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Lecture notes on Cosmology (ns-tp430m)

by Tomislav Prokopec

Part IV: Cosmological Perturbations

In this chapter we shall show how to calculate the spectrum of cosmological perturbations generated

during a primordial epoch of cosmic inflation. We shall then outline how primordial cosmological

perturbations source the observed temperature fluctuations in the CMB as well as how they seed the

large scale structure of the Universe.

Cosmological perturbations are created by the amplification of quantum fluctuations of matter and

metric perturbations during inflation. Therefore, in order to understand their creation, it is necessary to

study the evolution of small perturbations of homogeneous metric and matter fields. Depending on how

they transform under spatial rotations and local time shifts, cosmological perturbations can be divided

into scalar, vector and tensor perturbations. Here we shall assume that matter is made up of a single

real scalar field, which gives rise to the simplest matter perturbation and a scalar metric perturbation.

The inflaton perturbation is most likely the most important matter perturbation, since there is evidence

that it is precisely the inflaton perturbation that sources both the CMB temperature fluctuations and

structure formation.

We begin by quoting the Einstein-Hilbert action for gravity plus scalar matter,

S[gµν ,Φ] = −M
2
P

2

∫

d4x
√−gR(gµν) +

∫

d4x
√−g

(1

2
gµν(∂µΦ)(∂νΦ) − V (Φ)

)

, (1)

where R denotes the Ricci scalar, V (Φ) is a scalar potential, and gµν and Φ denote metric tensor and

scalar field, respectively. For simplicity, in (1) we set the cosmological term Λ = 0.

A. The scalar, vector, tensor decomposition and gauge invariance

The theory of cosmological perturbations is based on the assumption that the decomposition into

the background and fluctuating fields,

gµν(x) = gbµν(t) + δgµν(x) ; Φ(x) = φ(t) + ϕ(x) , (2)

is justified. This is the case when the components of δgµν and ϕ are small, in the sense that δgµν ≪ 1

and ϕ ≪ φ. Assuming that perturbations are generated by quantum fluctuations, during inflation this

is indeed the case. In quantum field theory this method is known as the background field method.
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When the background metric is taken to correspond to a homogeneous flat cosmology, which in

cosmological (comoving) time (t) and conformal time (τ) reads,

gbµν(t) = diag(1,−a2(t),−a2(t),−a2(t)) ; gbµν(τ) = a2(τ)ηµν , (3)

the background equations of motion can be obtained by varying the action (1). The result is well known,

H2(t) =
ρb

3M2
P

, ρb =
1

2
φ̇2 + V (φ)

Ḣ = − φ̇2

2M2
P

, φ̈+ 3Hφ̇+ V ′(φ) = 0 (4)

As discussed in part III, these equations can be solved for the inflaton φ in slow roll approximation, and

provided the initial value of the inflaton is large enough, |φ| ≫ MP , and the potential flat enough, one

will get a period of primordial inflation. It is well known that when the action (1) is expanded in powers

of fluctuations, the structure of the first other action is of the form: the equations of motion multiplied

by the linear perturbations, and thus present no new information. On the other hand, the action for

second order perturbations provides an essential information on the dynamics of fluctuations during

inflation. The amplitude of fluctuations can be normalised by the procedure of canonical quantisation.

But before we show how to do that, we pause to discuss diffeomorophism invariance of fluctuations.

1. The Sasaki-Mukhanov field

We shall now study how different metric and scalar perturbations transform under the infinitesimal

coordinate transformations, also known as (gravitational) gauge transformations. To that purpose let

us consider an infinitesimal coordinate transformation (coordinate shift),

xµ → x̃µ = xµ + ξµ(x) , (5)

where ξµ = ξµ(x) is an arbitrary (infinitesimal) vector function. Under these transformations the field

and the metric tensor transform as,

Φ̃(x̃) = Φ(x) ; g̃µν(x̃) = gρσ(x)
[

δµρ +
∂ξµ(x)

∂xρ

][

δνσ +
∂ξν(x)

∂xσ

]

. (6)

Making use of Φ̃(x̃) = Φ̃(x) + ξρ∂ρΦ̃(x) + O(ξ2) and the analogous relation for the metric tensor, and

neglecting terms that are quadratic or higher order in ξ, Eq. (6) can be recast as,

Φ̃(x) = Φ(x) − ξρ∂ρΦ(x) ; g̃µν(x) = gµν(x) + gρν(x)
∂ξµ(x)

∂xρ
+ gµρ(x)

∂ξν(x)

∂xρ
− ξρ(x)

∂gµν(x)

∂xρ
. (7)
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Making use of the connection,

Γρµν =
1

2
gρσ

[

∂µgσν + ∂νgµσ − ∂σgµν

]

(8)

the second equation in (7) can be rewritten as,

g̃µν(x) = gµν(x) + ∇µξν(x) + ∇νξµ(x) , (9)

or

g̃µν(x) = gµν(x) −∇µξν(x) −∇νξµ(x) . (10)

where we used g̃µν g̃
νρ = δ ρµ .

Let us now look in detail how the field fluctuations ϕ and δgµν in (2) (which can be of the same order

as ξν) transform under the coordinate transformation (5). For the scalar field Eq. (7) holds, such that

scalar field fluctuations transform as,

ϕ(x) → ϕ̃(x) = ϕ(x) − φ′(τ)ξ0 = ϕ(x) − φ̇(t)
ξ0
a
, (11)

where φ′ = dφ/dτ and φ̇ = dφ/dt = φ′/a and ξ0 = ξ0/a
2. Here we will be primarily interested in the

spatial part of the metric tensor perturbation, δgij = a2hij which, according to (10), transforms as

a2hij → ã2hij = a2hij −∇iξj −∇jξi = a2hij − ∂iξj − ∂jξi + 2
a′

a
δijξ0 , (12)

where to get the last equality we used, Γ0
ij = (a′/a)δij and Γlij = 0. Now we introduce the following

scalar-vector-tensor decomposion of the spatial components of the metric tensor,

hij = 2ψδij + 2∂i∂jE + (∂iFj + ∂jFi) + hTTij , (13)

where under spatial rotations ψ and E transform as scalars, Fi transforms as a transverse vector (∂iFi =

0) and hTTij is a transverse and traceless tensor:

hTTii = 0 ; ∂ih
TT
ij = 0 = ∂jh

TT
ij . (14)

Upon inserting the decomposition (13) into (12) and breaking the shift vector into the transverse and

longitudinal parts,

ξi = ξTi + ∂iξ , ∂iξ
T
i = 0 , (15)

we see that the different components of hij in (13) transform as,

Fj → F̃j = Fj−
ξTj
a2

; E → Ẽ = E− ξ

a2
; ψ → ψ̃ = ψ+

a′

a3
ξ0 = ψ+H

ξ0
a

; hTTij → h̃TTij = hTTij . (16)
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FIG. 1: Time slices.

