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Lecture notes for Cosmology (ns-tp430m)

by Tomislav Prokopec

Part II: The Standard Cosmological Model

A. The Friedmann-Lamâıtre-Robertson-Walker (FLRW) cosmology

1. The metric tensor

We now consider the most general homogeneous space times, the Friedmann-Lemâıtre-Robertson-

Walker (FLRW) expanding universes, and their ramifications. When written in spherical coordinates,

the corresponding line element is of the form,

ds2 = c2dt2 − a2
dr2

1− κr2
− a2r2(dθ2 + sin2(θ)dφ2) , (1)

where a = a(t) is the scale factor, and r, θ and φ are the spherical coordinates.

When κ > 0, the spatial sections of the space-time (1) are positively curved (spherical geometry),

when κ < 0 the spatial sections are negatively curved (hyperboloidal geometry), and finally when κ = 0,

the spatial-sections are flat (flat geometry).

In order to illustrate the meaning of κ, we now consider a two dimensional sphere S2. When

embedded into a 3-dimensional flat space, the equation characterising S2 (with the origin placed at

r⃗0 = (x0, y0, z0) = 0) is,

x2 + y2 + z2 = R2
curv , (2)

where Rcurv denotes the radius (of curvature) of the sphere. The line element in this three dimensional

Euclidean flat space is simply,

dℓ⃗
2
= dx2 + dy2 + dz2 . (3)

Imagine now that we live on the surface of the sphere, and we would like to describe our position on the

sphere. To this purpose, it is convenient to express dz in terms of dx and dy. By taking a differential

of Eq. (2), we immediately arrive at,

dz2 =
(xdx+ ydy)2

R2
curv − x2 − y2

. (4)
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FIG. 1: The sphere S2 embedded in a 3-dimensional flat Euclidean space, used to illustrate the curvature k of

the FLRW space-time, whose line element is given in (1).

Next, it is convenient to define the spherical coordinates, which characterise the section of the sphere

whose radius is, r = (R2
curv − z2)1/2, as shown in figure 1,

x = r cos(θ)

y = r sin(θ) . (5)

Taking a differential of these equations, we find,

xdx+ ydy = rdr , (6)

which, when used in (4), allows us to recast the line element (3) in spherical coordinates as,

dℓ⃗2 =
dr2

1− r2/R2
curv

+ r2dθ2 . (7)

Elevating this discussion to one dimension higher (S2 → S3), we conclude that κ > 0 in the FLRW line

element (1) has the following simple interpretation in terms of the curvature radius of the space,

κ =
1

R2
curv

, (8)

where κ signifies the Gauss’ curvature of the sphere. This simple interpretation holds, of course, only

for spaces of constant spatial curvature. More generally, when κ = κ(x), κ signifies a local curvature

of the spatial sections of the space. To model this case properly, one would have make an appropriate

generalization of the metric (1), which belongs to the class of Lemâıtre-Tolman-Bondi models.

For negatively curved spaces, one should exact the replacement z2 → −z2 in Eq. (2), which replaces

S2 by a 2-dimensional hyperboloid. After repeating the above procedure, one arrives at the conclusion
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that, in space-times with negatively curved spatial sections (κ < 0), κ and the radius of curvature Rcurv

are related as,

κ = − 1

R2
curv

. (9)

2. The Levi-Cività connection

The nonvanishing elements of the metric tensor corresponding to the FLRW line element (1) are,

g00 = 1 , grr = − a2

1− κr2
, gθθ = −a2r2 , gφφ = −a2r2 sin2(θ) . (10)

Recall that the Levi-Cività connection is defined as,

Γµαβ =
1

2
gµν

(
∂αgνβ + ∂βgαν − ∂νgαβ

)
. (11)

For the moment we shall distinguish the timelike and the spacelike elements of Γµαβ. One easily checks

that, Γ0
00 = 0, Γi00 = 0, and Γ0

0i = 0, and the nonvanishing elements are,

Γij0 =
ȧ

a
δij Γ0

ij = − ȧ
a
gij (12)

where ∂0a = c−1da/dt ≡ ȧ/c.

The nonvanishing spatial components of the Levi-Cività connection (??) are,

Γrrr =
1

2
grr∂r(grr) =

κr

1− κr2
(13)

Γrθθ = −r(1− κr2) (14)

Γrφφ = −r sin2(θ)(1− κr2) (15)

Γθθr =
1

r
(16)

Γφφr =
1

r
(17)

Γθφφ = − sin(θ) cos(θ) (18)

Γφφθ =
cos(θ)

sin(θ)
. (19)

3. The curvature

The Ricci curvature tensor is the following contraction of the Riemann curvature tensor,

Rαβ ≡ Rµ
αµβ = ∂µΓ

µ
αβ − ∂αΓ

µ
µβ + ΓµρµΓ

ρ
αβ − ΓµρβΓ

ρ
αµ . (20)
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The (00) component is then,

R00 = ∂µΓ
µ
00 − ∂0Γ

µ
0µ + ΓµρµΓ

ρ
00 − Γµρ0Γ

ρ
0µ

= −∂0
(1
c

ȧ

a
δii

)
− Γij0Γ

j
0i

= − 3

c2
ä

a
. (21)

Similarly, one can show that the off-diagonal components vanish,

R0i = 0 . (22)

Next, the spatial components of the Ricci curvature tensor are,

Rij = ∂µΓ
µ
ij − ∂jΓ

µ
iµ + ΓµρµΓ

ρ
ij − ΓµρiΓ

ρ
jµ

= ∂0

(
− 1

c

ȧ

a
gij

)
+
(
− 1

c

ȧ

a
gij

)(1
c

ȧ

a
δll

)
−

(
− 1

c

ȧ

a
glj

)(1
c

ȧ

a
δli

)
−
(1
c

ȧ

a
δlj

)(
− 1

c

ȧ

a
gil

)
+ 3Rij

= − 1

c2

[ ä
a
+ 2

( ȧ
a

)2]
gij +

3Rij , (23)

where 3Rij denotes the curvature of the spatial section of the FLRW space-time,

3Rij = ∂lΓ
l
ij − ∂iΓ

l
jl + ΓlklΓ

k
ij − ΓlkiΓ

k
jl . (24)

We now easily find for the Ricci scalar,

R = R00 + gijRij = − 6

c2

[ ä
a
+
( ȧ
a

)2]
+ 3R , (25)

where

3R = gij 3Rij (26)

denotes the Ricci curvature scalar of the spatial section of the space-time.

Next we need the nonvanishing elements of the spatial curvature (24) of the FLRW space-time. The

(rr) component reads,

3Rrr = ∂lΓ
l
rr − ∂rΓ

l
rl + ΓlklΓ

k
rr − ΓlkrΓ

k
rl

= ∂r

( κr

1− κr2

)
− ∂r

( κr

1− κr2
+

1

r
+

1

r

)
+

κr

1− κr2

( κr

1− κr2
+

1

r
+

1

r

)
−
( κr

1− κr2

)2

− 2
(1
r

)2

=
2κ

1− κr2
. (27)

Similarly, the (θθ) and (φφ) components are found to be,

3Rθθ = 2κr2

3Rφφ = 2κr2 sin2(θ) , (28)
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and the off-diagonal elements vanish, 3Rrθ = 0 = 3Rrφ = 3Rθφ. All of the elements of the Ricci

curvature tensor of spatial sections of the FLRW space-time can be compactly written as follows,

3Rij = −2κ

a2
gij , (29)

such that the corresponding Ricci scalar reads,

3R = −6κ

a2
. (30)

With this and Eqs. (21–23), we can finally write the components of the Ricci curvature and Ricci

scalar,

R00 = − 3

c2
ä

a
(31)

Rij = − 1

c2

[ ä
a
+ 2

( ȧ
a

)2

+ 2
c2κ

a2

]
gij (32)

R = − 6

c2

[ ä
a
+
( ȧ
a

)2

+
c2κ

a2

]
. (33)

4. The FLRW equations

We now make use of the definition of the Einstein curvature tensor,

Gµν = Rµν −
1

2
gµνR , (34)

to find

G00 =
3

c2

[( ȧ
a

)2

+
c2κ

a2

]
G0i = 0

Gij =
1

c2

[
2
ä

a
+
( ȧ
a

)2

+
c2κ

a2

]
gij . (35)

The Einstein equations relate the geometry (curvature) of the space-time with the matter content,

Gµν − gµν
Λ

c2
=

8πGN

c4
Tµν , (36)

where Tµν denotes the stress-energy tensor of matter fields. For an ideal fluid – which is characterised

by spatial isotropy – stress energy tensor is of the form,

Tµν = (ρ+ P)
uµuν
c2

− gµνP . (37)



6

In the fluid rest frame, in which uµ = cδ 0
µ , this reduces to,

T00 = ρ , Tij = −Pgij , (38)

where ρ and P denote the energy density and pressure of the fluid, respectively. The (00) and (ij)

components of Eq. (36) are,

3
( ȧ
a

)2

+ 3
c2κ

a2
− Λ =

8πGN

c2
ρ[

2
ä

a
+
( ȧ
a

)2

+
c2κ

a2
− Λ

]
gij =

8πGN

c2
(−Pgij) , (39)

which can be recast as the following FLRW equations,

H2 ≡ (
ȧ

a

)2

=
8πGN

3c2
ρ+

Λ

3
− c2κ

a2
(40)

ä

a
= −4πGN

3c2
(ρ+ 3P) +

Λ

3
. (41)

These equations govern the evolution of the Universe in the Standard Cosmological Model. The meaning

and dimensions of the symbols are as follows: a denotes the scale factor (dimensionless), H [s−1] is the

Hubble parameter, GN [m3kg−1s−2] the Newton constant, Λ [s−2] the cosmological term, c [ms−1] the

speed of light, ρ [kgm−1s−2] the energy density, P [kgm−1s−2] the pressure, and κ [m−2] is curvature of

the spatial section of the space-time. Note that the only difference between the dynamics of a flat and

curved FLRW universe is the curvature term, −c2κ/a2, in the constraint equation (40).

The covariant conservation of the stress-energy tensor, ∇µTµν = 0, yields in a FLRW background,

ρ̇+ 3
ȧ

a
(ρ+ P) = 0 , (42)

which is a consistency condition that can be also derived from Eqs. (40–41).

In passing we note that equations (40–41) can be generalised to inhomogeneous space-times, simply

by exacting the replacements,

a = a(x) , H = H(x) , κ = κ(x) , ρ = ρ(x) , P = P(x) , (43)

and by adding the term −(c2/3)(∇2δP)/(ρ+ P) on the right hand side of Eq. (41), where δP/(ρ+ P)

is a presure deviation, which is related to the local spatial curvature, R (not to be confused with the

Ricci scalar) as follows, Ṙ = −HδP/(ρ+P), κ = −(2/3)a2∇2R (see e.g. Lyth and Riotto, Phys. Rept.

314 (1999) 1-146, [e-Print Archive: hep-ph/9807278]). These equations are deceptively simple. The

problem is that they do not close, since the local spatial curvature must be determined from another

equation.
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5. Matter inventory of the Universe

Depending on scaling properties with the expansion and the composition, the matter of the Universe

can be conveniently divided into,

ρ =
∑
i

ρi = ρdm + ρb + ργ + ρQ + ρν + · · · , (44)

such that Eq. (40) can be recast at present as,

1 = Ωdm + Ωb + Ωγ + ΩQ + Ων + · · ·+ ΩΛ + Ωκ , (45)

where

Ωi =
ρi
ρcr

, ΩΛ =
Λ

3H2
0

, Ωκ = −c
2κ

H2
0

(46)

and

ρcr =
3c2

8πGN

H2
0 (47)

denotes the critical energy density and H0 = H(t0) is the Hubble parameter today. One then defines

matter energy density, Ωm = Ωdm+Ωb as a sum of dark matter and baryonic matter. Furthermore, one

defines dark energy as, Ωde = ΩΛ + ΩQ + · · ·, as a sum of the energy density in the cosmological term,

in a Q-matter, etc. The energy density in neutrinos, Ων and in photons, Ωγ, are negligible today, when

compared with the critical energy density, but they played an important role in the early Universe.

Since the uncertainty in the Hubble parameter is relatively large, in order to reduce the uncertainty,

energy densities are often expressed multiplied by a suitable power of the Hubble parameter, whose value

today is (WMAP 9year analysis and the HST Key Project, see e.g. G. Hinshaw et al, arXiv:1212.5226),

h = 0.693± 0.090, , (48)

where h is defined by, H0 = 100h kms−1Mpc−1, see Eq. (122) below. More recent results for cosmolog-

ical parameters come from the Planck satellite, see the Planck collaboration paper XVI, Cosmological

Parameters, http://arxiv.org/pdf/1303.5076.pdf.

In the following we quote densities as they are constrained by the WMAP measurements. The energy

density in the baryonic matter of the Universe is,

Ωbh
2 = 0.02266± 0.00043 , (49)

implying that protons and neutrons make up about 4-5% of the critical density of the Universe, Ωb =

0.0472± 0.0010, which also translates into a constraint on the baryonic density, nb = 0.26± 0.01 m−3,
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and on the baryon-to-photon ratio, η ≡ nb/nγ = 6.23 ± 0.15 × 10−10. The dark matter density Ωdm,

whose composition is not known today (except that it is not baryonic) is about 5 times larger, such that

the total matter density,

Ωmh
2 ≡ Ωdmh

2 + Ωbh
2 = 0.1384± 0.0024 , (50)

makes up about 29% of the critical energy density, Ωm = 0.288 ± 0.009 (Ωdm = 0.2408 ± 0.0093). For

neutrinos there is an upper bound,

Ωνh
2 < 0.0076 (95%CL) . (51)

The density in the cosmic microwave background (CMB) photons today is given by,

Ωγh
2 =

Ωmh
2

1 + zeq
≃ 4.2× 10−5 , (52)

which implies a number density of photons today, nγ = 410.4 ± 0.9 cm−3. From this and Eq. (50),

we infer that the redshift at the matter and radiation equality is about, zeq ≃ 3270 ± 210. Assuming

that the temperature of cosmic background neutrinos is Tν ≃ 1.96 K, which comes out by a standard

calculation from thermal history of the Universe, one can calculate the density of massless neutrinos

per species, nν ≃ 112 cm−3.

Finally, the dark energy density, which dominates the Universe’s energy today,

Ωde = 0.712± 0.010 . (53)

While the precise composition of the dark energy is not known, it is known that its equation of state is

consistent with the equation of state of the cosmological term, wΛ = pΛ/ρΛ = −1. More precisely, the

bound is, wde = −1.037± 0.071 (95%CL).

6. The Universe is spatially flat

When all energy densities are summed up, one gets for the total energy density,

Ωtot = Ωm + Ωde = 1.003± 0.004 , (54)

such that the current Universe is nearly spatially flat. To be more quantitative, we have,

1− Ωtot = Ωκ = −c
2κ

H2
0

, Ωκ = −0.0027± 0.0039 → |Ωκ| < 0.01 , (55)
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FIG. 2: Evolution of the curvature density |Ωκ| = |Ωtot − 1| as a function of the scale factor a. In matter era

|Ωκ| evolves linearly with a, while in radiation era it evolves quadratically with a, approaching zero as a → 0.

The today’s bound |Ωtot − 1| < 0.01 at a = a0 = 1 is also indicated.

which then implies for the radius of curvature of the Universe, Rcurv = |κ|−1/2,

Rcurv >
1√
|Ωκ|

c

H0

. (56)

Taking account of the current Hubble radius, RH(t0) = c/H0 ≃ 4300 ± 80 Mpc, we get the following

bound on the curvature radius of the Universe,

Rcurv ≥ 50 Gpc (κ > 0) , Rcurv ≥ 100 Gpc (κ < 0) , (57)

implying that Rcurv is at least twelve times larger than the Hubble radius.

The radius of curvature of the FLRW metric (1) does not change with time, and yet its importance

does change because the scale factor a = a(t) depends on time. As a consequence the curvature term

scales with time. Let us consider this question a little more closely. In matter era, when a = (t/t0)
2/3

(a0 = 1), H = 2/(3t), we have

ȧ = Ha = H0

(t0
t

)1/3

=
H0√
a(t)

, (58)

such that

Ωtot(t)− 1 = −Ωκ(t) =
c2κ

H2
0

a(t) . (59)

Similarly, in radiation era, a = aeq(t/teq)
1/2, H = 1/(2t), we have,

Ωtot(t)− 1 =
c2κ

H2
eq

( a

aeq

)2

, (60)
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where aeq and Heq denote the scale factor and Hubble parameter at the matter-radiation equality,

respectively. This implies that the deviation of the total energy density (curvature density) from unity

was much smaller in the past than it is today. This is illustrated in figure 2. As one goes back in

time towards the radiation-matter equality, |Ωtot − 1| decreases linearly with time. On the other hand

in radiation era |Ωtot − 1| decreases quadratically with time, reaching Ωtot − 1 → 0 as a → 0. This

means that the deviation of Ωtot from unity is very small in the early Universe. This is known as the

flatness problem, which is elegantly solved by cosmic inflation. Indeed, during inflation, a = aIe
HI t,

H = HI = const., such that the curvature term decreases exponentially with time during inflation,

Ωtot(t)− 1 =
c2κ

H2
I

e−2HI t , (61)

explaning thus its smallness at the beginning of radiation era.

7. Coincidence problems

Let us consider once more the Friedmann equation (40), which on the right-hand-side contains

several, at a first sight unrelated, quantities, the matter energy density ρ (which consists of several

distinct contributions), the cosmological term Λ, and the curvature term, −c2κ/a2. The scaling of these

terms with the expansion of the Universe is very different. The matter density, which can be written

as, ρ = ρm + ργ + ρQ, each of which scales as, ρm ∝ 1/a3, ργ ∝ 1/a4, ρQ ∝ 1/a3(1+wQ), the cosmological

term remains constant, Λ = const., and the curvature term scales as 1/a2. The scalings of different

terms contributing to the energy density of the Universe is shown in figure 3.

The first coincidence that may appear puzzling is, why is the total energy density, Ωtot = 1.003±0.005,

so close to the critical energy density. In other words, why is the radius of curvature of the Universe

so big? This is elegantly explained by an epoch of primordial inflation, and hence it is not any more a

source of great discomfort. This is sometimes referred to as the Dicke coincidence (1961).

The second coincidence, which is why Ωde ∼ Ωm at present, has no natural explanation. Before

the discovery that the Universe is accelerating, it was largely considered that ΩΛ = 0. The lack of

explanation for why the matter vacuum fluctuations do not contribute to Λ was termed the cosmological

constant problem. The situation at present is even more discomforting. Not only that we need an

explanation for why the matter vacuum fluctuations do not contribute to Λ. We also need an explanation

for what makes up more than 70% of the energy density of the Universe. Moreover, why is Ωde so close

to Ωm today, a seemingly two completely unrelated quantities. The problem is further aggravated when

one considers the scaling with the scale factor, as shown in figure 3. Let us assume that the dark
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FIG. 3: The different components contributing to the Universe’s energy density as a function of scale factor. a0

denotes the scale factor today, aeq = a0/(3270± 200) denotes the scale factor at the matter-radiation equality

and aΛ ≃ 0.7a0 is the scale factor at which ρΛ = ρm.

energy is composed of the cosmological term. While the energy density in nonrelativistic matter and

the cosmological term was equal relatively recently, aΛ ≃ 0.7 (zΛ ≃ 0.4), at equality, when zeq ≃ 3270,

ρm/ρΛ ∼ 1010; at even earlier epochs the ratio was only bigger.

A third coincidence, why is ρdm ∼ 5ρb, is perhaps explained by the same origin of dark matter

and baryonic matter. While neither the origin of dark matter, nor baryonic matter is known with

certainly, there are competing explanations, some of them testable by near future experiments. A

plausible explanation for the dark matter of the Universe are weakly interacting massive nonrelativistic

particles. A popular candidate is the lightest supersymmetric particle, which is in many realisations of

supersymmetry the neutralino, which is the common name for the supersymmetric partners of neutral

Higgs particles and of neutral massive gauge bosons. On the other hand, it is known that the neutralino

may participate in creating the baryonic matter of the Universe at the electroweak phase transition,

representing thus the sought-for link. The future experiments will show whether the Nature has chosen

to utilise this link.

There are further seeming coincidences, which are most likely just coincidences, requiring no deeper
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Ν

FIG. 4: An example of a geodesic on a positively curved space: a great circle of a sphere passing through the

North Pole.

physical explanation. One of the curious facts is the time of equal matter and radiation, zeq = 3270±210,

which is so close to decoupling, zdec ≃ 1090, which is the time when the photons decoupled from the rest

of the matter, when the electrons and protons largely recombined into neutral hydrogen. Furthermore,

one may wonder why have neutrinos become nonrelativistic only recently, i.e. why is the mass scale of

the neutrinos, mνc
2, so close to the temperature scale today, kBTν .

There are other curious coincidences in the physics of the early Universe, and we shall mention them

in passing in the course of these lectures. The coincidences in cosmology have lead B. Carter to postulate

the anthropic principle, according to which our existence has something to do with the choice of the

fundamental constants in Nature, and hence with the way the Universe is. Its philosophical implications

have captured a lot of attention in popular writings.

8. Horizons

Let us now consider a light ray moving along a geodesic, such that

ds = 0 . (62)

Next, let us choose a geodesic which, in spherical coordinates, passes through r = 0, along θ = const.

and φ = const. A useful example for such a geodesic in curved space is a great circle on a sphere, which

passes through the North Pole, an example of which is shown in figure 4.

For these types of geodesics we then have the following definition of horizon,

ℓphys =

∫ rH

r0

√
grr(r′)dr

′ . (63)
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Eq. (63) represents the event horizon, when the upper limit of integration, r = rH , corresponds to some

final time, tf , which is either tf → ∞, or the time at which the geodesic stops, which may happen

when the geodesic hits a curvature singularity. For example, for a closed universe, which eventually

recollapses, the event horizon is determined by Eq. (63) evaluated at the time of collapse. On the other

hand, Eq. (63) represents the particle horizon, when the upper limit of integration corresponds to the

present time.

To get a clearer physical picture of particle horizons, let us consider the particle horizon of the FLRW

space-time (1),

ℓphys(t) = a

∫ rH

0

dr′√
1− κr′2

= a

∫ t

0

cdt′

a(t′)
, (64)

where we chose tin = 0. One often defines the comoving particle horizon,

ℓc(t) =
ℓphys
a

= c(η − ηin) , (65)

where η denotes conformal time, defined by adη = dt.

Upon rewriting, dt = da/ȧ, and making use of the Friedmann equation (40), we get for the particle

horizon (64) at time t (a = a(t)),

ℓphys = a

∫ a

0

cda′

a′ȧ′
=

ca

H0

∫ a

0

da′√
Ωγ + Ωma′ + ΩΛa′

4 + ΩQa′
1−3wQ + Ωκa′

2
, (66)

where

Ωγ =
ργ(t0)

ρcr
, Ωm =

ρm(t0)

ρcr
, ΩΛ =

Λ

3H2
0

, ΩQ =
ρQ(t0)

ρcr
, Ωκ = −c

2κ

H2
0

, (67)

and ρcr = (3c2H2
0 )/(8πGN) denotes the critical energy density of the Universe at present, and we took

account of the scalings of the different matter components,

ργ(t) =
ργ(t0)

a4
, ρm(t) =

ρm(t0)

a3
, ρQ(t) =

ρQ(t0)

a3+3wQ
, Λ = const. , (68)

and wQ = pQ/ρQ. For notational simplicity, from various Ωi’s in Eqs. (66–67) we have dropped an index

0, indicating present time.

