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Introduction

The aim of this text is to on the one hand give an explicit definition of monopole so-
lutions in gauge theory and the conditions for their existence and on the other hand
describe the magnetic monopoles that are predicted by Grand Unified Theories from
the viewpoint of cosmology. We will first introduce some notions from algebraic topol-
ogy and briefly mention a few results for Lie groups in chapter 1 before we define the
notion of a monopole solution in field theory in chapter 2 and discuss the conditions
for their existence. Chapter 3 will mainly be about the magnetic monopoles and the
reason why they are predicted by GUT theories. Finally, chapter 4 will deal with
observational bounds that can be put on the monopole abundance in the Universe
through cosmological and astrophysical arguments and earth-bound experiments.

The reader is assumed to have some basic understanding of a number of concepts
from quantum field theory and cosmology, as well as some basic knowledge of Lie
groups and Lie algebras in the context of gauge theory. Furthermore, familiarity with
spontaneous symmetry breaking and phase transitions in the early universe may be
useful, which is the topic of the paper by Doru Sticlet. It may finally be useful to
point out that throughout this text a number of constants have been set to 1, namely
c = ~ = kB = 1, and that furthermore e2 = 4π α, where e is the elemtary charge and
α ' 1

137 is the fine structure constant.
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1. SOME PRELIMINARY

MATHEMATICS

To understand the topological nature of the monopole solutions described in chapter 2
it is important to first review some notions from algebraic topology and homotopy
theory in particular. The so-called homotopy groups objects will turn out to play a key
role in the classification of monopole solutions as topological soliton, so we will define
them here and give some important properties that will become important later. For a
more thorough review of these objects and the proofs to most of the statements made
here, as well as some other notions from algebraic topology, the reader is referred
to [1].

1.1 Homotopy

All the definitions in this section have been formulated for general topological spaces,
so they apply in particular to manifolds (in which case path-connected can be replaced
by connected), which are the types of spaces we are interested in. In this section
functions are always considered to be continuous, even when this is not explicitly
mentioned. The entire theory of homotopy can also be defined in the context of
smooth1 manifolds, in which case all functions and homotopies are assumed to be
smooth (infinitely many times differentiable) as it can be proven that the existence of
an ordinary homotopy between two smooth functions is equivalent to the existence
of a smooth homotopy. The proof is hidden deeply somewhere in [2] and is highly
non-trivial.

Definition 1. A homotopy of maps from a space X to another space Y is a continuous
function H : [0, 1] × X → Y, (t, x) 7→ Ht(x). We call two functions f, g : X → Y
homotopic if and only if there exists a homotopy H such that f = H0 and g = H1 and
we denote this by f ∼ g.

In words we could say that two functions are homotopic when they can be contin-
uously deformed into each other and that the homotopy is just a description of this
deformation. We can consider functions between two spaces up to homotopy (mod-
ulo continuous deformations) by splitting the space of functions from X to Y into
homotopy classes. If we denote the class of all functions that are homotopic to some
map f : X → Y by [f ] = {g : X → Y | f ∼ g} then it is a relatively easy exercise to

1By smooth we mean C∞, i.e. infinitely many times differentiable.
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CHAPTER 1. SOME PRELIMINARY MATHEMATICS

show that each continuous map g : X → Y is contained in exactly one such class (so
[f ] = [g]⇔ f ∼ g).

For n ≥ 1 let In = [0, 1]n = {(s1, . . . , sn) ∈ Rn | 0 ≤ s1, . . . , sn ≤ 1} be the closed
n-dimensional unit cube and let ∂In be its boundary (the set of all points in In with
at least one coordinate equal to either 0 or 1). For n = 0 we choose I0 to be a point
and ∂I0 to be the empty set. Let x0 ∈ X furthermore be some point in a space X.

If you only consider maps that satisfy certain conditions, it is possible to demand
that the homotopies satisfy the same condition, i.e. that the map Ht satisfies this
condition for any t. In our case we would like to consider maps from In to X that
map the boundary ∂In into the point x0. Instead of explicitly saying this every time
we will write f : (In, ∂In) → (X,x0) when we have imposed this condition on the
function f : In → X.