We have thus learned that, while the scalar and vector spatial metric components transform (and thus

can be, at least in principle, set to zero by a suitable coordinante transformation), the tensor components

are gauge invariant, and thus can be assigned a physical meaning. Since the conditions (14) represent

four conditions on six spatial metric components, hTTij has two independent components, which represent

the two polarisations of the graviton, known as the plus (+) and cross (×) polarisations.

Let us now come back to the scalar components. By inspecting eqations (11) and (16) it is easy to

see that the following scalar field combination,

wϕ ≡ ϕ+
φ̇

H
ψ , (17)

or equivalently,

wψ ≡ H

φ̇
wϕ = ψ +

H

φ̇
ϕ , (18)

is gauge invariant. This field is known as the Sasaki-Mukhanov field (or variable), and it plays an

important role in the theory of cosmological perturbations [7]. Since ξµ is an arbitrary vector, it can

be chosen such to remove some (but not all) of the metric and field components. Since there are four

components in ξµ, it can be chosen such to remove Fi, E and one of the two remaining scalars, i.e. ϕ

or ψ. This is known as gauge fixing. Next we shall discuss two gauge fixing procedures commonly used

in literature.

2. The comoving and zero curvature gauge

From Eq. (12) we see that the gauge function,

ξTj = a2Fj ; ξ = a2E ; ξ0 = − a

H
ψ (19)

fixes a gauge known as the zero-curvature gauge, in which F̃j = Ẽ = ψ̃ = 0, and in which the physical

dynamical fields are the inflaton ϕ and the graviton hTTij .
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On the other hand, chosing the gauge function as,

ξTj = a2Fj ; ξ = a2E ; ξ0 =
a

φ̇
ϕ (20)

fixes the comoving gauge, in which F̃j = Ẽ = ϕ̃ = 0, such that the physical dynamical fields are the

spatial gravitational potential ψ and the graviton hTTij . In this gauge the surfaces of constant time are

chosen such that an observer does not see any perturbations in the scalar field, i.e. the observer is

‘comoving’ with scalar matter.

In order to get a deeper insight into the physical meaning of the two gauges, we shall first rewrite

Eqs. (11) and (16)

ϕ(x) → ϕ̃(x) = ϕ(x) − φ̇(t)δt , ψ → ψ̃ = ψ +Hδt , (21)

where we made use of δt = aδτ = aξ0 = ξ0/a. From these it follows that the zero-curvature and

comoving gauges correspond to the following choice of time,

[δt(x)]zero−curv = −ψ(x)

H(t)
(zero − curvature gauge)

[δt(x)]comoving =
ϕ(x)

φ̇(t)
(comoving gauge) . (22)

In fact, the two gauge choices correspond to two different choices of time. According to coordinate

invariance of general relativity, one is free to choose time locally, such that δt(x) can be chosen inde-

pendently on any point is space-time. This freedom is illustrated in figure 1, where we sketch how the

space-time manifold M = R × Σ is broken into a time direction – corresponding to real numbers R –

and a spatial part – correponding to a three dimensional Riemannian space Σ. Different gauges then

correspond to different choices of constant time hypersurface Σ, as illustrated in figure 1 [8]. For the

two particular choices of time (22), the (gauge invariant) Sasaki-Mukhanov field (18) becomes,

wψ =
H

φ̇
ϕ (zero − curvature gauge) (23)

wψ = ψ (comoving gauge) (24)

When calculating cosmological perturbations, one can either work in the gauge invariant formalism, in

which case one studies the dynamics of the gauge invariant field (18) or (17). Alternatively, one can

fix a gauge according to (22), and then infer the amplitude of the Sasaki-Mukhanov field from (23–24).

We shall first show how one performs the latter (gauge fixing) procedure.

But before we do that, we note that, to linear accuracy, the (local) curvature perturbation wψ can

be also written in terms in terms of w̄ψ, defined as,

e−w̄ψ = 1 − w̄ψ +
1

2
w̄ψ ≡ 1 − wψ . (25)
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Note that to linear order w̄ψ and wψ are identical, i,.e. w̄ψ = wψ + O(w2
ψ). From the point of view

of metric perturbations, in the so-called Newtonian gauge, in which the only scalar perturbations are

g00 = 1 + 2φ and ψ, degined by

gij(x) = −a2(1 − 2ψ)δij = −e−2(N(t)+ψ̄(x))δij . (26)

Here we neglected the graviton hTTij and gauge fixed the second scalar E, the vector Fi to zero. The

function

N(t) =

∫ te

t

dt′H(t′) = ln
(ae
a

)

(27)

in (26) denotes the usual number of e-folds, and te is the time at the end for inflation. From Eq. (26)

one would be tempted to associate ψ̄ to a local deviation in the number of e-folds from some average

(homogeneous) value N(t) induced by the spatial metric perturbation. This generalisation makes sense

in the separate universes approximation of inflation, according to which, once modes become super-

Hubble, they decouple from each other. For each Hubble volume one can define an average expansion

rate and follow its evolution on super-Hubble scales as if no other Hubble volume is present. One can

argue that this is a reasonable approximation by noting that in the equation of motion for scalar field

perturbations, (∂2
t + 3H∂t)ϕ− (∇2/a2)ϕ ≃ 0 one can neglect the last (gradient) term on super-Hubble

scales since it scales away exponentially fast with time. When one does that, one gets an approximate

equation on super-Hubble scales, (∂2
t + 3H∂t)ϕ ≃ 0 (‖∇‖ ≪ aH) which describes the evolution of

modes in the separate universes approximation. One can show that an analogous argument holds for

the equation of motion for the gauge invariant variable wψ.

