

to the value of type ety that represents it. The type de�nition axiom (ty TY DEF) above, asserts

only the existence of a bijection from ty to the corresponding subset of ety. To introduce constants

that in fact denote this isomorphism and its inverse, we need to invoke:

define new type bijections

fABS = "ABS ty", REP = "REP ty", name = "ty ISO DEF", tyax = ty TY DEFg

that de�nes REP ty:ty ! ety and ABS ty:ety ! ty, and creates the following theorem which is

stored under the name ty ISO DEF:

` (8a :: ABS ty:(REP ty:a) = a) ^ (8r :: P:r = (REP ty:(ABS ty:r) = r)) ty ISO DEF

It is straightforward to prove that these representation and abstraction functions are injective

(one-to-one) and surjective (onto), using provided SML functions. Finally, stating that some

property H is true for all elements of the new type ty is equal to stating that for all elements in

P , H is true of their image under ABS ty:

` (8x :: (H:x)) = (8r :: (P:r)) (H:(ABS ty:r))) ty PROP

In the third step, a collection of theorems is proved that state abstract characterisations of

the new type. These characterisations capture the essential properties of the new type without

reference to the way its values are represented and therefore acts as an abstract \axiomatisation"

of it. For an inductively de�ned data type �, the assertion of the unique existence of a function g

satisfying a recursion equation whose form coincides with the primitive recursion scheme of this

type � { that is, g is a paramorphism [Mee90] { provides an adequate and complete abstract

characterisation for �. From this characterisation it follows that every value of � is constructed by

one or more applications of �'s constructors, and consequently completely determines the values

of � up to isomorphism without reference to the way these are represented. Moreover, in [Mee90]

it is proved that all functions with source type � are expressible in the form of paramorphism g.

4 More concepts needed: labelled trees

Labelled trees, ('a)ltree, have the same structure as type tree, but also have a value associated

with each of its nodes. They are is de�ned by a type de�nition using existing type (tree � ('a)lists)

and subset predicate Is ltree� (tree�('a)lists) that is equal to the set of pairs (t,l) 2 (tree�('a)lists)
for which it holds that the size.t is equal to the length.l.

There is a function available that given an labelled tree of type ('a)ltree returns the shape of

the tree: shape:t 2 ('a)ltree ! tree, de�ned by fst.(REP ltree.t). The function that returns the

list of values that are associated with the nodes: values:t 2 ('a)ltree ! ('a)lists is de�ned by

snd.(REP ltree.t).

The constructor: Node 2 'a! (('a)ltree)lists! ('a)ltree can be used to construct any value

of type ('a)ltree. Some theorems we need in this paper can be found in Appendix A.

5 The representation and type de�nition

In [Mel89], each constructor Ci:x
1
i : : : x

ki
i of a concrete recursive type like (1.1) is represented by

a labelled tree. Suppose pi is the number of arguments that have existing types and qi is the

number of arguments which have type op (pi + qi = ki), then the abstract value of op denoted by

3

Ci:x
1
i : : : x

ki
i is represented by a labelled tree that has pi values associated with its root node, and

qi subtrees (for the recursive occurrences of op). In a diagram:

Ci:

z }| {

x
i
1 : : : x

ki
i

| {z }

| {z }

qi subtrees

pi labels
z }| {

(; ; : : : ;)
pi arguments having

existing logical types

qi arguments

of type op

When pi = 0, the representing tree is labelled with one, the one and only element of type one.

When qi = 0, the tree will have no subtrees. Each of the m constructors can be represented by a

labelled tree in this way, and consequently the representing type for op will be:

(

sum of m products
z }| {

(� : : : �)
| {z }

product of p1 types

+ : : : + (� : : : �)
| {z }

product of pm types

)ltree

The predicate P can now be de�ned to specify a subset of labelled subtrees of the above type.

This method from [Mel89] only has to be adjusted a bit, in order to represent a subset of the

new data type Val. Let us ignore the sets for a while, and start using the ideas outlined above.