Definition 2. A homotopy of maps (In, ∂In) → (X,x0) is a function H : [0, 1] × In →
X, (t, y) 7→ Ht(y) such that Ht(∂In) ⊆ {x0} for all t ∈ [0, 1]. We call two functions
f, g : (In, ∂In) → (X,x0) homotopic if and only if there exists such a homotopy for
which H0 = f and H1 = g and we denote this, as before, by f ∼ g.

Thus two such functions are homotopic whenever they can be continuously deformed
into each other without breaking the condition that ∂In should be mapped into
the point x0. Even though the definition has been altered somewhat, not a lot has
changed. For any map f : (In, ∂In) → (X,x0) we can define the homotopy class
[f ] = {g : (In, ∂In) → (X,x0) | f ∼ g} and each map g : (In, ∂In) → (X,x0) is once
again contained in exactly one such class (so [f ] = [g]⇔ f ∼ g).

Definition 3. For any non-negative integer n ∈ Z≥0 the n-th homotopy group of a
space X with basepoint x0, which is denoted by πn(X,x0) is the set of homotopy classes
of functions (In, ∂In)→ (X,x0). In other words

πn(X) = {[f ] | f : (In, ∂In)→ (X,x0)}. (1.1)

For n ≥ 1 the group structure on πn(X,x0) is defined by the operation ∗, which in turn is
defined as follows: For any two elements [f ], [g] ∈ πn(X,x0), represented by the functions
f, g : (In, ∂In)→ (X,x0), we define [f ] ∗ [g] := [f ∗ g] with

(f ∗ g)(s1, . . . , sn) =

{
f(2 s1, s2, . . . , sn) if s1 ≤ 1

2

g(2 s1 − 1, s2, . . . , sn) if s1 ≥ 1
2 .

(1.2)

Showing that [f ] ∗ [g] is well-defined and again an element of π2(X,x0) is a rather
trivial exercise. Showing that ∗ defines a group structure is also not very difficult
and will not play a very important role in the remainder of this text, so we will not
prove this here. We will call a homotopy group trivial if it consists of just one element
and we will then write πn(X,x0) = {1} (since as a group it only contains the unit
element).

For n = 0, ∂I0 was the empty set, so functions f : (I0, ∂I0) → (X,x0) can just be
viewed as points in X and a homotopy just describes a path between points. The ele-
ments of the zeroth homotopy group π0(X,x0) are therefore just the path-connected
components of X. It is important to note that the zeroth homotopy group π0(X,x0) is
not actually a group because the group operation described above is ill-defined for it.

The first homotopy group, usually called the fundamental group, is probably the easi-
est to grasp. Since a map from the interval [0, 1] to the space X0 mapping both 0 and 1
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1.2. LIE GROUPS AND HOMOTOPY

to the point x0 is just a closed loop, the fundamental group in this case just consists of
all (oriented) closed loops in X starting and ending in the point x0 up to continuous
deformations. It is interesting to note that π1(X,x0) is not necessarily abelian, while
every other group πn(X,x0) (for n ≥ 2) is (for a proof of this see [1]).

Since we always map the boundary ∂In to a single point, we might as well identify
all points of ∂In and say that they are all the same point. This identification of the
boundary gives us the n-sphere up to a homeomorphism (continuous function with a
continuous inverse), so instead of looking at functions from the n-cube to X sending
the boundary to x0 we could have considered functions from the n-sphere Sn to X
sending one of the poles to this point. With this alternative description we see that if
πn(X,x0) = {1}, then any map from Sn to X mapping one of the poles to the point
x0 can be contracted to a point. Since we will see in a few moments that for path-
connected spaces the homotopy group is independent on the base point, this means
that any n-sphere embedded in X can be contracted to a point. Conversely if any
n-sphere can be contracted to a point, the n-th homotopy group can be shown to be
trivial.

Proposition 4. If X is path-connected (i.e. if π0(X,x0) is trivial) then πn(X,x0) is
isomorphic to πn(X,x1) for any other point x1 ∈ X.

Why this must be true can easily be seen for the case n = 1 because for every closed
loop γ starting and ending at x0 we can define a loop starting and ending at x1 by first
traversing some path η from x1 to x0 (possible by path-connectedness), then following
the loop γ and finally travelling back to x1 along the path η in the opposite direction,
which results an identification of elements of π1(X,x0) with elements of π1(X,x1).
For n ≥ 2 something very similar can be done, as is described in more detail in [1].

