
Classical field theory 2013 (NS-364B) – Supplementary lecture
notes, by Tomislav Prokopec

1. Wave equation

The free Maxwell equations are,

− 1

c
∂t

~E + ∇× ~B = 0 ,
1

c
∂t

~B + ∇× ~E = 0 . (1)

Each of these fields can be decomposed into the transverse and longitudinal components as
follows,

~E = ~ET + ~EL , ~B = ~BT + ~BL , (2)

where
~EL = ∇−2[∇(∇ · ~E)] , ~BL = ∇−2[∇(∇ · ~B)] .

Here ∇−2 is the inverse of the Laplacian operator ∇2, defined by the corresponding Green
function,

∇2
~xG(~x; ~x′) = δ3(~x − ~x′) = ∇2

~x′G(~x; ~x′) . (3)

The (vacuum) translationally and rotationally invariant solution of this equation is

G(~x; ~x′) = − 1

4π

1

‖~x − ~x′‖ , (4)

where by translational invariance we mean the invariance under ~x → ~x + ~d, where ~d is an
arbitrary shift vector, and by rotational invariance, we mean the invariance under ~x → R · ~x,
where R ∈ O(3) is an orthogonal matrix, such that R · RT = I = RT · R.
The transverse components of equations (1) can be combined to yield the wave equations for
the (transverse components of the) electric and magnetic fields,

− ∂2 ~ET (x) = 0 , −∂2 ~BT = 0 , ∂2 = ηµν∂µ∂ν =
1

c2
∂2

t −∇2 , ∇2 =
3
∑

i=1

∂2
i , (5)

where here (x) = (xµ) = (ct, ~x). These equations are linear differential equations, and the
general solution can be found by performing a Fourier transformation. Making the ansatz

~E(x) =

∫

d4k

(2π)4
eik·x ~̃E(kµ) , (6)

Eq. (5) reduces to the algebraic equation,

(kµk
µ) ~̃E(kµ) = 0, k2 = ηµνk

µkν = k2
0 − ‖~k‖2 . (7)

The general solution to this equation is proportional to δ(kµk
µ), and can be written as,

~̃E(kµ) = 2π ~E+(~k)δ(k0 − ω/c) + 2π ~E−(~k)δ(k0 + ω/c) , (8)
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where the delta functions determine the dispersion relation for photons. Indeed, δ(kµk
µ) =

(1/2‖~k‖)[δ(k0 − ‖~k‖) + δ(k0 + ‖~k‖)] tell us that the photon wave can have two frequencies,

k0 = ±‖~k‖ = ±ω

c
, (9)

where the two signs refer to the positive and negative frequency poles. Thus, ~E+(~k) is the
amplitude of the photon electric field projected onto the positive frequency pole k0 = ω/c =

‖~k‖ ≡ k, while ~E−(~k) is the amplitude of the photon electric field at the negative frequency
pole, k0 = −ω/c = −k. When (8) is inserted into (6) and upon integration over k0, one gets,

~E(x) =

∫

d3k

(2π)3

[

ei(ωt−~k·~x) ~E+(~k) + e−i(ωt+~k·~x) ~E−(~k)

]

, ∇ · ~E = 0 . (10)

The last condition imposes transversality. By the analogous procedure, one can construct the
general wave solution for the magnetic field,

~B(x) =

∫

d3k

(2π)3

[

ei(ωt−~k·~x) ~B+(~k) + e−i(ωt+~k·~x) ~B−(~k)

]

, ∇ · ~B = 0 . (11)

The exponential factors in (10–11), Φ±(~x, t) = ωt ∓ ~x · ~k, are the phases of a wave with a

wavevector ~k. By demanding a stationary phase, dΦ±(~x, t) = ωdt∓ (d~x) · ~k = 0, one gets the
phase velocities,

v± =
d~x

dt
= ±ω

k
k̂ = ±ck̂ , k̂ =

~k

k
. (12)

