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Abstract

UNITY is a simple programming logic to reason about distributed sys-
tems. It is especially attractive because of its elegant axiomatical style. Since
its power is limited, people introduce variants to extends it with various new
abilities. However, in the axiomatical style it is easy to make a mistake: a
seemingly very logical new inference rule may turn out to be unsound. Formal
verification is often necessary, but it is a time consuming task. ∀UNITY is
a generalization of UNITY. It provides the same set of inference rules, but
they are now derived from much more primitive (weaker) rules. ∀UNITY
is provided as a HOL (a theorem prover) library, with all its derived rules
mechanically verified. Using ∀UNITY a sound and complete UNITY vari-
ant (instance) can be quickly created by showing that the instance upholds
∀UNITY primitive rules. Moreover, all theories one subsequently derives from
∀UNITY will be valid for all ∀UNITY instances.

1 Introduction

UNITY is a programming logic introduced by Chandy and Misra in 1988 to reason
about distributed systems. Using three operators, unless, ensures, and �→ (leads-to),
we can specify temporal properties of a distributed system and there are inference
rules for proving them. It is a simple logic, because it restricts itself to first order
temporal properties, which for many applications is sufficient.

UNITY is excellent for doing formal treatment of distributed algorithms, e.g. as
in [10, 16, 21, 22]. Distributed algorithms algorithms tend to be abstract, subtle,
and parameterized by higher order information –a combination that puts them
quite beyond the reach of automated deduction and model checking. UNITY is less
suitable for automated program verification, since �→ (progress) properties may be
undecidable1, though it is possible to map UNITY progress properties to similar
properties in other formalisms where automated deduction or model checking is
possible.

The simplicity of UNITY is often an advantage as it means that less creativity
is needed when constructing a proof. It also makes it easier to implement (mech-
anize) in a computer in order to provide a computer assisted proof environment.

1That is, a proof that exhaustively applying UNITY inference rules may be non-terminating.
Human insight is often needed to select which rules to apply at certain steps.
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An example of UNITY implementation can be found in a tool called xMECH [2]
where UNITY is used as the base logic for a more abstract programming language.
Another way of implementing UNITY is by representing it in a theorem prover, e.g.
as done in [1, 15, 8], which gives an extra benefit that such an implementation is
guaranteed to be sound.

Although simplicity is an advantage, quite often we are also confronted by prob-
lems which frustratingly require some inference rules which are just beyond the
power of UNITY. For example, the classical UNITY misses a very useful inference
rule called the Substitution Law [19] and rules to preserve �→ properties in parallel
composition [20, 18]. People has been introducing variants [19, 13, 6, 5, 12, 18] to
add new powers to UNITY.

In the past, introducing a new logic is something which is done with a lot of
reserve. In truth, writing a new logic is no more magical than writing a program.
When confronted with a new kind of problems, it makes sense to devise a new logic to
more efficiently solve these problems. We may, for example, want to have a variant
of UNITY which is extended with probabilistic reasoning or with cryptographic
reasoning. We do have to be careful, especially since UNITY is an axiomatic logic.
The axiomatical approach encourages us to capture the way we reason about things
abstractly with inference rules. As opposed to the semantical (operational) style, it
tends to produce a cleaner and more abstract logic. It is however quite easy to make
mistakes: a seemingly very logical new inference rule may turn to be unsound. The
(in-) famous example of this is the Substitution Law, which originally was added
as an axiom in the classical UNITY [4]. The axiom turns to be unsound, as shown
in 1990 by Sanders [19]. It takes several more years for people to realize that the
correction given in the same paper [19] is also not without flaw [17].

In 1992 Andersen successfully mechanized and verified the inference rules of
UNITY with the theorem prover HOL [1]. This is a milestone, as it shows a feasible
and reliable way to check the soundness of UNITY like logics. Later, Prasetya also
mechanized some other variants of UNITY, including a variant that removes the
flaw in Sanders UNITY [14]. This is however a quite time consuming task. To verify
a new UNITY variant, Andersen’s HOL code can only serve as, at best, guidance.
One basically has to redo the entire soundness proof for each UNITY variant. This
is where ∀UNITY is useful.

∀UNITY is a generalization of UNITY. It provides the same set of inference
rules, but they are now derived from a set of more primitive (weaker) rules. Using
∀UNITY a UNITY variant can be created by showing that the variant upholds
∀UNITY primitive rules. This is much less work than having to redo the entire
UNITY soundness proof. ∀UNITY is provided as a HOL (a theorem prover) theory.
All its derived laws have been mechanically verified. HOL will also make sure that
any concrete UNITY variant which is derived from ∀UNITY is sound and complete2.

Effort has been made to make the derived rules of ∀UNITY to be minimalistic in
the sense that each rule explicitly mentions which of the ∀UNITY primitive rules it
requires. So, for example, it is possible to make an instantiation that only upholds
the Completion Rule under certain circumstances.