Eq. (66) represents a general expression for the particle horizon in FLRW space-times. We shall now

evaluate it for some simple cases.

Consider first a matter dominated era, in which Ωm = 1, and all other components vanish (recall

that Eq. (40) implies that at present, 1 = Ωγ + Ωm + ΩQ + ΩΛ + Ωκ). In this case Eq. (66) is easily

integrated to give,

ℓphys =
2ca3/2

H0

. (69)
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Since in a matter dominated universe, a ∝ t2/3, such that the Hubble parameter at present, H0 = 2/(3t0),

the particle horizon (69) at present epoch equals

ℓphys(t0) = 3ct0 (matter era) , (70)

which is comparable to the Hubble radius,

RH(t0) ≡ cH−1
0 =

1

2
ℓphys(t0) . (71)

On the other hand, in radiation era, in which Ωγ = 1 and other components vanish, Eq. (66) integrates

to,

ℓphys =
c

Heq

( a

aeq

)2

(radiation era) , (72)

where now Heq = H(teq) is the Hubble parameter at the matter-radiation equality, where ρm = ργ.

Since during radiation era, a = aeq (t/teq)
1/2, which implies, Heq = 1/(2teq), the particle horizon (72) at

equality is equal to the Hubble radius,

ℓphys = 2cteq = RH(teq) . (73)

Consider now an epoch of cosmic inflation, during which the energy of the Universe is dominated by

a cosmological term Λ (de Sitter inflation), such that the Hubble parameter (40) is given by HI =
√

Λ/3

and the scale factor expands exponentially, a = aIe
HI t. In this case the particle horizon (66) reads,

ℓphys =
ac

HI

∫ a

ain

da′

a′2
=

c

HI

( a

ain
− 1

)
(de Sitter inflation) , (74)

where ain = a(tin) = aIe
HI tin . When compared with the Hubble radius RH = c/HI , the particle horizon

grows exponentially large,
ℓphys
RH

= eHI t − 1. (75)

The growth of the particle horizon as a function of the scale factor during de Sitter inflation is shown

in figure 5. Since the particle horizon is defined as the distance traversed by photons, the regions

emcompassed by the particle horizon are in causal contact. Inflation is a special space-time in which

causally related regions extend much beyond the Hubble radius. This property of inflation is used to

resolve the flatness problem of the Universe, to be discussed in the chapter on cosmic inflation. Note

that the particle horizon in eternal inflation (tin → −∞) diverges.

Alternatively, cosmic inflation may be driven by a Q-matter (quintessence) with a negative equation

of state, wQ = PQ/ρQ < −1/3, which therefore violates the strong energy condition, ρQ + 3PQ ≥ 0.
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a

Hubble Radius

Partic
le Horizon

FIG. 5: The Hubble radius and the particle horizon during de Sitter inflation. While the Hubble radius

is constant RH = c/HI , the particle horizon grows exponentially with time (linearly with the scale factor

a = eHI(t−tin)).

If driven by a scalar field ϕ, the substance that drives inflation is known as the inflaton. In this case,

HQ = ȧ/a ∝ a−(3/2)(1+wQ), such that a ∝ t2/(3+3wQ), and HQ = 2/[(3 + 3wQ)t]. With −1 < wQ < −1/3,

the Universe undergoes an accelerated expansion, ä/a = −2(1 + 3wQ)/[9(1 + wQ)
2t2] > 0. The particle

horizon (66) of a universe dominated by an inflaton reads,

ℓphys =
ac

HQa
(3+3wQ)/2
in

∫ a

ain

da′a′
− 1

2
+ 3

2
wQ = − 2c

HQ(1 + 3wQ)

[ a
ain

−
( a

ain

) 3(1+wQ)

2
]

(Q inflation) , (76)

such that it grows linearly with scale factor and as a power of time t.

To a good approximation our Universe is spatially flat (Ωκ ≈ 0) and filled with nonrelativistic matter

with Ωm ≈ 0.26 and dark energy, whose composition resembles that of the cosmological term, ΩΛ ≈ 0.74.

In this case particle horizon (66) reduces to,

ℓphys(t0) =
ac

H0

∫ 1

0

da′√
Ωma′ + ΩΛa′

4
(77)

which can be evaluated in terms of elliptical integrals.

In an open universe, with Ωκ = 1− Ωm, we have

ℓphys =
ac

H0

∫ a

0

da′√
Ωma′ + Ωκa′

2
≈ ac

H0

2√
Ωκ

ln
(√Ωκa+

√
Ωm + Ωκa√
Ωm

)
. (78)

At the present epoch a = a0 = 1 and when expanded in powers of Ωκ, Eq. (78) simplifies to,

ℓphys(t0) =
c

H0

1√
Ωκ

ln
(1 +√

Ωκ

1−
√
Ωκ

)
≃ 2c

H0

(
1 +

1

3
(1− Ωm) +O(Ω2

κ)
)
. (79)

With Ωm ≃ 0.3, Ωκ ≃ 0.7, we get, ℓ(t0) ≃ 2.89c/H0.
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FIG. 6: The spatial geometry of a homogeneous open, flat and closed Friedmann-Lemâıtre-Robertson-Walker

(FLRW) Universe.

9. Do we live in an open, closed, or flat universe?

The short answer to this question is: we do not know, but we do know that the Universe is awfully

close to being spatially flat, since its curvature radius (57) is greater than about 50 Gpc. In short,

Ωtot


> 1 : CLOSED

= 1 : FLAT

< 1 : OPEN

. (80)

The three different geometries are illustrated in figure 6. In a closed (positively curved) universe the

sum of the angles in a (large) triangle is greater than 180o, in a flat Universe the sum equals 180o, and

in an open universe the sum is smaller than 180o. The curvature of the spatial sections becomes more

aparent when working in the coordinates dr/
√
1− κr2 → dχ/R, in which case the spatial part of the

FLRW metric (1) transforms into that of the three dimentional sphere, a2[R−2dχ2 + sin2(χ/R)dΩ2],

where dΩ2 = dθ2 + sin2(θ)dϕ2, where we assumed κ > 0.

A nearly flat Universe is beneficial for formation of (intelligent) life, since it lasts long. In order to
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FIG. 7: The evolution of scale factor a vs. cosmological time H0t in an open universe dominated by nonrela-

tivistic matter (Ωκ = 1−Ωm) with (a) Ωm = 0.26 (upper red solid curve) and (b) Ωm = 1 (lower green dashed

curve).

see this, let us integrate the Friedmann equation (40),∫ a

0

da′√
8πGN

3c2
ρa2 + Λ

3
a2 − c2k

= t , (81)

where we took tin = 0, ain = a(tin) = 0. Equivalently, Eq. (81) can be recast as (a0 = 1),∫ a

0

da′√
Ωma′

−1 + Ωγa′
−2 + ΩQa′

−1−3wQ + ΩΛa′
2 + Ωκ

= H0t . (82)

This can be integrated in some simple cases. For example, in a universe dominated by nonrelativistic

matter we have ρ = ρm/a
3, Λ = 0, Ωm + Ωκ = 1. In an open Universe, Ωκ > 0 (k < 0), and we find∫ a

0

da′√
Ωma′

−1 + Ωκ

=
1

Ωκ

{
a
√

Ωma−1 + Ωκ −
Ωm

2
√
Ωκ

ln

(√
Ωma−1 + Ωκ +

√
Ωκ√

Ωma−1 + Ωκ −
√
Ωκ

)}
= H0t , (83)

which is shown in figure 7. The two curves represent: (a) Ωm = 0.26 (upper red solid curve) and (b)

Ωm = 1 (lower green dashed curve). Note that the age of the Universe today is, t0 ≃ 0.83H−1
0 (Case

(a)) and t0 = (2/3)H−1
0 (Case (b)).

To study the properties of the general equation (82) for the age of the Universe is quite delicate.

In the case when Λ = 0 and ΩQ = 0, the Universe will expand forever if Ωκ ≥ 0 (κ ≤ 0), and it will

recollapse if Ωκ < 0 (κ > 0). This is illustrated in figure 8. We expect that the universe recollapses when
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time

FIG. 8: Scale factor a as a function of cosmic time t in an open (green line), flat (red line) and closed (blue

line) universe. Our Universe is very close to being spatially flat. t0 denotes the present time.

the denominator in Eq. (82) vanishes at some instant in time. This is however, not true in general. One

can imagine a situation in which ΩΛ > 0 and/or ΩQ > 0 today, such that at some time in the future the

denominator in (82) vanishes, and the Universe starts recollapsing. Nevertheless, before the Universe

reaches zero size, it may start expanding again. A universe in which there was or will be a prolonged

period during which the Universe expands or collapses at a slow pace is called a loitering phase, and

used to be invoked in order to resolve the age crisis of the Universe of the 1990’s. Namely, a loitering

phase tends to prolong the age of the Universe, for the Universe of a given size and matter composition.

10. The age of the Earth, the Solar System and the Universe

A first estimate of the age of the Earth is due to Rutherford, and it was based on the Uranium dating.

Uranium appears in Nature in two isotopes, 235U and 238U , and whose concentrations are related as,

235U = 0.00725238U . 238U decays predominately through the radium series, whose final element is an

isotope of lead,

238U
radium
series−→ 206Pb , (84)

with the lifetime, t238 ≡ λ−1
238 = 6.45 Gy. 235U on the other hand, decays predominately through the

actinium series,

235U
actinium
series−→ 207Pb , (85)



19

with the lifetime, t235 ≡ λ−1
235 = 1.015 Gy. The assumption that the abundance of the uranium isotopes,

235U and 238U , in the proto-Earth was equal, lead Rutherford to the following estimate of the age of the

Earth (which also represents an estimate for the age of the Solar System),

tEarth ∼ 3× 109 year . (86)

A more modern technique for estimation of the age of the Solar System is due to Patterson (1956),

and it is based on dating of meteorites. Since 204Pb has no long-lived parent isotopes, we can safely

assume that its concentration was identical at the time of creation as it is today. What is then measured

is the following two ratios,

R235 =
207Pb
204Pb

=
(207Pb)in

204Pb
+

235U
204Pb

(
eλ235t⊙ − 1

)
R238 =

206Pb
204Pb

=
(206Pb)in

204Pb
+

238U
204Pb

(
eλ238t⊙ − 1

)
. (87)

Let us consider two meteorites (a and b), with different ratios, R235a, R235b, R238a and R238b. Upon

taking the ratio of the subtracted ratios for the different meteorites, the dependence on the initial

concentrations drops out,

R235a −R235b

R238a −R238b

=
(235U)a − (235U)b
(238U)a − (238U)b

eλ235t⊙ − 1

eλ238t⊙ − 1
, (88)

which gives the following estimate for the age of the Solar System,

t⊙ ≃ 4.6× 109 year . (89)

To estimate the age of our galaxy (Milky Way) is complicated by the fact that heavy elements

are constantly replenished by supernova explosions. From astrophysical considerations we know that

there were many more supernovae in the first billion years after the creation of the galaxy, whereby

afterwards the rate of supernova explosions has been relatively low and stable. Upon taking this into

consideration, and depending on precisely what one assumes for the rate of supernova explosions, one

arrives at different estimates of the age of the Milky Way, which fall in the range,

tMilky Way ∼ 6− 14 Gy . (90)

More modern methods are based on the estimate of the age of oldest stars in globular clusters. The

current quoted estimate is,

tglobular clusters = 13± 2 Gy , (91)



20

which is to be compared with the WMAP 9 year (2012) estimate for the age of the Universe,

t0 = 13.750± 0.085 Gy , (92)

This estimate is based on the standard cosmological evolution and on the ΛCDM model, in which dark

energy is just a cosmological constant and dark matter consists of a fluid of cold noninteracting particles.

While this is certainly the most precise estimate of the age of the Universe, one should keep in mind

that it is a derived quantity. The age (92) is obtained by making certain assumptions on the energy

composition of the Universe, and then integrating the Friedmann equation (82), based on which one

arrives at the estimate (92). Given this, it is still a good idea to continue using direct methods to

improve age estimates.

In the 1990s an age crisis was declared, which was based on the fact that the Universe was thought

to be matter dominated at present, from which one can estimate the age to be between (2/3)H−1
0

(for the Einstein-de Sitter Universe with Ωm = 1 at present) and 0.83H−1
0 (for an open Universe with

Ωm = 0.26 at present), as can be seen from figure 7. Moreover, the age of the globular clusters was

overestimated by about 10%. The age of globular clusters was corrected by the Hypparcos satellite

(http://en.wikipedia.org/wiki/Hipparcos satellite), which measured the paralaxes of nearby

stars, and thus allowed for a more precise estimate of the distance to globular clusters, which in turn

affected the estimated age. The age crisis was eventually resolved by the observation that the Universe’s

energy density is dominated by dark energy, which makes the Universe of the same size older, t0 ≃ H−1
0 =

14.0± 0.2 Gy.
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B. Basic facts about the Universe

1. The Mach Principle and the Cosmological Principle

In the 1890’s Ernst Mach argued that inertial reference frames of the Newton theory, and likewise an

unobservable aether, cannot have absolute meaning. In 1893 he postulated the followingMach Principle,

Intertial frames are determined by the distribution and motion of the matter in the Universe.

Even though Einstein accepted the Mach Principle as a guiding principle in constructing his general

theory of relativity, the theory is not Machian. This can be seen as follows. Since the Einstein equation

is of second order in derivatives, for any distribution of matter and at each point of space and time, one

can find a coordinate transformation into a locally Minkowsky coordinate system, such that the metric

tensor reduces to the Minkowski metric, and the Levi-Cività connection vanishes,

gµν(x) → ηµν = diag(1,−1,−1,−1) , Γµαβ = 0 . (93)

The invariance of the Minkowski line element in this frame,

ds2M = dt2 − dx⃗ 2 (94)

generalises to the invariance of the line element for a general metric tensor, gµν = gµν(x),

ds2 = gµν(x)dx
µdxν . (95)

The coordinate system (94) is equivalent to local inertial coordinates of the Newton mechanics. In the

absence of any matter, gµν = ηµν everywhere is the unique solution to the Einstein field equations. This

allows us to postulate that a particle can move arbitrarily far from any distribution of matter, to regions

where matter contributes unmeasurably little to gµν , such that the solution for gµν is arbitrarily close

to ηµν . Since this defines a solution to the Einstein field equation far from any distribution of matter,

this is contrary to the Mach principle, which states that inertial reference frames can be defined only

with respect to a local matter distribution.

From a modern point of view, it is natural to contend that the rest frame of the Universe corresponds

to the rest frame of the cosmic microwave background (CMB) photons. All other inertial frames are

defined by the velocity with respect to that frame.

In the 1930’s Einstein postulated that,
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FIG. 9: The APM Galaxy Survey (Automated Plate Measuring Machine, completed in 1990) is a catalogue of

several millions of galaxies.

The Universe is homogeneous and isotropic, when averaged over large scales.

This idea was named in 1935 by Milne the Einstein Cosmological Principle. At that time there was

no evidence supporting homogeneity on large scales. As we will see in a moment, today there is ample

evidence supporting the Cosmological Principle.

Figure 9 shows the APM Galaxy Survey. The depth of the Survey (corresponding to the distance of

the faintest galaxies in the Survey) and the width of the Survey are about 600 Mpc, which corresponds

to about 15% is the Hubble radius, cH−1
0 ≃ 4300 Mpc. The survey represents a two dimensional

projection of galaxies (no direct information about the distance to the galaxies is given), and covers a

large portion of the sky.

One clearly sees homogeneity at the scale of the survey. The lagest structures seen in figure 9 are

voids and filamental structures, which can be estimated to be about 20% of the size of the survey,
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FIG. 10: The regions of the sky covered by the 2dF Survey of galaxies, one located at the equatorial plane,

and another about 30 degrees south of the equator. In addition, there are small circles, which represent a part

of the ‘pencil’ survey, which goes even deeper in redshift space.

corresponding to largest structures in the Universe of about 100 Mpc.

In order to provide a more complete information about the three dimensional structures of the Uni-

verse, the 2dF (Two Degree Field) and SDSS (Sloan Digital Sky Survey) surveys have been conducted,

which in addition measure the redshift z = a0/a − 1 of galaxies, providing thus an (incomplete) infor-

mation about the distance, where a = a(t) denotes the scale factor at time t and a0 = a(t0) today.

According to the Hubble law,

cz ≃ vH ≃ H0rph , (96)

the Universe expands uniformly. Here vH denotes the Hubble speed, H0 the Hubble parameter today,

and rph the physical distance. In reality, one must add to (96) the (peculiar) velocity caused by the local

dynamics inside clusters of galaxies, which introduces a noisy component to the Hubble law. In general,

as distances become greater, peculiar velocity becomes a smaller fraction of the Hubble velocity, vH ,

such that one can obtain the actual distance from measured redshifts to a higher accuracy.
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FIG. 11: The two slices from figure 10 of the galaxies covered by the 2dF Survey. The size of the survey is

about 1000 Mpc wide and about 1000 Mpc deep, or in redshift space up to about z ≃ 0.25.

The 2dF survey (http://www.mso.anu.edu.au/2dFGRS/) was completed in 2002, and contains red-

shifts of about 220,000 galaxies (and about 22,000 quasars), selected from the Southern Sky part of

the APM Galaxy Catalog, as shown in figure 10. The SDSS (http://www.sdss.org/), which was

completed in June 2006, contains a publicly available database, with information on about 150 million

galaxies, among them about one million with recorded spectra and redshifts, and about 105 quasars

with redshifts.

In figure 11 the two slices of the 2dF survey are shown. The radial distance from the center is

proportional to the redshift, the most distant galaxies correspond to z ≃ 0.25. At large distances one
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can clearly identify the selection effect, according to which, at large distances only bright galaxies are

selected from the APM catalogue (they appear faint due to their large distance). At a first sight,

the density of galaxies appear larger at intermediate distances (red color) than in the intermediate

neighbourhood. This impression is caused by the fact that the slice becomes thicker as one goes to

larger distances.

A more careful analysis of the catalogue confirms the basic picture obtained by analysing the APM

catalogue. The bigest structures correspond to voids, fillametal structures, and possibly walls whose

size is not greater than about 100 Mpc.

A new Large Synoptic Survey Telescope is under construction in Cerro Pachón in Chile to become

operational in 2012 (for more information see http://www.lsst.org/lsst home.shtml). The tele-

scope’s primary mirror is 8.4m in diameter and is designed to measure 3 dimensional maps of the mass

distribution of the Universe, and in particular to provide accurate information about the dark matter

and dark energy of the Universe. Furthermore the telescope will provide a large data base of various

astronomical data.

In order to get a more quantitative estimate of galaxy clustering, one needs to study correlations

between the positions of galaxies. Assuming galaxies have a certain definite distribution of sizes, one

can estimate the size of largest structures, by making use of the reduced two-point correlation function,

ξ(r), defined as follows,

dP = n2
0[1 + ξ(r/r0)]dV1dV2 , (97)

where n0 denotes the average density of galaxies, dV1 and dV2 are small volume elements placed at points

r⃗1 and r⃗2, respectively, and P is the joint probability for finding galaxies in the volume element, dV1dV2.

Because of homogeneity, ξ depends only on the magnitude of the relative distance, r = ∥r⃗1 − r⃗2∥; r0
is defined at the relative distance at which ξ = 1. Note that by definition,

∫
ξ(r/r0)dV1dV2 = 0. For

a random stationary Poisson process, ξ = 0. Any deviations from ξ = 0 are caused by gravitational

clustering. Observationally,

ξ|obs =
( r
r0

)−γ
, γ = 1.77± 0.04 , r0 = 7.4± 1.4 Mpc . (98)

While this behaviour is reproduced by N -body numerical simulations of structure formation from ini-

tial adiabatic scale-invariant density perturbations (adiabatic scale-invariant perturbations are defined

roughly as equal relative matter density perturbations on all scales, which are gaussian distributed),

there is currently no analytical understanding of this empirical law. Based on the Abel survey of clus-

ters, one infers that an analogous law is observed for clusters of galaxies, ξcl ∼ (r/rcl)
−γcl , with γcl ≃ 2,
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FIG. 12: The reduced two-point correlation function ξ as a function of scale (in the units of h−1Mpc, with

h = 0.73 ± 0.03). Note that the scales are logarithmic, such that the correlations are displayed from about

0.1 Mpc up to more than 200 Mpc.

suprisingly close to the correlation function of galaxies, and rcl ≃ 20 ± 5 Mpc. Since clusters are not

yet fully virialised, the correlation function need not have the same slope.

The form of the correlation function for galaxies and clusters clearly indicates that on large scales

the Universe becomes more and more homogeneous. The question is then whether this law is obeyed

on even larger scales, and in precisely what way is homogeneity reached.

This question can be answered by studying the reduced two-point correlation function as a function

of scale. In figure 12 we show the observed reduced two-point correlation function, ξ, based on about

200,000 2dF galaxies, 26,000 SDSS galaxies, and the APM survey as a function of scale. The figure

shows that no simple power law can be fitted to correlations on all scales covered by the surveys, hence

Eq. (98) holds only approximately. Note that the two point correlation function becomes smaller than

the correlation function on scales larger than 10 Mpc, and it is much smaller than the one on scales of
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FIG. 13: The energy density fluctuations as a function of scale (represented in the units of light-years). The

spectrum streches over almost four decades of scales.

about 100 Mpc. To see how homogeneity is approached on even larger scales, in figure 13 we show a

compilation of data, which shows the amplitude of relative energy density fluctuations, as a function

of scale, from a sub-megaparsec scale, which is estimated by the intergalactic hydrogen clumping, up

to the Hubble scale, which is measured by the cosmic microwave background radiation. Note that the

amplitude of density fluctuations, measured by cosmic microwave background radiation, is of the order

10−4 on the largest (Hubble) scales, implying that the Universe is homogeneous to one part in 10,000

on the largest observable scales.

Further evidence for homogeneity comes from the foregrounds observed by the MWAP satellite

(http://map.gsfc.nasa.gov/, see also http://map.gsfc.nasa.gov/m or.html). In figure 14 we show



28

FIG. 14: The infrared foregrounds observed by the WMAP satellite. The map represents the K-Band (23 GHz)

foregrounds. Synchrotron radiation is red, free-free is green, and thermal dust is blue.

the 3-color foreground signal maps (red, green, blue) of the Ka-Band Map (33 GHz). Synchrotron

radiation is red, free-free is green, and thermal dust is blue. Figure 15 shows the W-Band Map (94 GHz)

of the same foreground signals. Note that the signal from the Milky Way galaxy shows prominently as

a bright horizontal streak across the middle of each map. The foreground signals (primarily our galaxy)

are weakest in the W-Band map (94 GHz). Apart from the Milky Way, the maps clearly indicate

homogeneity of the dust distribution on large scales. Furthermore, in figure 16 we show the microwave

foreground point sources observed by the WMAP satellite, which are also distributed homogeneously

over the sky.

As a final evidence of homogeneity, we look at the cosmic microwave background radiation (CMBR).

Since the photons of the CMB radiation were emitted at the time of last scattering at z ≃ 1090, the

temperature at which electrons and protons recombined into the neutral hydrogen, by observing the

CMB we mostly see how the Universe looked at the time of last scattering, albeit redshifted.

The expansion of the Universe redshifts the temperature of the photon fluid, but does not change

the nature of the photon distribution function. For example, let us consider a photon fluid with a

thermal distribution function (defined as the photon occupancy per unit phase space volume), nγ =

1/(eEγ/(kBTγ)−1), where Eγ = pc = ~ν denotes photons energy, and Tγ = Tγ(x) a local temperature and

kB = 8.617342 ± 0.000015 × 10−5 eV/K is the Boltzmann constant. Since the photon energy redshifts

with the expansion as, Eγ → Eγ/a, and in absence of interactions (free streaming) the photon number
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FIG. 15: The infrared foregrounds observed by the WMAP satellite. The map represents the W-Band (94

GHz) foregrounds. Synchrotron radiation is red, free-free is green, and thermal dust is blue.