We use (one + num + one + tree)ltree as the representing type, and make representations for the

constructors NUM, LIST and TREE as follows:

NUM.n

INR.(INL.n)

LIST.[x1; : : : ; xn]

INR.(INR.(INL.one))

rx1 rxn

TREE.t

(where t = ABS ltree(ts; [v1; : : : ; vn]))

INR.(INR.(INR.ts))

rv1 rvm

where, ry denotes the representation as a (one + num + one + tree)ltree of value y of type Val, ts
is shape.t, and [v1; : : : ; vm] is values.t. Although ts is not an argument to the constructor TREE

we can use this position at the root of the representation tree to store the shape of the Val tree

which we obviously need in order to be able to go from the representation as a (one + num + one

+ tree)ltree { where all the values of the Val tree are put in a list not containing any information

about the shape of the original tree { to an abstract value of type Val.

Sets constitute a problem when proceeding with the method outlined above. When representing

SET.fx1; : : : ; xng as a labelled ltree of which the subtrees are the representations of the values

x1,. . . ,xn the resulting representation function is not an injection, since:

4

SET:fx1; x2g = SET:fx2; x1g

but, INL.one

rx1 rx2

6=
INL.one

rx2 rx1

The solution is to represent values of type Val by an equivalence class of ltrees in which ltrees like

the two above are considered equivalent. Thus, the existing type used to represent our new type

Val consists of equivalence classes of ltrees is: (one + num + one + tree)ltree ! bool.

To de�ne the subset predicate P , we need to formalise the equivalence relation equiv, that

given an ltree of type (one + num + one + tree)ltree returns the equivalence class of that ltree, i.e.

equiv : (one + num + one + tree)ltree ! (one + num + one + tree)ltree ! bool. To formalise equiv

we look at the equivalence classes of the possible values in Val:

NUM.n its equivalence class should contain only the ltree (Node.(INR.(INL.n)).[]). Consequently,

equiv.(Node.(INR.(INL.n)).[]) must return a function that only delivers true for argument

(Node.(INR.(INL.n)).[]).

SET.fx1; : : : ; xng its equivalence class consist of ltrees equivalent to Node.(INL.one).[rx1 ; : : : ; rxn],

that is the class of ltrees that: (a) have (INL.one) at their root, and (b) of which the sets of
images of their subtrees under equivalence are identical. Note that, because of the absence

of ordering in sets, the requirement that these particular sets are identical ensures that

two ltrees as displayed earlier are equivalent. Consequently, equiv.(Node.(INL.one).tl1) must

return a function that only delivers true when given an argument (Node.(INL.one).tl2) such

that: image:equiv:(l2s:tl1) = image:equiv:(l2s:tl2)

LIST.[x1; : : : ; xn] its equivalence class consist of all ltrees that are present in the equivalence class

of Node.(INR.(INR.(INL.one))).[rx1 ; : : : ; rxn], that is the class of ltrees that: (a) have the

value INR.(INR.(INL.one)) at their root, and (b) of which the list of images of their subtrees

under equivalence are identical. Consequently, equiv.(Node.(INR.(INR.(INL.one))).tl1) must

return a function that only delivers true for an argument (Node.(INR.(INR.(INL.one))).tl2)

such that: map:equiv:tl1 = map:equiv:tl2

TREE.t { when ts equals shape.t and [v1; : : : ; vm] equals values.t{ its equivalence class consist of

all ltrees that are present in the equivalence class of Node.(INR.(INR.(INR.ts))).[rv1 ; : : : ; rvm],

that is the class of ltrees that: (a) have INR.(INR.(INR.ts)) at their root, and (b) of which

the list of images of their subtrees under equivalence are identical. Consequently, invocation

of equiv.(Node.(INR.(INR.(INR.ts))).tl1), must return a function that only delivers true for

an argument (Node.(INR.(INR.(INR.ts))).tl2) such that: map:equiv:tl1 = map:equiv:tl2

Below the formal de�nition of equiv is given:

Def 5.1 Equivalence relation equiv DEF

equiv:(Node:v1:tl1):(Node:v2:tl2) =

(v1 = v2)

^
((tl1 = tl2 ^ (9n :: v1 = INR:(INL:n)))