This tells us that both phase speeds are equal to the speed of light, ‖~v±‖ = c and that wave

crests of positive frequency waves move in the direction of ~k, ~v+ ∝ +~k, while wave crests of
negative frequency waves move in the direction opposite to ~k, ~v− ∝ −~k.
Notice that the transversality conditions, ∇ · ~E = ∇ · ~B, become very simple in momentum
space, ~k · ~E±(~k) = 0 = ~k · ~B±(~k). This means that electromagnetic waves are orthogonal on
the direction of motion. Furthermore, when the free Maxwell’s equations (1) are written in
momentum space, one finds

∓ i
ω

c
~E±(~k) − i~k × ~B±(~k) = 0 , ±i

ω

c
~B±(~k) − i~k × ~E±(~k) = 0 , (13)

or
~E±(~k) = ∓k̂ × ~B±(~k) , ~B±(~k) = ±k̂ × ~E±(~k) . (14)

From these relations we see that ‖ ~E±‖ = ‖ ~B±‖ and that the three vectors {~k, ~E+, ~B+}
({~k, ~E−, ~B−}) make up a positively (negatively) oriented orthogonal system. Recall that
three unit vectors {ê(1), ê(2), ê(3)} of a postively oriented Cartesian orthogonal coordinate sys-
tem satisfy, ê(3) = ê(1) × ê(2).

2. Green functions

We shall show how to construct the retarded Green function (also known as the retarded
propagator) for a real massless scalar field φ, whose action is given by

Sφ[φ] =

∫

d4x
(1

2
(∂µφ)(∂νφ)ηµν

)

. (15)
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The retarded Green function for this theory obeys the equation of motion,

− ∂2
xGr(x; x′) = δ4(x − x′) = −∂2

x′Gr(x; x′) , ∂2 = ηµν∂µ∂ν . (16)

The retarded green function is useful since it allows us to solve a general equation of the form,

− ∂2φ(x) = jφ(x) . (17)

Indeed, the solution is simply,

φ(x) =

∫

d4x′Gr(x; x′)jφ(x
′) . (18)

This solution is consistent with causality. Namely it has the property of retardation, which
means that φ(x) can be influenced by events at x′ which lie within (and on) the past light
cone of x.
We seek the (vacuum) translationally and rotationally invariant solution of Eq. (16), which
means that our solution will be of the form Gr = Gr(x − x′). With this simplification, it is
advantageous to perform a 4-dimensional Wigner transform (defined as the Fourier transform
with respect to the relative coordinate x − x′),

Gr(x − x′) =

∫

d4k

(2π)4
e−ık·(x−x′)G̃r(k

µ) . (19)

Since δ4(x − x′) =
∫

[d4k/(2π)4]e−ık·(x−x′)1, Eq. (16) simplifies to,

(kµk
µ)G̃r(k

µ) = 1 , (20)

whose general solution can be written as,

G̃r(k
µ) =

1

kµkµ
+ 2πF (kµ)δ(kµk

µ) . (21)

The first part in (21) is the particular solution, the second represents a homogeneous solution,
in which F (kµ) is an arbitrary function, except that when multiplied by kµk

µ it must vanish
‘on shell’, i.e. [F (kµ)(kµk

µ)]kµkµ=0 = 0 (otherwise (21) would not be a solution). We shall now
see that different choices of the homogeneous part in (21) yield different Green functions. The
retarded Green function corresponds to the choice of F (kµ) such that Gr = 0 for t < t′, i.e.

for t′ in the future of t. This causal structure of the retarded Green function is not present
in the original equation (21), but instead it is imposed as the physical requirement on the
solution. For example, the homogeneous part for the advanced Green function Ga ought to
be chosed such that Ga vanishes when t′ is in the past of t (t′ < t). Before we proceed to
integrating over the momenta, note that Eq. (21) can be written as,

G̃r(k
µ) =

1

2k

(

1

k0 − k
− 1

k0 + k

)