FIG. 16: The microwave foreground point sources observed by the WMAP satellite.
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FIG. 17: Black Body Spectrum as seen by the WMAP satellite. The error bars are about 20% of the line

thickness.

is an invariant, the photon temperature redshifts according to,

Tγ →
Tγ
a
. (99)

Spatial variations in the photon temperature are a measure of homogeneity of the Universe at recombi-

nation. In figure 17 we show the spectrum measured by the WMAP of the CMB photons, onto which a

perfect black body spectrum is superimposed (red curve). The spectrum is so perfect black body that

in no place deviations are bigger than the thickness of the red curve. On average, the error bars are

about 20% of the curve thickness. This is a very strong evidences that the early Universe was in thermal

equilibrium, and one of the stronger supporting evidences for the Standard Big-Bang model. In figure 18

we show the full sky map of the CMBR, with the monopole T0 = 2.725±0.001 K being subtracted. The

red color corresponds to the hottest region of the sky, T = 2.729 K while the violet spot is the coldest

region of the sky, T = 2.721 K. The plot is completely dominated by the dipole, whose amplitude is,

T1 = 3.358±0.0017 mK in the direction on the sky, (ℓ, b) = (263o.86±0o.04, 48o.24±0o.10), and it does



31

FIG. 18: The dipole in CMB as measured by the COBE satellite. The temperature range is T=2.721K (violet)

to 2.729K (red). The inferred dipole velocity of the Solar System is v = 368± 2 km/s and of the Local Group,

vLG = 627± 22 km/s.

not represent an intrinsic anisotropy, but it is a consequence of our motion with respect to the rest frame

of the CMB which, as we already mentioned, can be considered as the rest frame of the Universe. The

implied motion of the Solar System with respect to the CMB reference frame is, v = 368± 2 km/s, and

of the Local Group has the amplitude, vLG = 627 ± 22 km/s, directed towards the galactic longitude,

l = 273◦ ± 3◦ and lattitude, b = 27◦ ± 3◦.

The intrinsic anisotropies in the CMB occur at the relative level of 10−5 (tens of micro-kelvins),

and were first observed by the COBE satellite in 1992 (for which John Mather and George Smoot

were awared Nobel Prize for Physics in 2006), and more recently by several baloon experiments (e.g.

BOOMERanG and MAXIMA), and by the WMAP satellite. The root-mean-square value of the WMAP

quadrupole temperature anisotropy is by about a factor 2 lower than expected, Qrms = 8 ± 2 µK, or

∆T2 = 12.4 ± 2.8 µK. The WMAP team measured the anisotropies in five frequency bands, K-Band

Map (23 GHz), Ka-Band Map (33 GHz), Q-Band Map (41 GHz) V-Band Map (61 GHz), and W-Band

Map (94 GHz). The resulting CMB maps of the whole sky are shown in figures 19, 20 and 21. Note that

the vertical red stripes in the figures are not primordial, but represent mostly the foreground microwave

sources in the Milky Way, see figures 14–16. Since the galactic microwave foregrounds have different

spectral characteristics from the back body of the primordial photons, to a large extent they can be
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FIG. 19: The intrinsic anisotropies in the CMB photons as obserbed by the WMAP satellite, first year data.

The WMAP team measured the anisotropies in five frequency bands. The figure shows the K-Band (23 GHz)

and Ka-Band (33 GHz) maps.

subtracted by combining the maps at different frequencies. One such map is shown as the last image in

figure 21, in which, apart from a few bright spots, the galactic foregrounds have been almost completely

subtracted, and the remaining fluctuations are considered to be primordial.

In conclusion, we have argued that the today’s evidence for homogeneity of the Universe on large

scales is very convincing, hence the Einstein Cosmological Principle can be considered proven. Moreover,

the ultimate piece of evidence, the cosmic microwave background radiation, strongly suggests that the

young Universe was much smaller and in thermal equilibrium. As we will see in the course of these

lectures, a self-consistent picture of an expanding universe has emerged, which is often dubbed the Big
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FIG. 20: The figure shows the Q-Band (41 GHz) and the V-Band (61 GHz) map.

Bang Paradigm.

2. The Universe is expanding

The main evidence supporting the fact that the Universe is expanding is the Hubble law, which is

the observational fact that more distant galaxies are receeding away from us with a speed which is

proportional to their distance. The recession speed is determined by the Doppler redshift of spectral

lines. The original Hubble diagram (1929), which was used as the evidence for a linear Hubble law, is

shown in figure 22.

It is not a well known fact that an evidence for expansion is also contained in galaxy catalogues,
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FIG. 21: The figure shows the W-Band (94 GHz) and a combined map, which is a linear combination of the 5

maps (K, KA, Q, V and W band maps), designed such that the foreground effect of the galaxy is minimised.

as shown for example in figure 9. The evidence is made apparent as follows. Let us define apparent

magnitude of a light source in the sky,

m = −2.5 log(F) + const. , (100)

where F = dE/(dtdAdν) denotes the measured energy flux on the Earth, in the units of energy (dE)

per unit time (dt) per unit area (dA) per unit frequency interval (dν), such that the change in apparent

magnitude, ∆m = m1 −m2 = 5, corresponds to the ratio of the measured fluxes, F1/F2 = 100. Next

we define the absolute magnitude as,

M = −2.5 log(L) + const. , (101)
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FIG. 22: The original Hubble diagram, showing that the Universe is uniformly expanding. Note that the

vertical axis represents the Hubble velocity in [km/s], and not in [km], as it stands.

where L denotes the absolute luminosity of the source. The constant in Eqs. (100–101) is fixed such

that at the distance 10 pc, M = m, which then implies,

m−M = 5 log
( r

Mpc

)
+ 25 . (102)

Recall that the luminosity distance dL is defined as,

F =
L

4πd2L
, (103)

such that in a static spatially flat universe, the luminosity distance corresponds to the coordinate

distance, dL = r, which is in this case also equal to the physical distance. In an expanding and curved

universe, the relation between dL and the matter content of the Universe is more complex, and it is

the subject of Problem 2.5. Assume for simplicity that all galaxies have identical luminosity. Then the

number of galaxies with an observed flux, which is greater than some F , equals to,

N(> F) = n0V = n0
4πr3

3
=

4πn0

3

( L
4πF

) 3
2
, (104)
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where r denotes the radius of a sphere of volume V , and n0 an average density of galaxies. If there is

a spread in the intrinsic luminosity of galaxies, which is characterised by a probability distribution, we

can bin them, {ni,Fi}, where ni denotes average density of galaxies in bin i, and Eq. (104) generalises

to,

N(> F) =
∑
i

4πni
3

( Li
4πF

) 3
2
, (105)

such that we expect that the law, N(> F) ∝ F−3/2 holds universally. From Eq. (100) it follows,

F ∝ 10−0.4m, which then implies,

N(> F) = N(< m) ∝ 100.6m . (106)

Taking a derivative of the differential form of this expression,

N(< m) =

∫ m

0

dN

dm′dm
′ (107)

we easily infer,
dN

dm
∝ 0.6× ln(10)× 100.6m ∝ 100.6m . (108)

In the 1920s is was known that dN/dm varies slower with apparent magnitude m than expected

from (108). For bright galaxies, for which m ∈ (15, 20), the law (108) is well satisfied, while for

fainter (more distant) galaxies, it was observed that(dN
dm

)
obs

∝ 100.45m . (109)

The disagreement is explained by the combined galactic evolution and the Universe expansion.

If this was the only evidence for Universe’s expansion, it would not have been taken seriously, since

the evidence is marred with evolution effects. In order to interpret properly the evidence from galactic

redshift data shown in figure 22, a reliable information about the distance to galaxies is needed. An

ingenious estimate to the Andromeda distance was proposed by Öpik. If spiral nebulae were galaxies like

the Milky Way it is reasonable to assume that the mass-to-luminosity ratio of Andromeda is comparable

to that of the Milky Way, which is about 3 times larger than the ratio for the Sun,

MMW

LMW

≃ 3
M⊙

L⊙
(110)

The Milky Way estimate is made based on the mass estimate from (virialised) star velocities, and from

star counts, and statistical estimate of star distances. Next, assuming that Andromeda is a virialised
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FIG. 23: The geometry used by Öpik to estimate the distance to the Andromeda galaxy, also known as M31.

system of stars, the gravitational field (the force per unit mass) is on average balanced by the centrifugal

force,

−g = GNM

(θD)2
∼ v2c
θD

, (111)

where vc is the average star speed at the edge of the disk. From this and F = L/(4πD2), it then

immediately follows that the distance to Andromeda is,

D =
v2cθ

4πGNF
F
M

. (112)

Since vc, θ and F are all measured quantities, and F/M can be estimated based on (110), D can be

estimated,

DÖpik ≃ 450 kpc , (113)

which is to be compared with the modern value, based on the cepheid variable star distance measure-

ments,

DM31 = 770± 30 kpc . (114)

Cepheid stars are currently the most widely used standard candles for the distance estimation on mega-

parsec scales. In passing, we mention that Hubble’s estimate of the Andromeda distance, which was

based on cepheid variable stars, was in fact poorer, DHubble ≃ 300 kpc.

The Öpik’s method predates a widely used method for distance estimation based on the Tully-Fisher

relation, which establishes a relationship between the velocity dispersion and the absolute luminosity of

elliptical galaxies.
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FIG. 24: An illustration of the Hubble Law. The same triangle at an earlier and a later instant in time. The

points A, B and C can be thought of as being attached to some inertial frame of a local distribution of matter,

e.g. the center of a cluster of galaxies. Due to the uniform expansion of space, at a later time, the distance

between the points becomes larger.

0
a 

a  = 1

FIG. 25: An illustration for how the Hubble Law affects photons. In an imaginary situation, the photon

traverses around a circle of radius a0 = 1. After the Universe has expanded, the cirlce has expanded to a > a0,

but the number of nods of the photon must be conserved, implying that the photon wavelength must increase

linearly with the size of the Universe.

The Hubble Law states that the expansion of the Universe is uniform on large scales, implying that

objects at a physical distance rph move away from us with an averaged speed,

vH = H0rphys , (115)

where H0 is the Hubble constant. Figure 24 shows a triangle at an earlier and a later time. The points

A, B and C can be thought to be attached to some definite galaxies. The Universe’s expansion is

uniform, in the sense that the distance between each pair of points increases uniformly with time.

An important question is how the expansion influences quantum fields. A simple example is the

electromagnetic field, which is quantum mechanically a fluctuating field of massless photons. In order
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to see that the photon wavelength stretches with the expansion, in figure 25 we show an imagined

photon, which wraps around a circle. Due to the Universe expansion the circle becomes bigger, and as

a consequence of the conservation of the number of crests, the wavelength of the photon must increase.

Hence we have,

λ0 → λ = aλ0 (116)

where a0 = 1 and a > 1 represent the scale factors at the earlier and later time, respectively. Since

p = hc/λ and E = pc, we conclude that

p0 → p =
p

a
, E0 → E =

E0

a
, (117)

which is nothing but the gravitational redshift of light due to the Universe expansion. Another simple

consequence of Universe’s expansion is the temperature redshift, which can be argued as follows. Take

a photon fluid, in which photons are distributed according to the Bose-Einstein distribution function

(the Planck’s black body spectrum), such that the photon occupancy of phase space is given by,

nγ =
1

eE/kBT − 1
, (118)

where kB = 8.617342 ± 0.000015 × 10−5 eV/K denotes the Boltzmann constant. Since the number of

photons per unit phase-space cell must be conserved, the energy redshift, E0 → E = E0/a, implies the

following temperature redshift,

T0 → T =
T0
a
, (119)

This is the redshift law that is observed by the microwave background photons, and which allows us to

infer that the Early Universe was much hotter than it is today.

The measurement of the rate at which the Universe expands, which is encoded in the Hubble pa-

rameter H, has a long history, and only quite recently the measurements have become somewhat more

precise. Until the 1990s, the uncertainly in the Hubble parameter was about a factor two, and for that

reason, the Hubble parameter today was standardly represented as,

H0 = 100h km/s/Mpc (120)

where h is a dimensionless number between 0.5 and 1. More recently (in 2000), based on relatively

distant cepheid star measurements by the Hubble Space Telescope (HST), the HST Key Project came

up with a more precise determination of the Hubble parameter,

H0 = (72± 3stat ± 7syst) km/s/Mpc , (121)
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FIG. 26: The receding velocity vs distance of the galaxies measured by the Hubble Space Telescope Key Project

(Freedman et al, 2000), based on which the Hubble parameter (121) was determined.

whereby the first error bars are statistical and the second are systematic. Systematic errors are domi-

nated by the error in determination of the distance to standard candles, which are in this case cepheid

stars. The HST Key Project data are shown in figure 26. Since the maximum distance at which a

cepheid could be found by the Hubble Space Telescope is at about 20 Mpc, a significant scatter in H0

can still be observed. In the figure, H0 = 75 km/s/Mpc is shown, flanked by the ±10% lines, which

indicate the level of the data scatter.

In figure 27 we show the Hubble diagram for a compilation of data, which include Type Ia supernovae

(squares), Tully-Fisher clusters (solid circles), fundamental plane clusters (triangles), surface brightness

fluctuation galaxies (diamonds), Type II supernovae (open squares). All of the second distance indicators

are calibrated by cepheid variables, found by the Hubble Space Telescope, hence the consistency of the

HST Key Project result in figure 26 with the data in figure 27 is not incidental, since the two data sets

are not independent.

In figure 28 we show the uncertainly of various methods used to detemine H0 in figure 27, and

the gaussian envelope for all measurements taken together, which gives a good estimate of the total
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FIG. 27: The Hubble diagram of velocity vs. distance for second distance indicators, all calibrated by cepheid

variables. The symbols are, Type Ia supernovae (squares), Tully-Fisher clusters (solid circles), fundamental

plane clusters (triangles), surface brightness fluctuation galaxies (diamonds), Type II supernovae (open squares).

A slope H0 = 72 km/s/Mpc is shown, flanked by ±10% lines. Bottom panel shows the value of H0 as a function

of distance. As opposed to figure 26, the largest distance on this diagram is about 400 Mpc.

uncertainly in the measurement of the Hubble parameter.

Remarkably, recent analyses of the WMAP measurements of temperature fluctuations of the cosmic

microwave background (CMB) resulted in the cosmological parameters which are fully consistent with

the HST Key Project result. The WMAP result for the Hubble parameter today is,

H0 = 71± 4 km/s/Mpc (WMAP ) . (122)

A useful quantity, which gives a good idea about the age of the Universe, is the inverse Hubble parameter,

H−1
0 = 9.78h−1 × 109 year = 13.7± 0.5 Gy , (123)
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FIG. 28: The dispersion of the Hubble parameter H0 in the HST Key Project. The various curves represent

the uncertainties in H0 for Type 1a supernovae, the Tully-Fisher relation, Type II supernovae, etc. All are

calibrated by cepheid variables. The upper curve is obtained by summing the individual Gaussians.

which is to be compared with the WMAP estimate of the age of the Universe, t0 ≃ 13.7 ± 0.2 Gy.

In a matter dominated universe, H0 = 2/(3t0), such that the age is much lower, t0 = (2/3)H−1
0 . The

explanation is to be found in a dark energy component of the Universe, which is believed to drive an

accelerating expansion of the Universe today, and prolongs its age.

3. The Universe is accelerating

The discovery that the Universe is accelerating came as a surprise, and one still finds a few skeptics,

who claim that it is sufficient to assume that distant supernovae Ia are about 40% dimmer (evolution

effect), and the evidence for the Universe acceleration goes away. This contention is not unreasonable,

since the physics of supernovae explosions is not well understood. Nevertheless, when taken together

with all other measurements, which include the CMB measurements, Hubble parameter measurements,

and the dynamical mass measurements, the evidence for accelerating Universe is quite convincing.
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FIG. 29: The uncorrected and corrected light curves of nearby supernovae Ia. The correction is based on a

phenomenological relation between the luminosity at the maximum and the total duration of the explosion,

captured by the timescale of the light curve. A simple linear relationship between the absolute magnitude and

and the timescale of the ligtcurve holds. The so corrected luminosities fall on top of each other (the remaining

scatter is quite small, about ∆m ∼ 0.2− 0.3), suggesting that the corrected absolute luminosities of SNIae can

be used as standard candles.

It is hence worth putting some effort into understanding the basis for the use of supernovae Ia as

standard candles. In figure 29 we show the spread in the absolute luminosity of nearby supernovae Ia,

before and after the spread is corrected for. Before the correction, the scatter is quite large, as can be

seen in the top panel. There seems to be however a simple relation between the maximum luminosity and

the timescale of the light curve. When a simple linear relation between the absolute magnitude and the

timescale is assumed, and the luminosities are thus corrected for, the resulting luminosities fall within a

narrow range, as shown in the bottom panel. Similar results have recently been obtained by the High-z

Supernova Search team, as can be seen in figure figure 22. The corrected light curves have been plotted

in three frequency bands (U, B and V) for both near and distant supernovae Ia (observed by the Hubble

Space Telescope), and a concordance between the near and distant samples has been observed, which
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FIG. 30: A comparison of the corrected light curves for near (z < 0.1, open symbols) and distant supernovae Ia

(observed by the Hubble Space telescope, filled symbols) in three frequency bands (B, U and V). No evolution

(dimming) effects are observed for distant supernovae. From the High-z Supernova Search (A. Riess et al,

2004).

indicates that no dimming occurs for distant supernovae. The method is phenomenological, because

there is no fundamental understanding of dependence of the absolute luminosity on shape of the light

curves, and it is awaiting a confirmation from fundamental understanding of the physics of supernovae

explosions.

Based on the contention that distant supernovae Ia can be used as standard candles (not in any

way different from nearby supernovae Ia), in 1998 the two teams, the Supernova Cosmology Project

(Perlmutter et al, see figure 31) and the High-z Supernova Search (A. Riess et al) presented evidence

that the Universe is accelerating.

In order to get a better grasp on what it means, let us recall that in a Friedmann-Lemâıtre-Robertson-

Walker (FLRW) homogeneous and expanding universe, with the line element,

ds2 = c2dt2 − a2
dr2

1− kr2
− a2r2(dθ2 + sin2(θ)dφ2) (124)
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FIG. 31: An early evidence for accelerating Universe from Supernova Cosmology Project (Perlmutter et al.,

1998), with about 40 supernovae Ia light curves. The diagram shows an effective apparent magnitude mB of

supernovae as a function of redshift z. Several curves of mB as a function of z in different cosmologies are also

shown.

the Einstein equations are,

H2 ≡ (
ȧ

a

)2

=
8πGN

3c2
ρ+

Λ

3
− kc2

a2
(125)

ä

a
= −4πGN

3c2
(ρ+ 3P) +

Λ

3
. (126)

The Universe is accelerating when the active gravitational mass is negative, ρ + 3P < 0, and/or the

cosmological term is positive, Λ > 0. While the first possibility presents an experimenter a moderate

worry (nobody has ever observed such a matter in laboratory), the second option leaves an unconfortable
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sentiment by many theorists (a theoretical understanding of why the cosmological term is so close to

zero is known the cosmological constant problem).

A convenient rewriting of equations (125–126) for today (when a(t0) = a0 = 1) is,

1 = Ωm + ΩΛ + Ωκ (127)

q0 =
1

2
Ωm − ΩΛ , (128)

where we assumed that the matter energy density ρ is dominated by nonrelativistic particles, ρ ≃ ρm,

P ≃ Pm = 0,

Ω ≃ Ωm =
8πGN

3c2
ρm
H2

0

, ΩΛ =
Λ

3H2
0

, Ωκ = −c
2κ

H2
0

. (129)

These equations are a convenient tool for understanding of the diagrams plotted based on distant

supernovae measurements.

Assume that there is a standard candle (an object with a well understood absolute luminosity L),

which is so bright that it can be observed up to cosmological distances, that is up to a redshift of the

order unity, z ∼ 1. Assuming that supernovae Ia are standard candles, allows one to represent them on

a plot, which makes use of the nontrivial functional dependence of the luminosity distance,

dL =
( L
4πF

)1/2

(130)

on redshift z, where F is the measured flux. Indeed, when expanded in powers of z, at order z2 dL

acquires a correction to the Hubble law,

dL = H−1
0

(
z +

1

2
(1− q0)z

2 + ..
)
, (131)

where

H0 = ȧ(t0), q0 = −H−2
0 ä(t0) (a0 = a(t0) = 1) (132)

and z = a(t)−1−1. While the linear term is sensitive to the Hubble parameter, the quadratic correction

is sensitive to the Universe’s acceleration, and it is quantified by the deceleration parameter, q0.

In figure 31 we show a diagram of the effective (corrected) apparent magnitude mB as a function of

redshift z for about 40 distant supernovae Ia, which represent an early evidence for accelerating Universe

from the Supernova Cosmology Project (Perlmutter et al, 1998). Several curves of mB as a function of

z in different cosmologies are also shown, with the density in nonrelativistic matter and cosmological

term (relative to the critical energy density), (Ωm,ΩΛ) = (0, 1), (0.5, 0.5), (1, 0), and (1.5,−0.5). All of

these models correspond to universes with flat spatial sections. From figure 31 it is clear that the data
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FIG. 32: The ΩΛ vs. Ωm plots. The left (right) panel shows the probability contours (68% and 90%) for 6 (40)

distant supernovae Ia. The line Ωm +ΩΛ = 1 is also shown, which divides an open from a closed universe. The

age of the Universe is also indicated.

support an accelerating universe with q0 ≃ −0.5, such that a positive cosmological term is favoured. It

is a curious fact that an empty (open) universe also fits the data reasonably well. (An empty universe

is of course excluded by dynamical mass measurements, which yield Ωm ≈ 0.3.)

Based on figure 31, one can plot an (Ωm,ΩΛ) diagram, which is shown in figure 32, where Ωm = ρm/ρcr,

and ΩΛ = Λ/(3H2
0 ), and ρcr = (3c2H2

0 )/(8πGN) denotes the critical energy density. According to the

right panel, the Einstein-de Sitter Universe (Ωm = 1,ΩΛ = 0) is excluded.

In a spatially flat universe (Ωκ = 0), which is supported by the CMB measurements (WMAP),

Eqs. (128), (50) and (53) then yield the following estimate for the deceleration parameter today (132),

q0 = −0.60± 0.05 . (133)
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FIG. 33: Joint confidence intervals (1σ : 68%, 2σ : 95%, 3σ : 99.7%) in an (Ωm,ΩΛ) diagram for the Gold

Sample of 157 supernovae Ia (solid contours) (A. Riess et al, the High-z Supernova Search, 2004). The dotted

contours are from the earlier work of the Team (1998). The regions representing some specific cosmological

scenarios are also shown.

In figure 33 we show the joint confidence intervals for the Gold Sample of 157 supernovae Ia (solid

contours) (A. Riess et al, the High-z Supernova Search, 2004), to be compared with the dotted contours

(A. Riess et al, 1998). The confidence contours suggests that the Universe is accelerating (q0 < 0)

with more than 3σ confidence level. Assuming a universe with flat spatial sections, Ωm + ΩΛ = 1, the

best fit model gives, q0 ≃ −0.5. While the data show a near degeneracy along the q0 =constant lines,

they favour slightly (at 1σ) a closed universe. This preference has by more recent measurements largely

disappeared.