Any path from x0 to x1 gives an isomorphism between πn(X,x0) and πn(X,x1), but
if X is not simply connected2, this isomorphism may depend on the path chosen. We
will often forget about the basepoint and just talk about the n-th homotopy group
πn(X) of the space X, but we should keep in mind that it is only possible to define
the homotopy group independently from the basepoint for simply connected spaces.

The following proposition will become important when discussing the homotopy
groups of Lie groups

Proposition 5. For some number of path-connected spaces X1, . . . , XN and any non-
negative integer n ∈ Z≥0, we have that πn(X1 × . . .×XN ) ' πn(X1)× . . .× πn(XN ),
where the symbol ' denotes equality up to a group isomorphism.

For a proof of this proposition, see [1]

1.2 Lie groups and homotopy

Recall the definition of a Lie group (see [3] for a review on Lie groups)

Definition 6. A Lie group G is a smooth manifold that carries a group structure such
that group multiplication (G×G→ G, (x, y) 7→ xy) and inversion (G→ G, x 7→ x−1)
are both described by smooth maps.

2A space X is called simply connected if π1(X) = {1}

Magnetic monopoles 5



CHAPTER 1. SOME PRELIMINARY MATHEMATICS

Since Lie groups are smooth manifolds by definition, the homotopy groups discussed
above are in particular well-defined for connected Lie groups. We are interested in
these homotopy groups because Lie groups will describe the symmetry of the systems
we will consider and knowledge of their homotopy groups will turn out to be essential
for understanding monopoles.

The first three homotopy groups of a number of important compact connected Lie
groups have been collected in table 1.1. We see that the second homotopy group of
each of these Lie groups is trivial and this is no coincidence, as it in fact turns out that
the second homotopy group of any compact Lie group is trivial [4].

Theorem 7. The second homotopy group of any compact Lie group G is trivial. More-
over, if G is also semisimple then its fundamental group is finite.

The second result, due to Weyl, translates into the statement that every semisimple
compact Lie group has a compact universal covering group [5]3. The real definition of
simple and semisimple Lie groups are a little beyond the scope of this paper, but since
we will only be dealing with compact groups we can use the following proposition as
a definition [3] (N.B. every simple Lie group is semisimple).

Proposition 8. A compact connected Lie group G is semisimple if and only if its centre,
Z(G) = {h ∈ G | g h g−1 = h for all g ∈ G}, is a discrete subgroup. G is furthermore
simple if and only if it has no non-trivial connected normal subgroups4.

Examples of (semi)simple Lie groups are easily found: Apart from U(n ≥ 1), SO(2),
SO(4) and Spin(4) all of the groups in table 1.1 are simple and the groups SO(4) and
Spin(4) are (only) semisimple. The groups U(n ≥ 1), as well as SO(2) = U(1), on the
other hand are not even semisimple, as is obvious from the fact that they have infinite
fundamental groups. It is useful to note that the product of any number of semisim-
ple Lie groups is again semisimple, but that a product including non-semisimpile Lie
groups never is, so for instance SU(2)× SU(3) is semisimple, but SU(3)×U(1) is not.

U(1) U(≥ 2) SO(2) SO(3) SO(4) SO(≥ 5) other
π1 Z Z Z Z2 Z2 Z2 {1}
π2 {1} {1} {1} {1} {1} {1} {1}
π3 {1} Z {1} Z Z× Z Z Z

Table 1.1: The homotopy groups of a number of compact connected Lie
groups. Here “other” stands for any of the groups Spin(n ≥ 3),
SU(n ≥ 2), Sp(n ≥ 1), G2, F4, E6, E7 or E8.

A direct consequence of proposition 5 is that the n-th homotopy group of the product
G1 × . . . × GN of Lie groups is given by the product of the homotopy groups of the
separate groups (up to an isomorphism),

πn(G1 × . . .×GN ) ' πn(G1)× . . .× πn(×GN ). (1.3)

For the remainder of this section, suppose that G is some compact connected Lie
group and that H ⊆ G is a closed subgroup of G. For any g ∈ G we say that the

3The universal covering group G̃ of G is the unique simply connected Lie group with the same Lie algebra
as G. What is relevant for our purposes is that any representation of G is also a representation of G̃.