It then follows that, in the separate universes approximation and in the zero-curvature gauge (22),

we can make the identification,

w̄ψ(x) = δN(x) = Hδt(x) = H
δt

δφ
ϕ(x) ≃ H

φ̇
ϕ(x) . (28)

Note that the space-time dependence in (28) is generated by the mapping δt(x) between the comoving

hypersurface (on which δφ = 0) and the zero curvature hypersurface (on which ψ = 0). Note further

that, up to higher order (quadratic, cubic, etc) corrections we have just rederived Eq. (23) (which holds

at linear order in perturbations). From the definition (25), Eq. (28) follows immediately when the zero

curvature gauge is fixed. In literature one often calculates the spectrum associated with w̄ψ (rather

then with wψ), because in one field inflationary models w̄ψ is conserved to all orders on super-Hubble

scales during inflation and subsequent radiation and matter eras, which makes the calculations easier.

However, the difference between w̄ψ and wψ will be irrelevant in these lecture notes, since we shall

calculate the spectrum which involves only the leading order (linear) fields.
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B. Scalar cosmological perturbations in the zero-curvature gauge

We shall now calculate the spectrum of scalar perturbations in the zero-curvature gauge, in which

ψ̃ = 0 and wψ = (H/φ̇)ϕ, Eq. (23). The quadratic action for the scalar field perturbations in this gauge

can be easily inferred from Eq. (1),

S2[ϕ] =

∫

d3xdτ
(1

2
a2ηµν(∂µϕ)(∂νϕ)− 1

2
a4V ′′(φ)ϕ2 +

a2

2
[− φ′ϕ′ − a2V ′(φ)ϕ]h00 − a2φ′ϕ(∂ih0i)

)

, (29)

where V ′′ = d2V (φ)/dφ2, V ′ = dV (φ)/dφ, and we made use of

√−g = a4
(

1 +
1

2
h00 + O(h2

µν)
)

; gµν = a−2(ηµν − hµν + O((hµν)2)) , hµν = ηµρηρσhρσ , (30)

In Eq. (29) we neglected the quadratic terms that do not contain ϕ, since we are here not interested in

their evolution. Note that, since we have already completely fixed the gauge, we cannot get rid of h00

and h0i in (29). This presents a problem in the analysis of the dynamics of ϕ. Not taking account of h00

will in general lead to wrong results [9]. Nevertheless, there is a (sneaky) way out the impasse, and that

is to first perform the analysis in de Sitter space, in which case the problematic terms (containing h00

and h0i) drop out. This is indeed what we do first below. A separate subsection that follows is devoted

to a rigorous analysis, which leads to the same result.

Varying the action (29) gives the equation of motion,

(∂2 + 2H∂0 + a2V ′′)ϕ =
1

2
[ − φ′′ − 2Hφ′ + a2V ′(φ)]h00 + φ′∂ih0i , (31)

where

∂2 = ηµν∂µ∂ν = ∂2
0 −∇2 , H =

a′

a
, ∇2 = ∂2

i . (32)

The term on the right hand side can be simplified by making use of the equation of motion for φ (4),

φ′′ + 2Hφ′ + V ′(φ) = 0, resulting in the right hand side,

r.h.s. of (31) = a2V ′(φ)h00 + φ′∂ih0i . (33)

We are here interested in studying the quantum fluctuations of ϕ. For that we need the canonical

momentum πϕ of ϕ,

πϕ =
δS2

δϕ′
= a2ϕ′ . (34)

According to the canonical quantisation procedure (~ = 1),

[ϕ̂(~x, τ), π̂ϕ(~x
′, τ)] = iδ3(~x− ~x ′) . (35)

In order determine the amplitude ϕ, we need to promote ϕ to a quantum field, solve (31) and impose (35).

But in order to do that, we also need to solve for h00 and h0i. Since we do not have a further information



8

on h00 and h0i, we shall neither quantise it not solve for it. Instead, we shall study the limit of de Sitter

space in which ϕ decouples from h00 and h0i, and thus (for now) solve our problem. This problem is

rigorously dealt with in section C.

We note first that it is more convenient to work with the rescaled field aϕ, which obeys

(

∂2 − a′′

a
+ a2V ′′

)

(aϕ̂(x)) = a2V ′(φ)(ah00) + φ′∂i(ah0i) . (36)

Secondly, we can use homogeneity of the background space, and expand the field ϕ into Fourier com-

ponents as,

ϕ̂(x) =

∫

d3k

(2π)3

[

ei
~k·~xϕ(k, τ)â~k + e−i

~k·~xϕ∗(k, τ)â+
~k

]

, (37)

where â~k and â+
~k

denote the annihilation and creation operators. While â~k destroys a quantum of ϕ

with momentum ~k, â+
~k

creates a quantum of ϕ with momentum ~k. This means that in a vacuum state,

|Ω〉, which contains no ϕ quanta,

â~k|Ω〉 = 0 , (38)

i.e. â~k destroys the vacuum state of the theory. These operators are the quantum field theory analog of

the raising and lowering operators of the simple harmonic oscillator. And similarly to the raising and

lowering operators, they obey the simple commutation relations,

[â~k, â
+
~k ′

] = (2π)3δ3(~k − ~k ′ ) , [â~k, â~k ′ ] = 0 = [â+
~k
, â+
~k ′

] . (39)

Upon inserting Eq. (37) into Eq. (36) we obtain,

( d2

dτ 2
+ k2 − a′′

a
+ a2V ′′(φ)

)

(aϕ(k, τ)) = a2V ′(φ)(ah00(k, τ)) + φ′ıki(ah0i(k, τ)) . (40)

Note that, as a consequence of the spatial isotropy of the underlying space-time, the mode functions

ϕ(k, τ) do not depend on the direction of ~k, but only on its magnitude. The annihilation and creation

operators of course do depend on ~k. That also implies that the spectrum, which is what we discuss

next, will be a function of the magnitude of momentum, k = ‖~k‖, but not of its direction ~k/k.

Finally, we note that, as a consequence of the commutation relations (35) and (39), one can show

that the mode functions {ϕ(k, τ), ϕ∗(k, τ)}, that represent the two independent solutions of (40), must

satisfy the following Wronskian condition [10]

W [ϕ(k, τ), ϕ∗(k, τ)] ≡ ϕ(k, τ)
d

dτ
ϕ∗(k, τ) −

( d

dτ
ϕ(k, τ)

)

ϕ∗(k, τ) =
i

a2
. (41)



9

1. The spectrum

In cosmology the primary object of interest is the spectrum P , which can be easily extracted from the

equal time two-point function (correlator). The spectrum is a measure of the size of field fluctuations.