In figure 34 we show the residual Hubble diagram (after the linear Hubble Law is subtracted) for

the Gold Sample of supernovae Ia, in which cosmological models and models for astrophysical dimming

are compared. While a simple model with astrophysical dimming (gray dust at large redshift) does
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FIG. 34: Residual Hubble diagram (after the linear Hubble Law is subtracted) for theGold Sample of supernovae

Ia (Riess et al, 2004) comparing cosmological models and models for astrophysical dimming. Upper panel:

ground based discovered SNe Ia are shown as diamonds, HST-discovered SNe Ia are shown as filled symbols.

Bottom panel: Data and models are shown relative to an empty universe model (Ω = 0), and for the Einstein-de

Sitter Universe (Ωm = 1, ΩΛ = 0).

poorly, a model with ‘replenishing’ gray dust does quite well in fitting the data, representing thus an

alternative to acceleration. Among the cosmological models in the figure, an empty Universe (Ωtot = 0)

and the Einstein-de Sitter universe (Ωm = 1, ΩΛ = 0) are both excluded by the Gold Sample of SNe Ia.

Assuming a flat universe (which is supported by the CMB measurements), Ωm + ΩΛ = 1 (Ωκ = 0), the

best fit is reached for the model with ΩΛ ≈ 0.74 and Ωm ≈ 0.25.

In figure 35 we show a diagram of effective apparent magnitude mB versus redshift, for a compilation

of supernovae Ia measurements, which include near and distant supernovae Ia. The data support an

accelerating universe. In figure 35 we illustrate how one may use the supernovae Ia measurements to

infer about the age of the Universe, and even something about its future. These figures are taken from

a popular article by Perlmutter (Physics Today 2003).

When one includes the constraints from the CMB measurements by the WMAP satellite, one gets

constraints on the Ωm and ΩΛ as shown in figure 37. When all data are taken together, a concordance

is reached for ΩΛ = 0.74 ± 0.04 and Ωm = 0.25 ± 0.03, such that the total energy density is consistent
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FIG. 35: A compilation of data, showing an effective apparent magnitude mB versus redshift z, which include

near SNe Ia data from the Calan/Tololo Supernova Survey (black circles) and distant supernovae from both

the Supernova Cosmology Project (yelow circles) and the High-z Supernova Search (red circles) (Perlmutter,

Physics Today 2003).

with a flat Universe, Ωtot = ΩΛ + Ωm = 1.

According to the CMB and distant supernovae measurements, the Universe is filled with a homo-

geneously distributed dark energy of unknown composition. In figure 38 we show constraints on the

equation of state of the dark energy, w = p/ρ, as a function of matter density Ωm and the Hubble

parameter h (in units of 100 kms−1Mpc−1). When the constraints from the CMB measurements are

combined with the 2dF Galaxy Survey and distant supernovae, the 1σ and 2σ contours are shown in the

upper right panel. When the supernova constraints are replaced by the HST Key Project constraints
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FIG. 36: An illustration how the distant supernovae data may be used to conclude about the history, age and

future of the Universe (Perlmutter, Physics Today 2003).

on the Hubble parameter, one gets the contours shown in the lower right panel. The contours favour

the simplest explanation, the dark energy of the Universe is well represented by the cosmological term,

with an equation of state, wΛ = −1.

An alternative explanation is a Q-matter (quintessence), according to which the Universe is acceler-

ated by a weakly coupled homogeneous scalar field Q, with an appropriately tuned potential, V = V (Q),

such that at late times, the field dynamics is governed by a negative equation of state,

wQ =
pQ
ρQ

=
1
2
Q̇2 − V (Q)

1
2
Q̇2 + V (Q)

< −1

3
. (134)

According to the results shown in figure 38, these models are quite severely constrained to the current

value, wQ ≤ −0.8 (today). The equation of state of the Q-matter is in general evolving with the Universe

expansion, wQ = wQ(z). At this moment there is no experimental support for quintessence with an

evolving equation of state. The fact that the data show a slight preference for wQ < −1 has lead to a
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FIG. 37: Constraints on the geometry of the Universe in the Ωm–ΩΛ plane. The figure shows the two dimensional

likelihood survfece for various combination of data: WMAP only (upper left panel), WMAP plus other CMB

experiments (upper right panel), WMAP plus other CMB experiments, with the Hubble Space Telescope Key

Project (HST) prior on the Hubble parameter, together with the contours from the distant supernovae Ia

measurements (lower left panel), and WMAP plus other CMB experiments, with the HST prior, together with

SNe Ia measurements (lower right panel) (Spergel et al, WMAP 2003).

significant body of research on ‘phantom fields’ for which wphantom < −1. The more recent measurements

by the Supernova Legacy Survey and by the WMAP 3 year data (2006) lend no significant support for

phantom models.
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FIG. 38: Constraints on the dark energy equation of state, w = p/ρ as a function of matter density Ωm and

the Hubble parameter h, in units of 100 kms−1Mpc−1. The upper left panel shows the 68% and 95% likelihood

contours for the CMB experiments only (WMAPext) and for WMAPext plus the 2dF Galaxy Survey data, and

the confidence contours from distant supernovae (Perlmuter et al. 1999). The contours in the upper right panel

include the constraints from WMAPext, 2dF and supernovae Ia. In the lower panels the supernovae data are

replaced with the HST Key Project constraints. From Spergel et al (WMAP 2003).

C. A brief history of the Universe: the Big-Bang Model

The Universe underwent several distinct phases in its evolution, among which the following three

epochs take a special role.

Cosmic inflation is a hypothetical epoch of an accelerated expansion of the early Universe, which

is supported by the following indirect evidence: (a) the Universe has nearly flat spatial sections

and (b) a nearly scale invariant spectrum of cosmological perturbations seed large scale structures

of the Universe. During inflation energy density is dominated by a matter with negative pressure,

P < −ρ/3. In its simplest disguise energy density during inflation is approximately constant

such that, according to the Friedmann equation (40), the Hubble parameter is also approximately



54

constant and the Universe expands exponentially with cosmic time a ∝ eHI t, where HI denotes

the Hubble parameter during inflation.

Radiation Era, during which the energy density is dominated by relativisitic particles, with

pressure, P = ρ/3. Eq. (42) then implies that during radiation era ρ ≃ ρrad ∝ 1/a4, such that the

Friedmann equation (40) is solved by, a ∝ t1/2 and H = 1/(2t).

Matter Era, during which the energy density is dominated by nonrelativisitic particles, whose

pressure is negligible, P ≈ 0. From Eq. (42) we easily infer that during matter era ρ ≃ ρm ∝ 1/a3,

such that the Friedmann equation (40) is solved by a ∝ t2/3 and H = 2/(3t).

Figure 39 shows a thermal history of the Universe. Along the vertical axis are the cosmic time, the

scale factor and the (inverse) temperature (not to proportion). The epochs preceding the epoch

of nucleosynthesis (t ∼ 1 sec, kBT ∼ 1 MeV) are all hypothetical. For the later epochs there is a

direct observational evidence. According to some ideas the Universe is begins with the ‘Big Bang’

at the Planck Epoch (t ∼ 10−43 sec, kBT ∼ 1019 GeV). This epoch is highly hypothetical, if not

speculative. A more modest beginning is by an epoch of cosmic inflation (not marked), which

occurs at t ∼ 10−35 sec, kBT ∼ 1016 GeV, which is also the scale of unification of electromagnetic,

weak and strong forces. After inflation the Universe (re)heats, and its energy is dominated by

relativistic particles. At the electroweak scale, t ∼ 10−8 sec, kBT ∼ 100 GeV, a thermally induced

electroweak phase transition takes place, at which the gauge symmetry, SU(3)c×SU(2)L×U(1)Y
is “broken” to SU(3)c × U(1)EM , where SU(3)c denotes the symmetry of strong interactions,

mediated by the 8 gluons, which live in the adjoint representation of SU(3)c. SU(2)L is the

symmetry of the W -gauge bosons, which mediate weak interactions, and U(1)Y is the symmetry

of the hypercharge gauge field B. At the electroweak transition three out of the four gauge bosons

of SU(2)L×U(1)Y symetry group acquire mass and the fourth, the photon field, remains massless.

The remaining gauge symmetry is that of electromagnetism, denoted by U(1)EM , which is still

unbroken today. Since photons are massless and they interact weakly they can easily propagate

to cosmological distances, such that the Universe appears transparent. Baryonic and dark matter

are probably created by a hypothetical mechanism somewhere between the scale of inflatin and

the electroweak scale. kBTQCD ≃ 160 MeV is the scale of the QCD transition, which is a crossover

(not marked). This is the scale at which the quantum chromodynamics (QCD) becomes strongly

coupled, and quarks get confined by the gluon exchange into baryons and mesons.

At a scale, kBT ∼ 1 MeV, t ∼ 1 sec, the protons and neutrons get bound into light elements,
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FIG. 39: A thermal history of the Universe.

deuterium, helium and lithium are created (heavier elements are created in tiny unmeasurable

quantities). This epoch is known as the Big Bang Nucleosynthesis (BBN). At about kBT ∼ eV,

zeq ∼ 3230, the Universe becomes matter dominated. At kBT ∼ 0.3 eV (T ∼ 3000 K, zrec ≃ 1090)

the electrons and protons recombine into neutral hydrogen, and the photons start freely streaming.

Finally, at z ∼ 10− 30 (T ∼ 100 K) first stars, galaxies and clusters begin forming. Explosions of

these early stars reionise the Universe. Finally, today t0 ≃ 13.7 Gy, the structures are still in the

process of formation. As of recently (z ∼ 0.4), the Universe entered an accelerated expansion.
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FIG. 40: The box of volume V filled with inflationary matter, (PI , ρI), such that PI ≃ −ρI . An external force

ought to do work δW = −Fδx = PIδV in order that the box expands by δV .

1. Cosmic inflation as paradigm

Cosmic inflation is an epoch of accelerated expansion of the Universe, which occured at an energy

scale, kBT ∼ 1016 GeV. During inflation the second FLRW equation (41) simplifies to,

ä

a
= −4πGN

3c2
(ρI + 3PI) +

Λ

3
> 0 . (135)

An accelerated expansion can be realised either by a negative active gravitational mass, ρI + 3PI < 0,

or by a positive cosmological term, Λ > 0.

In its simplest disguise, the equation of state of the inflationary matter (I-matter) is to a good

approxmation that of the cosmological term,

PI ≃ −ρI , (136)

such that ρI + 3PI ≃ −2ρI , and the Universe undergoes an approximately exponential expansion,

a(t) ≃ aIe
HI t , (137)

where aI is a constant, and HI denotes the Hubble parameter,

HI ≃
√

8πGNρI
3c2

∼ 1013 GeV~−1 . (138)

We know from recent observations of cosmological supernovae Ia that the Universe is expanding at

an accelerating pace at present, giving thus credence to an epoch of primordial inflation.

In order to get a feel for the properties of matter that can drive inflation, let us consider the following

simple situation illustrated in figure 40. An external force F⃗ acts on a box of volume V filled with

inflationary (I-)matter, PI ≃ −ρI , such that the box expands. The fundamental law of termodynamics,

dU = TdS − PIdV , dU = d(ρIV ) = V dρI + ρIdV , (139)
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then tells us that, if a process is isentropic (dS = 0) and if PI < 0, the work done by the system

δWS = −F⃗ · dx⃗ = −PIdV is positive (the work done by the piston δW = F⃗ · dx⃗ on the system is

negative, where F⃗ is the external force), and at the same time the change in internal energy dU =

d(ρIV ) = V dρI + ρIdV ≃ ρIdV [1] is positive. This leads to the bizarre conclusion that the system

does the work while its internal energy increases! The question is where the energy comes from!? It

is hence not surprising that it is hard to find or produce matter with such properties. Next, in order

for inflation to occur within general relativity, negative pressure ought to be so large to exceed 1/3 of

the total energy (which is at least the rest mass ×c2). It is highly unlikely that a matter with such

properties can be produced in laboratory in a conceivable future.

While it is unclear how to build inflationary matter which could drive cosmic inflation in laboratory,

from a theorist’s perspective it is quite an “easy” task. Take for example a homogeneous scalar field,

whose kinetic energy is small when compared to potential energy İ2/2 ≪ V (I), such that the equation

of state reads,

wI =
PI
ρI

=
1
2
İ2 − V (I)

1
2
İ2 + V (I)

≃ −1 +
İ2

V (I)
≃ −1 . (140)

In this case, ρI + 3PI ≃ −2VI [1− İ2/V (I)] ≃ −2VI , which is the desired property of the I-matter.

While the above example illustrates very nicely the basic properties of matter which can drive cosmic

inflation, there is nevertheless one bizarre fact. In the Universe there is no external force to pull the

piston. The question is then how it is possible that, even in the absence of an external force, the Universe

can still expand!

The answer is in the unusual property of the Einstein equation (135), according to which for a matter

with negative active gravitational mass ρI + 3PI < 0, gravitation becomes effectively a repulsive force.

The repulsive nature of gravitation during inflation then drives the accelerated expansion.

2. Radiation era

Preheating

At the end of inflation, the Universe is filled with matter whose energy density ρI ∼ 1016 GeV4(~c)−3.

This estimate is implied by the Hubble parameter during inflation (138),

HI =
( ~ρI
3cM2

Pl

)1/2

∼ 1013 GeV~−1 , (141)

where

MPl =
( ~c
8πGN

)1/2

≃ 2.4× 1018 GeV/c2 (142)
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FIG. 41: Perturbative decay channels of scalar inflationary matter into fermions and scalars after inflation with

the rates given in (144).

denotes the reduced Planck mass, to be distinguished from the Planck mass, mPl = (~c/GN)
1/2 ≃

1.2× 1019 GeV/c2.

Assuming that the interaction lagrangian density takes the form,

Lint = −yIψ̄ψ − 1

2
hI2ϕ2 , (143)

where y ≪ 1 and h≪ 1 denote the (dimensionless) coupling constants, and ψ[m−3/2] and ϕ[m−1] denote

a light fermion field (mψc
2 ≪ ~HI) and a light scalar field (mψc

2 ≪ ~HI), respectively, to which the

I[m−1] field predominantly decays.

A perturbative estimate of the decay rate (calculated in the Born approximation) then results in the

following estimate for the decay rates into fermions and scalars,

Γψ ∼ |y|2

4π~
EI

Γϕ ∼ |h|2

4π~
~2c2|I0|2

EI
, (144)

where E2
I = d2V (I)/dI2(~c)2 defines the energy of the decaying I particles, and I0[m

−1] denotes the

amplitude of the homogeneous mode of the scalar field I. The corresponding tree-level perturbative

decays are shown in figure 41. The scalar field I decays either into a fermion-antifermion pair, or into

two scalar particles.

The I-matter decays when the decay rate, Γ = Γψ+Γϕ becomes comparable to the Hubble parameter,

Γ ∼ H , (145)

that is when the decay time τ = Γ−1 becomes of the order the expansion time, tH = 1/H. Since the

produced particles are assumed to be light (mψc
2,mϕc

2 ≪ ~H), they are relativistic, a typical energy of

the produced particles is much larger than the corresponding rest energy, Eψ = (p2c2+m2
ψc

4)1/2 ≫ mψc
2,

Eϕ = (p2c2 +m2
ϕc

4)1/2 ≫ mϕc
2, such that to a good approxmation, E ≃ cp, where p = |p⃗| denotes the

particle’s momentum.
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Assuming that the produced particles interact efficiently, they quickly thermalise, such that to a

good approximation the bosons obey the Bose-Einstein distribution,

nb → nBE =
1

exp
(
E−µ
kBT

)
− 1

, (146)

while the fermions are Fermi-Dirac distributed,

nf → nFD =
1

exp
(
E−µ
kBT

)
+ 1

, (147)

where for generality we allow for a nonvanishing chemical potential µ which parametrises departure

from thermal equilibrium.

During this period of preheating or reheating, the entropy of the Universe increases dramatically,

since the entropy of the I-matter is typically very small (I is to a nearly homogeneous field), while the

entropy of a thermalised medium is maximised.

In the above we have assumed that conversion of the energy that drives inflation is perturbative.

In the early 1990s it was realised that a nonperturvative conversion of the inflation energy ρI may

be operative if inflation is driven by a scalar field, which oscillates after inflation. This mechanism is

termed parametric resonance, and it may be operative both in the scalar and fermionic decay channels

(Brandenberger, Traschen, 1992).

If ρI decays predominantly into very massive particles, they may be created nonrelativistic, in which

case the Universe goes through an intermediate matter dominated post-inflationary epoch. While this

is a theoretical possibility, there is no experimental evidence supporting such an epoch.

The energy density during radiation era can be calculated from a general expression for the stress-

energy tensor, which, when expressed in terms of distribution functions, na, reads,

T µν =
∑
a

ga

∫
d3p

(2π~)3
c2pµpν
Ea

na (148)

where pµ denotes the physical momentum, ga is the number of degrees of freedom of species a, and

Ea = (p2c2 +m2
ac

4)1/2 is the energy of species a. For an ideal fluid (37) and in the fluid rest frame, this

reduces to,

T µν = diag(ρ,−P ,−P,−P) , (149)

where ρ denotes the energy density and P the pressure of the fluid given by,

ρ =
∑
a

ga

∫
d3p

(2π~)3
Ea(p)na (150)

P =
∑
a

ga

∫
d3p

(2π~)3
c2p2

3Ea(p)
na . (151)
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The integrals in (150–151) are easily evaluated in the relativistic limit for bosons and fermions,

provided the distribution functions are given by (146) and (147), respectively, in which case, Ea−µa ≃ pc.

For example, for bosons, the integral in (150) can be easily reduced to the integral,∫ ∞

0

x3dx

ex − 1
=

∞∑
n=1

∫ ∞

0

x3e−nxdx = 6ζ(4) , (152)

where ζ(4) = π4/90. ζ = ζ(z) denotes the Riemann ζ-function defined by,

ζ(z) =
∞∑
n=1

1

nz
. (153)

Similarly, for fermions the relevant integral can be reduced to the form,∫ ∞

0

x3dx

ex + 1
=

∞∑
n=1

(−1)n−1

∫ ∞

0

x3e−nxdx = 6
∞∑
n=1

(−1)n−1 1

n4
= 6

(
1− 1

23

)
ζ(4) . (154)

With this, we can write for the energy density (150) and pressure (151) of a relativistic fluid,

ρ = g∗
π2

30

(kBT )
4

(~c)3
(155)

P =
ρ

3
, (156)

where we took account of ζ(4) = π4/90, and

g∗ =
∑

a=bosons

ga +
7

8

∑
a=fermions

ga (157)

denotes the effective number of relativistic degrees of freedom. In a more general situation, the Universe

may be filled with several noninteracting fluids at different temperatures, Ta. This can happen when

fluids do not interact or when they interact very weakly. In this case Eqs. (155–156) are still valid,

provided the definition for g∗ is generalised to,

g∗ =
∑

a=bosons

ga

(Ta
T

)4

+
7

8

∑
a=fermions

ga

(Ta
T

)4

. (158)

Important to note is the equation of state (EOS) of relativistic fluid (155–156),

P = wρ , w =
1

3
(relativistic fluid EOS) . (159)

Another important quantity is entropy density, which in an expanding Universe can be written as,

s =
ρ+ P
T

=
4

3

ρ

T
, (160)
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which is in relativistic fluid,

s =
4

3

ρ

T
= kBg∗

2π2

45

(kBT
~c

)3

. (161)

When the Universe is filled with several noninteracting fluids at different temperatures, Ta, the

entropy density grants the more general expression,

s = kBg∗S
2π2

45

(kBT
~c

)3

. (162)

where

g∗S =
∑

a=bosons

ga

(Ta
T

)3

+
7

8

∑
a=fermions

ga

(Ta
T

)3

. (163)

While the energy density is not conserved in an expanding universe (recall that the stress-energy tensor

is covariantly conserved, resulting in Eq. (42)), the entropy per comoving volume S = a3s is conserved,

dS

dt
= 0, (164)

even when g∗S changes, which rends this quantity important for cosmology.

The entropy conservation law (164) can be obtained from the covariant energy density conserva-

tion (42), and from the second law of termodynamics for entropy,

dS(V, T ) =
PdV + d(ρV )

T
=

P + ρ

T
dV +

V

T

dρ

dT
dT ≡

(
∂S

∂V

)
T

dV +

(
∂S

∂T

)
V

dT . (165)

Now from (∂/∂T )∂S/∂V = (∂/∂V )∂S/∂T it follows,

∂

∂T

(P + ρ

T

)
=

∂

∂V

(V
T

dρ

dT

)
(166)

which then implies,
∂P
∂T

=
P + ρ

T
= s . (167)

Rewriting this as

∂P/∂t = sdT/dt , (168)

and adding it to Eq. (42) results in
∂s

∂t
= −3

ȧ

a
s , (169)

from which the entropy conservation law (164) follows.

For completeness, we also quote particle number density, which is defined as the zeroth component

of vector current jµ. When antiparticles are neglected one gets,

N = j0 =
∑
a

ga

∫
d3p

(2π~)3
na . (170)
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FIG. 42: The scaling of energy density during cosmic inflation, radiation era, matter era, and the recent epoch

of acceleration. The figure is not to scale.

In a relativisitic plasma in chemical equilibrium this evaluates to,

N = g∗N
ζ(3)

π2

(kBT
~c

)3

, (171)

where ζ(3) ≃ 1.202 and

g∗N =
∑

a=bosons

ga

(Ta
T

)3

+
3

4

∑
a=fermions

ga

(Ta
T

)3

. (172)

It is very easy to integrate the Friedmann equation (40) for radiation era,( ȧ
a

)2

≃ 8πGN

3c2
ρr . (173)

Note first that Eq. (42) implies,

ρr + 4
ȧ

a
ρr = 0, (174)

such that

ρr = ρ0

(a0
a

)4

. (175)

In figure 42 we show the scaling of energy density during primordial inflation, radiation era, matter

era, and the epoch of recent Universe’s acceleration. Radiation era ends at matter radiation equality,

at a redshift, zeq ≃ 3230 ± 210 (WMAP constraint), and at z ≃ 0.4 the Universe begins to accelerate

anew.

Taking account of (175), Eq. (173) can be integrated to give,

a = a0

( t
t0

)1/2

, H =
1

2t
, (176)
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FIG. 43: The strong (α−1
s ), weak (α−1

w ) and electromagnetic (α−1
e ) coupling constants as a function of the

logarithm of the energy scale. When supersymmetry is included, the couplings meet at the energy scale,

E = EGUT ∼ 1016 GeV. The yellow shaded region signifies the allowed reheat temperature Treh.

implying also that ρr ∝ 1/t2. Note that the Hubble radius RH = cH−1 = 2ct grows linearly with cosmic

time t during radiation era.

The scaling of the relativistic energy density (175), together with Eq. (155), imply that the tem-

perature during radiation era scales inversely with the scale factor, T ∝ a−1. Stricly speaking, this

scaling law is correct only when g∗ is constant. When g∗ is changing, the temperature scaling is more

complicated and it can be obtained from the entropy conservation law (164), a3g∗ST
3 = const., from

which it follows,

T ∝ a−1g
−1/3
∗S . (177)

For example, when the temperature falls below the mass scale of some species, this species photo-

dissociates into photons, damps the energy into the remaining relativistic particles, which heats up the

fluid. The effective g∗ is thus reduced. This heating is isentropic, and it is quantitatively expressed

by (177), whereby g∗S = g∗S(a) decreases with a.

Radiation era begins when most of the energy ρI is converted into relativistic particles with E ≃ pc.