∀UNITY is also useful for constructing general theories: an application theory
which is based purely on ∀UNITY will also be valid for all UNITY variants which
can be instantiated from ∀UNITY . ∀UNITY can be downloaded from:

www.cs.uu.nl/~wishnu/research/research.html.
2In the sense that it will satisfy all standard UNITY inference rules.
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1.1 Contents of the paper

Section 2 will give a brief review on the classical UNITY. Section 3 explains the
notation we use in this paper. To help us motivating ∀UNITY , Section 4 briefly
shows some UNITY variants. Section 5 will present ∀UNITY . Section 6 provides
some conclusion. We will keep Section 5 to be somewhat informal. The formal
definition of ∀UNITY ’s primitive properties is listed in Appendix A. The most
important derived inference rules of ∀UNITY is listed in Appendix B. More derived
laws can be found in the distribution package of ∀UNITY . Appendix C briefly
comments on the relation with New UNITY.

2 Brief Review: UNITY

UNITY models a distributed system by a set of actions (transitions), each of which
is assumed to be atomic and terminating. Executing such a system is modelled by
an infinite and interleaved execution of its actions. In each step of the execution
some action is non-deterministically selected from the set of enabled actions. Finite
stuttering (skip) is allowed in the executions. The selection of actions is assumed
to be weakly fair, meaning that an action which is continually enabled (waiting to
be executed) can not be ignored forever.

To specify the behavior of a program, three operators are provided, namely
unless, ensures, and �→. Informally, given two state predicates p and q, a program P
is said to satisfy p unless q if: once p holds during an execution of P , it remains to
hold at least until q holds. The program satisfies p ensures q if it satisfies p unless q
and moreover there exists an action in P that can, and because of the fairness
assumption of UNITY, will establish q. Their formal definition is as follows:

Definition 2.1 : Unless and Ensures (Classical)

P � p unless q = (∀a : a ∈ P : {p ∧ ¬q} a {p ∨ q})

P � p ensures q = (P � p unless q) ∧ (∃a : a ∈ P : {p ∧ ¬q} a {q})

✷

Whereas unless specifies safety, ensures specifies progress. However, an ensures
property can only specify progress which can be guaranteed by a single action. To
describe progress in general, we use �→. Informally, a program P satisfies p �→ q if:
whenever p holds during an execution of P then eventually q will also hold. Formally,
�→ is defined as the smallest transitive and left-disjunctive (at the p-position) closure
of ensures.

To reason about the behavior of a program, UNITY provide a set of inference
rules. For example, one of the rules says that we can join two unless properties:

Theorem 2.2 : Unless General Conjunction (Classical)

P � p unless q
P � r unless s
P � p ∧ r unless (p ∧ s) ∨ (r ∧ q) ∨ (q ∧ s)

✷

As another example, the following rule states that if a program P can progress
from p to q, and it can maintain a condition a at least until b holds, then starting
from p∧ a it can either reach q while a still holds, or it enters the condition b. The
rule is known as the Progress Safety Progress or PSP rule:
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Theorem 2.3 : PSP (Classical)

P � p �→ q
P � a unless b

P � (p ∧ a) �→ (q ∧ a) ∨ b

✷

For the complete list of UNITY rules see for example [4]. The rules (in the case
of the classical UNITY: without the Substitution law) are sound and in fact can be
derived from the definitions of the three UNITY operators (unless, ensures, and �→).

3 Notation

We will use a notation that deviate from the usual UNITY style such as the one
used in Section 2. Like UNITY, ∀UNITY is a formalism. But it is implemented
in the theorem prover HOL [7] as a HOL theory. We will use the HOL notation,
which is admittedly less stylish, but it will make it easier for the reader to access
the ∀UNITY HOL library.

Formulas are written in the type writer font and UNITY operators are written
in the prefix-style, e.g. UNLESS p q. A UNITY inference rule will be written like
this:

|- A1 /\ ... /\ An ==> C

which means that C is derivable from A1 . . . An. The notation makes an inference
rule looks like an ordinary predicate logic theorem. In fact it is: in ∀UNITY an
inference rule is implemented as a HOL theorem (which also means that it is only
a rule if its validity can be proven).

When defining a concrete UNITY (a ∀UNITY instance), we will write the
UNITY operators with upper case letters, e.g. UNLESS, ENSURES, and LEADSTO.
These upper case names refer to concretely defined objects. In ∀UNITY itself these
operators are parameters and we will write them with lower case letters, e.g. unless,
ensures, and leadsto.

There are two levels of logical operators in ∀UNITY . We have:

/\ (conjunction)
\/ (disjunction)
==> (implication)
~ (negation)
! (universal quantification)
? (existential quantification)

with the usual meaning. Semantically, in HOL they are boolean operators. For
example, /\ takes two booleans and returns a boolean.

A state predicate is an expression like x > y + 1 and is used to, for example,
specify the set of possible states a program can be at a given moment. The expres-
sion can be simply represented by x>y+1 in HOL. However, doing so will prevent
us from properly representing UNITY inference rules in HOL. The reason is rather
technical, see for example [3]. The standard way to get around this is to represent a
state predicate semantically in HOL as a function from some type ’s representing
the universe of states to the type bool [1, 15, 3]. So, we have another set of oper-
ators: AND, OR, IMP, NOT, !!, and ?? which are just the previously listed boolean
operators lifted to the state predicate level. For example, AND is defined as:

p AND q = (\s. p s /\ q s)
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Abstractly though, the reader can pretend that both sets of operators are equiv-
alent.