Since each momentum mode evolves independently, and its amplitude is centered at zero, the spectum

can be viewed as the covariance of all the modes with momenta in a thin shell, whose thickness is equal

when viewed in logarithmic intervals of the momentum.

For example, for the scalar field ϕ̂ the equal time correlator is related to the spectrum as follows,

〈Ω|ϕ̂(~x, τ)ϕ̂(~x ′, τ)|Ω〉 =

∫

d3k

(2π)3
|ϕ(k, τ)|2ei~k·(~x−~x ′) , (r = ‖~x− ~x ′ ‖)

≡
∫

dk

k
Pϕ(k, τ)

sin(kr)

kr
, (42)

where the scalar field spectrum is,

Pϕ(k, τ) =
k3

2π2
|ϕ(k, τ)|2 . (43)

Now from Eqs. (23), (28) and (25) is follows that, in the zero curvature gauge, the curvature perturbation

spectrum,

〈Ω|ŵψ(~x, τ)ŵψ(~x ′, τ)|Ω〉 =

∫

dk

k
Pwψ(k, τ)

sin(kr)

kr
, (44)

can be related to the spectrum of scalar field fluctuations as follows,

Pwψ(k, τ) =
H2

φ̇2
Pϕ(k, τ) . (45)

This means that, in order to get the spectrum of curvature perturbation wψ, whose effects can be

measured today, one has to determine the spectrum of scalar field fluctuations during inflation, which

is what we do next.

2. Scalar field spectrum in de Sitter inflation

But rather than determining the scalar field spectrum in general inflation (which is hard), we shall

use a trick and first calculate the spectrum in de Sitter inflation (which is easy), promote the relevant

parameters on which the spectrum depends to slowly varying functions of time (adiabatic or slow roll

approximation), based in which we shall finally determine the spectrum of the scalar field and untimately

of the curvature perturbation (again in slow roll approximation).

To begin, recall that in de Sitter inflation, a = −1/(H0τ), such that a′′/a = 2/τ 2, where H0 is the

(constant) Hubble parameter of de Sitter space, and τ < 0 is conformal time. With this we can write



10

Eq. (40) in de Sitter space as,
( d2

dτ 2
+ k2 − 2

τ 2

)

(aϕ(k, τ)) = 0 . (46)

Notice that we have dropped the terms in (40) containing h00 and h0i and φ′ terms. This can be justified

in de Sitter space as follows. Firstly, the term containing V ′′ is proportional to the second slow roll

paramter, V ′′ ≃ ηV V/M
2
P ≃ 3ηVH

2, and since in de Sitter space ηV = 0, we are justifed to neglect

it. Similarly, V ′ =
√

2ǫV V/MP =
√

2ǫV 3H2MP , where ǫV = (1/2)M2
P (V ′/V )2 is a slow roll parameter.

Again, in de Sitter space, ǫV (which is, in slow roll approximation, equal to ǫ = −Ḣ/H2) must be equal

to zero in de Sitter space. Indeed, if V ′ were not equal to zero, the field φ would roll down the potential,

which would break the de Sitter symmetry). And finally, from Eq. (4) we infer, φ′ = aφ̇ = a
√

2ǫMPH,

which is also zero in de Sitter space.

The two linearly independent and properly normalised solutions of (46) are,

ϕ(k, τ) =
1

a
√

2k

(

1 − i

kτ

)

e−ikτ ; ϕ∗(k, τ) . (47)

As usual, normalisation of (47) is determined by the Wronskian (41). The Wronskian (41) does not de-

termine the solutions uniquely however. Indeed, one can easily show that if (47) are properly normalised

solutions, so are,

ϕgen(k, τ) = α(k)ϕ(k, τ) + β(k)ϕ∗(k, τ) , ϕ∗

gen(k, τ) , (48)

where – in order not to change the Wronskian (41) – the complex constants {α(k), β(k)} must satisfy

|α(k)|2 − |β(k)|2 = 1 . (49)

This condition fixes one of the four real numbers, and thus does not uniquely specify the vacuum |Ω〉 of

the theory. For each k there remain two arbitrary real numbers that are unspecified (the third number

is an overall phase, that can be absorbed into the definition of the vacuum |Ω〉 and thus has no physical

relevance). There is one special choice out of all of these vacua, known as the Bunch-Davies vacuum,

for which

α(k) = 1 ; β(k) = 0 ; (∀~k ) , (50)

which in fact corresponds to (47). An argument in favour of this choice is that, when one considers

asymptotic past τ → −∞, then the physical momentum k/a ≫ H decouples from the Universe’s

expansion, and thus it would cost a lot of energy to put any quantun into the state [11]. Moreover, for

these states one can show that the energy in the field excitations, Eϕ(k, τ) ∝ [|α(k)|2 + |β(k)|2], which

is clearly minimised in the BD vacuum (50). This expression for the energy per mode is correct only in

the adiabatic regime, in which k/a ≫ H, and fails in the infrared (k/a ≤ H), where the field couples
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a2x

R  =1/HH

ln(a)

radiation era

λ     ∼phys 2

R  ~
a

H

3/2

R
  
~a

H

matter era

inflation

a

a1x

FIG. 2: The evolution of physical scales during inflation, radiation and matter era. Quantum fluctuations

are generated at a scale M , probably smaller than the Planck scale MP , by an unknown mechanism. During

inflation the physical scale of the fluctuations grows with the Universe expansion, λphys ∝ a, while the Hubble

scale remains approximately constant, RH = 1/H ≃ const., such that the scale of quantum fluctuations becomes

larger than the Hubble radius after the first Hubble crossing, a = a1x. While the amplitude of fluctuations

on sub-Hubble scales, R < 1/H, scales as, ϕ|R ≃ 1/R, it freezes out at super-Hubble scales, ϕ|R ≃ H/2π

(R ≫ 1/H), and remains approximately constant until the second horizon crossing, a = a2x, in radiation or

matter era, λphys ≃ 1/H, at which the modes enter the Hubble radius and begin again oscillating.

strongly to gravity and where there is no reason to expect that (50) should be the correct choice. Worse

still, as we will see below, the BD choice (50) results in a logarithmic infrared divergence for the equal

time correlator (42) which renders the BD vacuum (50) unphysical in the deep infrared. We shall not

bother to try to resolve this difficulty here, since it is not important for these lecture notes.