This happens when (see Eqs. (40) and (142))

Γ ∼ H , (178)

from which one arrives at the following (perturbative) estimate of the reheat temperature,

kBTreh ∼
( 90

g∗π2

)1/4√
~ΓMPlc2 , when Γ ≪ HI , (179)
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and

kBTreh ∼
( 30

g∗π2
ρI(~c)3

) 1
4
=

( 90

g∗π2

) 1
4
(~HIMPlc

2)
1
2 , when Γ ≥ HI . (180)

Since we do not know how the inflationary energy decays, we do not know the reheat temperature

Treh of the Universe. This uncertainty in Treh is illustrated by the yellow shaded region in figure 43.

Whatever Treh is, most likely kBTreh is below the Grand Unified Scale, EGUT ∼ 1016 GeV, which

is the scale at which the strong, weak and electromagnetic couplings unify, as shown in figure 43.

This can be seen by observing that the maximum reheat temperature is reached when preheating is

instantaneous, Γ ≫ HI . Indeed, in this case, the reheat temperature can be estimated from (180),

Treh ≃ 2 × 1015(100/g∗)
1/4 GeV ∼ 1015 GeV, which is significantly below the grand unified scale. A

consequence of this is that most of the grand unified particles with a mass comparable to the grand

unified scale, EGUT, are produced at the end of inflation only in a very small amount. Strictly speaking,

the lowest reheat temperature is restricted to be above the primordial nucleosynthesis scale, Treh ≥

EBBN ∼ 0.1 MeV, at which protons and neutrons combine into deuterium and helium.

Recall that the reheat temperature, at which the energy density in inflationary matter falls below

the energy density in relativistic particles, is not necessarily the hottest temperature. Hence it is

worth giving a lower bound on the highest temperature, Tmax. Even when the decay rate of the I-

matter is very slow, the quantum fields couple gravitationally to the background space-time, leading

to particle production during inflation. The process is operative as long as the mass of particles is

below the Hubble parameter during inflation HI , and the field coupling to gravitation is not conformal.

One can show that in this case the energy density in particles at the end of inflation is of the order,

ρ ∼ [HI/(2π)]
4. After inflation these particles thermalise, leading to a lower limit on the maximum

temperature, kBTmax ≥ ~HI/(2π). Since in most inflationary models, HI ∼ 1013 GeV/~, we arrive at a

reasonable lower bound, kBTmax ≥ 1012 GeV. The dynamics of the Universe is governed by the I-matter

until temperature drops below the reheat temperature (180). While one can conceive of inflationary

models which occur at a scale significantly below HI ∼ 1013 GeV, kBTmax must be above the electroweak

scale, Eew ∼ 100 GeV, if one requires a dynamical mechanism for production of the (baryonic) matter-

antimatter asymmetry of the Universe (BAU). This is so because below the electroweak scale the baryon

number violating processes of the Minimal Standard Model are switched off, making a dynamical BAU

impossible.

Usually one assumes that both the maximum and reheat temperature are much higher than the mass

scale of any of the Minimal Standard Model particles (quarks, leptons, gauge bosons, Higgs particles),

such that the effective number of relativistic degrees of freedom above the electroweak scale is at least
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FIG. 44: Toy model potential for a real scalar field with two degenerate local minima used to illustrate a

radiatively induced phase transition.

equal to the number of degrees of freedom in the Minimal Standard Model,

g∗|SM ≃ 107 . (181)

If supersymmetry is realised at the TeV scale, then g∗ above the TeV scale is about 2g∗|SM. Since

the thermal occupancy of bosons and fermions (146–147) is different, supersymmetry is not manifest

during the thermal history of the Universe.

Electroweak phase transition.

Radiative (quantum loop) finite temperature corrections can induce phase transitions (Kirzhnits,

Linde, 1972). To illustrate this, consider the following tree-level potential for a real scalar field,

V (ϕ) = λ(ϕ2 − µ2)2 , (182)

such that the potential has two degenerate local minima at ϕ = ±µ, and one local maximum, ϕ = 0, as

shown in figure 44.

Even at zero temperature, the field fluctuates around one of the minima (say ϕ = µ) and occasionally

tunnels to the other minimum. When the potential barrier between the two minima is large, this quan-

tum tunneling process is exponentially suppressed. Let us decompose the field into a slowly changing

mean field, ϕ0, and the fast changing fluctuations, φ, as follows, ϕ = ϕ0 + φ. As the temperature in-

creases, so does the amplitude of fluctuations, φ. The fluctuations couple to ϕ0 through the interaction
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FIG. 45: The time evolution of the field ϕ at a finite temperature T with the potential (182). The field fluctuates

around the minimum at ϕ = µ. As the temperature increases, so does the amplitude of fluctuations. On the left

panel temperature is small such that the amplitude of fluctuations is small, and the field is confined to fluctuate

around the minimum ϕ ∼ µ. On the right panel temperature is comparable to the critical temperature Tc, and

the amplitude of fluctuations is large. From time to time the field fluctuates over the potential barrier into the

other minimum. When T ≫ Tc transitions between the two minima become rapid.

terms, δV = 6λϕ2
0φ

2 + 4λϕ0φ
3, which ‘kick’ ϕ0 more and more violently as the temperature increases,

as illustrated in the left panel in figure 45. One can think of φ as particles which hit ϕ0, such that ϕ0

begins fluctuating in time. The kicks become stronger as the temperature increases. At a certain criti-

cal temperature Tc, fluctuations of the field become so large, that the kicks induce transitions between

the two minima, and the field begins to fluctuate around both minima, as shown in the right panel of

figure 45. As the temperature increases further, the transitions between the two minima become more

and more rapid. When averaged over a large time interval ∆t, the field expectation value vanishes,

lim∆t→∞⟨ϕ⟩∆t = 0.

The physical picture is as follows. At low temperatures, T ≪ Tc, the field expectation value remains

confined to one of the two minima. Even though the Lagrangian is symmetric under ϕ → −ϕ, the

symmetry is (spontaneously) broken by a definite choice of the vacuum, ϕ = +µ or ϕ = −µ. At

temperatures above the critical temperature, T ≥ Tc, the symmetry is restored, and the field expectation

value vanishes, ⟨ϕ⟩ = ϕ0 = 0.

A quantitative description of such phase transitions is provided by the average action (average poten-

tial). If one is interested in a phenomenon that occurs at a scale ℓ which corresponds to a momentum,

p = h/ℓ (here h denotes the Planck constant) and an energy E =
√
p2c2 +m2c4, one constructs an

average action Sp by averaging (smoothing) the fields on scales up to the scale ℓ, or equivalently by

integrating out the modes whose momentum is larger than p. The mathematical formalism, based on
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which one can construct Sp = Sp[ϕ] is known as the renormalisation group (RG) procedure (Wilson),

and it is studied in many field theory textbooks. Alternatively, one can construct a thermal effective

action, ST = ST [ϕ], which is obtained by a standard procedure of Legendre transform of the tree-level

action. The thermal effective action corresponds to the effective action obtained by calculating thermal

loop corrections to the tree-level action, whereby one uses thermal propagators. While Sp can be used

to study the phenomena which correspond to momenta smaller than p, the effective action ST = ST [ϕ]

is suitable for studying the phenomena whose momenta are smaller than about λnkBT , where λ denotes

the relevant coupling constant, and n = 1, 2, .. is an integer. For example, when all contributions with

momenta p≫ λkBT to the effective action ST are taken account of by integrating the appropriate loop

contributions, than ST is primarily suitable for studying phenomena with p ≤ λkBT . A systematic

techniques for resumming the relevant finite temperature loop diagrams to get thermal effective actions

for interacting (non-Abelian) gauge fields have been developed by Braaten and Pisarski and by Bödeker

in the 1990s, and we shall not study them further here (see e.g. Michel Le Bellac, “Thermal Field

Theory,” Cambridge University Press, 1996).

In order to illustrate a calculation of an effective action, let us consider the example of a real scalar

field with the following tree-level action,

S0[ϕ] =

∫
d4xL0

L0 =
1

2
ηµν(∂µϕ)(∂νϕ)− V (ϕ) , ηµν = diag(1,−1,−1,−1) , (183)

where L0 denotes the tree-level Lagrangian, and the potential reads,

V (ϕ) = V̄0 +
1

2

m2
0c

2

~2
ϕ2 +

λ

4!
ϕ4 . (184)

When m2
0 ≥ 0, the field expectation value, ⟨ϕ⟩ = 0, such that the field is in its symmetric minimum,

⟨ϕ⟩ = 0. If, on the other hand,

m2
0 = ~2c−2d

2V

dϕ2
(ϕ = 0) < 0 , (185)

the Z2-symmetry, ϕ → −ϕ, is spontaneously broken by the vacuum, such that the scalar vacuum

corresponds to one of the two minima, ϕ = ±µ, µ2 = −6m2
0c

2/(λ~2). In this case it is convenient to

consider the action for a shifted scalar field,

ϕ = ϕ0 + φ . (186)

Note that the shift corresponding to the true minimum of the potential is given by,

ϕ2
0 = µ2 ≡ − c2

~2
6m2

0

λ
> 0 . (187)
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The quadratic part of the shifted action reads,∫
d4xL0 =

∫
d4x

∫
d4y

1

2
φ(x)iD−1(x− y;ϕ0)φ(y) +O(φ3)

iD−1(x− y;ϕ0) =
(
−�x −

c2

~2
m2

)
δ4(x− y) , m2 = m2(ϕ0) = m2

0 +
1

2
λ~2c−2ϕ2

0 , (188)

where �x = ∂2x = c−2∂2t −∇2
x⃗. At the true minimum, m2 = −2m2

0 > 0. The thermal scalar (Feynman)

propagator is defined as,

DT (x− y) =
Tr[e−βĤT (ϕ(x)ϕ(y))]

Tr[e−βĤ ]
, (189)

where T denotes the time ordering operation,

Ĥ = ~c
∫
d3x

[ 1

2c2
(ϕ̇)2 +

1

2
(∇ϕ)2 + V (ϕ)

]
(190)

is the Hamiltonian operator, ϕ̇ = ∂tϕ and β = 1/(kBT ). The propagator (189) of the shifted theory (188)

obeys the equation of motion (cf. iD−1(x− y;ϕ0) in Eq. (188)),

(−�x − ~−2m2c2)DT (x− y) = iδ4(x− y) (191)

with the boundary condition,

DT (z
0 = 0, z⃗) = DT (z

0 = −i~cβ, z⃗) (z = x− y) , (192)

such that in the imaginary time formalism (see e.g. Le Bellac, “Thermal Field Theory,” Cambridge

University Press, 1996),

iDT (x− y) =
kBT

~c

∞∑
n=−∞

∫
d3p

(2π~)3
e−i~

−1[2πnkBT (tx−ty)−(x⃗−y⃗)·p⃗]iDT (p) , (193)

with

iDT (p) =
c2~2

−ω2
n + c2p⃗ 2 +m2c4

, (194)

where ωn = 2πinkBT (n = 0,±1,±2, ..) denote the imaginary Matsubara frequencies.

This propagator can be used to calculate a thermal effective action at any loop order. In order to

illustrate how to calculate the one-loop thermal contribution to the effective action whose Feynman

graph representation is shown in figure 46, we consider a scalar field theory whose classical (tree level)

action reads,

S0[ϕ] =

∫
d4x

√
−g

(
1

2
gµν∂µϕ∂νϕ− V (ϕ)

)
. (195)
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DT

FIG. 46: The one-loop Feynman diagram contributing at order ~ to the effective action of a real scalar theory.

When ϕ is expanded into an averaged (ϕ0) and fluctuating part φ (cf. Eq. (196)),

ϕ = ϕ0 + φ (196)

the action (195) splits into three parts,

S0[ϕ] = S0[ϕ0] + Sφ[ϕ0, φ] + Sint[ϕ0, φ] (197)

where S0[ϕ0] = S0[ϕ = ϕ0] and

Sφ[ϕ0, φ] =

∫
d4x

√
−g

(
1

2
gµν∂µϕ∂νφ− 1

2
c2~−2m2

ϕ(ϕ0)φ
2

)
(198)

Sint[ϕ0, φ] =

∫
d4x

√
−g

(
−1

6
∂3ϕV (ϕ0)φ

3 − 1

4!
∂4ϕV (ϕ0)φ

4 − . . .

)
, (199)

where m = ~2c−2∂2ϕVϕ=ϕ0 defines the scalar field mass.

The effective action is obtained from the tree level action by integrating the fluctuating field φ,

eiΓ[ϕ0] =

∫
Dφexp (iS0[ϕ0] + Sφ[ϕ0, φ] + Sint[ϕ0, φ]) . (200)

To calculate the one-loop contribution to the effective action, note first that Sint in Eq. (200) can be

neglected, simply because the interactions (199) do not contribute to the bubble diagram in figure 46.

The integral
∫
Dφ denotes the Feynman path integral over all field configurations. Since Sφ is quadratic

in the fluctuating field, the resulting integral can be reduced to a product of gaussian integrals. Upon

evaluation one obtains the standard result,

eiΓ[ϕ0] = eiS0[ϕ0]
[
det

(√
−g(−�− c2~−2m2(ϕ0)

)]−1/2 × higher loops , (201)

where � = (−g)−1/2∂µ(−g)1/2gµν∂ν denotes the d’Alambertian operator.

The determinant in Eq. (201) can be exponentiated resulting in the following contribution to the

effective action,

δΓ1[ϕ0] =
i

2
Tr ln

[√
−g

(
−�− c2~−2m2

)]
, (202)



70

c

cT>T
.

φ
−µ µ

V(  )φ
T=T

T=0

T<T

c

FIG. 47: Toy model potential for a real scalar field with two degenerate local minima used to illustrate a

radiatively induced phase transition. Crossover or a second order transition.

where here Tr stands for the integral
∫
d4x. This can be evaluated by observing that

c−2~2
∂δΓ1[ϕ0]

∂m2
= −1

2
⟨x| i√

−g (−�− c2~−2m2)
|x⟩ = −1

2
i∆(x; x) . (203)

where i∆(x;x) denotes the scalar field propagator evaluated at the coincidence x′µ = xµ.

We shall now evaluate (203) by making use of the thermal propagator (189) and in Minkowski space.

Even though we want to describe a rapidly expanding Universe, this simplification is justified since

we are interested in describing the situations where the processes which lead to thermalisation are

much faster than the expansion rate of the Universe. At the electroweak scale this is justified since

the expansion rate is ~HEW ∼ (kBTEW)2/(MP c
2) ∼ 10−5 eV, which is indeed much smaller than the

equilibration rate which is of the order ΓEW ∼ 10−100 GeV. The one-loop contribution to the effective

potential for a real scalar field (up to an unphysical constant) reads,

VT1(ϕ) =
1

2

kBT

~c

∞∑
n=−∞

∫
d3p

(2π~)3
ln [iD̃−1(k;ϕ0)] (204)

where

iD̃−1 = ω2
n − p⃗ 2c2 −m2c4 (205)

denotes the inverse propagator (188) in momentum space.

The integral in (204) can be evaluated to yield (see Problem 2.11),

VT1 = ∆V0,vac +∆VT1 , (206)
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where

∆V0,vac =

∫
d3p

(2π~)3
E

2c~
, E = (p2c2 +m2c4)1/2 (207)

denotes the contribution from zero temperature vacuum fluctuations, which is usually combined with V̄0

in Eq. (184) to a finite constant potential term, V0 = V̄0+∆V0,vac. The latter term in (206) corresponds

to the contribution from the purely thermal fluctuations, which is finite,

∆VT1 =
(kBT )

4

2π2(~c)4

∫ ∞

0

x2dx ln
[
1− exp

(
− (x2 +m2c4/(kBT )

2)1/2
)]
. (208)

In the high temperature limit, kBT ≫ mc2, this can be expanded in a Taylor series in mc2/(kBT ) ≪ 1

to yield,

∆VT1(~c)4 = −π
2

90
(kBT )

4 +
1

24
m2c4(kBT )

2 − 1

12π
m3c6kBT − 1

64π2
m4c8

[
ln
( m2c4

(kBT )2

)
− c0

]
+ O(m6c12/(kBT )

2) , (209)

wherem2 = m2
0+λ~2c−2ϕ2

0/2, c0 = (3/2)+2 ln(4π)−2γE ≃ 5.4076, γE ≡ −ψ(1) = 0.577215.. denotes the

Euler constant, and ψ(z) = d[ln Γ(z)]/dz, Γ(z) = (z− 1)! denotes the (factorial) Γ-function. Combining

all terms together, we get for the 1-loop thermal effective potential,

V + VT1 = V0(T ) +
1

2

m2
0c

4 + λ
24
(kBT )

2

(~c)2
ϕ2
0 −

1

12π

(
m2

0c
4 +

1

2
λ~2c2ϕ2

0

)3/2 kBT

(~c)4

+
λ

4!
ϕ4
0 −

1

64π2

m4(ϕ0)c
8

(~c)4
[
ln
(m2(ϕ0)c

4

(kBT )2

)
− c0

]
+O(m6(ϕ0)c

12/(kBT )
2) , (210)

where

V0(T ) = V0 −
π2

90

(kBT )
4

(~c)4
+

1

24
m2

0c
4 (kBT )

2

(~c)4
. (211)

Strictly speaking this effective potential is applicable only when, m2 ≥ 0. When m2 < 0, VT1

becomes complex-valued, which illustrates the difficulties one encounters when trying to study finite

temperature induced phase transitions by the means of perturbative techniques. Nevertheless, some

generic properties of the transition can be obtained by analysing the effective potential (210).

The question we are interested in is the dynamics of the scalar field governed by the action (183) in a

finite temperature bath, whose temperature slowly decreases, as it is the case in an expanding universe.

Snapshots of the effective potential at different temperatures are shown in figures 47 and 48. At very

high temperatures, (kBT )
2 ≫ −(24/λ)m2

0c
4, the effective mass squared around the origin ϕ0 = 0 is

positive, and the symmetry is restored. As the temperature drops below the critical temperature a

second (deeper) minimum develops, and the field acquires an expectation value. As the temperature
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FIG. 48: Toy model potential for a real scalar field with two degenerate local minima used to illustrate a

radiatively induced phase transition. First order transition.

drops further the effective potential approaches the zero temperature potential, with ϕ0 = ±µ defined

in Eq. (187).

A thermally induced transition can be either a crossover or a first order transition, a second order

transition being the limiting case. Let us first consider a crossover transition, as shown in figure 47.

(As regards the effective potential, a second order transition looks alike.) At high temperatures, the

term in (209), which is proportional to m2, dominates over the tree level mass term ∝ m2
0 in Eq. (184),

such that the symmetry is restored. As the temperature drops to a critical value, Tc, at which the

effective mass of scalar excitations vanishes, the field develops large scale fluctuations, still retaining

zero expectation value. Below the critical temperature, T < Tc, the field begins “rolling down the hill”,

and develops an expectation value, resulting thus in a spontaneous breakdown of the Z2-symmetry. As

the temperature tends to zero, the field expectation value approaches one of the two minima, ϕ0 = ±µ.

In figure 48 we show snapshots of a first order transition. The main difference with respect to figure 47

are the secondary minima of the effective potential, which occur slightly above the critical temperature,

Tc. The secondary minima are primarily generated by the negative cubic term in (210),

−BTkBTϕ = − 1

12π

m3c6

(~c)4
kBT ≈ − 1

12π

(λ
2

)3/2kBT

~c
ϕ3
0 , (212)

which is hence responsible for thermally induced first order phase transitions. When the one-loop

calculation is repeated for fermions, no cubic term of the form (212) is found, implying that, when treated

in the high-temperature approximation, fermions cannot induce a first order transition. The cubic term

namely arises due to the infrared singularity in the Bose-Einstein distribution, nBE = 1/(eβE − 1) →
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kBT/E when E → 0, which is absent in the Fermi-Dirac distribution. At the critical temperature,

T = Tc, all minima are degenerate, but the field remains trapped at the origin, ϕ0 = 0, by the barrier

generated by the cubic term (212). As the temperature drops, the secondary minima become deeper

than the minimum at ϕ = 0, and the Universe supercools. As the temperature drops further, the

potential barrier between the minima decreases, reaching eventually a nucleation temperature, Tn, at

which the probability (per unit time) for the field to tunnel through the barrier to the true minimum

becomes of the order the expansion rate of the Universe,

dPtunnel

dt
∼ H ∼ 10−16kBTn/~ . (213)

As a result of the tunneling, bubbles of the broken phase form at random locations. Since the free

energy inside the bubbles is lower than in the surrounding plasma, the bubbles expand. The expansion

is fuelled by latent heat, defined as the difference betweed the free energy of the two phases, which is

released as the bubbles expand. This process is illustrated in figure 49. In the left panel we show an

early stage of bubble nucleation at T ≃ Tn. In the right panel we show a snapshot of the transition at a

later time, T < Tn. Note that bubbles nucleated in the left panel have grown in size, and in addition new

ones have formed. The growth rate of bubbles is limited by the friction generated by the interactions

between the Higgs field bubble interface and the excess of particles in the surrounding plasma (Moore,

Prokopec, 1995).

Let us now consider the electroweak phase transition in the Minimal Standard Model (MSM). The

relevant Lagrangian of the Higgs sector is of the form,

LHiggs = ηµν(DµH)†(DνH)− V (H†H) , (214)

with the Higgs potential,

V = ~−2c2m2
HH

†H + λH(H
†H)2 , (215)

where we approximated the background metric by the flat Minkowski metric. This is appropriate as

long as we are considering phenomena that occur at much shorter time scales than the Hubble time,

which is at the electroweak transition,

tH = H−1 ∼ 1016
~

kBT
. (216)

The Higgs field in (214) is a complex scalar doublet charged under SU(2)L,

H =

 H+

H0

 =
1√
2

 φ1 + iφ2

ϕ0 + φ3 + iφ4

 , (217)
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nT=T nT<T

FIG. 49: Phase coexistence and bubble nucleation at a first order phase transition. In the left panel we show a

snapshot of a supercooled plasma, whose temperature is close to the nucleation temperature, T ≃ Tn, such that

bubbles of the true vacuum phase have just began nucleating. In the right panel we show a snapshot of the

same phase transition at a later time, at which the temperature has further decreased, T < Tn. The bubbles,

which were already formed in the left panel, have grown, and new ones have formed.

where H+ and H0 denote an electrically charged and neutral complex scalar Higgs field, respectively,

φ1, φ2, φ3 and φ4 are real scalar fields, whose expectation value vanishes, and ϕ0 is the Higgs vacuum

expectation value, which is at zero temperature, ϕ0 = v0, (~c)2v20 = −2m2
Hc

4/λH ≃ (246 GeV)2.

The Higgs field couples minimally to the weak and hypercharge gauge bosons,

DµH =
(
∂µ + ig

τa

2
W a
µ + ig′

Y

2
Bµ

)
H , (218)

where τa (a = 1, 2, 3) denote the Pauli matrices, W a
µ (a = 1, 2, 3) are the SU(2)L gauge boson fields, Bµ

is the hypercharge field, g is the SU(2)L coupling and g′Y/2 (Y = 1) is the U(1)Y hypercharge coupling

of the Higgs field.