If p is a predicate (over some type ’s), valid p is defined as follows:

Definition 3.1 : Valid Predicate

|- !p. valid p = !s. p s

✷

Given some type ’s representing the universe of states, an action is modelled
as a relation over ’s. So it is a function of type ’s->’s->bool. Hoare triples are
defined as follows:

Definition 3.2 : Hoare Triple

|- !p a q. HOA p a q = !s t. p s /\ a s t ==> q t

✷

4 Examples of UNITY variants

∀UNITY will be explained in Section 5. It is helpful to first show the reader some
examples of UNITY variants. We will consider three examples. The first example
is the classical UNITY which we have seen in the previous section –it will now
be presented in the ∀UNITY notation. The second example is Sanders’ UNITY
[19] which extends the classical UNITY with a new ability. The final example is a
UNITY variant called COMMUNITY, proposed by Prasetya, Vos, Swierstra, and
Widjaja [18]. All three variants can be quite easily instantiated from ∀UNITY . We
will use the notation explained in Section 3.

4.1 GLEADSTO

When instantiating ∀UNITY , typically we define the our LEADSTO operator in the
same way as in the classical UNITY, namely as the smallest transitive and left-
disjunctive closure of the ENSURES relation. However, the used ENSURES may be
different from the classical one. Given a binary relation U, in ∀UNITY the smallest
transitive and left-disjunctive closure of U is written as GLEADSTO U –see Appendix
A for its formal definition.

4.2 Classical UNITY

Here is how the classical UNITY is formulated in the ∀UNITY notation. A program
is abstractly represented as a set of actions. A set of items of type ’t is here
represented by a function (a predicate) of type ’t->bool.

Definition 4.1 :

1. |- !P p q.
UNLESS P p q
=
(!a. P a ==> HOA (p AND NOT q) a (p OR q))

2. |- !P p q.
ENSURES P p q
=
UNLESS P p q /\
(?a. P a ==> HOA (p AND NOT q) a q)‘ ;
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3. |- !P. LEADSTO P = GLEADSTO (ENSURES P)

✷

4.3 Sanders’ UNITY

In the classical UNITY we cannot use our implicit knowledge about the invariant of
a program to simplify a given UNITY specification. In [19] Sanders offers a simple
solution to this, namely by extending all UNITY operators with a new parameter.
With this parameter the user can specify an invariant, which subsequently can be
used to simplify the other parameters.

Here a program P will be represented by a pair (A,init) where A is the program’s
set of actions and init is a predicate specifying the program’s initial condition.
ACTIONS P and INIT P will return A respectively init. We will use a stricter
definition of invariant, as the one originally used in [19] is unsound:

Definition 4.2 : Invariant

|- !P J.
INV P J
=
valid((INIT P) IMP J) /\ (!a. ACTIONS P a ==> HOA J a J)

✷

Here is the concrete definition of Sanders’ UNITY.

Definition 4.3 :

1. |- !P J p q.
UNLESS P J p q
=
INV P J /\
(!a. ACTIONS P a ==> HOA (J AND p AND NOT q) a (p OR q))

2. |- !P J p q.
ENSURES P J p q
=
UNLESS P J p q /\
(?a. ACTIONS P a ==> HOA (J AND p AND NOT q) a q)

3. |- !P J. LEADSTO P J = GLEADSTO (ENSURES P J)

✷

4.4 COMMUNITY

COMMUNITY (COMpositional UNITY) [18] increases the power of Sanders UNITY
even further:

1. COMMUNITY only requires the J parameter to be an stable rather than
invariant. A predicate J is stable in a program P if P cannot destroy it:

Definition 4.4 : Stable Predicate

!P J. STABLE P J = !a. P a ==> HOA J a J

✷
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A stable predicate which also holds initially is an invariant. By weakening
the requirement on J it is possible in COMMUNITY to specify properties
of a program which may only be reachable when the program is executed in
parallel with other programs.

2. COMMUNITY allows the user to specify the sensitivity of a property, say
X, of a program P to external interference. This is specified in an additional
parameter A which is a set of predicates which are indestructible by the envi-
ronment. Obviously, the property X is preserved when P is composed with an
environment that maintains (each predicates in) A. COMMUNITY also comes
with a set of (new) proof rules to, in the less trivial case, compose a program
with an environment which can only maintain A temporarily3.

Definition 4.5 :

1. |- !P J A p q.
UNLESS P J A p q
=
STABLE P J /\ A p /\ A q /\
(!a. P a ==> HOA (J AND p AND NOT q) a (p OR q))

2. |- !P J A p q.
ENSURES P J A p q
=
UNLESS P J A p q /\
(?a. P a ==> HOA (J AND p AND NOT q) a q)

3. |- !P J A. LEADSTO P J A = GLEADSTO (ENSURES P J A)

✷

5 ∀UNITY

∀UNITY is the general version of the classical UNITY. It is general because it does
not impose any concrete interpretation of UNITY operators. Instead, it gives a set
of quite weak primitive inference rules (primitive properties) that abstractly model
a minimalistic requirement to obtain a UNITY-like logic. We have proven that
when all its primitive properties are satisfied, then all standard UNITY inference
rules are valid. An arbitrary UNITY variant can be created by providing a concrete
definition of the relation ’unless’ and ’ensures’ and then showing that they satisfy
∀UNITY primitive rules. We will refer to this process as instantiating ∀UNITY
and the created concrete UNITY will also be referred as a UNITY variant or an
instance of ∀UNITY .