4A subgroup H < G is called normal if g h g−1 ∈ H for all h ∈ H and g ∈ G.
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1.2. LIE GROUPS AND HOMOTOPY

set gH := {gh | h ∈ H} is a right coset of H in G and we call the space G/H :=
{gH | g ∈ G}, consisting of all right cosets, the coset space of H in G. The coset space
inherits its topology from G: We call a subset {gH | g ∈ X} for X ⊆ G open if and
only if XH = {gh | g ∈ X,h ∈ H} ⊆ G is open. The space G/H even has a canonical
smooth structure, making it a smooth manifold, as discussed in [3].

There exists a set of canonical maps (group homomorphisms actually) between the
homotopy groups of G, H and G/H.

- The map in∗ from πn(H) to πn(G) is relatively simple to define since any map
f : (In, ∂In) → (H,x0) is also a map from In to G ⊇ H mapping the boundary
∂In to x0 ∈ G, so we can just send a class [f ] ∈ πn(H) to its corresponding class
[f ] ∈ πn(G). This map is well-defined and it respects the group structure, but it
is not necessarily injective or surjective.

- The map jn∗ from πn(G) to πn(G/H) requires just a bit more work, but is
almost as simple since any map f : (In, ∂In) → (G, x0) defines a canonical
map from In to G/H mapping the boundary ∂In to the point x0H ∈ G/H
(G/H was a coset space). If the map f̃ : (In, ∂In) → (G/H,H) is defined as
f̃(s1, . . . , sn) = f(s1, . . . , sn)H, then jn∗ will can be defined to send [f ] ∈ πn(G)
to [f̃ ] ∈ πn(G/H).

- There also exists a canonical map ∂n+1
∗ from πn+1(G/H,H) to πn(H, 1), but this

map is more complicated. For any map from f : (In+1, ∂In+1) → G/H there
exists a map g : I+1 → G/H such that g(∂In+1) ⊆ H and such that furthermore
g(s1, . . . , sn, sn+1) = 1 ∈ H if at least one of the coordinates s1, . . . , sn is equal
to either 1 or 0 or if sn+1 = 0 5. We can now define the function

h : (In, ∂In)→ (H, 1), h(s1, . . . , sn) = g(s1, . . . , sn, 1). (1.4)

This defines an element [h] ∈ πn(H, 1) that turns out to be unique (independent
of the choice of g), so we obtain a canonicial map from πn+1(G/H,H) to πn(H).
By replacing H by x0H everywhere this becomes a map from πn+1(G/H, x0H)
to πn(x0H) ' πn(H). For more details on this map see [6] or [7].

It turns out that these maps fit together very nicely in an exact sequence. An exact
sequence is a sequence of maps fi : Ai → Ai+1 (for i ∈ Z, the sequence is allowed to
end for some minimal and maximal value of i) such that for each i the kernel of fi is
equal to the image of fi−1.

Theorem 9. The maps described above form an exact sequence of group homomorphisms

. . .→ πn(G)
jn
∗→ πn(G/H)

∂n
∗→ πn−1(H)

in−1
∗→ πn−1(G)→ . . .

j1∗→ π1(G/H). (1.5)

This sequence actually continues all the way to π0(G), but the maps will not be group
homomorphisms there since π0 is not a group.

I will not prove this theorem here, but it is actually related to theorem 4.3 from [1],
as pointed out by [8]. A practical proof for the relevant part of this theorem, which
is the bijectivity of the map π2(G/H)→ π1(H) if π1(G) = π2(G) = {1}, can be found
in [6,7].

Corollary 10. If G is a compact Lie group and H is a closed subgroup, then π2(G/H)
is isomorphic to the kernel of the map i1∗ : π1(H) → π1(G). In particular, if G is also
simply connected then π2(G/H) is isomorphic to π1(H)

5It is generally not possible to demand that also g(s1, . . . , sn+1) = 1 if sn+1 = 1, which is essential!
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CHAPTER 1. SOME PRELIMINARY MATHEMATICS

This result follows directly from theorem 9 because any compact Lie group has π2(G) =
{1}, which implies that ker(∂2

∗) = im(j2∗) = {1} (so ∂2
∗ is injective) and im(∂2

∗) =
ker(i1∗).