+
π

k

(

F+(~k)δ(k0 − k) + F−(~k)δ(k0 + k)
)

, (k = ‖~k ‖) ,

(22)

where F±(~k) = F (k0 = ±‖~k‖, ~k). When this is inserted into Eq. (19), and one integrates over
k0, the first part in (22) will generate the principal part (pp) of the integral over the poles of
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the Green function, while the second part the homogeneous part (hp). The k0 integral over
the principal part can be evaluated as follows,

∫

dk0

2π
[G̃r(k

µ)]pp =
Θ(∆t)

4πk

(

e−ı(ω∆t−~k·~r) − eı(ω∆t+~k·~r)
)

∫ +∞

−∞

dy

y
e−ıy

+
Θ(−∆t)

4πk

(

e−ı(ω∆t−~k·~r) − eı(ω∆t+~k·~r)
)

∫ −∞

+∞

dy

y
e−ıy , (23)

where y = (k0 ∓ k)∆t. The (principal value) integrals are easily evaluated,

∫ +∞

−∞

dy

y
e−ıy =

∫ +∞

−∞

cos(y)dy

y
− ı

∫ +∞

−∞

sin(y)dy

y
= 0− ıπ ;

∫ −∞

+∞

dy

y
e−ıy = 0 + ıπ , (24)

such that Eq. (23) yields,

∫

dk0

2π
[G̃r(k

µ)]pp = − ı

4k
[Θ(∆t) − Θ(−∆t)]

(

e−ı(ω∆t−~k·~r) − eı(ω∆t+~k·~r)
)

. (25)

On the other hand, the homogeneous part of the Green function (22) yields

∫

dk0

2π
[G̃r(k

µ)]hp =

(

F+(~k)

2k
e−ı(ω∆t−~k·~r) +

F−(~k)

2k
eı(ω∆t+~k·~r)

)

[Θ(∆t) + Θ(−∆t)] , (26)

where, for convenience, we added on the right a factor 1 = [Θ(∆t) + Θ(−∆t)].
Now, by comparing Eq. (26) with (33) we see that

F+(~k) = −F−(~k) = − ı

2
(27)

is the simplest choice for the homogeneous parts such that the resulting retarded Green func-
tion vanishes when t′ > t, as it is required by causality. With this choice we get for the
retarded homogeneous part

∫

dk0

2π
[G̃r(k

µ)]hp,ret = − ı

4k

(

e−ı(ω∆t−~k·~r) − eı(ω∆t+~k·~r)
)

[Θ(∆t) + Θ(−∆t)] . (28)

Let us now compare this with the contribution that one obtains by integrating around the
positive and negative frequency poles, k0 = −ω/c and k0 = ω/c. According to the residue
theorem, which states that an integral over a closed contour of a meromorphic function f(z)
(which is a function of a complex variable z that is analytic everywhere insider the contour
C, except perhaps at a finite number of points whether the function has finite poles) is given
in terms of the sum over the residues contained inside the contour of integration C by,

∮

C
f(z)dz = 2πı

∑

i

Res[f, zi] , (29)

where zi are the points where the function has poles, and the orientation of the contour C is
counterclockwise. In this lecture notes we will deal only with simple poles, in which case the
residues of f can be calculated as

Res[f, zi] = limz→zi
[(z − zi)f(z)] , (for zi a simple pole of f(z)) (30)
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(for a more detailed account of complex analysis, see Arfken, Mathematical Methods for
Physicists).
Let us now define the positive and negative frequency (vacuum) Wightman functions G+

and G−, respectively, as the homogeneous contributions to the Green function that arise
from integrating around the positive and negative frequency poles. By convention G+ is
obtained by integrating 1/(kµkµ) counterclockwise, while G− by integrating clockwise around
the corresponding pole. The result is

G̃−(~k, ∆t) = −2πıRes [f, k0 = −ω/c] =
ı

2k
eı(ω∆t+~k·~r)

G̃+(~k, ∆t) = 2πıRes [f, k0 = ω/c] =
ı

2k
e−ı(ω∆t−~k·~r) , (31)

where

f =
1

2π(k0 − k)(k0 + k)
e−ık·r .