For each derived inference rule in ∀UNITY , we specify which primitive rules
it minimally requires. So, a user can create an instance where some primitive
properties are not satisfied, or only conditionally satisfied. In the first case, then
the created instance will simply inherits less derived rules. In the second case, for
example when a primitive property R only holds under a certain condition C, we
can always propagate the condition C to all derived rules that depend on R.

In all three examples in Section 4 a program property is specified by an expres-
sion of the form UOP V1 ... Vn p q where UOP is a UNITY operator (UNLESS,

3For example, suppose A can be maintained by the environment Q during a time interval which
are characterized by the state predicate a; suppose the program P can do the progress LEADSTO P

J A p q. We can infer that the composition P PAR Q will satisfy: LEADSTO (P PAR Q) J A (p AND

a) (q OR NOT a). See [18] for further reading.
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ENSURES, or LEADSTO). As we will explain below, this form of UNITY expressions
is very general. All UNITY variants whose expressions can be written in this form
can be instantiated from ∀UNITY . We will call the last two parameters the pq-
parameters and the rest extensional parameters. All UNITY variants typically agree
on the interpretation of the pq-parameters. For example, in all variants, LEADSTO
... p q specifies a property in which if p holds then eventually q will also hold.
The classical UNITY mainly focuses on the pq-parameters. A new ability can be
plugged in to UNITY simply by adding new extensional parameters and defining
their relation with the pq-parameters.

∀UNITY will focus on the pq-parameters. The interpretation of extensional
parameters and their relation with the pq-parameters are too variant specific, so
they are put beyond the scope of ∀UNITY . It cannot be completely abstracted
away though. Whatever the extensional parameters are, the information in the
pq-parameters have to be in some way consistent with the constraints implied by
the extensional parameters. In ∀UNITY there is a new operator called implies
(Subsection 5.1), which, as the name suggests, behaves in many ways like the or-
dinary ⇒ operator. However, the main purpose of this operator is to serve as a
place holder to capture the relation between the pq-parameters and the extensional
parameters. Furthermore, Subsection 5.6 provides a number of theorems capturing
some general forms of inference rules concerning extensional parameters.

In the examples from the previous section, the UNITY operators are concretely
defined. They are constants. In ∀UNITY they are not concretely defined. In all
inference rules of ∀UNITY they are actually treated as variables which are univer-
sally quantified. To emphasis this distinction, in ∀UNITY we will write them with
lower case characters, e.g. unless and ensures. These operators are binary: they
only have the p and the q parameter.

Note that the P parameter as in the classical UNITY specification UNLESS P p
q is considered extensional by ∀UNITY . Indeed, there is no explicit requirement
that ∀UNITY operators actually have anything to do with programs. The relation
between them has already been abstractly modelled in ∀UNITY primitive rules.

5.1 The Implies Operator

As said, ∀UNITY allows one more operator to be specified, namely implies. It is
used to specify the fact that in some given temporal situation a state predicate p
implies another state predicate q. This is mainly used to simplify a specification.
For example, suppose a program has the property leadsto p q. If we also have
implies q r and implies r q then we know that in ’this situation’ q and r are
equivalent, and hence q can be simplified to r. The situation under which the
implication holds is typically specified in the extensional parameters. For example,
in the Sanders’ UNITY this is specified in the J parameter:

Definition 5.1 : Sanders’ Implies

|- !J p q. IMPLIES J p q = valid (J AND p IMP q)

✷

In Sanders’ UNITY J is intended to be an invariant of a program. The above
concrete definition of implies means that we are allowed us to use what we know
about the program’s invariants to infer the implication, and ultimately, to simplify
the pq-parameters of the UNITY specifications of the program.

In the classical UNITY, we do not have the J parameter and implies corre-
sponds to the usual predicate logic IMP:

Definition 5.2 : Classical Implies
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|- !p q. IMPLIES p q = valid (p IMP q)

✷

COMMUNITY has a more powerful notion of implies, which allows us to infer
the implication using not only the information about a program itself, but also
information about its expected environment:

Definition 5.3 : COMMUNITY Implies

|- !J A p q. IMPLIES J A p q = A p /\ A q /\ valid (J AND p IMP q)

✷

5.2 ∀UNITY Primitive Rules

Below we list the primitive inference rules (properties) of ∀UNITY . The properties
will be divided into three groups: the I, D, and N groups. Some informal explanation
will be provided. Their formal definition is listed in Appendix A.

5.2.1 I Properties

Abstractly, the implies operator behaves just like the ordinary ⇒ operator. They
are however not equivalent. In a given UNITY variant implies may use information
in the extensional parameters to conclude the implication. The following properties
specify how much of the ⇒-behavior we need in implies.

1. isClosed_under_PredOPS (inDomain implies)

This says that implies should be closed under the standard predicate logic
operators.

2. includesIMP implies

This requirement says that if p ==> q holds, then implies p q should also
hold, but only if both p and q are in the ’domain’ of implies –see also the
next subsubsection.