The electroweak transition takes place at about kBT ≃ 100 GeV. Above the transition, kBT >

kBTc ∼ 100 GeV, the Higgs expectation value vanishes, such that the electroweak symmetry

GSM = SU(3)c × SU(2)L × U(1)Y (219)

is restored, and all Minimal Standard Model (MSM) particles are massless. Below the transition tem-

perature the Higgs field acquires expectation value, such that the symmetry of the MSM is “broken”

GSM → SU(3)c × U(1)EM , (220)
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where U(1)EM is the Abelian symmetry of electromagnetism. Note that the vacuum manifold of the

Higgs sector is equivalent to a three-sphere, M = GSM/[SU(3)c × U(1)EM ] ∼ S3, such that, after

the symmetry breaking, three out of four scalar Higgs fields in (217), say φ1, φ2 and φ3, the want-to-

be Goldstone bosons of the symmetry breaking, and thus correspond to massless excitations. This is

however not the case, since the symmetry is local (gauged). Consequently, the fields φ1, φ2 and φ3

are to the pseudo-Goldstone bosons, which are massive. Physically, they correspond to the massive

longitudinal excitations of the W± and Z gauge bosons.

Stricly speaking, this picture of the transition is näıve, in the sense that thermal effects ‘dress’

particles in the plasma (including gauge bosons), giving them a thermal mass (see Michel Le Bellac,

“Thermal Field Theory,” Cambridge University Press, 1996).

As a consequence of the electroweak symmetry breaking, the gauge bosons, quarks and leptons of the

Minimal Standard Model acquire a mass by the means of the Brout-Englert-Higgs (BEH) mechanism.

The transition can be either a first order phase transition, as illustrated in figure 48, or a crossover, as

illustrated in figure 49, the second order transition being the limiting case between the two.

According to the BEH mechanism, the two charged W -bosons,

W±
µ =

1√
2
(W 1

µ ∓ iW 2
µ) (221)

and the Z-boson,

Zµ = cos(θW )W 3
µ − sin(θW )Bµ (222)

aquire a mass, while the photon field,

Aµ = sin(θW )W 3
µ + cos(θW )Bµ , (223)

remains massless, and likewise gluons remain massless. Here θW denotes the Weinberg angle, which is

defined as,

sin(θW ) =
g′√

g2 + g′2
= 0.23117± 0.00033 . (224)

The (zero temperature) masses of the W - and Z- bosons are,

mW =
1

2
gv0~/c = 80.412± 0.043 GeV/c2

mZ =
1

2
(g2 + g′

2
)1/2v0~/c =

mW

cos(θW )
= 91.1887± 0.0044 GeV/c2 , (225)

where v0 ≃ 246 GeV/(~c). The masses of the quarks and leptons of the MSM are generated by the

Yukawa terms, which have the generic form,

LYukawa = −yHψ̄RψL + h.c. (226)
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such that the masses are,

mf = y
v0√
2
~/c . (227)

The heaviest fermion in the MSM is the top quark, with mass

(http://www-cdf.fnal.gov/physics/new/top/top.html),

mt = 174.5± 2.3 GeV/c2 , (CDF+ D0 FERMILAB collaboration Mar 2006) (228)

which implies, yt ≃ 1 (note that coincidentally, 246/
√
2 = 173.95). All other fermions are much lighter,

and the corresponding Yukawa couplings are much smaller than one. Finally, the (zero temperature)

Higgs mass is bounded from below,

mH =
√

2λH v0~/c ≥ 114 GeV/c2 (LEP bound) . (229)

During the last year of the LEP accelerator operation (located at the CERN in Geneva, Schwitzerland),

an evidence emerged that the MSM Higgs mass may be, mH ≃ 114 GeV/c2. However, the evidence

has too low a significance to be conclusive. The Higgs particle is expected to be discovered at the

Large Hadron Collider (LHC) (proton-proton collider), currently under constribuction at CERN, and

to become operational in 2007.

The precise nature of the electroweak transition depends on how many particles that couple (strongly)

to the Higgs field are (at least moderately) relativistic, and that is not known with certainty. Apart

from the uncertainty due to the unknown Higgs mass, the transition in the Minimal Standard Model

(MSM) is however well understood. The transition in the Minimal Supersymmetric Standard Model,

and in some other (supersymmetric) extensions of the MSM is moderately well understood.

The basic picture of the transition is as follows. In the MSM the transition is first order when the

Higgs mass is smaller than, mH = 72 ± 2 GeV/c2, and a crossover for larger values of the Higgs mass

(Kajantie, Laine, Rummukainen, Shaposhnikov, 1996). At mH ≈ 72 GeV/c2 there is a second order

transition, which belongs to the universality class of the three-dimensional Ising model (Rummukainen,

Tsypin, Kajantie, Laine, Shaposhnikov, 1998).

The nature of the phase transition in the Minimal Standard Model was studied by considering a

two-loop effective thermal potential in the early 1990s (Arnold, Espinosa, 1992), and nonperturbatively

by the technique of dimensional reduction in the mid 1990s (Kajantie, Laine, Rummukainen, Shaposh-

nikov, 1996). The perturbative techniques are useful only when the transition is strongly first order or

moderately strongly first order. When the transiton is weakly first order or a crossover, perturbative

techniques fail, because the relevant fields, which govern the transition, develop long range correlations,
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which cannot be described by the perturbatively constructed effective potentials. Dimensional reduc-

tion is a technique based on the integration of the Matsubara modes, which correspond to the thermal

excitations with a nonvanishing energy in equilibrium systems. Mathematically speaking, Matsubara

modes correspond to the n ̸= 0 modes of the propagator (194), with the energies, En = −i~ωn. The

technique of dimensional reduction yields accurate results only when there are no bosonic excitations

in the theory with a mass of the order the first Matsubara energy, −i~ω1/c
2 = 2πkBT/c

2.

The result of dimensional reduction of the (reduced) Minimal Standard Model is the tree-dimensional

effective theory,

S
(3)
T [ϕ] =

∫
d3x

(1
2
Tr[FijFij] + c2~−2m2

3H
†H + λ3(H

†H)2
)

(230)

where F a
ij = ∂iA

a
j−∂jAai+g3ϵabcAbiAcj (a, b, c = 1, 2, 3; i, j,= 1, 2, 3), Fij = T aF a

ij,DiH = (∂i−ig3T aAai )H,

T a = τa/2, τa are the Pauli matrices, and ϵabc is the antisymmetric symbol in 3 dimensions. The

theory (230) can be solved numerically by lattice gauge techniques.

The meaning of the parameters in the action (230) is as follows,

g23 = g2(µ)kBT + loop corrections

λ3 = λ(µ)kBT + loop corrections

m2
3 = −ν2(µ) +

(1
2
λ3 +

3

16
g23 +

1

16
g′

2
3 +

1

4
y2t

)
kBTc

−4 + higher order corrections . (231)

where −ν2 denotes the (negative) tree-level Higgs mass squared (calculated at the origin), −ν2 =

(~/c)2d2V/dHdH†|H=0. The dependence on the parameter µ in Eq. (231) indicates that the couplings

and masses correspond to those of the renormalised theory at an energy scale given by the temperature,

µ ∼ kBT . The parameter g = g(µ) is the SU(2)L gauge coupling constant, and ν = ν(µ), g′ = g′(µ),

yt = yt(µ) are to leading order related to the physical parameters as follows,

ν2 =
m2
H

2

g′ = g tan(θW )

yt =
g√
2

mt

mW

λH =
g2

8

m2
H

m2
W

, (232)

where mH ≥ 114 GeV/c2 denotes the Higgs mass, θW denotes the Weinberg angle, mW = 80.412 ±

0.043 GeV/c2 is the W-boson mass, mZ = 91.1887 ± 0.0044 GeV/c2 is the Z-boson mass, mt = 178 ±

4 GeV/c2 is the top quark mass. Here we neglected the corrections induced by the renormalisation of

the bare Higgs parameters (Kajantie, Laine, Rummukainen, Shaposhnikov, 1995).
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FIG. 50: Left panel. The phase diagram of the Minimal Standard Model, with the Abelian hypercharge

symmetry U(1)Y neglected. The phase diagram is based on a dimensionally reduced SU(2)L theory with quarks

and leptons. The horizontal axis represents the (dimensionless) Higgs mass, x = λ3/g
2
3, and on the vertical

axis a product of x and a critical value of the y parameter, y = m3(g3)
2/g43, see Eq. (231). Here g3 denotes

the effective gauge coupling in the 3-dimensional effective dimensionally reduced theory (230), m3 = m3(µ) is

the corresponding Higgs mass (calculated at a scale µ = g3) and λ3 the corresponding quartic coupling (from

Rummukainen, Tsypin, Kajantie, Laine, Shaposhnikov, 1998). The first order transition ends at the critical

point, xc = 0.0983± 0.0015 (mH = 72± 2 GeV/c2), which corresponds to a second order transition end-point,

which belongs to the universality class of the three-dimensional Ising model.

Right panel. The same phase transition diagram but now with temperature on the vertical axis and the physical

higgs mass mHc
2 on the horizontal axis. The first order transition line (red solid line) ends at the second order

endpoint: mH ≃ 72 ± 2 GeV/c2, kBTE ≃ 110 GeV. For higher Higgs masses the transition is crossover. The

three- and the four-dimensional numerical simulations agree remarkably well as regards the value of mH but

the agreement is less impressive as regards the critical temperature at the endpoint TE .

The result of the analysis based on dimensional reduction is shown in figure 50, which represents the

phase diagram of a simplified Minimal Standard Model, obtained by removing the hypercharge U(1)Y

field, Bµ. The vertical and horizontal axes are xyc and x respectively, where x and y are the following

dimensionless quantities,

x =
λ3
g23
, y =

m3(g3)
2

g43
, (233)

and yc is the critical value for y. One can namely show that adding the Bµ field influences the



79

electroweak transition only very weakly. The diagram shows that the transition is first order for

x < xc = 0.0983±0.0015, or equivalently when mH < 72±2 GeV/c2. For Higgs mass above 72±2 GeV,

the transition is a crossover. The first order transition ends at the critical point xc, which corresponds

to a second order transition end-point, belonging to the universality class of the three-dimensional Ising

model. The critical temperature corresponding to the endpoint is TE ≃ 110 GeV (see the right panel in

figure 50). The nature of the phase transition in the Minimal Supersymmetric Standard Model is also

well understood (Espinosa, Quiros, Zwirner, 1993; Laine, Rummukainen, 1998).

Understanding the nature of the electroweak transition is of relevance for cosmology for the following

reason. It is quite plausible that during the electroweak transition a small matter-antimatter asymmetry

was generated, which would explain the excess of the matter over the antimatter of the Universe, manifest

today as the baryonic matter (protons and neutrons) of the Universe. The mechanism can work only

if the electroweak transition is strongly first order. Moreover, trere are indications that an excess of

nonbaryonic matter over the corresponding antimatter was generated at or around the electroweak

transition. If true, this would provide an elegant particle physics explanation for the origin of the dark

matter of the Universe.

Even though the amount of dark and baryonic matter was initially tiny, a large mass of baryons

(mp ∼ mn ∼ 1 GeV/c2) and dark matter particles (m ∼ 102 GeV/c2) means that, as soon as the

temperature falls below the relevant mass threshold, kBT < mc2, the energy density begins scaling as

nonrelativistic matter. From that moment on, the relative fraction of the energy density in the baryonic

and dark matter increases with the scale factor (and hence with time), ρb/ρr ∝ a, ρdm/ρr ∝ a, resulting

eventually in matter domination after the matter-radiation equality at a redshift, zeq = 3230± 210.

QCD phase transition

From numerical simulations (lattice gauge QCD) we know that the quantum-cromodynamics (QCD)

transition in the early Universe is a crossover. At the transition the strong gauge coupling of the SU(3)c

becomes large, quarks and gluons get confined into mesons (pions, rho-mesons, etc.) and baryons

(protons and neutrons, etc.). The remaining symmetry gets ‘broken’ to the U(1)EM of electromagnetism,

SU(3)c × U(1)EM → U(1)EM . (234)

No observable remnants of the QCD transition in the early Universe are known, and hence the question

of understanding the nature of the transition in the early Universe is primarily of academic interest.

There is a large experimental effort undergoing at the Brookhaven National Laboratory (BNL) on Long
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FIG. 51: The physical QCD phase space diagram (temperature vs. chemical potential) with three massive

quarks, mu ∼ md ≪ ms < Tc (not to scale). Other quarks (c, b, t) are too heavy to be thermally excited,

and hence they are of no relevance for the transition. The relevant phases are: quark-gluon plasma (QGP)

(high temperatures), hadronic phase (low temperature and low chemical potentials), nuclear matter, and the

superconducting 2SC and CFL phases. Different phases are separated by the first order transition lines. For

low chemical potentials, the transition between the QGP and hadronic phases is a crossover. The transition

becomes second order at the end-point E, and first order above E.

Island (RHIC accelerator), with the purpose to create and study the state quark-gluon plasma and

the QCD phase transition, and such to recreate the conditions existing in the early Universe. The

experimenters smash gold nuclei on gold target, hoping that the gluon exchange interactions become so

strong, that the resulting nuclei would heat up to a temperature above the QCD phase transition. The

effort is to continue at the LHC at CERN.

A sketch of the QCD phase diagram in the (T, µB)-plane (temperature, baryon chemical potential)

is shown in figure 51 for two light and one moderately heavy quark flavour (mu ∼ md ≪ ms ≪ Tc). At

high temperatures, T > Tc, the fundamental excitations are quarks and gluons. While the nonvanishing

masses mu and md break chiral symmetry, due to the smallness of the light quark masses, mu and md,

the symmetry is only approximate. In the limit when mu,md → 0 at low µB and below Tc the chiral

condensate forms,

⟨ψ̄iLαψ
αj
R ⟩ =M ij = σδij + π⃗ · (τ⃗)ij , (235)
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FIG. 52: The QCD phase space diagram for three massive quarks with the physical quark masses, mu = md =

0.0092 kBTc/c
2, and ms = 0.25 kBTc/c

2. The end point E lies at kBTE = 162± 2 MeV, µE = 360± 40 MeV.

The transition between the QGP and hadronic phases is a crossover for µB < µE and first order for µB > µE

(Fodor, Katz, 2004).

such that the (approximate) chiral symmetry gets broken by the condensate,

SU(2)L × SU(2)R → SU(2)L+R , (236)

where τ⃗ = (τa) (a = 1, 2, 3) are the Pauli matrices. The order parameter is ϕ = (σ, π⃗), such that

the chiral symmetry breaking (236) can be also viewed as, O(4) → O(3), with the vacuum manifold,

M = O(4)/O(3) ∼ S3, given by ϕ2 = σ2+
∑3

a=1(π
a)2 = const. The chiral symmetry breaking is strictly

speaking first order transition only in the unphysical limit of two massless quark flavours, mu = md = 0

(ms → ∞).

Apart from the chiral condensate (235), below the critical temperature quarks and gluons get confined

into mesons and baryons (confinement). This low temperature phase is known as the hadronic phase,

and we live in it.

The temperature of the transition is known to a relatively high precision,

Tc = TQCD = 164± 2 MeV . (237)
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The QGP-hadronic transition is a crossover up to the end point E, which is located at the temperature

and baryonic chemical potential, as can be seen in figure 52,

µE = 380± 40 MeV

kBTE = 162± 2 MeV . (238)

Above the end point the transition becomes first order. The transition line hits T = 0 at around

µB ∼ 1 GeV (the precise value of the chemical potential is not known). At even higher chemical

potentials and low temperatures, quark pairs develop a condensate, and QCD becomes superconducting.

This was first proposed in the 1990s by Rajagopal and Wilczek by considering the Nambu-Jona-Lasinio

(NJL) toy model of QCD, and demostrated by D. T. Son in 1998 by solving the one-loop dynamical ‘gap’

equation for QCD. The NJL model is a low-energy approximation of QCD, in which the (dynamical)

one-gluon exchange between two quarks is replaced by a contact (local) four-fermion interaction. Strictly

speaking, the one-gluon exchange approximation applies in the limit, µB → ∞. Even though the gap

equation is not (fully) gauge invariant, it is believed to yield trustable results.

As it can be seen from figure 51, there are two superconducting phases, which are acronymed as

the 2SC and CFL phase, respectively. Recall that the conventional Bardeen-Schrieffer-Cooper (BCS)

superconductivity is realised through the formation of Cooper pairs. Cooper pairs are the pairs of

electrons with an opposite spin and momentum, bound (paired) by the exchange of phonons, which are

vibrating deformations of charged atoms of the crystal lattice. Since a Cooper pair has a lower energy

than the two freely moving electrons, an energy gap forms, such that superconducting (nondissipative)

currents are established at low temperatures, below the energy gap, kBT < ∆. Analogous to the BCS

ground state, the ground state of the color-flavor locking phase (CFL) of QCD corresponds to the

condensate of quark pairs,

⟨ψaαiL (p⃗, p0)ψ
bβ
jL(−p⃗, p

0)ϵab⟩ = −⟨ψaαiR (p⃗, p0)ψ
bβ
jR(−p⃗, p

0)ϵab⟩ =
∆CFL(p⃗

2, p0)

~c
ϵαβAϵijA , (239)

where ∆CFL [GeV] is the energy gap, ψaαiL and ψaαiR denote the left- and right-handed two-spinors of quarks,

respectively, ϵab, ϵαβA, ϵijA and the two- and three-indexed totally antisymmetric symbols, respectively,

e.g. ϵ12 = 1, ϵ21 = −1, ϵ11 = 0 and ϵ22 = 0, α, β denote the color indices, i, j denote the flavor indices,

a, b are the spinor indices, and A is the index which links (locks) color and flavor. Note that the ground

state is a scalar. Indeed, when the parity operation is applied on the left-handed condensate in (239),

one gets a minus times the right-handed condensate, such that parity symmetry is respected by the

vacuum state in (239).
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FIG. 53: The one-loop diagram used to calculate the quark self-energy (left panel). The diagram contains the

relevant gluon exchange, which leads to an attractive interaction between quarks. Cutting the inner quark line

in the diagram in the left panel (which amounts to forcing the loop quark propagator on-shell), results in the

tree-level gluon exchange, shown in the right panel. When one sums the one-gluon exchange processes, one

arrives at the color-flavor quark locking and the condensate as described in Eq. (239). The quark condensate

is analogous to the Cooper electron pairs of conventional BCS superconductivity.

Since the vacuum locks the SU(3)L to SU(3)c, and likewise the SU(3)R is locked to SU(3)c, in the

approximation of QCD plus three massless quarks, the vacuum breaks the symmetry as follows,

SU(3)c × SU(3)R × SU(3)L × U(1)B → GCFL = SU(3)c+L+R × Z2 , (240)

such that the chiral symmetry is broken. Note that the the global baryon number symmetry, U(1)B,

is broken by the condensate to the discrete group, Z2 = {1,−1}, the two elements corresponding to a

positive and negative µB. Since the SU(3)c is fully broken by the CFL quark condensate (239), all of

the eight gluons develop a mass,

m2
G = Nf

g2sµ
2
B

6π2c4
+
(
Nc +

Nf

2

)g2s(kBT )2
9c4

, (241)

where Nc = 3 and Nf = 3 denote the number of colors and flavors, respectively. Consequently, all

gluons exhibit the QCD analog of the Meisner effect known to occur for electromagnetic fields in the

BCS superconductivity. Furthermore, all quarks that interact with the condensate also acquire a mass.

That a condensate of the form (239) indeed develops can be shown by considering the one-gluon

exchange shown in the right panel in figure 53, which is obtained by ‘cutting’ the corresponding quark

self-energy, shown in the left panel in figure 53. Recall that cutting a propagator corresponds to enforcing

the loop quark propagator on-shell. The (one-loop) thermal quark self-energy can be thought of as a

thermal nonlocal correction to the quark mass term. This gluon exchange is analogous to the one-

photon exchange, which occurs as the radiative (loop) correction to propagation of charged particles.

The gluon exchange generates an attractive force, resulting in an energy gap, which is at leading order

in the coupling constant (Son, 1998; Pisarski, Rischke, 1999; Schäfer, Wilczek, 1999),

∆CFL ∼ bCFLµBg
−5
s exp

(
− 3π3

√
2 gs

)
, (242)
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where gs = gs(µB) denotes the strong (SU(3)c) coupling constant, µB is the chemical potential for

baryons, and bCFL ∼ 512π42−1/3(2/3)5/2 ∼ 104 is a numerical constant.

The 2SC phase is a superconducting phase with two flavors of light quarks. (In this approximation

the strange quark is too heavy to participate in the locking.) Cooper quark pairs form in the attractive

3̄-channel, and the relevant condensate is of the form,

⟨ϵαβ3ϵijψαi (p⃗, p0)ψ
β
j (−p⃗, p0)⟩ =

∆2SC(p⃗
2, p0)

~c
, (243)

where ∆2SC [GeV] is the 2SC energy gap. and the meaning of other symbols is identical as in (239).

Note that the condensate is colored, e.g. blue, which is caused by the lack of a third light quark flavor

to participate in pairing. The blue color of the condensate is compensated by the anti-blue color of

the plasma, such that the whole system is color-neutral. The SU(3)c is only partially broken by the

condensate (243),

SU(3)c → SU(2)c (244)

such that five out of eight gluons acquire a mass.

The gap for the 2SC phase is,

∆2SC ∼ b2SCµBg
−5
s exp

(
− 3π3

√
2 gs

)
, (245)

where b2SC ≃ 512π4 ≃ 3.5bCFL, such that the 2SC gap is bigger than the gap of the CFL phase (242),

which is also indicated in figure 51.

Since the current baryon-to-photon ratio of the Universe is very small, nB/nγ = 6.1±0.3×10−10, we

have good reasons to believe that the QCD transition in the early Universe occured at a small baryonic

chemical potential, and hence it was a crossover. Low temperature and large density conditions are

realised in the centers of neutron stars, such that they represent a candidate where the large µB and

low temperature superconducting region of the QCD phase space diagram in figure 51 may be realised.

So far there are no observations, which would indicate that a superconducting QCD state is realised in

the interior of neutron stars.

Neutrino decoupling

The Universe is filled with cosmic background neutrinos of a similar number density as the cosmic

microwave radiation, nγ = 410.4± 0.9 cm−3, and yet the cosmic background neutrinos have never been

observed, because they interact very weakly with ordinary matter.
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FIG. 54: The neutrino decoupling. In the left panel we show the Universe’s contents above the temperature

of the electron-positron photo-dissociation, kBT
′ ≫ mec

2, but much below any other particle mass scale of the

MSM (except, of course, neutrinos). At these temperatures the Universe is to a good approximation a relativistic

gas of photons, electrons, positrons and neutrinos. All species are at the same temperature, T ′ = T ′
ν = T ′

γ .

At a temperature below the electron rest mass, T ≪ mec
2/kB, most of the electrons and positrons have

desintegrated, and the plasma consists mainly of photons and neutrinos. The resulting temperature of photons

is higher than the temperature of neutrinos.

At high temperatures, kBT ≫ 1 MeV, neutrinos are kept in equilibrium with the rest of the plasma

(which at that epoch consisted of photons, electrons and positrons) by the weak interactions, examples

being,

ν̄ + ν ↔ e+ e+

ν̄ + e ↔ ν + e+ , (246)

etc.

On the other hand, the photo-dissociation of electron-positron pairs,

e+ + e↔ γ + γ , (247)

is biased towards the right below the rest mass of the electron, me = 0.511 MeV/c2, such that at

temperatures much below mec
2/kB, the number density of electrons and positrons is exponentially

(Maxwell) suppressed, ne ∼ ne+ ∝ e−mec2/(kBT ).

Since all neutrino species are light, mνi ≪ kBT/c
2, the neutrino energy and particle densities can be

estimated by making use of the relativistic approximations (155) and (171), as follows,

ρν =
7

4
Nν

π2

30

(kBT )
4

(~c)3
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nν =
3

2
Nν

ζ(3)

π2

(kBT
~c

)3

, (248)

where we used, g∗N,ν = 2× (3/4)×Nν , g∗,ν = 2× (7/8)×Nν . Here Nν ≃ Nf = 3 denotes the number

of (light) neutrino species, and ζ(3) ≃ 1.202.