A group action of G on a (smooth) manifold is defined through a (smooth) function
α : G ×M → M, (g, x) 7→ g x such that g(hx) = (g h)x and 1x = x (1 is the unit
element in G). The stabiliser Gx of x in G is a closed subgroup of G defined as

Gx = {g ∈ G | g x = x} (1.6)

Theorem 11. If G acts transitively on M (meaning that for any two points x, y ∈ M
there exists an element g ∈ G such that y = g x) then M is diffeomorphic to G/Gx for
any x ∈M .

That there exists a canonical bijection between the two spaces is relatively easy to
see because we can associate to any point y ∈ M the (non-empty) set Gx,y of group
elements that map the specific point x to y and Gx,y turns out to be an element
of G/Gx. This is because for any g ∈ Gx,y and any h ∈ Gx we have (g h)x =
g(h(x)) = g(x) = y, so g Gx ⊆ Gx,y and conversely, if g, g′ ∈ Gx,y then g−1 g′ ∈ Gx, so
g′ = g (g−1g′) ∈ g Gx, so we even see that Gx,y = g Gx and hence that Gx,y ∈ G/Gx.
See [3] for a more rigourous proof that takes the smooth structure into account.

8 Arjen Baarsma
(0433764)



2. MONOPOLES AS TOPOLOGICAL

SOLITONS

In general, a topological soliton is a solution to a set of partial differential equations
that cannot be deformed into a “trivial solution” because of some “topological con-
straint”. What exactly is meant by a trivial solution depends on the context, but the
topological constraint is usually the result of boundary conditions that solutions are
required to obey. By a deformation from one solution to another we mean a homo-
topy that starts with the first, ends up at the other and stays in the space of solutions
along the way. It is important to note that what we have defined here as a topological
soliton is not generally a soliton in the traditional sense.

In the context of (classical) field theory, the partial differential equations are the field
equations of the theory and the trivial solutions are the vacuum solutions, i.e. the
solutions that minimise the energy. There are still multiple ways to impose boundary
conditions on such a system, but we will choose to demand that the total energy of
the system is finite (with respect to the vacuum solutions) [6,7]. It will turn out that
this condition will give rise to topological conservation laws for certain systems and
thereby imply the existence of monopole solutions.

2.1 Yang-Mills-Higgs models

In the remainder of this chapter we will consider a gauge theory defined in 3 + 1
dimensions (three spatial dimensions and one time dimension) with a local symmetry
defined through a Lie group G. This gauge theory will have the following ingredients:

- An n-dimensional scalar Higgs field φ = (φ1, . . . , φn), which we will assume to be
real, although it is also allowed to be complex1. Two such fields are multiplied
with each other through the inner product on Rn.

- A compact connected Lie group G of some dimension D used to define gauge
transformations, φ(xµ) 7→ g(xµ)φ(xµ). The field φ should transform under
gauge transformations via some unitary representation R(G) of G (by unitary
we mean that elements of R(G) preserve the inner product on Rn).

- A (vector) gauge field Aµ = Aaµt
a that take values in the Lie algebra g of R(G),

1We can always write a complex field as two real fields, but we do not need to because up to a few factors
and complex conjugations everything also goes through if we keep it complex.
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CHAPTER 2. MONOPOLES AS TOPOLOGICAL SOLITONS

defines a covariant derivative Dµφ = ∂µφ + i eAaµt
aφ and transforms under

gauge transformations in such a way that Dνφ transforms in the same way as φ
does.
Here the elements t1, . . . , tD form a set of generators for R(G) such that any ele-
ment of R(G) can be written as a product of expressions of the form exp(i gata).
These generators are Hermitian matrices, so we can choose them such that
Tr(tatb) = δab (This trace defines an inner product on the space of Hermition
matrices, so we can use the Gramm-Schmidt orthogonalisation proces).

- A field-strength tensor Fµν = [Dµ, Dν ]/(i e) = ∂µAν − ∂νAµ + i e [Aµ, Aν ], de-
fined in terms of the gauge field Aµ, which we can write as Fµν = F aµνt

a as with
Aµ. The Lagrangian should contain a Yang-Mills term Tr(FµνFµν) = F aµνF

aµν ,
which can be verified to be a gauge-invariant expression.

- A potential V (φ) that takes the minimal value of zero2. The set of all points φ ∈
Rn for which V (φ) is zero form the vacuum manifoldM = {φ ∈ Rn | V (φ) = 0}.
We will assume that G acts transitively onM3. We have seen in section 1.2 that
this means thatM ∼= G/H, where H is the symmetry group that remains after
symmetry breaking.