5.2.2 D Properties

These are domain constraining properties. The information in the pq-parameters
should be consistent with the information in the extensional parameters. For exam-
ple, in COMMUNITY, whenever we write UNLESS P J A p q, both p and q must
be predicates allowed by A. To model this kind of relationship we introduce the
notion of domain. The domain of a given binary relation U is the set of all p and q
which are related by U. However, we will take a simpler definition, which for UNITY
is sufficient:

Definition 5.4 : In Domain

inDomain U p = U p p

✷

A typical domain requirement in ∀UNITY is the one that says, for example,
that if unless p q holds then both p and q must be in the domain of unless. This
is written hasProperDomain unless in ∀UNITY .

Another example is the requirement that says that the domain of unless should
be included in the domain of implies:
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!p. inDomain unless p ==> inDomain implies p

Since implies provides the link to the extensional parameters, it is this kind of
requirement that ensures that the pq-parameters are always consistent with the ex-
tensional parameters. So, if we recall the COMMUNITY example at the beginning
of this subsubsection, the above requirement ensures that in UNLESS P J A p q,
both p and q are members of A.

Here are the D properties:

1. hasProperDomain implies

2. hasProperDomain unless

3. !p. inDomain unless p ==> inDomain implies p

4. hasProperDomain ensures

5. !p. inDomain ensures p ==> inDomain implies p

5.2.3 N Properties

In all three UNITY variants from the previous section, unless and ensures are
defined in terms of the next-state behavior of the specified program. However, the
next-state behavior of the program may depend on the situation derivable only from
the information in the extensional parameters of unless. This information is ab-
stracted away in ∀UNITY , so obviously we cannot in ∀UNITY define the operators
in the same way. Fortunately, there is another way. The following primitive proper-
ties abstractly characterize the intended temporal properties described by ∀UNITY
operators:

1. isSubRelationOf implies unless

This says that for all p and q, if implies p q then unless p q.

2. satisfiesUNLESS_AntiRefl unless

This says that unless is anti-reflexive. So, unless p (NOT p) is always a
valid property, provided p is in the domain of unless.

3. satisfiesUNLESS_Conj unless

This says that unless satisfies the General Conjunction rule –see also Theo-
rem 2.2.

4. satisfiesUNLESS_Disj unless

This says that unless satisfies the General Disjunction rule [4], which is the
dual of the the General Conjunction rule.

5. satisfiesUNLESS_Subst implies unless

This says that unless satisfies the Substitution rule [4]. More precisely, if the
following hold:

implies p q /\ implies q p /\ implies r s

Then we can replace unless q r with unless p s. Notice that the condition
for substitution is expressed in terms of implies whose concrete definition is
left unspecified in ∀UNITY . As remarked earlier, in Sanders’ UNITY implies
can be expected to carry information about a program’s invariant. In the
classical UNITY implies is simply IMP. The substitution rule as formulated
above is still satisfied, though it then becomes much less powerful than the
one obtained in Sanders’ UNITY.
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6. isSubRelationOf implies ensures

7. satisfiesPSP ensures unless

This says that ensures also satisfies the Progress Safety Progress (PSP) rule
[4]. This property is necessary for deriving the PSP rule for leadsto.

8. isSubRelationOf ensures unless

This says that ensures is a more restricted form of unless. Most UNITY
variants take this property for granted: ensures is just unless strengthened
with a requirement on the existence of some helpful action/transition. Cu-
riously, the only derived inference rule that depends on this property is the
Completion rule.

9. leadsto = GLEADSTO ensures

This says that leadsto has to be defined as the least transitive and left-
disjunctive closure of ensures.

5.3 Instantiating ∀UNITY

As an example, to instantiate ∀UNITY to COMMUNITY, we substitute:

implies with IMPLIES P J A
unless with UNLESS P J A
ensures with ENSURES P J A
leadsto with LEADSTO P J A

where IMPLIES is defined in Definition 5.3; the other upper case operators are
defined in Subsection 4.4. We should also substitute GLEADSTO ensures in ∀UNITY
rules with LEADSTO P J A.

5.4 Derived Inference Rules

To give some idea, we will show some of the derived inference rules of ∀UNITY .
The distribution package itself contains much more rules. The most important of
them are listed in Appendix B.

The following is ∀UNITY ’s version of the general conjunction rule for unless.

Theorem 5.5 : Unless Simple Conjunction Rule

1 |- includesIMP implies /\
2 isClosed_under_PredOPS (inDomain implies) /\
3 (!p. inDomain unless p ==> inDomain implies p) /\
4 hasProperDomain unless /\
5 satisfiesUNLESS_Subst implies unless /\
6 satisfiesUNLESS_Conj unless /\
7 unless p1 q1 /\
8 unless p2 q2
9 ==>

10 unless (p1 AND p2) (q1 OR q2)

✷

The first six assumptions specify the ∀UNITY ’s primitive properties required to
derive the familiar form of the simple conjunction rule as formulated in the classical
UNITY.