We shall now show that, assuming the neutrinos decouple at a temperature, T ′ ≫ Tν,dec ≫ mec
2/kB,

the neutrino temperature drops below the photon temperature when Tγ ≪ mec
2/kB. The Universe

content is shown in figure 54. In the left panel we show the Universe at a temperature, T ′ ≫ mec
2/kB.

The Universe consists mainly of relativistic photons, electrons, positrons and neutrinos, all species

being at the same temperature, T ′ = T ′
ν = T ′

γ. As the temperature decreases neutrinos decouple. At

temperatures below the electron rest mass T ≪ mec
2/kB electrons and positrons desintegrate, thereby

heating the photon fluid, but not the (decoupled) neutrino fluid.

To calculate the neutrino temperature we use the entropy conservation law (164)

d(V s)

dt
= 0 , (249)

where s = (ρ + P)/T denotes the entropy density (160–161), and V ∝ a3 the comoving volume. This

then implies,

S =
4

3T ′ρ
′V ′ =

4

3T
ρV . (250)

For photons, electrons and positrons we then have (155),

ρ′ = 2
(
1 + 2× 7

8

)π2

30

(kBT
′
γ)

4

(~c)3
(kBT

′
γ ≫ mec

2)

ρ = 2
π2

30

(kBTγ)
4

(~c)3
(kBTγ ≪ mec

2) , (251)

and the energy density of neutrinos is given by Eq. (248). From this and the entropy conservation

law (250), we then conclude,

11

4
V ′T ′

γ
3
= V T 3

γ (photons)

V ′T ′
ν
3
= V T 3

ν (neutrinos) . (252)

Taking account of T ′
γ = T ′

ν , this then implies,

Tν =
( 4

11

) 1
3
Tγ , (253)

which is also valid today.

Since the photon temperature today is,

Tγ = T0 = 2.725± 0.001 K , (254)
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the current temperature of the cosmic neutrino background is,

Tν ≈ 1.95 K . (255)

This is a prediction of the Big Bang theory, which has not yet been tested. Due to the weakness of their

interactions, most likely the cosmic background neutrinos will be observed only in a distant future.

From Eq. (255) and from the photon density, nγ ≃ 410 cm−3, it is then quite easy to estimate the

number density of neutrinos today (per relativistic species),

nν
Nν

=
3

4

(Tν
Tγ

)3

nγ ≃ 112 cm−3 . (256)

Since we do not know the masses of neutrinos, we do not know the number of light (relativistic) species

today.

In the derivation of the neutrino temperature (255) we have assumed that neutrinos decouple at a

temperature, which is much higher than the temperature of the electron-positron photo-desintegration,

Tν,dec ≫ mec
2/kB. In order to check the validity of this assumption, we note that neutrinos fall out of

equilibrium when the time scale for weak interactions (246), becomes of the order the expansion time

of the Universe,

tν,dec = tH ≡ 1

H
. (257)

The cross-section for weak interactions at low energies (with respect to the mass scale of the W- and

Z-bosons, mW ∼ mZ ∼ 102 GeV/c2) is given by

σν [m
2] ∼ G2

F (kBT )
2 , (258)

where GF denotes the Fermi constant,

GF = 1.17× 10−5 (GeV)−2(~c) . (259)

Recall now that

tν,dec ≡
1

Γν
≃ 1

nνσνc
, H2 =

~ρ
3cM2

Pl

, (260)

which implies (g∗ = 43/4)

tν,dec ∼
√

360

43π2
MPlc

2 ~
(kBT )2

, (261)

and hence

kBTν,dec ≃ 1.5 MeV/kB , (262)
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such that the condition, Tν,dec ≫ mec
2/kB is moderately well satisfied. A more accurate analysis, based

on a solution of the appropriate kinetic equations, shows that the approximation is actually better than

the above simple analysis would suggest.

An important question is whether the primordial neutrinos can be the dark matter of the Universe.

The short answer is no. The actual energy density in neutrinos is constrained by the WMAP one year

data (Spergel et al, 2003) combined with the 2dF galaxy catalogue,

Ωνh
2 =

∑3
i=1mνic

2

94eV
≤ 0.008 , (263)

where h = 0.73 ± 0.03 is the Hubble parameter today (in units of 100 km/s/Mpc), such that the sum

of neutrino masses is constrained as, ∑
i

mνic
2 ≤ 0.7 eV . (264)

(Some recent studies (published in 2007) suggest an even tighter cosmological constraint on the neutrino

masses:
∑

imνic
2 ≤ 0.2 eV.) The constraint comes primarily from the observation that neutrinos do

not cluster on small scales. Instead, they ‘freely stream,’ and prevent an early structure formation, as

well as formation of structures on small scales, contrary to what has been observed.

The Boltzmann kinetic equation

The next important event in the Universe is the (primordial) Big Bang Nucleosynthesis (BBN), which

takes place at about

kBTbbn ∼ 0.1 MeV , (265)

which corresponds to a cosmic time, tbbn ∼ 103 sec. During the BBN primordial deuterium (D), helium

(3He and 4He), and a small quantity of lithium (7Li) are created by the nuclear interactions by which

protons and neutrons get combined into light nuclei.

In order to perform a quantitative analysis of the BBN, we need to solve the kinetic Boltzmann

equations for various nuclear interactions in an expanding Universe. We shall now devote some effort to

present a derivation of the relevant Boltzmann kinetic equation, which has a broad range of applications.

Let us, for simplicity, begin with the Liouville equation, which is of the form

d

dt
f ≡ (∂t + v⃗ · ∂x⃗ + F⃗ · ∂p⃗)f = 0 , (266)

where f = f(x⃗, p⃗, t) denotes the distribution function, which measures the average density of particles

on phase space, {x⃗, p⃗}, ∂t ≡ ∂/∂t, etc., and hence the nature of (266) is statistical. The Liouville
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equation (266) applies to situations when interactions between particles can be neglected. Roughly

speaking, f = 1, when there is one particle per unit volume of phase space, ∆x∆px∆y∆py∆z∆pz = ~3.

The velocity, v⃗ and the force, F⃗ , in Eq. (266) are given by the Hamilton equations,

v⃗ = ˙⃗x = ∂p⃗H

F⃗ = ˙⃗p = −∂x⃗H , (267)

where H = H(x⃗, p⃗) is the (classical) Hamiltonian.

The Liouville equation expresses the conservation of phase space densities, such that, as a system

evolves in time, the regions of phase space where f does not vanish deform, but the total phase-space

volume weighed by f (which represents the total number of particles in the system) is conserved by the

evolution, ∫
d3x d3pf = const. (268)

While a general solution to the Liouville equation is hard to find, when there are conserved quantities

in the system one can easily construct important classes of solutions. Perhaps the simplest case is when

energy is conserved, implying that individual particles move along trajectories of a constant energy,

E = H(x⃗, p⃗) (269)

Since this Hamiltonian does not explicitly depend on time, the Liouville equation is solved by,

f = f(E) , (270)

where f = f(E) is any function of energy. Indeed, upon plugging (270) in Eq. (266), and making use

of the Hamilton equations (267), results in,

∂tf(E) +
(
∂p⃗H · ∂x⃗H − ∂x⃗H · ∂p⃗H

) d

dE
f(E) = ∂tf(E) = 0 , (271)

which is indeed satisfied provided f does not explicitly depend on time. A simple way to understand

this is to recall that f describes a collective motion of many individual particles, each of them moves

along a trajectory given by (269), and where x⃗ = x⃗(t) and p⃗ = p⃗(t) describe classical trajectories, i.e.

they are solutions of the Hamilton equations (267).

Perhaps the simplest example of this situation is a one-dimensional harmonic oscillator with the

Hamiltonian,

H =
p2

2m
+

1

2
mω2x2 (272)
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FIG. 55: The evolution of the distribution function f in phase space {x, p} obeying the Liouville equation (266).

The dynamics is dictated by the Hamiltonian of a one-dimensional harmonic oscillator (272), such that the

individual particle trajectories are the ellipses of constant energy. An initial distribution function, f(t = 0) = 1

on the circle shown in the left panel evolves into an ellipse at f(t > 0) = 1 in the right panel. Since f is

conserved by the evolution, the surface area of the ellipse in the right panel is equal to the surface area of the

circle in the left panel, as dictated by the Liouville equation.

such that

v ≡ ẋ =
p

m
, F = ṗ = −mω2x , (273)

which are solved by (x0 = x(0) and ẋ0 = v(0) denote the initial position and velocity, respectively),

x = x0 cos(ωt) +
ẋ0
ω

sin(ωt)

p = mẋ0 cos(ωt)−mx0ω sin(ωt) , (274)

such that the trajectories of particles (of constant energy E) are ellipses in phase space shown in figure 55.

In the left panel of figure 55 we show f = f0 at an initial time t = 0 (circle), and in the right panel

we show f at a later time, t > 0 (ellipse). Note that indeed one can think of the evolution of f as the

evolution of a set of individual particles, each moving along a trajectory of constant energy. In this

simple case the shape of the region in which f does not vanish deforms from a circle in the left panel

into an ellipse in the right panel of figure 55, such that the surface area is preserved.

The Liouville equation (266) is not suitable for description of the early Universe dynamics, since it

does not take account of particle interactions. In order to take account of interactions, we ought to

make a suitable generalisation of the Liouville equation (266). This is the Boltzmann equation,

d

dt
f = Coll[f ] , (275)

where Coll = Coll[f ] denotes the collision functional (integral). This equation can in fact be derived

from an effective action of a quantum field ϕ̂, which has a general form, Seff = Seff [ϕ,G], where ϕ
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and G denote the one point and two-point function (propagator). A variation of the effective action

with respect to G results in a Schwinger-Dyson equation, to which the Boltzmann equation (275) is an

approximate equation for the dynamics of the distribution function f , which is an on-shell projection

of the two point (Whitman) function, f =
∫
[dk0/2π~]G.

When the distribution function f is integrated over the momenta, one obtains a particle number

density,

na(x⃗, t) =

∫
d3p

(2π~)3
fa(x⃗, p⃗a, t) (276)

where the index a refers to a species a. Since in an expanding universe the physical momentum scales

inversely with the scale factor, p⃗ ∝ 1/a, integrating the left hand side of the Boltzmann equation (275)

for f → f1(x⃗, p⃗1, t) results in the following continuity equation,

1

a3
d

dt
(a3n1) +∇ · (u⃗1n1) =

∫
d3p1
(2π~)3

Coll[fa]

= −
4∏

a=1

∫
d3pa

(2π~)32Ea
(2π)4δ3(p⃗1 + p⃗2 − p⃗3 − p⃗4)δ(E1 + E2 − E3 − E4)|M|2

× (~8c12){f1f2(1± f3)(1± f4)− f3f4(1± f1)(1± f2)} , (277)

where fa ≡ fa(x⃗, p⃗a, t) are the distribution functions for species a = 1, 2, 3, 4, Ea = (p2ac
2 +m2

ac
4)1/2 is

the corresponding energy, M is the scattering amplitude, u⃗a = u⃗a(x⃗, t) denotes the fluid velocity of a

species a, defined as,

u⃗a =
1

na

∫
d3pa
(2π~)3

p⃗a
ma

fa (a = 1, 2, 3, 4) . (278)

For the moment we assume that u⃗a = 0, which is a reasonable assumption in a homogeneous expanding

Universe, in which a = a(t). In writing (277) we assumed a special form for the collision term, such

that it describes two incoming particles, which interact, resulting in two outgoing particles,

1 + 2 ↔ 3 + 4 . (279)

The strength of the interaction is determined by the scattering amplitude, M. Even though more

complicated forms of the collision integral are possible, it is often the case that collisions are dominated

by the two-to-two scatterings as in (277) and (279). The delta-functions in the collision integral (277)

indicate that the energy and momentum are conserved by the interactions, in the sense that the sum of

the incoming 4-momenta equals to the sum of the outgoing 4-momenta.

In the simplest case, the interaction is described by a local coupling constant, in which case the

scattering amplitude is proportional to the coupling constant, as illustrated in figure 56. For example,
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FIG. 56: An illustration of a two-to-two scattering process, whose full kinetic description is provided by the

Boltzmann equation (277). Two incoming particles (1 and 2) interact and scatter into two outgoing particles

(3 and 4). In this simple case, the interaction strength is given by the scattering amplitude, M = h.

the local quartic interaction for a real scalar field has the form, Lint = −hϕ4/4!, which describes a

two-to-two scattering, ϕ1 + ϕ2 ↔ ϕ3 + ϕ4, and whose corresponding scattering amplitude is simply,

M = h . (280)

More generally, one is interested in calculating the scattering amplitude of two-to-two scattering pro-

cesses induced by one gauge boson exchange. In this case the calculation of the scattering amplitude is

still quite simple, and we shall return to this question later.

The collision integral of the Boltzmann equation (277) describes the rate of change of the particle

density due to the interactions. This rate depends not only on the interaction strength, but also on

the actual occupancy of the incoming and outgoing states. More concretely, the scattering rate of the

incoming bosons (fermions), 1 + 2 → 3 + 4, is statistically enhanced (suppressed) with respect to the

vacuum interaction rate by (see Eq. (277)),

f1f2(1± f3)(1± f4) (281)

where the upper (lower) sign refers to bosons (fermions). The scattering is enhanced if the outgoing

states are highly populated bosons, f3,4 ≫ 1, which is an expression of a stimulated bose emission. A

dramatic example of this effect is the Bose-Einstein condensation, according to which a macroscopically

large number of particles ‘condenses’ into a single quantum (ground) state. The Bose-Einstein conden-

sation is currently being investigated in atomic systems. Since for fermions, 0 ≤ (1 − f3)(1 − f4) ≤ 1,

the scattering into occupied fermionc states is suppressed, which is an expression of the Pauli blocking

phenomenon, well known from atomic physics (electron clouds keep atoms apart).

The scattering (decay) process, 1 + 2 → 3 + 4, is counteracted by the creation rate (note the minus

sign in (277)), 3 + 4 → 1 + 2, whose rate is statistically enhanced (suppressed) as,

−f3f4(1± f1)(1± f2) . (282)
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The minus sign in front indicates that particles of species 1 are created by that process. In chemical

equilibrium these two processes are balanced, such that,

Coll[f ] = 0 , (283)

implying that in chemical equilibrium, a special case of which is thermal equilibrium, the Liouville

equation (266) is satisfied. Note that the collision integral (283) indeed vanishes for thermal equilibrium

distribution functions,

fa,eq =
1

eEa/(kBT ) ± 1
, (284)

which is a simple consequence of the energy conservation, E1 + E2 = E3 + E4, imposed by the energy

δ-function in (277).

For now, we are primarily interested in simplifying the collision integral in (277). A careful look

at (277), reveals that the continuity equation for na does not close (n1 is given in terms of fa, a =

1, 2, 3, 4). A closure can be nevertheless achieved, if the fluid velocity is so small that it can be neglected,

u⃗a ≃ 0, and when the distribution functions can be approximated by the local thermal equilibrium form,

fa =
1

eβ(Ea−µa) ± 1
, Ea =

√
m2
ac

4 + p⃗ 2
a c

2 (a = 1, 2, 3, 4) , (285)

where β = 1/(kBT ), and µa is the chemical potential of species a. This approximation is justified when

the particle number changing interactions are weak in comparison to the particle number conserving

interactions, an example of which is the 2-to-2 particle scattering (279), which clearly conserves particle

number. An additional assumption is needed however. Namely, the system ought to be either near

thermal equilibrium, or nonrelativistic. Here we analyse the simpler case, and assume that the system

is nonrelativistic, in which case (285) simplifies to,

fa ≈ exp
(
− Ea − µa

kBT

)
, Ea ≃ mac

2 +
p2a
2ma

≫ kBT (a = 1, 2, 3, 4) , (286)

for both bosons and fermions. In this nonrelativistic limit we have

{f1f2(1± f3)(1± f4)− f3f4(1± f1)(1± f2)} ≃ e−(E1+E2)/(kBT )
(
e(µ1+µ2)/(kBT ) − e(µ3+µ4)/(kBT )

)
, (287)

such that we can reduce (277) to,

1

a3
d

dt

(
a3n1

)
= −cn10n20⟨σv⟩

( n1n2

n10n20

− n3n4

n30n40

)
(288)

where

na0 = ga

∫
d3pa
(2π~)3

e−Ea/(kBT )

= ga

(makBT

2π~2
) 3

2
e−mac2/(kBT ) , (mac

2 ≫ kBT ) ,

na = na0e
µa/(kBT ) , (289)
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and the thermally averaged cross section,

⟨σv⟩ =
~8c12

n10n20

4∏
a=1

∫
d3pa

(2π~)32Ea
|M|2δ3(p⃗1 + p⃗2 − p⃗3 − p⃗4)δ(E1 + E2 − E3 − E4)e

−(E1+E2)/(kBT ) . (290)

Analogous equations hold for other species, na (a = 2, 3, 4). Equation (288) is the desired continuity

equation, which exhibits closure for particle densities, and we shall use it extensively in studying the

kinetics of species in the expanding Universe. Since (288) is derived from the Boltzmann equation (277),

it is often referred to as the Boltzmann equation.

In the limit of a large cross section (290), the system is driven towards a chemical equilibrium,

n1n2

n10n20

=
n3n4

n30n40

, (291)

which then implies,

µ1 + µ2 = µ3 + µ4 . (292)

While the chemical equilibrium alone does not guarantee that the individual chemical potentials are zero,

it is often the case that many interactions are present in the plasma, such that the only self-consistent

solution to the system of kinetic equations is the thermal equilibrium with all chemical potentials

vanishing. The important exception are the chemical potentials associated with conserved quantities.

An important example of a conserved quantity is the baryon number density nb. The quantity a3nb

is conserved below the electroweak phase transition, below which the Minimal Standard Model baryon

violating processes are exponentially suppressed, and hence effectively inoperative.

Big Bang Nucleosynthesis

Big Bang Nucleosynthesis (BBN) refers to the creation of deuterium (D), helium (3He and 4He),

and small quantities of lithium (7Li) out of protons and neutrons, which were in turn formed in the

early Universe at the QCD transition. The temperature at which this primordial nucleosynthesis takes

place is,

kBTbbn ∼ 0.1 MeV . (293)

which corresponds to a cosmic time of about, tbbn ∼ 102 sec.

Recall that at the temperature (293) neutrinos are already decoupled, Γ(νe ↔ νe) ≪ H, and the

number of electrons and positrons is Maxwell suppressed, ne ∼ ne+ ∝ e−mec2/(kBT ). The baryon-to-

photon ratio has reached its current value,

ηb =
nb − nb̄
nγ

= 6.1± 0.3× 10−10
(Ωbh

2

0.022

)
, (294)
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with h = 0.73± 0.03. The asymmetry between baryons and antibaryons was created at the electroweak

scale or at an even higher scale.

The weak interactions,

n+ ν ↔ e+ p

n+ e+ ↔ ν̄ + p (295)

are not any more in equilibrium. Due to the mass difference between the neutron and proton Q =

(mn − mp)c
2 = 1.293 MeV, which is principally of electromagnetic origin, at T ∼ Tbbn both of these

interactions are shifted towards the right hand side. On the other hand, around the same time neutrons

begin decaying through the interaction,

n → ν̄ + p+ e , (296)

with an anomalously long lifetime (Serebrov et al., 2005),

τn ≃ 880 s . (297)

The principal nuclear interactions leading to production of deuterium and helium are,

p+ n ↔ D + γ

D +D ↔ 3He+ n

3He+D ↔ 4He+ p . (298)

Apart from small quantities of lithium, 7Li, no heavy elements are produced in the early Universe. This

can be understood from the binding energies per nucleon of the light elements shown in figure 57. No

stable element with five nucleaons (A = 5) exists. Moreover, the binding energies per nucleon of lithium

(3Li), beryllium (4Be) and boron (5B) are all smaller than that of helium, making it energetically

disfavourable to fuse helium atoms to produce Li, Be or B. The first element in the periodic table that

is more stable than 4He is carbon 12C, followed by nitrogen (147 N), oxygen (168 O), etc. But in order to

produce carbon, one ought to fuse three 4He atoms, which is a very unlikely event in the primordial

Universe. This process happens in stars though, producing thus heavier elements, which is of a crucial

importance for the genesis of life.

Deuterium
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FIG. 57: The average binding energy per nucleon. Note that the binding energy of 4He is anomalously large,

such that it becomes larger again only for 12C. Iron-56 (5622Fe) is the most stable isotope, with binding energy

of almost 9 MeV per nucleon.

Deuterium (D = 2H) is produced by the fusion of protons and neutrons,

p+ n ↔ D + γ (299)

When the process is in equilibrium, we may use the equilibrium form of the Boltzmann equation (288)

to obtain,
nD
npnn

=
nD0

np0nn0
, (300)

where we took account of the fact that the photon density must be equal to that in equilibrium, nγ = nγ0.

This is so because the photon is its own antiparticle, and because the chemical potential of particles

and antiparticles should add up to zero, implying µγ = 0, and thus nγ = nγ0. In nonrelativistic limit

the energy of a particle species a can be expanded in a Taylor series as, Ea ≃ mac
2+p2/2ma, and hence
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the equilibrium number densities are of the form (289), such that Eq. (300) can be rewritten as,

nD
npnn

=
3

4

( 2π~2mD

mnmpkBT

)3/2

eBD/(kBT ) , (301)

where

BD = (mn +mp −mD)c
2 = 2.22 MeV (302)

is the binding energy of deuterium. The factor 3/4 in Eq. (301) is the number of spin states of deuterium

(gD = 3) divided by the number of the spin states of the proton (gp = 2) and by that of the neutron

(gn = 2). Now taking mD ≃ 2mn ≃ 2mp in the prefactor, and writing

np + nn = nb = ηbnγ , np = Xpnb , nn = (1−Xp)nb (303)

we get,
nD
nb

= Xp(1−Xp)ηbnγ
3

4

( 4π~2

mpkBT

)3/2

eBD/(kBT ) . (304)

Upon taking for the density of photons,

nγ = 2× ζ(3)

π2

(kBT
~c

)3

, (305)

Eq. (304) can be recast as,

XD ≡ nD
nb

=
{12ζ(3)Xp(1−Xp)√

π

}
ηb

( kBT
mpc2

)3/2

eBD/(kBT ) . (306)

Noting that Xp ∈ [0, 1], and max[Xp(1 − Xp)] = 1/4 at Xp = 1/2, the prefactor in curly brackets

is at most 2, it is reasonable to take it to be of the order one. From Eq. (306) it follows that it is

primarily the smallness of ηb which inhibits production of deuterium until a fairly low temperature of

about kBT ≃ 0.07 MeV.