_ (image:equiv:(l2s:tl1) = image:equiv:(l2s:tl2) ^ ISL:v1)

_ (map:equiv:tl1 = map:equiv:tl2 ^ (v1 = INR:(INR:(INL:one)) _ 9t :: v1 = INR:(INR:(INR:t))))

)

Proving that the relation equiv is an equivalence relation is tedious but straightforward. Using the

very nice way to represent equivalence relations from [Har93], we have:

5

Thm 5.2 equiv.t1.t2 = (equiv.t1 = equiv.t2) equiv EQUIV REL

The subset predicate P , specifying a non-empty subset of equivalence classes of ltrees, can now be

de�ned as the quotient set of an appropriate subset Q of ltrees and the equivalence relation equiv.

Looking at the representations of the di�erent Val values, we can infer that this Q must satisfy:

Def 5.3 Q DEF

Q:(Node:v:tl) = (9n :: (v = INR:(INL:n)))) tl = []

^ (9t :: v = INR:(INR:(INR:t)))) Is ltree:(OUTR:(OUTR:(OUTR:v)); tl)

^ (8t :: t 2 tl) Q:t)

Finally, the subset predicate P is de�ned as the quotient set of Q by equiv:

Def 5.4 P = Q=equiv Is pvt REP

That means:

Thm 5.5 P = (�s: 9t :: (s = equiv:t) ^ (Q:t)) Is pvt REP THM

It is easy to prove that P is not empty, and so we can use SML functions new type definition

and define new type bijections to extend the syntax of logical types to include our new type

Val, de�ne the type bijections ABS Val and REP Val between Val and P , and prove that these are

injective and surjective:

` (8a :: ABS Val:(REP Val:a) = a) ^ (8r :: P:r = (REP Val:(ABS Val:r) = r)) Val ISO DEF

` (8a a0 :: (REP Val:a = REP Val:a0) = (a = a
0)) Val REP ONE ONE

` 8r :: P:r = (9a :: r = REP Val:a) Val REP ONTO

` 8r r0 :: P:r) P:r
0) ((ABS Val:r = ABS Val:r0) = (r = r

0)) Val ABS ONE ONE

` 8a :: 9r :: (a = ABS Val:r) ^ P:r Val ABS ONTO

` (8x :: (H:x)) = (8r :: (P:r)) (H:(ABS Val:r))) Val PROP

6 The axiomatisation

The abstract axiomatisation of Val will be based upon the four constructors: NUM : num ! Val,

SET : (Val)set ! Val, LIST : (Val)lists ! Val, and TREE : (Val)ltree ! Val. To de�ne these

constructors, we need a function that given an equivalence class of ltrees returns an element of

that equivalence class. We will call this function pick, and de�ne it using Hilbert's "-operator:

Def 6.1 pick.c = "t. c:t pick

It satis�es the following properties:

Thm 6.2 equiv Æ pick Æ REP Val = REP Val equiv pick REP pvt

Thm 6.3 8x :: Q:((pick Æ REP Val).x) Q pick REP pvt

Now the constructors can be de�ned as follows:

Def 6.4 NUM DEF, SET DEF, LIST DEF, TREE DEF

NUM.n = ABS Val.(equiv.(Node.(INR.(INL.n)).[]))

SET.s = ABS Val.(equiv.(Node.(INL.one).(map.(pick Æ REP Val).(s2l.s))))

LIST.l = ABS Val.(equiv.(Node.(INR.(INR.(INL.one))).(map.(pick Æ REP Val).l)))

TREE.t= ABS Val.(equiv.(Node.(INR.(INR.(INR.(shape.t))))) .(map.(pick Æ REP Val).(values.t)))

Having de�ned the constructors, the theorem which abstractly characterises the new type Val, by

stating the unique existence of a paramorphism para has to be proved.