Instead we adopt the mode functions (47) as the solutions of (46), from which we can easily calculate

the spectrum (43),

Pϕ(k, τ) =
k2

4π2a2

(

1 +
1

(kτ)2

)

=
H2

0

4π2

(

1 +
k2

(H0a)2

)

, (51)

where H0 = ȧ/a denotes the (constant) de Sitter space expansion rate. We have thus derived an

important result: the spectrum for scalar field fluctuations in de Sitter space for a massless scalar field.

But before we proceed, we pause and comment on the meaning of the result (51). Notice that, if one

follows one comoving momentum, then it will in general quickly evolve from sub-Hubble scales k/a≫ H,

on which the spectrum is that of a conformal vacuum, Pϕ ≃ [Pϕ]conf = (k/[2πa])2, to super-Hubble

scales, on which the spectrum is scale invariant and constant, Pϕ ≃ H2
0/(4π

2). This scale invariance of
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the spectrum is generic for massless scalars in de Sitter space, but it results in infrared problems for

the field correlators, which can be seen from Eq. (42): the correlator is logarithmically divergent in the

infrared. The solution to this malady of the state is to abandon (48), and instead choose the coefficients

α(k) and β(k) in (48) such that the vacuum creates infrared finite correlations. As long as one starts

changing the vacuum on scales that correspond to today’s super-Hubble scales, this will have little

effects on the spectrum we observe today, and for that reason we shall not bother to discuss it further

here. In passing we note that the deep infrared modes might have an effect on other observables, which

include the three point correlator, also known as the bispectrum, and on which the Planck satellite has

placed the strictest constraints up to now. Finally, the fact that the spectrum (51) ‘freezes’ very quickly

(exponentially fast in comoving time) after the Hubble crossing,

Pϕ(k, τ → 0) → H2
0

4π2
(k/a≪ H0) , (52)

justifies neglecting the time dependent correction as long as we ask questions about deeply infrared

modes, which is in fact the case for today’s measurements. Having obtained the spectrum in de Sitter

space, we can now promote it to the spectrum in quasi-de Sitter (aka slow roll) inflation as follows.

When H0 → H(t) is a slowly varying function of time, then

Pϕ∗ ≃
H2

∗
(t)

4π2
, (k/a ≃ H) (53)

represents the spectrum amplitude at the Hubble crossing (which we denote by ∗), i.e. for the modes for

which k/a ≃ H. With this the following picture has emerged. Modes of Planckian or super-Planckian

energy are generated by some unknown quantum process early in inflation. Their amplitude, which is

dictated by the canonical commutation relation (35), then decays as ϕ ∝ k/a as the universe expands,

until it reaches the Hubble length, when it freezes. As the modes expand further, their amplitude

remains frozen on super-Hubble scales. This can be seen from the equation of motion for the modes

with super-Hubble wavelengths already mentioned above,

(∂t + 3H)∂tϕ(k, t) ≃ 0 , (k/a) ≪ H , (54)

which as a solution contains a constant mode and a decaying mode, the former being the frozen mode.

The evolution of the comoving modes (i.e. the modes with a constant physical wavelength) and of

the Hubble radius with time is illustrated in figure 2. In this picture, different modes today will have

different amplitude only because the Hubble rate at which they crossed the Hubble scale (k/a = H)

was different. A detailed analysis shows that this way of calculating the amplitude of scalar fluctuations

gives the correct answer for the spectrum within the inflationary slow roll paradigm. The deep reason
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for this agreement is the adiabaticity of H(t). Figure 2 also shows how the modes, which cross the

Hubble radius during inflation, become again sub-Hubble during the subsequent radiation or matter

era, when they begin oscillating again.

The spectral amplitude of the curvature perturbation wψ at Hubble crossing can be now read off

from (45) and (53),

Pwψ∗ =
H4

∗

φ̇2
∗
(4π2)

. (55)

We are still not quite yet done with the calculation of the spectrum. Since wψ is conserved on super-

Hubble scales, the momentum dependence (spectral slope) at any given time arises as a consequnce of

the time dependence of H and φ̇. In other words, we can assume,

Pwψ(k) = Pwψ∗
( k

k∗

)ns−1

, Pwψ∗ =
H4

∗

φ̇2
∗
(4π2)

, (56)

where k∗ = (aH)∗ is the momentum that corresponds to the first Hubble crosssing. Obviously, the

spectrum amplitude at the Hubble crossing is given by (56). Since in adiabatic (slow roll) picture, the

spectral slope is induced by the time dependence of the amplitude at the Hubble crossing (recall that

once the Hubble radius is crossed, the amplitude of perturbations is frozen) the spectral slope ns − 1

can be calculated from

ns − 1 =
d ln[Pwψ ]

d ln(k)

∣

∣

∣

k=Ha
=

dt

d ln(Ha)

d ln[H4/φ̇2]

dt
=

1

(1 − ǫ)H

[

4
Ḣ

H
− 2

φ̈

φ̇

]

= −6ǫ+ 2η , (57)

where we made use of ǫ = −Ḣ/H2 and η = −φ̈/(Hφ̇) + ǫ and we dropped the terms that are higher

order in slow roll parameters. With this we have now fully determined the spectrum of the curvature

perturbation to leading order in slow roll parameters,

Pwψ(k) = Pwψ∗
( k

k∗

)ns−1

, Pwψ∗ =
H2

∗
(t)

8π2ǫ∗M2
P

, ns = 1 − 6ǫ+ 2η , (58)

where, in order to get Pwψ∗ in that form, we made use of (4), according to which φ̇2 = 2ǫM2
PH

2.

The derivation leading to the result (58) was based on several approximations, which seem reason-

able. But in order to really be sure that the expression for the spectrum (58) is correct in slow roll

approximation, one has to check it by performing a more rigorous analysis, and this what we do next.

In what follows we perform a rigorous analysis of the inflationary spectrum of both scalar and tensor

cosmological perturbations.