The following inference rule is ∀UNITY ’s version of the PSP rule. Compare it
with its usual form in Theorem 2.3.
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Theorem 5.6 : PSP

1 |- includesIMP implies /\
2 isClosed_under_PredOPS (inDomain implies) /\
3 hasProperDomain unless /\
4 (!p. inDomain unless p ==> inDomain implies p) /\
5 hasProperDomain ensures /\
6 isSubRelationOf implies ensures /\
7 (!p. inDomain ensures p ==> inDomain implies p) /\
8 satisfiesPSP ensures unless /\
9 GLEADSTO ensures p q /\

10 unless a b
11 ==>
12 GLEADSTO ensures (p AND a) (q AND a OR b)

✷

5.5 The Completion Rule

Progress is generally disjunctive but not generally conjunctive. For example, if a
program P can progress from p to q and from p to r we do not know if it can progress
to a state where both q and r hold. However, if we know that, for example, both
q and r are stable predicates (Definition 4.4), then we know that the conjunction
of them will hold eventually. This kind of property of progress is often very useful,
e.g. as in [9, 16]. In UNITY, this is captured by the so-called Completion Rule.
Before we present ∀UNITY ’s version of the rule, let us first give a number of (new)
derived operators to abstractly represent the kind of progress which is conjunctive:

Definition 5.7 : Completion

|- !progress unless p q b.
COMPLETES leadsto unless p q b = leadsto p q /\ unless q b

✷

Definition 5.8 : Convergence

|- !leadsto unless p q.
CONVERGES leadsto unless p q = COMPLETES leadsto unless p q FF

✷

For a given leadsto and unless relations, COMPLETES leadsto unless p q b
models the progress from p to q by a program, and moreover, once q is reached the
program will either remain in q or decide to exit to b. Obviously, if b is FF then
the program cannot exit from q and will thus remain in q. The latter situation is
modelled by the CONVERGES operator.

The Completion Rule looks like this in ∀UNITY :

Theorem 5.9 : Completion Rule

1 |- includesIMP implies /\
2 (!p. inDomain unless p ==> inDomain implies p) /\
3 isClosed_under_PredOPS (inDomain implies) /\
4 hasProperDomain unless /\
5 isSubRelationOf implies unless /\
6 isSubRelationOf implies ensures /\
7 satisfiesUNLESS_Subst implies unless /\
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8 satisfiesUNLESS_Conj unless /\
9 satisfiesUNLESS_Disj unless /\

10 satisfiesPSP ensures unless /\
11 hasProperDomain ensures /\
12 (!p. inDomain ensures p ==> inDomain implies p) /\
13 isSubRelationOf ensures unless /\
14 satisfiesPSP ensures unless /\
15 COMPLETES (GLEADSTO ensures) unless p q b /\
16 COMPLETES (GLEADSTO ensures) unless r s b
17 ==>
18 COMPLETES (GLEADSTO ensures) unless (p AND r) (q AND s OR b) b

✷

This rule is the most difficult to prove and the most demanding one, as it requires
almost all ∀UNITY primitive properties (the first 14 assumptions above). If these
primitive properties can be discharged then we will get the standard Completion
rule. As remarked earlier, this is the only rule where we actually use the fact that
ensures is defined as a restricted form of unless. As a corollary we can easily show
that convergence is conjunctive:

Corollary 5.10 : Convergence Conjunction

|- ...

CONVERGES (GLEADSTO ensures) unless p q /\
CONVERGES (GLEADSTO ensures) unless r s
==>
CONVERGES (GLEADSTO ensures) unless (p AND r) (q AND s)

where ... stands for the same set of conditions as in Theorem 5.9.
✷

5.6 Inferring and Composing Extensional Parameters

In the beginning of this section we have said that ∀UNITY is intended to focus on
the pq-parameters. Consider a COMMUNITY specification LEADSTO P J A p q.
Recall that the p and q are called the pq-parameters. The rest are called extensional
parameters. The implies operator can be used to capture the relation between
the two kind of parameters, but beyond that ∀UNITY basically do not provide any
support to reason about the extensional parameters (because that kind of reasoning
is too variant specific). However, we notice that the following two kinds of inference
capabilities are often desired. We will illustrate them with COMMUNITY examples:

1. LEADSTO P J A p q implicitly implies certain properties of the extensional
parameters. For example, it implies that J is stable in P.

2. Changing the value of the extensional parameters typically destroy a prop-
erty, however, if we only change them in a certain way, the property may
be preserved after all. For example, LEADSTO P J A p q is preserved if we
strengthen J with another stable predicate. The property is also preserved
if we compose P and A with another program and another set of predicates
provided they satisfy certain constraints [18]. Inference rules for program
composition, e.g. the Union rules [4] and Singh rules [20, 11, 18], fall into this
category.
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∀UNITY provides two theorems to accommodate those kinds of inference, but
will not attempt to characterize the specific conditions under which they are appli-
cable since this is something which is too variant specific. We introduce first the
following two operators:

Definition 5.11 : Implicitly Implies

|- !unityOp property.
implicitlyImplies unityOp property
=
!A p q. unityOp A p q ==> property A

✷

So, for example:

implicitlyImplies (\J LEADSTO P J A) (STABLE P)

captures what we said earlier, namely that in COMMUNITY LEADSTO P J A p q
implies the stability of J P.