Neutrons

At high temperatures, kBT ≫ 1 MeV, the weak interactions (295) are efficient, implying that the

equilibrium densities of neutrons and protons are almost equal, nn0 ≃ np0. When the temperature drops

below about kBT ∼ 1 MeV, the interactions (295) are not any more so efficient. To study how the

density of neutrons, protons and electrons change with temperature in more detail, consider Eq. (288)

for the scattering processes (295),

1

a3
d

dt

(
a3nn

)
= −λnp

(
nn − np

nn0
np0

)
, (307)
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where

λnp = nl0⟨σv⟩ (308)

denotes the scattering rate of neutrons into protons, and nl0 is the equilibrium density in leptons

(neutrinos or electrons). Since in equilibrium,

nn0
np0

= e−Q/(kBT ) , Q = (mn −mp)c
2 = 1.293 MeV , (309)

and the number of baryons per comoving volume must be conserved,

d

dt
(nba

3) = 0 , nb = nn + np (310)

we can recast Eq. (307) as,

dXn

dt
= −λnp

(
Xn − (1−Xn)e

−Q/(kBT )
)
, (311)

where we defined

Xn =
nn
nb
. (312)

It is now useful to define a new (dimensionless) time variable,

τ =
Q

kBT
. (313)

From the Friedmann equation,
1

a

da

dt
= − 1

T

dT

dt
= H (314)

it then follows that
dτ

dt
= −τH(τ) (315)

and Eq. (311) becomes,
dXn

dτ
= −τλnp(τ)

H(1)

(
Xn − (1−Xn)e

−τ
)
, (316)

with

H(1) =
(
g∗
4π3GN

45c2
Q4

) 1
2
= 1.13 s−1 , g∗ = 10.75 . (317)

The scattering rate λnp can be expressed in terms of the neutron decay time τn = 878.6±0.8 s as follows

(Bernstein 1988),

λnp =
255

τnτ 5
(12 + 6τ + τ 2) [s−1] . (318)
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When one integrates Eq. (316), one finds that below kBT ≃ 0.5 MeV, neutron abundance freezes at

about, Xn|freeze ≃ 0.15. Below kBT = 0.1 MeV, the reaction

n+ p ↔ D + γ (319)

starts depleting neutrons, producing deuterium and eventually helium. The final amount of helium

produced can be estimated by assuming that all of the remaining neutrons have been converted into

helium at kBT ≃ 0.07 MeV, which is the energy scale at which the reaction (319) becomes effective.

From the Friedmann equation one obtains for the age of the Universe,

t = 132
(0.1 MeV

kBT

)2

[s] (320)

such that at that moment (kBT ≃ 0.07 MeV), a fraction, e−t/τn ≃ 0.74 have decayed through the

neutron decay process (296). The final fraction of neutrons that survives is then, 0.15 × 0.74 ≃ 0.11.

The helium abundance, which is defined as

Yp =
2nn

nn + np
= 2Xn , (321)

reads

Yp ≃ 0.22 . (322)

This is perhaps surprisingly close the more accurate value, obtained by numerically solving the full set

of equations of nuclear physics, and the result of which can be approximated by,

Yp ≈ 0.249 + 0.013 ln
( ηb
6× 10−10

)
(323)

Measurements of helium abundance in stellar systems show a mild dependence on the oxygen con-

centration. When extrapolated to the zero oxygen abundance, one obtains,

Yp|obs = 0.239± 0.002 (Luridiana et al. 2003, Fields and Olive, 1998)

Yp|obs = 0.245± 0.002 (Izotov et al. 1999) , (324)

which is marginally consistent with the primordial nucleosynthesis value (323), given that ηb = 6.1 ±

0.3 × 10−10. The current situation concerning the BBN helium-4 abundance is illustrated in figure 58,

where both observational bounds on helium-4 abundance quoted in (324) are marked. In order to

remedy this rather unpleasant disagreement, Fields and Sarkar (in Particle Data Group, S. Eidelman et

al., Phys. Lett. B 592, 1 (2004)) represent experimental bounds on the helium abundance with rather
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FIG. 58: Abundances of 4He (mass fraction), D, 3He and 7Li (by number relative to 1H) as a function of

baryon-to-photon ratio, ηb × 1010 = (nb/nγ) × 1010. The thickness of the lines corresponds to one standard

deviation (68%) uncertainties. The hatched green areas represent observational uncertainties. We show two

uncertainty bands for 4He, the upper one from Izotov et al (1999) and the lower one from Luridiana et al.

(2003). The observational unceratinty bands for D is from Kirkman et al. (2003) and for 7Li from Ryan et al.

(2000). The vertical yelow stripe corresponds to the one standard deviation band from Spergel et al. (WMAP

2003). The figure is taken from Coc et al. (2004).

generous error bars, such that the WMAP constraint on ηb is about 2 standard deviations away from

the 4He abundance implied by the measurements.

This does not mean that the primordial nucleosynthesis is in a crisis, because the measured deuterium

abundance agrees very well with the nucleosynthesis calculations and with the WMAP bound on ηb.

Moreover, it is believed that systematic errors in the deuterium abundance measurements are better

under control then those of helium or lithium. The predicted abundance of deuterium is quite low
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because, as soon it is starts getting produced at kBT ∼ 0.07 MeV, deuterium is efficiently depleted by

the reactions,

D + p ↔ 3He+ γ

D +D ↔ 4He+ γ . (325)

As can be seen from figure 58, according to the BBN calculations, for ηb = 6.14 ± 0.25 × 10−10,

deuterium freezes at,

nD = 2.6± 0.2× 10−5nH , (Burles, Nollett, Turner 2001) . (326)

This is in perfect agreement with the baryon density

ηb|Ly−α = 5.9± 0.5× 10−10 (327)

or

Ωbh
2|Ly−α = 0.0214± 0.0020 , , (328)

implied by the measurement of the absorbtion lines of Lyman-α clouds

nD = 2.8± 0.5× 10−5nH , (Kirkman, Tytler, Suzuki, O′Meara, Lubin, 2003) . (329)

The density of deuterium in Ly-α clouds can be inferred from the absorbtion lines in the radiation

emitted by distant quasars. The absorbtion is due to the Ly-α transition in hydrogen and deuterium

in Ly-α clouds at intermediate distances. Since Ly-α clouds are at cosmological distances, they have

undergone very little evolution, and hence the density of deuterium in the clouds is very close to

the primordial density produced during the BBN. The measurement discussed above is based on the

absorbtion lines in the quasar Q1243+3047. The absorbtion takes place in a Ly-α cloud located at a

redshift z = 2.525659. The absorbtion lines based on which the density of neutral hydrogen and neutral

deuterium are inferred are around the wavelength, λ ≃ 428.5 nm. The analysed spectra are shown in

figure 59.

Helium-3 abundance has not so far been measured with a satisfactory accuracy to be able to make

a meaningful comparison with the BBN prediction, which can be inferred from figure 58,

n3He = 1.04± 0.05× 10−5nH , (BBN) . (330)

Just like 4He abundance, the 7Li-abundance does not fit very well the abundance predicted by the

BBN,

n7Li ≃ 4± 1× 10−10 (BBN) , (331)
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FIG. 59: The three absorbtion spectra of the quasar Q1243+3047 recorded by the telescopes Lick and Keck,

based on which deuterium density is determined. The Ly-α absorbtion is located near λ = 428.5 nm. From

Kirkman, Tytler, Suzuki, O’Meara and Lubin (2003).

which is to be compared with the observed balue,

n7Li = 1.2± 0.7× 10−10 (Ryan, Beers, Olive, Fields, Norris, 2000) (332)

This is usually not taken to be a serious problem for the following reasons. Firstly, systematic errors in

the measurement of 7Li are not very well understood. Secondly, there are no reliable data on some of

the relevant interaction rates. In particular, the rate of the reactions, 4He + 4He ↔ 6
3Li +D + γ and

4
2He +

6
3Li ↔ 8

4Be +D + γ, are important for the BBN prediction, but they have not been accurately

measured.

Coincidences

Even though the strengths of the fundamental forces in nature are very different, all of the forces

participate in primordial nucleosynthesis, and changing the strength of any interaction would change

the primordial abundance of helium, deuterium and lithium. This curious fact lead some physicists
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(most notably Carter and Barrow) to propose the anthropic principle, according to which fundamental

constants in nature have such values that we can exist. One often resorts to philosophical arguments in

order to defend or refute the anthropic principle. Here we content ourselves by simply stating curious

coincidences which took place during primordial nucleosynthesis.

The amount of helium, deuterium and lithium produced at the BBN depends on:

• life time of neutron, τn = 878.6 ± 0.8 s, which is primarily determined by the weak interaction

strength;

• the age of the Universe, t ≃ 132(0.1 MeV/(kBT ))
2s ∝ G−1

N , which is determined by the strength

of the gravitational interaction;

• deuterium binding energy, BD = 2.22 MeV, determined by the strength of the strong interaction;

• the neutron-proton mass difference, Q = 1.293 MeV, which is primarily determined by the elec-

tromagnetic interaction strength.

Thus, all basic forces in Nature participate in the Big Bang Nucleosynthesis.

For example, increasing the strength of the strong interaction, would have as a consequence an

increase in the binding energy of deuterium, which in turn would result in a more efficient generation

of deuterium and thus also helium.

Next, increasing the strength of the weak interaction would result in a shorter neutron decay time,

leading to a lesser deuterium and helium production.

A consequence of an increased strength of the electromagnetic interaction would be an increase in

the mass difference between neutron and proton, increasing thus Q = (mn−mp)c
2, which in turn would

lead to a reduced concentration of neutrons, and thus a lesser production of deuterium and helium.

Furthermore, increasing the strength of the gravitational interaction would result in a shorter age

of the Universe, and thus less neutrons would decay by the same temperature, which would have as a

consequence more deuterium synthesis and more helium production.

Finally, baryon density (and also lepton density) affects primordial nucleosynthesis. Indeed, Eq. (323)

implies that, increasing ηb = nb/nγ, has as a consequence an increased production of helium. This can

be understood as follows. Increasing ηb, increases equilibrium concentration of deuterium (ηb acts in

the same sense as BD), which in turn means a more efficient production of deuterium, and hence also

helium. Moreover, increasing the number of relativistic degrees of freedom at nucleosynthesis decreases
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the age of the Universe, and hence has the same effect as increasing the strength of the gravitational

interaction.

3. Matter-radiation equality

At a redshift,

zeq =
a0
aeq

− 1 = 3230± 210 (333)

the energy density in matter and radiation is equal. The matter content of the Universe is composed of

baryonic matter, ρb, and dark matter, ρdm, ρm = ρb + ρdm. The present densities are,

ρb = (0.042± 0.003)ρcr

ρm = (0.24± 0.03)ρcr (334)

where ρcr = 3c2H2
0/(8πGN) denotes the critical energy density. Eq. (334) implies that the amount of

dark matter is about 5 times larger than the amount of baryonic matter,

ρdm ≃ 5ρb . (335)

This is a tantalising hint that baryonic and dark matter have a related origin, or at least that they

were created at the same epoch in the early Universe. The creation mechanisms are not known with

certainty however.

The scaling of the energy densities in matter and radiation is shown in figure 60. Note that the

epoch of equality, zeq ∼ 3230, is very close to the epoch of electron-proton recombination, zrec ≃ 1090.

During the short period between equality and recombination, the Universe is matter dominated, dark

matter evolves freely, falling into the potential wells generated during primordial inflation, while baryonic

matter remains tightly coupled to electrons and photons. It is only after recombination, when neutral

hydrogen forms, and photons begin free-streaming, that baryons begin falling into the potential wells

formed by dark matter, and the epoch of structure formation begins.

4. Decoupling and recombination

Up to the redshift,

zdec = 1090± 1 (336)

which corresponds to a temperature, Tdec ≃ 2970 K, or kBTdec ≃ 0.256 eV (recall that kB ≃ 8.6173 ×

10−5 eV/K), photons remain tightly coupled to electrons via Compton scattering, shown in figure 61,
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FIG. 60: The scaling of the radiation and matter energy densities around the epoch of equality, zeq ∼ 3230 and

decoupling at zdec ≃ 1090. γ e

γ
e

FIG. 61: A Compton scattering of a photon off an electron. A photon gets absorbed, and then reemitted at

a different place. The strenght of the interaction is given by the fine structure constant, αem ≃ 1/137. If the

emitted photon has a larger energy than the absorbed photon, the process is known as the inverse Compton

scattering.

and electrons are tightly coupled to protons via Coulomb scattering, shown in figure 62. Below the

temperature of decoupling, the production of neutral hydrogen, which is realised through the reaction,

p+ e ↔ 1H + γ (BH = 13.6 eV) (337)

devoids the Universe of free charges. Consequently, the Universe becomes electrically neutral and

transparent to light, such that photons begin to free-stream. As we will see in a moment, electric

neutrality is only approximate however.
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FIG. 62: Coulomb scattering of an electron off a proton via photon exchange. Through this process between

equality at z ∼ 3230 and decoupling at z ≃ 1090 protons remain tightly coupled to electrons. Just like Compton

scattering, this interaction is of an electromagnetic strength.

Equilibrium consideration: Saha equation

Assuming that the reaction (337) is in chemical equilibrium, equation (291) holds, such that we have,

nenp
nH

=
ne0np0
nH0

, (338)

where we made use of nγ = nγ0. Postulating electric neutrality of the Universe,

Q

V
= np − ne = 0 (339)

results in

X2
e

1−Xe

=
1

nb

(mekBT

2π~2
)3/2

e−BH/(kBT ) , BH = (me +mp −mH)c
2 = 13.6 eV , (340)

where we used mp ≃ mH in the pre-factor, and we defined

Xe =
ne

ne + nH
=
np
nb

(341)

with nb ≃ np + nH (here we have for simplicity neglected helium) and we made use of,

na0 =
( ma

2π~2
)3/2

e−mac2/(kBT ) . (342)

Now taking account of nb = ηbnγ, nγ = [2ζ(3)/π2](kBT/~c)3, and ηb = 6.1± 0.3× 10−10, we obtain the

following Saha equation,
X2
e

1−Xe

=
1

ηb

π1/2

25/2ζ(3)

(mec
2

kBT

)3/2

e−BH/(kBT ) , (343)

By making use of the Friedmann equation, the temperature can be easily converted into the redshift

z. When expressed in terms of redshift, one gets a curve shown in figure 63, which shows the electron
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FIG. 63: The solution of the Saha equation (343) for the electron density, Xe = ne/nb vs. reshift z (log-log

plot). According to the Saha solution, the decoupling occurs at z ≃ 1125, which corresponds to Xe = 0.0065,

below which the Compoton scattering rate falls below the expansion rate of the Universe (see below). This

value is in fact somewhat higher than the reshift at decoupling, zdec = 1090 ± 1, which is obtained by solving

the full kinetic equation (345).

concentration, Xe = ne/nB, as a function of the redshift, z. According to the Saha equilibrium, the

concentration of electrons falls exponentially to zero as the redshift decreases. In reality, this does not

happen, because at Xe ∼ 10−2, the Compton scattering rate drops below the expansion rate of the

Universe, such that it is not fast enough to enforce chemical equilibrium. As a consequence, the density

of electrons freezes at,

Xe|freeze ∼ 10−3 . (344)

This represents the residual ionisation of the Universe, which survives up to today. One can obtain this

result by applying the full kinetic equation (288) for the process (337), resulting in (see Problem 2.15),

dXe

dt
= −c⟨σv⟩

{
ηbnγX

2
e − (1−Xe)

(mekBT

2π~2
)3/2

e−BH/(kBT )
}
[s−1] (345)

where the scattering cross section is of the form,

⟨σv⟩ = 9.78
α2
em~2

m2
ec

2

( BH

kBT

)1/2

ln
( BH

kBT

)
[cm2] . (346)

Here αem = 1/137 is the fine structure constant. This equation can be further simplified by introducing a

dimensionless time variable, τ = BH/(kBT ), analogously as it was done in section C 2 in Eqs. (313–316).
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Photon decoupling

Photons decouple when the rate to Compton scatter falls below the expansion rate of the Universe,

ΓCompton < H . (347)

Taking account of the value of the Hubble parameter today, ~H0 = 2.1332h×10−33 eV, one easily finds,

H0 = 3.24h× 10−18 s−1 ≃ 2.30× 10−18 s−1. On the other hand, the Compton scattering rate reads,

ΓCompton = cneσT = cηbnγσTXe (348)

where nγ = 412(1 + z)3 cm−3 denotes the density of photons as a function of the redshift, and

σT = 0.665× 10−24 cm2 (349)

is the Thomson scattering cross section, such that the Compton scattering rate (348) becomes,

ΓCompton ≃ 5× 10−21 s−1
(Ωbh

2

0.022

)
(1 + z)3Xe (350)

This is to be compared with the Hubble parameter, which we calculate by assuming that an early

radiation era is followed by matter era and a recent epoch of acceleration (which for simplicity we

assume to be caused by a cosmological term),

H = H0

(
Ωm(1 + z)3 + ΩΛ +

Ωm

1 + zeq
(1 + z)4

)1/2

, (351)

with Ωm ≃ 0.26 and ΩΛ ≃ 1− Ωm.

When considered at recombination, zrec = 1090, the condition,

ΓCompton ∼ H (352)

results in

0.0043(1 + zrec)
3/2Xe ∼

(
1 +

1 + zrec
3230

)1/2

, (353)

where we took account of the radiation contribution, which is at recombination about 1/3 of that in

nonrelativistic matter. This means that below the electron concentration

ne|dec ∼ 7.5× 10−3nb , (354)

the Universe becomes transparent at recombination, and photons begin to free-stream. Since the freeze-

out density is Xe|freeze ∼ 10−3 is only a few times smaller than (354), the Universe becomes barely
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FIG. 64: A conformal diagram of an expanding Universe. The observer O is placed at the origin, z = 0.

Photons arrive mostly uninterrupted (the optical depth τ < 1) from the last scattering surface at zdec ≃ 1090

to us. At z 17 the universe reionises, and some photons do scatter, with the likelihood pscatter = 1 − e−τreion ,

with optical depth at the reionisation epoch, τreion ∼ 0.17. At z ≫ 1090 the Universe is a hot plasma, in which

photons scatter readily, such that τ ≫ 1. The Big Bang is represented by the large outer circle at z → ∞.

transparent at recombination. The electron density (354) is used to define the surface of last scattering,

which corresponds to zdec ≃ 1090. At redshifts larger (smaller) than zdec, the Universe is opaque

(transparent) to radiation.

This is illustrated by the conformal diagram in figure 64, in which we show an observer O who

measures the photons of the CMBR. Beyond the last scattering surface at zdec ≃ 1090, to a good

approximation the Universe is in thermal equilibirum and photons scatter rapidly. At z ≪ zdec the

photons mostly free-stream. About 10% of the photons Compton scatter during the reionisation epoch

around zreion ∼ 10.

Imagine for a moment that there has never been any recombination. Then assuming a fully ionised

Universe (Xe = 1), it follows from,

0.0043(1 + z)3/2Xe ∼ 1 (355)

that photons would begin free-streaming at about

z ≃ 37 (356)
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even if the Universe was fully ionized (Xe = 1), such that for z < 37 the Universe would in any case

become transparent.

The polarisation measurements of the CMBR by the WMAP satellite suggest that the Universe was

reionised at a redshift, zreion = 10 ± 1. Assuming that the Universe was fully reionised at the redshift

z = 10 and thereafter, and applying Eq. (353) to the epoch of reionisation, gives,

0.0042× (11)3/2 ≃ 0.15 , (357)

implying that about τreion ∼ 1/7 of photons rescatter at z ≤ 10. A more accurate analysis gives for the

optical depth, τreion ≃ 0.088± 0.013.

5. Dark ages, reionisation and large scale structures

The radio telescope LOFAR (LOw Frequency ARray) is under construction in the Netherlands

(http://www.lofar.nl/) with the purpose to detect the signal from the λ = 21 cm hydrogen emission

line from hydrogen gas clouds which permeate the integalactic medium at redshifts of about 10 and

larger. This highly forbidden hydrogen emission line arises as a consequence of the hyperfine splitting

between the spin triplet (in which the spins of the electron and proton are aligned) and the spin singlet

hydrogen atom (in which the spins of the electron and proton are antiparallel). The corresponding

frequency is ν = 1420.40575 MHz and the transition rate is 2.9 × 10−15 s−1. Due to the redshift the

actual observed wavelength will be about 2m. These observations are expected to provide an invaluable

information about reionisation and early formation of large scale structures at the end of dark ages, a

period between recombination and reionisation from which as of yet no direct observations are available.

According to the polarisation measurement of the WMAP 9 year data (2012), the universe was

completely reionised at a redshift,

zreion = 10.5± 1.1 (358)

with an optical depth

τreion = σT

∫
nedl

= 0.088± 0.013 (359)

with dl = cdt = (c/H)(da/a), and σT = 0.665 × 10−24 cm2 being the Thomson cross section. The

probability that a CMB photon gets Compton scattered can be expressed in terms of the optical depth

at the reionisation epoch as follows,

pscatter = 1− e−τreion . (360)
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The details of the reionisation history are not known, but the physics causing it is believed to be as

follows. First over-densities in matter distribution formed population-three (Pop-III) stars, whose mass

was much larger than the mass of the Sun, MIII ≫M⊙. These stars lived only very briefly (of the order

106− 107 years), before they burned their nuclear fuel and subsequently exploded as supernovae. These

early supernovae, which are believed to have reionised the Universe, replenished it with first ”metals”

(carbon, nitrogen, oxygen, iron, etc.), essential for the formation of life, and hence these early stars

grant a more careful investigation. Alternatively, the Universe could have been reionised by the active

early supermassive black holes which would sit in the centers of early quasars and which still furnish

centers of some galaxies today.

At a redshift, z ∼ 10, first galaxies, quasars, and clusters of galaxies were formed. Recall that quasars

are believed to be QUAsiStellAR Objects (QSOs), whose diameter of the order one light day, with a

supermassive black hole in its centrum. Even though quasars are so compact, they can emit as much

radiation as a galaxy, which is sourced by the matter in-spiralling towards the central black hole. The

recently completed Sloan Digital Sky Survey (SDSS) contains spectra of about 300000 quasars. Finally,

about 4.6 billion years ago, the Solar System and the Earth formed.

D. Dark Energy Dominance

The distant supernovae observations by Perlmutter et al. and by Riess et al. (1998) suggest that the

Universe is currently expanding at an accelerated pace, with the acceleration parameter,

−q0 ≡
ä0
H2

0

≃ 0.60± 0.04 , (361)

where H0 denotes the Hubble parameter today, and q0 the deceleration parameter. Together with,

1 ≃ Ωm + ΩΛ + Ωκ , (362)

and the WMAP constraint,

Ωκ ≃ 0 , (363)

the FLRW equation rewritten as

−q0 = −1

2
Ωm + ΩΛ (364)

implies

q0 ≃ −3

2
Ωm − 1 (365)
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FIG. 65: The energy density scaling of nonrelativistic matter and dark energy (assumed to originate from a

cosmological term) during recent epochs. Dark energy becomes the dominant component at a redshift zΛ ≃ 0.4.

from where we infer,

Ωm =
2

3
(1 + q0)

ΩΛ =
1

3
(1− 2q0) . (366)

In Eq. (364) we neglected an eventual quintessence contribution, which is of the form, −1
2
(1+ 3wQ)ΩQ.

The redshift, at which the recent epoch of acceleration began, can be determined from the condition,

Ωm(1 + zΛ)
3 = ΩΛ ≃ 1− Ωm , (367)

from which one finds,

zΛ ≃
(1− Ωm

Ωm

)1/3

− 1 ≃ 0.4 . (368)

The scaling of the matter energy density and that in cosmological term are shown in figure 65. The fact

that the two energy densities coincide at a recent epoch, zΛ ∼ 0.4, represents yet another coincidence

in the Universe, which is poorly understood.

[1] Taking account of dρI , one gets, dρI +(dV/V )(ρI +PI) = 0. Taking account that in an expanding universe

the comoving volume is proportional to the scale factor cubed, V ∝ a3, when divided by time dt, the above

relation yields, (dρI/dt) + 3(da/adt)(ρI + PI) = 0, which is the correct equation for energy conservation

of an ideal fluid in an expanding universe. From this we reach a surprising conclusion that the Universe

expansion described by one homogeneous fluid is always isentropic!