6

Thm 6.5 Abstract characterisation of Val pvt Axiom

8fn fs fl ft :: 9!para :: (8n :: para:(NUM:n) = fn:n)

^ (8s :: (�nite:s)) (para:(SET:s) = fs:(image:(split:para):s))

^ (8l :: para:(LIST:l) = fl:(map:(split:para):l))

^ (8t :: para:(TREE:t) = ft:(map tree:(split:para):t))

The proof of Thm. 6.5 consists of two parts, the proof of the existence of a paramorphism para,

and the proof that such a paramorphism is unique.

The existence proof is based upon the following well-known theorem about quotient sets.

Thm 6.6 quotient sets QUOTIENT THM

For all equivalence relations E on �; Q that de�ne a subset of �; ABS : (� ! bool) ! � and

REP : � ! (�! bool), abstraction and representation functions respectively; and for all functions

h of type � ! :

(8a :: ABS:(REP:a) = a)

(8r :: ((Q=E):r) = (REP:(ABS:r) = r))

(8t1 t2 :: (E:t1:t2)) (h:t1 = h:t2))

9!g :: 8t :: (Q:t)) (g:(ABS:(E:t)) = (h:t))

Q
E

Q=E

ABS

�

REP

g

h

Instantiating Thm. 6.6 with (one + num + one + tree)ltree for �, equiv for E, ABS Val for ABS,

REP Val for REP, and Q, obviously makes g a good candidate for para. Applying modus ponens

to this instantiation and Val ISO DEF gives us a unique function g of type Val ! for which:

Lemma 6.7
8t1 t2 :: (equiv:t1:t2)) (h:t1 = h:t2)

8t :: (Q:t)) (g:(ABS Val:(equiv:t)) = (h:t))

Using Def. 5.3 of Q, Thm. 6.3 and A.17, it is easy to prove that:

Thm 6.8 Q NUM REP, Q SET REP, Q LIST REP, Q TREE REP

8n :: Q (Node.(INR.(INL.n)).[])

^ 8s :: Q.(Node.(INL.one).(map.(pick Æ REP Val).(s2l.s)))

^ 8l :: Q.(Node.(INR.(INR.(INL.one))).(map.(pick Æ REP Val).l))

^ 8t :: Q.(Node.(INR.(INR.(INR.(shape.t)))).(map.(pick Æ REP Val).(values.t)))

This together with Lemma 6.7 and Def. 6.4 of the constructors give us:

8t1 t2 :: (equiv:t1:t2)) (h:t1 = h:t2)

8n :: g:(NUM:n) = h:(Node.(INR.(INL.n)).[])

8s :: g:(SET:s) = h:(Node.(INL.one).(map.(pick Æ REP Val).(s2l.s)))

8l :: g:(LIST:l) = h:(Node.(INR.(INR.(INL.one))).(map.(pick Æ REP Val).l))

8t :: g:(TREE:t) = h:(Node.(INR.(INR.(INR.(shape.t)))).(map.(pick Æ REP Val).(values.t)))

Consequently, to �nish the existence part of the proof of Thm. 6.5 by reducing it with witness g,

we have to �nd a function h, that satis�es the following properties for arbitrary fn, fs, fl and ft:

(i) 8t1 t2 :: (equiv:t1:t2)) (h:t1 = h:t2)

(ii) h.(Node.(INR.(INL.n)).[]) = fn:n

(iii) h.(Node.(INL.one).(map.(pick Æ REP Val).(s2l.s))) = fs:(image:(split:g):s), for all �nite sets s

(iv) h.(Node.(INR.(INR.(INL.one))).(map.(pick Æ REP Val).l)) = fl:(map:(split:para):l)

(v) h.(Node.(INR.(INR.(INR.(shape.t)))).(map.(pick Æ REP Val).(values.t))) = ft:(map tree:(split:para):t)

The following function, de�ned by \primitive recursion" on ltrees, satis�es these conditions, and

to �nish the proof of the existence part of Thm. 6.5, it remains to validate this claim:

7

Def 6.9 h DEF

8v tl :: h:(Node:v:tl) = k:(map:h:tl):v:tl

where k = �xs; v; tl � ISL:v!fs:(l2s:(zip:(xs; (map:(ABS Val Æ equiv):tl))))

j ISL:(OUTR:v) => fn:(OUTL:(OUTR:v))

j ISL:(OUTR:(OUTR:v)) => fl:(zip:(xs; (map:(ABS Val Æ equiv):tl)))

j ft:(zip tree:

((ABS ltree:(OUTR:(OUTR:(OUTR:v)); xs));

(ABS ltree:(OUTR:(OUTR:(OUTR:v));map:(ABS Val Æ equiv):tl))))

To prove (i), we use the following theorem, the proof of which is straightforward but tedious since

it involves lots of lemmas about zip.