C. Cosmological perturbations in inflation: a rigorous treatment∗

This section is denoted by a star (∗). This means that it contains a supplemental material, which is meant

for those who want to deepen their understanding of cosmological perturbation theory.
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We shall begin by quoting the action for the tensor and scalar cosmological perturbations,

Sgraviton[h
TT
ij ] =

M2
P

8

∫

d3xdτa2
(

[(hTTij )′]2 − (∇hTTij )2
)

(59)

Sscalar[wψ] =

∫

d3xdτ
(az)2

2

(

(w′

ψ)2 − (∇wψ)2
)

, z =
φ̇

H
=
φ′

H =
√

2ǫMP × sign[φ̇] , (60)

where hTTij is the traceless transverse graviton defined in (14) and wψ is the (Sasaki’s) spatial curvature

perturbation (18); equivalently one can define the Mukhanov field v = azwψ, whose canonical momen-

tum is simple, πv = v′. Since z appears quadratically in (60), the sign[φ̇] is unimportant and, from now

on, we shall drop it from the analysis. Because of the two time derivatives, the fields wpsi and hTTij

constitute the (three) dynamical degrees of freedom of the theory. The remaining four (gauge invariant)

fields (out of eight four can be removed by gauge fixing) are constraints that can be associated to the

freedom of choosing the slicing Σ × R of the space-time M (their gauge dependent cousins are h00

and h0i that appear in the scalar action (29). One scalar is the gauge invariant lapse function, and

the gauge invariant shift vector can be split into a longitudinal scalar and a transverse vector. The

derivation of the actions (59–60) can be found, for example, in Refs. [3, 4]. The action for the graviton

can be derived by first deriving the graviton action in flat space (which is easy), and then using the

well known conformal transformation for the Ricci scalar to obtain the action in a conformally related

space-time [5]. Cosmology can be considered as a special conformal transformation, since cosmological

space-times are conformally related to Minkowski space, gbµν = a2(τ)ηµν .

1. Gravitons

Let us now analyse the gravitons. From Eq. (59) it follows that gravitons in cosmology obey,

(∂2 + 2H∂0)h
TT
ij = 0 (61)

Notice that, when this equation is written in de Sitter space, it becomes identical to the equation of

motion of a massless scalar in de Sitter (46). This fact has motivated many studies of quantum effects

of massless scalars on de Sitter space, with the hope to learn something on the quantum effects of

gravitons. In more general cosmological spaces the two equations differ however (cf. Eq. (31)). Of

course, the action for the graviton also differs from that of a massless scalar, in that it is normalised

differently, and in the tensor structure. This can be seen from the canonical momentum for the graviton,

πij =
δSgraviton

δ(hTTij )′
=
M2

P

4
a2(hTTij )′ , (62)
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where Sgraviton is given in (59). The proper canonical quantisation follows from the Dirac theory of

constrained systems [6] (see also Ref. [3]),

[ĥTTij (~x, τ), π̂kl(~x ′, τ)] =
i

2

[

PikPjl + PilPjk − PijPkl

]

δ3(~x− ~x ′ ) (63)

where Pij = δij − ∂i∂j/∇2 is the transverse projector. The complicated structure on the right hand side

of (63) is necessary to assure the traceless and transverse conditions (14) of both ĥTTij and π̂kl.

It is now convenient to decompose the graviton into Fourier modes as,

ĥTTij (x) =
2

MP

∑

α=+,×

∫

d3k

(2π)3

[

ǫαij(k)h(k, τ)â~kαe
i~k·~x + ǫαij(k)

∗h∗(k, τ)â+
~kα

e−i
~k·~x

]

(64)

where â~kα and â+
~kα

are the annihilation and creation operators (â~kα|Ω〉 = 0), and

[

â~kα, â
+
~k′α′

]

= (2π)3δα,α′δ3(~k − ~k ′ ) ,
[

â~kα, â~k′α′

]

= 0 ,
[

â+
~kα
, â+
~k′α′

]

= 0 , (65)

and ǫαij(
~k) (α = +,×) are the two graviton polarisation tensors, which characterise a massless spin two

particle, and which obey,

∑

ij

ǫαij(
~k)ǫα

′

ij (
~k)∗ = δα,α

′

,
∑

α

ǫαij(
~k)ǫαkl(

~k)∗ =
1

2

[

P̄ikP̄jl + P̄ilP̄jk − P̄ijP̄kl

]

, (66)

where P̄ik = δik − kikj/k2 (k = ‖~k ‖) is the momentum space transverse projector.

The mode functions h(k, τ) are homogeneous, independent on polarisation α, and obey (cf. Eq. (40))

(

∂2
0 + ~k2 − a′′

a

)

(ah(k, τ)) = 0 . (67)

Unlike in the case of scalar perturbations discussed in subsection IV-B 2, we shall solve these equations

for power law inflation, in which the scale factor,

a(τ) =
(

(ǫ− 1)H0τ
)

1
ǫ−1

; H = H0a
−ǫ , (68)

where ǫ ≪ 1, and ǫ(τ) is an adiabatic function of time, i.e. ǫ̇ ≪ Hǫ, such that ǫ̇ is of higher order in

slow roll parameters and can be neglected. With this in mind, we can write,

a′′

a
=

2 − ǫ

(1 − ǫ)2

1

τ 2
+ O(ǫ̇) . (69)

such that Eq. (67) can be written as,

( d2

dτ̃ 2
+ 1 − 2 − ǫ

(1 − ǫ)2

1

τ̃ 2

)

(ah(k, τ)) ≃ 0 (τ̃ = −kτ) . (70)
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This is the familiar Bessel’s differential equation, and the two linearly independent and properly nor-

malised solutions can be written in terms of the Hankel functions of the first and second kind as,

h(k, τ) =
1

a

√

−πτ
4

H(1)
ν (−kτ) , h∗(k, τ) =

1

a

√

−πτ
4

H(2)
ν (−kτ) , ν =

3 − ǫ

2(1 − ǫ)
. (71)

Indeed, based on the Wronskian of the Hankel functions, W [H
(1)
ν (z), H

(2)
ν (z)] = −4i/(πz), we see that

the above solutions satisfy,

W [h(k, τ), h∗(k, τ)] =
i

a2
, (72)

which, in the light of Eqs. (63), (66) and (65), is the right Wronskian. Notice that, for ǫ > 0, which

is the usual condition in slow roll inflation, the graviton Bunch-Davies vacuum solutions (71) suffer

from an analogous infrared malady as the de Sitter vacuum of a massless scalar field. The malady is

cured by the analogous means: one has to choose the vacuum in the deep infrared such to deviate in an

appropriate manner from the Bunch-Davies vacuum, and pick the graviton’s mode coefficients α(k) and

β(k) such that
∫

d3k|h(k, τ)|2 is rendered infrared finite. Even though these types of infrared problems

are potentially serious, we shall not bother with discussing details of any such infrared regularisation

procedure, and we shall continue with the analysis of the graviton correlator for the Bunch-Davies

vacuum (71).