Comparing (31) with (28) reveals that the homogeneous part of the retarded Green function
must be chosen such to be equal to

∫

dk0

2π
[G̃r(k

µ)]hp,ret =
1

2
(G̃− − G̃+) . (32)

Adding this to the particular part (33) yields the retarded Green function

∫

dk0

2π
G̃r(k

µ) = − ıΘ(∆t)

2k

[

e−ı(ω∆t−~k·~r) − eı(ω∆t+~k·~r)
]

= Θ(∆t)[G̃−(~k, ∆t) − G̃+(~k, ∆t)] . (33)

The terms multiplying the Heaviside theta function is also known as the Pauli-Jordan (or
spectral) two point function,

GPJ = G− − G+ . (34)

Before we proceed further, let us now step back to understand better what we have so far
learned. We have shown that the retarded Green function is obtained when the homogeneous
part is chosen as follows (see Eqs. (22) and (27):

G̃r(k
µ) =

1

2k

(

1

k0 − k
− 1

k0 + k

)

− ıπ

2k
(δ(k0 − k) − δ(k0 + k)) . (35)

Now, making use of the Plemelj-Sokhotski relation,

1

x ∓ ıǫ
= P 1

x
± ıπδ(x) , (36)

where P denotes the principal part, Eq. (35) can be recast as,

G̃r(k
µ) =

1

2k

(

1

k0 − k + ıǫ
− 1

k0 + k + ıǫ

)

=
1

(k0 + ıǫ)2 − k2
, (37)

which tells us the contour integration prescription for the retarded Green function: both poles
are shifted below the real axis:

(k0)poles = ±ω

c
− ıǫ , (retarded Green function) (38)
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as it is claimed (without proof) in the lecture notes. This has now been proved. In physics
(primarily in quantum field theory) different (Green) two-point functions turned out to be
useful, which have different pole prescriptions, which is synonymous to different choices of
the homogeneous parts of the solution. In particular, the Feynman (time ordered) and anti-
Feynman (anti-time ordered) Green functions are used, whose pole prescription is (k0)poles =
±[(ω/c) − ıǫ] ((k0)poles = ±[(ω/c) + ıǫ]). Another Green function that is often used is the
advanced Green function, which solves the problem of evolution backwards in time. Not
surprisingly, the advanced pole prescription is opposite to that for the retarded Green function
in (38),

(k0)poles = ±ω

c
+ ıǫ , (advanced Green function) . (39)

By making use of the Plemelj-Sokhotski relation, one can show that not all two point functions
are independent and relations between different Green functions can be established.
In order to get the direct (coordinate) space expression for the retarded Green function,
one still needs to perform integrations over the spatial momenta. In Gleb’s lecture notes a
procedure how to perform the integrals to obtain Gr(x−x′) is presented. Here we shall present
a slightly different procedure. We shall firstly calculate the Wightman functions, and then,
by making use of (32), we shall calculate the retarded Green function in direct space.
We shall perform the spatial momentum integrations in (19) in spherical coordinates for
~k : (k, θ, φ). Taking ~r = ~x − ~x ′ to point in the z-direction, one gets ~k · ~r = kr cos(θ), where

r = ‖~x− ~x ′‖ and
∫

d3k = 2π
∫∞

0
k2dk

∫ +1

−1
dx, x = cos(θ), such that the positive and negative

frequency Wightman functions (31) become,

G+(r)
?
=

∫ ∞

0

k2dk

4π2

∫ 1

−1

dxeıkrx ı

2k
e−ıkc∆t =

ı

4π2r

∫ ∞

0

dk sin(kr)e−ıkc∆t

G−(r)
?
=

∫ ∞

0

k2dk

4π2

∫ 1

−1

dxeıkrx ı

2k
eıkc∆t =

ı

4π2r

∫ ∞

0

dk sin(kr)eıkc∆t . (40)