Thm 6.10 ltree Axiom PRESERVES equiv

For all functions h of type (one + num + one + tree)ltree ! de�ned by \primitive recursion"

on (one + num + one + tree)ltrees (i.e. having the form (8v tl :: h:(Node:v:tl) = k:(map:h:tl):v:tl))

for an arbitrary function k of type ()lists ! (one + num + one + tree)lists !):

8xs1 xs2 tl1 tl2 v ::
equiv:(Node:v:tl1):(Node:v:tl2)

^ (ISL:v) (length:xs1 = length:tl1) ^ (length:xs2 = length:tl2) ^
(l2s:(zip:(xs1;map:equiv:tl1)) = l2s:(zip:(xs2;map:equiv:tl2))))

^ (ISR:v) (xs1 = xs2))

)
(k:xs1:v:tl1 = k:xs2:v:tl2)

8t1 t2 :: (equiv:t1:t2)) (h:t1 = h:t2)

To establish (i) we need to verify that our function k satis�es the premises of Thm. 6.10. Since

this is again straightforward, we skip the proof and consider (i) as proved.

It is easy to prove that h satis�es property (ii) using Def. 6.9 and OUTL, OUTR, INR, INL, we get:

h.(Node.(INR.(INL.n)).[]) = fn.(OUTL.(OUTR.(INR.(INL.n)))) = fn:n.

To show that h satis�es property (iii), we �rst need to prove the following lemma:

Lemma 6.11 8s :: map.g.(s2l.s) = map.(h Æ pick Æ REP Val).(s2l.s)

Proof: For arbitrary s:

(= A.7) 8t : t 2 (s2l:s) : g:t = (h Æ pick Æ REP Val).t

(= Thm. 6.2 and Val ISO DEF)

8t : t 2 (s2l:s) : (g Æ ABS Val Æ equiv Æ pick Æ REP Val).t = (h Æ pick Æ REP Val).t

(((i) and Lemma 6.7) 8t : t 2 (s2l:s) : Q:((pickÆ REP Val).t)

(= A.5) 8x : x 2 (map:(pickÆ REP Val).(s2l:s)) : (Q:x)

this follows from Def. 5.3 and Thm. 6.8

end proof of 6.11

Now we can proceed with the proof of property (iii) as follows:

h.(Node.(INL.one).(map.(pick Æ REP Val).(s2l.s)))

= (Def. 6.9) k.(map.h.(map.(pick Æ REP Val).(s2l.s))).(INL.one).(map.(pick Æ REP Val).(s2l.s))

= (A.6 and Lemma 6.11) k.(map.g.(s2l.s)).(INL.one).(map.(pick Æ REP Val).(s2l.s))

= (Def. 6.9) fs.(l2s.(zip.(map.g.(s2l.s), map.(ABS Val Æ equiv).(map.(pick Æ REP Val).(s2l.s)))))

= (A.6, Thm. 6.2 and Val ISO DEF) fs.(l2s.(zip.(map.g.(s2l.s), (s2l.s))))

= (zip and split (A.8)) fs.(l2s.(map.(split.g).(s2l.s)))

= (l2s, map and image (A.14)) fs.(image.(split.g).(l2s.(s2l.s)))

= (s is a �nite set (A.15))

fs.(image.(split.g).s)

The proofs of (iv) and (v) are similar to the proof of (iii) and will not be given. We hereby

�nish the proof of the existence part of Thm. 6.5, and continue with the proof that the existing

8

paramorphism is unique. That is we shall prove that:

Thm 6.12 For all functions x and y of type Val ! :

8n :: (x:(NUM:n) = fn:n ^ y:(NUM:n) = fn:n)

8s :: �nite:s) (x:(SET:s) = fs:(image:(split:x):s) ^ y:(SET:s) = fs:(image:(split:y):s))

8l :: (x:(LIST:l) = fl:(map:(split:x):l) ^ y:(LIST:l) = fl:(map:(split:y):l))

8t :: (x:(TREE:t) = ft:(map tree:(split:x):t) ^ y:(TREE:t) = ft:(map tree:(split:y):t))

x = y

In order to be able to prove this, we �rst need an induction theorem for type Val.