Analogous to Eqs. (42–43), we define the graviton spectrum Pgraviton as,

〈Ω|hTTij (~x, τ)hTTkl (~x ′, τ)|Ω〉 =
4

M2
P

∫

d3k

(2π)3
|h(k, τ)|2

∑

α

ǫαij(ǫ
α
kl)

∗ei
~k·(~x−~x ′) sin(kr)

kr
, (r = ‖~x− ~x ′ ‖)

≡
∫

dk

k
Pgraviton(k, τ)

sin(kr)

kr

1

4

[

P̄ikP̄jl + P̄ilP̄jk − P̄ijP̄kl

]

(73)

where

Pgraviton(k, τ) =
4k3

π2

|h(k, τ)|2
M2

P

. (74)

We are primarily interested on super-Hubble scales, where the Hankel functions (of the first kind)

H(1)
ν (z) =

1

sin(πν)

(

eiπνJν(z) − iJ−ν(z)
)

, (|arg[z]| < π) (75)

(and similarly for H
(2)
ν (z)) can be expanded as,

H(1)
ν (−kτ) =

1

π

(

− eiπνΓ(−ν)
(−kτ

2

)ν

− iΓ(ν)
( 2

−kτ
)ν)

+ O((−kτ)±ν+2)

ν =
3 − ǫ

2(1 − ǫ)
≃ 3

2
+ ǫ+ O(ǫ2) , (76)

where we made use of

Jν(z) =
(z

2

)ν( 1

Γ(ν + 1)
− (z/2)2

Γ(ν + 2)
+ O(z4)

)

, (|arg[z]| < π) (77)
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and
1

sin(πν)
=

Γ(ν)Γ(1 − ν)

π
. (78)

Since ν > 0, the second term in (76) dominates for super-Hubble modes, for which −kτ ≪ 1. Upon

inserting (76) into (74) gives for the graviton spectrum,

Pgraviton(k, τ) =
H2

0

π3M2
P

2
3−ǫ
1−ǫΓ2

( 3 − ǫ

2(1 − ǫ)

)

(1 − ǫ)
2

1−ǫ

( k

H0

)−
2ǫ

1−ǫ

. (79)

To leading order in slow this expression becomes,

Pgraviton(k, τ) = Pgr∗

( k

k∗

)ngr

, Pgr∗ =
2H2

0

π2M2
P

[

1 + 2ǫ(1 − γE − ln(2))
]

, ngr = −2ǫ , (80)

where γE = −ψ(1) ≃ 0.57 is the Euler constant and ψ(z) = d ln[Γ(z)]/dz is the di-gamma function.

This result agrees with what would have obtained had we calculated the graviton spectrum by using the

de Sitter space mode functions (47) in an analogous way as was done in subsection IV- B 2 [12]. What

cannot be obtained by that procedure is the O(ǫ) correction to the amplitude Pgr∗ shown in (80). That

correction can be obtained only by the more rigorous (slow roll) analysis presented in this subsection.

2. Scalars

We shall now show how to calculate the spectrum of scalar cosmological perturbations from the

action (60). We shall work within the slow roll inflationary paradigm, but otherwise make no further

approximation. By varying the action (60) one easily gets the equation of motion and the canonical

momentum,

w′′

ψ + 2
(az)′

az
∂0wψ −∇2wψ = 0 , πwψ = (az)2w′

ψ , (z = φ̇/H) , (81)

from which the canonical quantisation follows,

[ŵψ(~x, τ), π̂wψ(~x ′, τ ] = iδ3(~x− ~x ′) (82)

Our experience suggests to rewrite Eq. (81) for the rescaled (Mukhanov) field v̂ ≡ (az)ŵψ,

(

∂2
0 −∇2 − (az)′′

az

)

(azŵψ) = 0 . (83)

The next step is to expand the field in Fourier modes,

ŵψ =

∫

d3k

(2π)3

[

ei
~k·~xwψ(k, τ)b̂~k + e−i

~k·~xw∗

ψ(k, τ)b̂+~k

]

(84)

where the annihilation and creation operators obey,

b̂~k|Ω〉 = 0 , [b̂~k, b̂
+
~k ′

] = (2π)3δ3(~k − ~k ′) , [b̂~k, b̂~k ′ ] = 0 , [b̂+~k , b̂
+
~k ′

] = 0 , (85)
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and the mode functions satisfy,
(

∂2
0 + k2 − (az)′′

az

)

(azwψ(k, τ)) = 0 . (86)

In order to solve this equation, we need to evaluate (az)′′/(az). To do that, we shall make use of the

background equations (4), to arrive at,

(az)′ = a
d

dt

[aφ̇

H

]

= a2
[

φ̇+
φ̈

H
+

φ̇3

2M2
PH

2

]

(az)′′

az
=

d
dt

[(az)′]

z
= (aH)2

[

2 +
( φ̇2

M2
PH

2
+

3φ̈2

φ̇H

)

+
( φ̇4

2M4
PH

4
+

2φ̇φ̈

M2
PH

3
+

φ
···

φ̇H2

)

]

. (87)

This can be expressed in terms of the ‘slow roll’ parameters,

ǫ = − Ḣ

H2
, η = − φ̈

Hφ̇
+ ǫ , ξ(2) = − φ

···

H2φ̇
, (88)

where the index in ξ(2) signifies that ξ(2) is a second order slow roll parameter. Making use of (68)

and (88) we can rewrite (87) as,

(az)′′

az
=

2 + (5ǫ− 3η) + (6ǫ2 − 4ǫη − ξ(2))

(1 − ǫ)2τ 2
(89)

In order to proceed we have to make an approximation. A useful approximation is to assume that

the slow roll parameters change adiabatically in time (slow roll approximation). In this approximation

Eq. (86) becomes Bessel’s differential equation, and the canonically normalised mode functions can be

expressed in terms of the Hankel functions (cf. Eqs. (67–71)),

wψ(k, τ) =
1

az

√

−πτ
4

H(1)
ν (−kτ) , w∗

ψ(k, τ) =
1

az

√

−πτ
4

H(2)
ν (−kτ) . (90)

where

ν2 =
(az)′′

az
+

1

4
=

9 + (18ǫ− 12η) + (25ǫ2 − 16ǫη − 4ξ(2))