Both of these integrals contain integrands that are complex oscillatory functions with an
amplitude that does not decrease as k increases, and hence they are not convergent. A way
to evaluate the integrals is to promote t − t′ to a complex number (this procedure is called
analytic continuation and it is of a tremendous importance in physics). It suffices to add a
small imaginary part to ∆t = t − t′ according to

G+(x−x′) =
ı

4π2r

∫ ∞

0

dk
eıkr − e−ıkr

2ı
e−ık(∆t−ıǫ)

G−(x−x′) =
ı

4π2r

∫ ∞

0

dk
eıkr − e−ıkr

2ı
eık(∆t+ıǫ) , (41)

where ǫ > 0 is an infinitesimal positive real number. The new integrals are convergent. We
emphasise that it is of essential importance to keep these ǫ’s until the end of the calculation,
since they remind us in which part of the complex plane the two point functions were conver-
gent. Furthermore, these direct space ǫ’s should not be confused with the momentum space
ǫ’s: they have a different meaning and their origin is different. It is hence customary to keep
the ǫ’s in the expressions for the resulting Green functions, in order to serve as a reminder
from what analytic continuation they originated.
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The first integral in (41) yields the following positive frequency Wightman function,

G+(x−x′) =
1

8π2r

( −1

ı[r − (∆t − ıǫ)]
− −1

−ı[r + (∆t − ıǫ)]

)

= − ı

4π2

1

(∆t − ıǫ)2 − r2
≡ − ı

4π2

1

∆x2
+

, (42)

while the second integral yields the following negative frequency Wightman function,

G−(x−x′) = − ı

4π2

1

(∆t + ıǫ)2 − r2
≡ − ı

4π2

1

∆x2
−

, (43)

where we defined the following complex ‘distance’ functions,

∆x2
− = (t − t′ + ıǫ)2 − ‖~x − ~x′‖2 , ∆x2

+ = (t − t′ − ıǫ)2 − ‖~x − ~x′‖2 . (44)

What remains to be done is to make use of relations (33–34),

Gr = Θ(t − t′)GPJ , GPJ = G− − G+ (45)

to construct the direct space retarded Green function. On order to do that, it is useful to
rewrite the Wightman functions by making use of the Plemelj-Sokhotski relation (36)

G+(x−x′) = − ı

4π2

(

P 1

∆x2
ǫ

− ıπsign(∆t)δ(∆x2
ǫ)

)

, ∆x2
ǫ = (t− t′)2− (‖~x−~x ′‖2 + ǫ2) . (46)

Similarly, the negative frequency Wightman function can be recast as,

G−(x−x′) = − ı

4π2

(

P 1

∆x2
ǫ

− ıπsign(∆t)δ(∆x2
ǫ)

)

. (47)

Now inserting these results into Eq. (45) we get,

GPJ(x−x′) = −sign(∆t)

2π
δ(∆x2

ǫ) , Gr(x−x′) = −Θ(t − t′)

2π
δ(∆x2

ǫ) . (48)

In these expressions ǫ appears quadratically and can be set to zero. This then results in the
retarded Green function as derived in the lecture notes and lectures. In the lectures we have
shown that the retarded Green function derived here for a scalar field theory can be also used
in electromagnetism, where the equations to solve are the wave equations with sources,

− ∂2 ~ET (x) =
4π

c2
∂t

~jT (x) , −∂2 ~BT (x) = −4π

c
∇×~jT (x) . (49)

Equivalently, one can write the equation of motion for the transverse components of the vector
potential,

− ∂2 ~AT (x) = −4π

c
~jT (x) , (50)

with ~ET = −∂t
~AT and ~BT = ∇× ~AT . The solutions are,

~AT (x) =
1

c

∫

d3x′
~jT (~x ′, tr)

‖~x − ~x ′‖ , tr = t − ‖~x − ~x ′‖
c

, (51)
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where, when integrating over time (dx′
0 = cdt′), we used,