Thm 6.13 Induction on Val pvt Induct

For all propertiesH ,

(8n :: H:(NUM:n)) ^ (8s :: (�nite:s ^ (8p :: p 2 s) H:p))) H:(SET:s))

(8l :: every:H:l) H:(LIST:l)) ^ (8t :: every tree:H:t) H:(TREE:t))

8p :: H:p

The proof of this induction theorem is not hard. Here we shall only give a sketchy proof to give

the reader an idea (the HOL proof scripts are available upon request). We start with the following

lemma, that is easy to prove using Val PROP.

Lemma 6.14 (8p :: H:p) = (8t r :: ((r = equiv:t) ^ (Q:t))) (H Æ ABS Val Æ equiv):t)

Continuing with the proof of Theorem 6.13 we assume:

A1) 8n :: H .(NUM.n)

A2) 8s :: (�nite:s ^ (8p :: p 2 s) H:p))) H:(SET:s)

A3) 8l :: every:H:l) H:(LIST:l)

A4) 8t :: every tree:H:t) H:(TREE:t)

so now we have to prove that:

(8p :: H:p)

= (Lemma 6.14) (8t r :: ((r = equiv:t) ^ (Q:t))) (H Æ ABS Val Æ equiv):t)
((ltree induction (A.16) and de�nition of every (A.4))

For arbitrary h and tl, we have to prove:

r = equiv:(Node:h:tl) ^ Q:(Node:h:tl)

8t :: t 2 tl) (8r :: (r = equiv:t ^Q:t)) (H Æ ABS Val Æ equiv):t)

(H Æ ABS Val Æ equiv):(Node:h:tl)

Moving the antecedents of this proof obligation into the assumptions, we get for an arbitrary h

and tl that:

A5) 8t :: t 2 tl) (8r :: (r = equiv:t ^Q:t)) (H Æ ABS Val Æ equiv):t)

A6) r = equiv:(Node:h:tl)

A7) Q:(Node:h:tl)

The proof that (H Æ ABS Val Æ equiv):(Node:h:tl), now proceeds by case distinction on h. We

shall prove the SET case (i.e. ISL.h), the other cases are similar. For the SET case we assume:

A8) ISL.h

From the de�nition of equiv, and the properties of Q, pick, ABS Val and REP Val it follows that:

Lemma 6.15 SET L2S EQ ABS

For all lists tl of ((one + num + one + tree))ltrees:
(8t :: t 2 tl) Q:t)

(SET:(l2s:(map:(ABS Val Æ equiv):tl))) = (ABS Val:(equiv:(Node:(INL:one):tl)))

Continuing with the proof of 6.13:

(H Æ ABS Val Æ equiv):(Node:h:tl)

= (A8, the type of h, one, and Æ) H:(ABS Val:(equiv:(Node:(INL:one):tl)))

= (rewriting A7 with Q, and Lemma 6.15) H:(SET:(l2s:(map:(ABS Val Æ equiv):tl)))

((A2 and lists are �nite (A.13)) 8p :: (p 2 (l2s:(map:(ABS Val Æ equiv):tl)))) (H:p)

9

= (element of l2s and map (A.14, A.10 and A.11))

8p :: (9t :: (t 2 tl) ^ (((ABS Val Æ equiv):t) = p))) (H:p)

Making the antecedents of this proof obligation into assumptions, gives us an t, such that for

arbitrary p:

A9) t 2 tl

A10) p = ((ABS Val Æ equiv):t)

leaving us with proof obligation:

H:p

= (assumption A10) H:((ABS Val Æ equiv):t)

((Modus ponens assumption A9 and the Induction Hypothesis (A5)) 9r :: (r = equiv:t) ^ (Q:t)

= (rewriting assumption A7 with Q, and assumption A9)

9r :: (r = equiv:t)

Instantiating with equiv t proves this case. As already indicated the other cases (where ISR h) are

similar, the NUM case is trivial, and for the LIST and TREE cases, theorems similar to 6.15 had

to be proved.