Definition 5.12 : Conservative Extension

|- !unityOp extend.
isConservative unityOp extend
=
!A p q. unityOp A p q ==> unityOp (extend A) p q

✷

So, for example:

isConservative (\J. LEADSTO P J A) (\J. J AND J’)

states that in COMMUNITY the property LEADSTO P J A p q is preserved when
we strengthen J to J AND J’ (for some fix J’).

It is then quite trivial to obtain the following theorems:

Theorem 5.13 : Implicitly Implies Rule

|- implicitlyImplies unityOp property /\
unityOp A p q
==>

property A

✷

Theorem 5.14 : Conservative Extension Rule

|- isConservative unityOp extend /\
unityOp A p q
==>
unityOp (extend A) p q

✷

When unityOp is leads-to then we also have the following stronger theorems:

Theorem 5.15 :
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|- implicitlyImplies ensures_ property /\
GLEADSTO (ensures_ A) p q
==>

property A

✷

Theorem 5.16 :

|- isConservative ensures_ extend /\
GLEADSTO (ensures_ A) p q
==>
GLEADSTO (ensures_ (extend A)) p q

✷

6 Conclusion

∀UNITY is a generalization of UNITY. It provides the same set of inference rules
as the standard UNITY but it does not impose any concrete interpretation of what
unless and ensures are. Instead, it gives a set of quite weak primitive properties
that abstractly model a minimalistic requirement to obtain a UNITY-like logic. A
user can create an arbitrary variant of UNITY by providing a concrete definition of
unless and ensures and then showing that they satisfy ∀UNITY primitive rules.

Furthermore, for each derived inference rule in ∀UNITY , we specify which
primitive properties it minimally requires. Hence, it is possible to create a weaker
∀UNITY instance where not all primitive properties are satisfied, or only condition-
ally satisfied.

∀UNITY is provided as a HOL (a theorem prover) library. Creating a UNITY
variant using ∀UNITY has the following advantages:

1. A rich set of standard inference rules have already proven; this saves a lot of
work.

2. The rules have been proven mechanically in HOL, so they are very safe to use.

3. The user automatically gets all theorem proving support of HOL.

∀UNITY is suitable for creating a UNITY variant where properties are specified
like this: UnityOperator V p q where p and q are state predicates having the usual
UNITY meaning and V is a list of additional parameters. This is a very general
form. In the classical UNITY we only have one additional parameter to specify the
program to which the specified property belong. In more sophisticated variants, e.g.
Collete and Knapp’s variants [6, 5], closures operators in the new UNITY [12], and
COMMUNITY [18], more parameters are added in order to attach more abilities
to the standard UNITY.

∀UNITY is also useful for constructing general theories: an application theory
which is based purely on ∀UNITY will also be valid for all UNITY variants which
can be instantiated from ∀UNITY .

A Definition of ∀UNITY Primitive Properties

1. |- !dom. isClosed_under_PredOPS dom = dom TT /\ (!p. dom p ==> dom

(NOT p)) /\ (!p q. dom p /\ dom q ==> dom (p AND q)) /\ (!W. (!p. W p

==> dom p) ==> dom (!!p::W. p))
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2. |- !U.

includesIMP U

=

!p q. inDomain U p /\ inDomain U q /\ valid (p IMP q) ==> U p q

3. |- !U.

hasProperDomain U

=

!p q. U p q ==> inDomain U p /\ inDomain U q

4. |- !U p. inDomain U p = U p p

5. |- !U V. isSubRelationOf U V = !x y. U x y ==> V x y

6. |- !unless.

satisfiesUNLESS_AntiRefl unless

=

!p. inDomain unless p ==> unless p (NOT p)

7. |- !unless.

satisfiesUNLESS_Conj unless

=

!p1 q1 p2 q2.

unless p1 q1 /\ unless p2 q2

==>

unless (p1 AND p2) (q1 AND p2 OR q2 AND p1 OR q1 AND q2)

8. |- !unless.

satisfiesUNLESS_Disj unless

=

!p1 q1 p2 q2.

unless p1 q1 /\ unless p2 q2

==>

unless (p1 OR p2) (q1 AND NOT p2 OR q2 AND NOT p1 OR q1 AND q2)

9. |- !implies unless.

satisfiesUNLESS_Subst implies unless

=

!p q a b.

unless p q /\ implies p a /\ implies a p /\ implies q b

==>

unless a b

10. |- !progress unless.

satisfiesPSP progress unless

=

!p q a b.

progress p q /\ unless a b

==>

progress (p AND a) (q AND a OR b)

11. |- !ensures p q.