Gr(x−x′) = −Θ(t − t′)

4πr
δ(c(t − t′) − ‖~x − ~x ′‖) . (52)

We have thus shown that the source current ~j(~x ′, t′) will contribute to building a potential at
(ct, ~x) if t′ lies on the past light cone of (ct, ~x), as it is consistent with causality. Since photons
propagate with the speed of light, only the currents that lie on the past light cone contribute;
because photons are massless, those that lie within the past light cone do not contribute in
electromagnetism. In more general cases, which include scalar theories with a nonvanishing
mass, also sources from within the past light cone generally contribute.

3. Dipole radiation

[under construction]

4. Solitons

A solitary wave is a phenomenon discovered in 1834 by John Scott Russell, when he saw a
solitary wave being created by a boat that had rapidly stopped. Solitary waves persit and
propagate with a constant speed for a long time without losing in strength. Russell himself
called it ’the wave of translation’, but the phenomenon came to be known as solitary waves.
An important modern example are tsunamis, which can propagate across the whole Pacific
ocean as high speed radial waves (tsunamies lose strength with the distance because they
propagate radially, but gain in amplitude when they reach shallow sseas). Scott Russell
observed solitary waves, but did not understand their physical origin. Today we know that a
necessary condition for existence of solitary waves in a system are nonlinear (self-)interactions.
Solitons are a special kind of solitary waves that have the property that they can collide against
each other without getting perturbed. The deep reason for this is the mathematical property
known as integrability, but we will not study it further here.
As an example, we shall construct a kink solution in a real scalar field theory in two space-time
dimensions with a quartic selfinteraction. A configuration that resembles a solitary wave can
be obtained by a superposition of two opposite kinks moving at the same speed in the same
direction.
Let us begin our consideraction by writing down the action for a real scalar field φ. Its
relativistically covariant form in D space-time dimensions is,

Sφ =

∫

dDx
{1

2
(∂µφ)(∂νφ)ηµν − V (φ)

}

, (53)

where ηµν is the (inverse) Minkowski metric, ηµνηνρ = δµ
ρ. The corresponding equation of

motion results from the variation principle, δSφ/δφ(xµ) = 0,

− ∂2φ(xµ) − dV

dφ
= 0 , ∂2 = ηµν∂µ∂ν . (54)

The energy functional of a configuration φ = φ(xµ) is then,

E[φ] =

∫

dD−1x
{1

2
(∂tφ)2 +

1

2
(∇φ)2 + V (φ)

}

, (55)
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where (∇φ)2 =
∑D−1

i=1 (∂iφ)2.
Let us now for simplicity consider the case when D = 2 and take a static limit, in which
φ = φ(x) and ∂2 → −(d/dx)2, such that (54) simplifies to

d2φ

dx2
=

dV

dφ
. (56)

Multiplying this by dφ/dx yields,

d

dx

{1

2

(dφ

dx

)2}

=
d

dx
V (φ) , (57)

which, when integrated, gives
(dφ

dx

)2

= 2V (φ) , (58)

where we ignored the constant of integration. This equation can be solved; the solution can
be written implicitly as the integral,

∫ φ

φ0

dφ′
√

2V (φ′)
= x−x0 , φ0 = φ(x0) . (59)

Take as an example a quartic potential,

V (φ) =
λ

4
(φ2 − v2

0)
2 , v2

0 =
µ2

λ
. (60)