Now that an induction theorem on Val is available (Thm. 6.13), it is straightforward to prove

the uniqueness (i.e. Thm. 6.12). Assuming the premises of 6.12, we have to prove:

x = y

= (function equality) 8p :: (x:p) = (y:p)

((Val Induction, H = (�p: (x:p = y:p)))

8n :: (x:(NUM:n) = y:(NUM:n))

^ 8s :: (�nite:s ^ (8p :: p 2 s) (x:p = y:p))) (x:(SET:s) = y:(SET:s)))

^ 8l :: (every:(�p: (x:p = y:p)):l)) (x:(LIST:l) = y:(LIST:l))

^ 8t :: (every tree:(�p: (x:p = y:p)):t)) (x:(TREE:t) = y:(TREE:t))

The �rst conjunct immediately follows from the premises of (6.12). We shall continue to prove

the SET case, again the LIST and TREE cases are similar. Suppose, for an arbitrary set s with

Val typed values:

A'1) �nite:s ^ 8p :: p 2 s) (x:p = y:p)

From the premises of (6.12):

A'2) (x:(SET:s)) = fs:(image:(split:x):s)

A'3) (y:(SET:s)) = fs:(image:(split:y):s)

We have to prove that:

x:(SET:s) = y:(SET:s)

= (assumptions A'2 and A'3) fs:(image:(split:x):s) = fs:(image:(split:y):s)

((image:(split:x):s) = (image:(split:y):s)

((A.12) 8p :: p 2 s) (split:x:p) = (split:y:p)

= (de�nition of split) 8p :: p 2 s) ((x:p); p) = ((y:p); p)

= (pairs) 8p :: p 2 s) x:p = y:p

AssumptionA'1 proves this SET case, and, as indicated, the LIST and TREE cases are similar. This

completes the outline of the uniqueness part, and consequently the entire proof, of the abstract

characterisation theorem of Val (Thm. 6.5).

7 Concluding remarks and related work

We hope that this paper will help those that want to manually add inductive data types to HOL

that do not fall exactly into the class of data types of the form (1.1) satisfying (1) till (4), but
that do have a sound set-theoretic interpretation.

Although in this paper we have concentrated mainly on the theorem prover HOL [GM93],

our proofs are easily repeated within Isabelle [NPW02] since the latter contains the same type

de�nition mechanism as HOL. Moreover, since we have veri�ed the results in higher order logic

using a de�nitional approach the results can be trusted, and hence can be added as axioms to a

theorem prover like PVS that use axiomatic approaches.

All results in this paper have been veri�ed with HOL (HOL90 version 7), the proof scripts

10

are available from http://www.cs.uu.nl/~wishnu/research/hol downloads/about.html or can be

requested from the �rst author by sending an email.

Acknowledgments go to TomMelham, Graham Collins, Lambert Meertens and Marieke Huisman.

References

[BW99] S. Berghofer and M. Wenzel. Inductive datatypes in HOL - lessons learned in formal-

logic engineering. In Theorem Proving in Higher Order Logics, pages 19{36, 1999.

[GM93] M.J.C. Gordon and T.F. Melham. Introduction to HOL. CUP, 1993.

[Gor85] M.J.C. Gordon. HOL: A machine oriented formulation of higher order logic. Technical

Report 68, University of Cambridge, Computer Laboratory, 1985.

[Gun93a] E.L. Gunter. A broader class of trees for recursive type de�nitions for HOL. In

J.J Joyce and C.H Segers, editors, Proceedings of the 6th International Workshop on

Higher Order Logic Theorem Proving and its Applications, volume 780 of LNCS, pages

141{154. Springer-Verlag, Aug 1993.