4(1 − ǫ)2
. (91)

The spectrum (44) of the curvature perturbation wψ = ψ̂ is then

Pwψ(k, τ) =
H2

a2φ̇2

k3|τ |
8π

∣

∣

∣
H(1)
ν (−kτ)

∣

∣

∣

2

, (92)

which on super-Hubble scales, (1 − ǫ)k|τ | ≪ 1, yields,

Pwψ(k, τ) =
22ν−3Γ2(ν)

π3

H2

8π2ǫM2
P

( k

(1 − ǫ)Ha

)3−2ν

(93)

where we made use of Eqs. (75–77). Now, when ν in (91) is expanded in powers of slow roll parameters,

Eq. (93) yields the following expression for the scalar power spectrum,

Pwψ(k, τ) = Pwψ∗
( k

(1 − ǫ)aH

)ns−1

Pwψ∗ =
[1 + 2ǫ(5−3 ln(2)−3γE)−2η(2−ln(2)−γE)]H2

8ǫπ2M2
P

ns − 1 = (−6ǫ+ 2η) +
2

3

(

− 13ǫ2 + 4ǫη + η2 + ξ(2)

)

. (94)
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When compared with Eq. (58), we see that the amplitudes agree at the leading order O(1/ǫ) and

that the spectral slope ns − 1 also agrees at the leading order O(ǫ, η) in slow roll parameters. The

result (94) is more general than (58) in that it also contains the next to leading order corrections in slow

roll paramters. Notice, in particular, the weak additional time dependence of the amplitude in (94),

which enters through (aH)1−ns ≈ (aH)6ǫ−2η, whose origin can be traced to the fact that the physical

momentum at the Hubble crossing, k/a ≃ H, is time dependent. This weak time dependence of Pwψ is

absent in the approximate solution (58).

A rather complex analysis of temperature fluctuations of the CMB establishes a connection between

the primordial graviton and scalar potentials spectra and the observed temperature fluctuations. The

most prominent (and simplest) effect is the Doppler effect (see Part I) exhibited by photons as they

move towards us and climb out of potential wells generated by the curvature perturbation wψ at the

last scattering surface. This effect is also known as the Sachs-Wolfe effect, firstly described in 1968.

According to the recent Planck analysis, the Planck data in conjunction with some other large scale

observations (see Ade et al [Planck collaboration] XXII. Constraints on inflation [arXiv:1303.5082])

yield:

Pwψ∗ =
H2

∗

8ǫ∗π2M2
P

= 2.441 ± 0.092 × 10−9

ns = 0.9603 ± 0.0073 (65% C.L.)

r ≡ Pgraviton∗

Pwψ∗
< 0.11 , (95)

with today’s fiducial comoving momentum k∗ = 0.002 Mpc−1. This represents a more than five standard

deviation detection of deviation from scale invariance, representing a strong support to the inflationary

origin of cosmological perturbations. Together with un upper bound on the tensor-to-scalar ratio,

r < 0.11, the spectral index in (95), rules out or disfavours many single field inflationary models

(including all chaotic models with a φn (n > 1) potential). However, hybrid inflationary models and

single scalar with a non-minimally coupled inflaton (such as Higgs inflation), as well as the original 1980

Starobinsky’s model with an R2 term, are still in perfect agreement with observations.

D. From inflationary cosmological perturbations to temperature fluctuations

The main results of the previous analyses are the spectra of the comoving curvature perturbation (58),

(94) and of the graviton (80) produced by slow roll inflation. In postinflationary epochs which can be

characterised by a constant equation of state P = wρ, where P denotes the pressure of the cosmological

fluid and w = const. is the equation of state parameter (w = 1/3 in radiation era, w ≈ 0 in matter era)
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both the graviton and the curvature perturbation obey the simple equation,

(

∂2
0 −∇2 − a′′

a

)

(awψ) = 0 ,
(

∂2
0 −∇2 − a′′

a

)

(ahTTij ) = 0 . (96)

This equation becomes especially simple in radiation era, where a ∝ τ , such that a′′/a = 0, and the

solutions are

wψ(k, τ) =
wψ0(k)

ak
sin(kτ) +

w̄ψ0(k)

a
cos(kτ) , hαij(k, τ) = ǫαij(k)

[h0(k)

ak
sin(kτ) +

h̄0(k)

a
cos(kτ)

]

,

(97)

where τ0 denotes conformal time at the end of inflation. The amplitudes wψ0(k), w̄ψ0(k), h0(k) and

h̄0(k) are fixed by continuously matching wψ(k, τ) and h(k, τ) and at the end of inflation. For obvious

reasons, the first terms in Eq. (97) are known as the growing solutions, while the second terms are the

decaying solutions. Notice that on super-Hubble scales (kτ < 1) the ‘growing’ modes have approximately

constant amplitude, while the decaying modes decay as ∝ 1/a, and soon become oblivious. If one is to

represent the spectra Pwψ and Pgraviton by the amplitudes in (97), a good way of thinking about it is

in the spirit of (classical) statistical field theory [13]. This means that h0(k) and wψ0(k) (for each ~k)

should be drawn from a Gaussian probability distribution,

Ph(h0(k)) ∝ exp
[

− |h0(k)|2
2σh(k)

]

, Pwψ(wψ0(k)) ∝ exp
[

− |wψ0(k)|2
2σwψ(k)

]

, (98)

with the variances given by σh = 〈|h0(k)|2〉 and σwψ = 〈|wψ0(k)|2〉, respectively. It is clear from these

equations that the phases of h0(k) and wψ0(k) play no role in the definition of the spectrum, and hence

they are assumed to be randomly distributed. These initial conditions are known as the adiabatic initial

conditions for cosmological perturbations. The statistical nature of their amplitude can be traced back

to the uncertainty in the amplitude of each of the quantum oscillators early in inflation.

..
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state by a probability distribution of the corresponding classical field amplitude should lead to reasonably

accurate answers to any cosmological measurement. A more complete treatment of the question, why the

cosmological perturbation appear classical, even though their origin is quantum, is beyond the scope of

these notes. Such a treatment would have to establish the decoherent agent that decoheres quantum cos-

mological perturbations either during inflation or subsequent epochs, and thus makes them approximately

classical.