v0 is a parameter that measures the strength of the field condensate (sometimes also refered
to as the vacuum expectation value, or the vev), and has nothing to do with field velocity.
Notice that this potential, and the corresponding action, is symmetric under φ → −φ; this is
known as the Z2 = {−1, +1} discrete symmetry, and it has only two elements. In its lowest
energy state (which is also known as the vacuum state), the scalar field acquires a condensate
φvac,± = ±v0, which has a vanishing energy, E[φvac,±] = 0. These are the lowest energy states,
or the vacuum states, of the thoery. This theory is said to exhibit the phenomenon known
as spontaneous symmetry breaking, which states that the symmetry of the vacuum (in which
φ = ±v0) is lower than the symmetry of the underlying action. Namely, once a field condenses
into say φ = φ− = −v0, the action will not be Z2-symmetric around that state. In this case
the vacuum condensate breaks the symmetry of the action completely to I (identity). Notice
that the set of all vacuum states, which is often denoted by M, is equal to the the numer of
states in the symmetry group of the original action, namely, M = {−1, +1} = Z2. This is
always so if in the vacuum the symmetry is completely broken. More generaly, if the symmetry
group of the action G is broken by the vacuum to a smaller group G′, then the symmetry
group of the resulting vacuum will be the quotient group, M = G/G′. We will not study this
phenomenon any further, and just note in passing that a version of this mechanism is believed
to be operative during the mass generation mechanism in the standard model of elementary
particles and interactions, also known as the BEH mechanism, after Brout, Englert and Higgs.
But let us get back to our example. Upon inserting the potential (60) into (59) and taking
for simplicity φ0 = 0, we get,

∫ φ∓

0

dφ′

φ′2 − v2
0

= ±
√

λ

2
(x−x0) ⇒ ln

( |φ∓ − v0|
φ± + v0

)

=
√

2µ(x−x0) , (61)
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where µ is a mass parameter (indeed, the mass of the field in the vacuum is given by, m2(φ±) =
(d2V/dφ2)(φ = φ±) = 2λv2

0 = 2µ2). Assuming that φ± ≤ v0, Eq. (61) can be easily solved for
φ± = φ±(x),

φ±(x) = ± µ√
λ

tanh
( µ√

2
(x−x0)

)

. (62)

These solutions is known as the static kinks of the theory, and unlike the vacuum solution,
they carry a non-vanishing energy. Indeed, as can be easily shown by plugging in (62) into (55)
(with D = 2), the kinks (62) carry an energy density (the energy per unit length) of

ρ±(x) =
µ4

2λ

1

cosh4
[

µ√
2
(x−x0)

] , E[φ±] =

∫ ∞

−∞
dxρ±(x) (63)

This can be integrated to yield the total mass (or energy) of a static kink configuration,

E[φ±] ≡ Mkink =
2
√

2µ3

3λ
. (64)

Since the theory is Lorentz covariant, a moving kink can be obtained simply by boosting the
static solution,

φ±,v(t, x) = ± µ√
λ

tanh

(

µ√
2
γ(x−x0 − vt)

)

, γ =
1

√

1 − v2/c2
. (65)

When c > v > 0 the kink is moving in the positive x direction; when −c < v < 0 it is
moving in the negative x direction. Notice that, due to the nonlinearity of the theory, a
superposition of two kinks (moving at different speeds centered at different positions) is not
in general a solution. This is to be contrasted with electromagnetic waves, whose equations
of motion are linear in the fields, and which hence satisfy a superposition principle. This
superposition principle allowed us to construct a general solution to the wave equation, which
could be written as a superposition of individual waves of a wave number ~k and a frequency
ω = ‖~k‖/c (for each ~k there is one wave with arbitrary amplitude and with a phase velocity in

the direction of ~k, and another in the opposite direction). In spite of this lack of superposition
principle, linear superposition of kinks are approximate solutions to the theory, provided the
separation between individual kinks is large enough. Namely, if one considers two kinks (i, j)
whose centers are located at xi and xj, respectively, and which are moving at the speed vi and
vj then a two kink solution will be an approximate solution provided [γi(x−xi−vit)]− [γj(x−
xj − vjt)] ≫ 1/µ. If this is satisfied, the overlap of two kinks will be exponentially small, such
that the superposition of two kinks is to a good approximation a solution of the theory. There
is a special class of theories for which a superposition of certain classes of non-vacuum classical
solutions is a solution of the theory. These class of theories have special form of interactions
that make them (classically) integrable.
A simple calculation yields that the energy density of a moving kink is γ times larger than
the energy density of a static kink, such that