[Gun93b] E.L. Gunter. Why we can't have sml style datatype declarations in hol. In L.J.M

Claesen and M.J.C Gordon, editors, Higher Order Logic Theorem Proving and its

Applications, pages 561{568. Elsevier Science Publications BV North Holland, 1993.

[Har93] J. Harrison. Constructing the real numbers in HOL. In L.J.M. Claesen and M.J.C.

Gordon, editors, Higher Order Logic Theorem Proving and its Applications (A-20),

pages 145{164. Elsevier Science Publications BV North Holland, IFIP, 1993.

[Mee90] L. Meertens. Paramorphisms. Technical Report CS-R9005, CWI, Amsterdam, 1990.

[Mel89] T.F. Melham. Automating recursive type de�nitions in higher order logic. In P.A.

Subrahmanyam and G. Birtwistle, editors, Current Trends in Hardware Veri�cation

and Automated Theorem Proving, pages 341{386. Springer-Verlag, 1989.

[Mel91] T.F. Melham. info-hol email 9 november, 1991.

[NPW02] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: The Tutorial, volume 2283

of LNCS. Springer, 2002.

[ORR+96] S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M. Srivas. PVS: combining speci�-

cations, proof checking, and model checking. In R. Alur and T.A. Henzinger, editors,

Computer Aided Veri�cation, volume 1102 of LNCS, 1996.

[OS93] S. Owre and N. Shankar. Abstract datatypes in PVS. Technical Report CSL-93-9R,

Computer Science Laboratory, SRI International, Menlo Park, CA, 1993.

[Vos00] T.E.J. Vos. UNITY in Diversity, A strati�ed approach to the veri�cation of distributed

algorithms. PhD thesis, Utrecht University (90-393-2316-X), 2000.

A Some de�nitions and theorems about lists, sets and trees

(8f :: map:f:[] = []) ^ (8f x l :: map:f:(cons:x:l) = cons:(f x):(map:f:l)) (A.1)

(zip:([]; []) = []) ^ (8x1 l1 x2 l2 :: zip:(cons:x1:l1; cons:x2:l2) = cons:(x1; x2):(zip:(l1; l2))) (A.2)

(length:[] = 0) ^ (8x l :: length:(CONS:x:l) = (length:l)) + 1 (A.3)

(8P :: every:P:[] = true) ^ (8P h t :: every:P:(cons:h:t) = P:h ^ every:P:t) (A.4)

11

8Q f l :: (8x : x 2 (map:f:l) : Q:x) = (8x : x 2 l : Q:(f:x)) (A.5)

8f g l :: map:f:(map:g:l) = map:(f Æ g):l (A.6)

8f g l :: (8x : x 2 l : (f:x) = (g:x))) (map:f:l = map:g:l) (A.7)

8f l :: zip:((map:f:l); l) = map:(split:f):l (A.8)

8f s :: image:f:s = ff:x j x 2 sg (A.9)

8y s f :: y 2 image:f:s = (9x: (y = (f:x)) ^ x 2 s) (A.10)

8l x :: (x 2 (l2s:l)) = (x 2 l) (A.11)

8f g s :: (8x: (f:x) = (g:x))) (image:f:s = image:g:s) (A.12)

8l :: �nite:(l2s:l) (A.13)

8f l :: l2s:(map:f:l) = image:f:(l2s:l) (A.14)

8s :: �nite:s) (s = l2s:(s2l:s)) (A.15)

8P :: (8t :: every:P:t) (8h :: P:(Node:h:t)))) (8l :: P:l) (A.16)

8t :: Is ltree:(shape:t; values:t) (A.17)

8v t :: map tree:f:(Node:v:t) = Node:(f:v):(map:(map tree:f):t) (A.18)

8v1; v2; t1; t2 :
length:t1 = length:t2

zip tree:(Node:v1:t1;Node:v2:t2) = Node:(v1; v2):(map:zip tree:(zip:(t1; t2)))
(A.19)

8P h t :: every tree:P:(Node:h:t) = P:h ^ every:(every tree:P):t (A.20)

12