GLEADSTO ensures p q =

!U. isSubRelationOf ensures U /\

isTransitive U /\

isLeftDisj U

==>

U p q

12. |- !leadsto.

isLeftDisj leadsto
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=

!W q. (?p. W p) /\

(!p. W p ==> leadsto p q)

==>

leadsto (??p::W. p) q

B General UNITY Laws

1. unless reflexifity:

|- inDomain unless p ==> unless p p

2. Lifting implies to unless:

|- includesIMP implies /\ isSubRelationOf implies unless /\

inDomain implies p /\ inDomain implies q /\

valid (p IMP q)

==>

unless p q

3. Weakening the post-condition of unless:

|- includesIMP implies /\

(!p. inDomain unless p ==> inDomain implies p) /\

hasProperDomain unless /\

satisfiesUNLESS_Subst implies unless /\

unless p q /\ implies q r

==>

unless p r

4. Simple conjunctivity of unless:

|- includesIMP implies /\

isClosed_under_PredOPS (inDomain implies) /\

(!p. inDomain unless p ==> inDomain implies p) /\

hasProperDomain unless /\

satisfiesUNLESS_Subst implies unless /\

satisfiesUNLESS_Conj unless /\

unless p1 q1 /\ unless p2 q2

==>

unless (p1 AND p2) (q1 OR q2)

5. Simple disjunctivity of unless:

|- includesIMP implies /\

isClosed_under_PredOPS (inDomain implies) /\

(!p. inDomain unless p ==> inDomain implies p) /\

hasProperDomain unless /\ satisfiesUNLESS_Subst implies unless /\

satisfiesUNLESS_Disj unless /\ unless p1 q1 /\ unless p2 q2 ==>

unless (p1 OR p2) (q1 OR q2)

6. Lifting implies to ’leadsto’:

|- includesIMP implies /\ isSubRelationOf implies ensures /\

inDomain implies p /\ inDomain implies q /\

valid (p IMP q)

==>

GLEADSTO ensures p q

7. Lifting ensures to ’leadsto’:

|- ensures p q ==> GLEADSTO ensures p q

17



8. Transitivity of ’leadsto’:

|- GLEADSTO ensures p q /\ GLEADSTO ensures q r ==> GLEADSTO ensures p r

9. Left-disjunctivity of ’leadsto’4:

|- W i /\ (!i. W i ==> GLEADSTO ensures (f i) q)

==>

GLEADSTO ensures (??i::W. f i) q

10. Simple disjunction for ’leadsto’:

|- includesIMP implies /\

isClosed_under_PredOPS (inDomain implies) /\

isSubRelationOf implies ensures /\

hasProperDomain ensures /\

(!p. inDomain ensures p ==> inDomain implies p) /\

GLEADSTO ensures p q /\ GLEADSTO ensures r s

==>

GLEADSTO ensures (p OR r) (q OR s)

11. Substitution rule for ’leadsto’:

|- isSubRelationOf implies ensures /\

implies a p /\ implies q b /\

GLEADSTO ensures p q

==>

GLEADSTO ensures a b

12. Cancellation rule:

|- includesIMP implies /\

isClosed_under_PredOPS (inDomain implies) /\

isSubRelationOf implies ensures /\ hasProperDomain ensures /\

(!p. inDomain ensures p ==> inDomain implies p) /\

inDomain (GLEADSTO ensures) q /\

GLEADSTO ensures p (q OR r) /\ GLEADSTO ensures r s

==>

GLEADSTO ensures p (q OR s)

13. Bounded progress rule:

|- includesIMP implies /\

isClosed_under_PredOPS (inDomain implies) /\

isSubRelationOf implies ensures /\ hasProperDomain ensures /\

(!p. inDomain ensures p ==> inDomain implies p) /\

ADMIT_WF_INDUCTION LESS /\

inDomain (GLEADSTO ensures) q /\

(!m. GLEADSTO ensures

(p AND (\s. M s = m))

(p AND (\s. LESS (M s) m) OR q))

==>

GLEADSTO ensures p q

4The W i condition is equivalent with (?i. W i). Hence, we require W to be non-empty. If W
is empty, then (??i::W . f i) is equivalent to FF. Although operationally progress can be made
from FF to any q, unlike the classical UNITY, ∀UNITY only allows GLEADSTO ensures FF q to be
inferred if q is actually in the domain of ensures. See also the implies lifting rule. Keeping the
expressions confined inside their domain is important to keep the pq-parameters consistently with
the extensional parameters. See also the discussion in Subsubsection 5.2.2
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C Relation with New UNITY

In [12], Misra introduces New UNITY which is based on a set of new temporal
operators: co, transient, en, and leadsto. The leadsto and en behave the same
way as their classical counterparts, and transient is just an auxiliary operator
used to define en. The operator co is an alternative to unless. It has nicer
algebraic properties. On the other hand, unless has a more intuistic and familiar
interpretation. The choice between them is probably a matter of taste. They can
be defined in terms of each other. For example, here is how co can be defined in
terms of unless in ∀UNITY :

Definition C.1 : CO

|- !P J A p q.
CO implies unless p q = implies p q /\ unless p (NOT p AND q)

✷

New UNITY also introduces the notion of closure which provides an abstraction
for program composition. For example, the closure of the leadsto operator is called
cleadsto, defined as follows:

P � p cleadsto q = (∀Q :: P []Q � p leadsto q)

Unlike in the classical UNITY, P []Q is only defined if Q satisfies P ’s link constraint.
The link constraint of a program essentially specifies some upper bound on the kind
of operations the environment can do on the variables of P .

We can also express new UNITY closured operators in terms of COMMUNITY
operators. So, P � p cleadsto q can be written as LEADSTO P TT A p q where
A is suitably chosen to represent P ’s link constraint. Since COMMUNITY is an
instance of ∀UNITY –it satisfies all ∀UNITY primitive rules–, so is the closured
logic of New UNITY’s closured operators.
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