E[φ±,v] = γMkink . (66)

We have thus arrived at an important result: a moving kink obeys the relativistic Einstein’s
enegy-mass relation for point particles. Upon some thought, this should not come as a surprise;
after all we are solving a Lorentz-covariant theory. Further important remark concerns the
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non-perturbative character of the kink solutions (62). Namely, in the limit when λ → 0
these solutions become meaningless (ill defined). That means that they cannot be obtained
by perturbing (expanding in powers of λ) around the λ = 0 solution. This has important
implications for constructing general solutions of quantum field theories which contain non-
perturbative classical solutions such as the kink: perturbative expansion will completely miss
these type of solutions, and they have to be considered/added separately. Such solutions go
under the name of instantons, and their discussion is beyond the scope of these lectures.
We still have not discussed one important question, and that is the question of stability of
classical solutions. Namely, we know that the kinks have an energy that is larger than the
energy of the vacuum, so it is only natural to wonder whether and under what circumstances
the kinks will decay into the true vacuum. We shall consider this question on the example of
the kink of the two dimensional theory considered above.
In order to study this question, notice first that there is a conserved current associated with
the moving kink (62)

kµ
± =

√
λ

µ
ǫµν∂νφ±,v , (67)

where ǫµν is the totally antisymmetric tensor, ǫ01 = 1 = −ǫ10, ǫ00 = 0 = ǫ11. Indeed, due
to the assymetry of ǫµν it immediately follows that ∂µk

µ
± = 0. Now, let us define the charge

associated with kµ as usual,

Q =

∫ ∞

−∞
dxk0

± =

√
λ

µ
[φ±,v(t,∞) − φ±,v(t,−∞)] = ±2 ≡ Q± (68)

This charge is known as the topological index, and it is conserved by the evolution, namely
(d/dt)Q = 0 (this can be easily shown by noting that (d/dt)Q =

∫

dx∂µk
µ = 0). Hence,

since the topological charge of a kink 6= 0, and it is conserved, it cannot be converted by the
evolution to a vacuum state, which has a different topological index Qvac = 0. One can show
that this conservation of topological charge also holds in quantum theory.
We have thus arrived at an important conclusion: once a (moving) kink is created, it will travel
forever without being destroyed. That presents an explanation of the phenomenon initially
observed an notified in scientific literature by Scott Russell. Of course, the Scott Russell’s
solitary wave eventually (after several kilometers) disappeared (dissipated). But that is not
suprising, since the dynamics of water waves, which is described by the Navier-Stokes equation,
does not embody the same type of non-linearity as the scalar theory we considered here.
The last question we shall discuss here is why is the charge Q in (68) called topological index,
i.e. how is it – if at all – related to topology. In order to understand that, note that Q
is in fact completely determined by the field value at the boundaries at x → ±∞, which
is a zero dimensional space consisting of two points, x ∈ {+∞,−∞}. (More generally, the
boundary of a (D−1)-dimensional space is a (D−2)-dimensional closed hypersurface.) Since
the kink represents a solution that maps one boundary onto one vacuum (φ±(+∞) = ±v0),
and another boundary onto another (φ±(−∞) = ∓v0), the topology of this mapping is said to
be non-trivial. Mathematically speaking, when the 0-th homotopy group π0 of the vacuum M
is nontrivial, one can have topologically non-trivial solutions (such as kinks) that are stable
and have a nontrivial topological index. π0 measures the number of disconnected componets
in the vacuum of the theory, such that in the case under consideration, π0(M) = π0(Z2) = 2,
which is nontrivial (i.e. different from 1).
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In more complicated theories one can construct more complicated classical solutions, impor-
tant examples are (global and gauged) monopoles. Gauged monopoles were first constructed
independently by Gerard ’t Hooft (from Utrecht) and Alexander Polyakov.
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