With these fields we can build the following gauge invariant Lagrangian, which will
define the dynamics of this Yang-Mills-Higgs system

L = − 1
2 (Dµφ)(Dµφ)− V (φ)− 1

4F
a
µνF

aµν . (2.1)

To specify a solution we only need to specify the initial field configurations φ(xi, t) and
Aaµ(xi, t) at some fixed time t and their first time derivaties ∂0φ(xi, t) and ∂0Aµ(xi, t).
Given a set of such initial values, the field equations uniquely determine the time-
evolution of the system and a continuous deformation of the initial values leads to a
continuous deformation of the solutions on the entire space-time [7]. Since the total
energy of a solution is conserved, the finite energy condition will also continue to
hold at later points in time, so it suffices to look at the initial data (φ, ∂0φ, Aµ and
∂0Aµ) and we are at the moment not interested in solving the equations of motion for
these fields. From now on we will therefore be working at some fixed time t, unless
stated otherwise.

Before moving on, we will first impose a gauge on the system. It is always possible to
apply a gauge transformation to make the time component of the gauge fields vanish,
so we can choose a gauge such that A0 = Aa0t

a = 0 everywhere [7]. After choosing
this gauge we are still free to make time-independent gauge transformations4 since
these do not affect Aa0 . In this gauge we get simple time derivaties D0φ = ∂0φ and
we furthermore find that F0i = ∂0Ai − ∂iA0 − i e [A0, Ai] = ∂0Ai. The total energy in
this gauge reads E = T + V with

T =
∫

d3x
(

1
2 (∂0A

a
i )(∂0A

a
i ) + 1

2 (∂0φ)(∂0φ)
)

(2.2)

V =
∫

d3x
(

1
2 (Diφ)(Diφ) + V (φ) + 1

4F
a
ijF

aij
)

(2.3)

2We assume the minimum value to be zero because we want to measure energy with respect to the
groundstate.

3Recall that this means that for any two elements φ, ψ ∈M there exists a group element g ∈ G such that
φ = g ψ. This is a reasonable assumption since any deviation from it is coincidental and highly unlikely
when quantum corrections and finite energy contributions to the potential are considered.

4After a time-independent gauge transformationA0 = 0 becomes g A0g−1 + i e−1(∂0g)g−1 = 0+0 = 0.
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2.2. FINDING FINITE ENERGY SOLUTIONS

It is important to note that all of these terms separately are non-negative (including
the field-strength term), so in order for the total energy of the system to be finite,
each of them should give a finite contribution.

2.2 Finding finite energy solutions

At this time it becomes useful to partially switch to vector notation: We will write
A = (A1, A2, a3), Dφ = (D1φ,D2φ,D3φ) and ∇φ = (∂1φ, ∂2φ, ∂3φ)i and use a dot (·)
to denote the inner product between two such expressions. Because we are interested
in the asymptotic behaviour of φ and A towards infinity in different directions, we will
write any spatial point as r x̂ ∼ (r, x̂) with (r, x̂) ∈ [0,∞[×S2. We could alternatively
switch to polar coordinates and write (x1, x2, x3) = r (cosϕ sinϑ, sinϕ sinϑ, cosϑ)
with r ∈ [0,∞[, ϕ ∈ [0, 2π[ and ϑ ∈ [0, π], but that would make the notation more
complex.

We still have the freedom to make time-independent gauge transformations, which
we can use to choose a radial gauge and transform away the radial component of A (at
our fixed point in time) everywhere except a small region around the origin (say for
all r ≥ 1) [7]. Here the radial component of A(r x̂) is defined to be Ar(r x̂) := x̂ ·A.

If the energy is to be finite, then the following expression should be too

E ≥
∫

R3

{
1
2 (Dφ)2 + V (φ)

}
≥
∫ ∞

1

dr r2
∫
S2

dΩ
{

1
2 (Dφ)2 + V (φ)

}
≡
∫ ∞

1

dr I(r, φ)

(2.4)

where dΩ is the standard measure on S2, which would be
∫
S2 dΩ =

∫ 2π

0
dϕ
∫ 1

−1
d(cosϑ)

in polar coordinates. For this to converge, we in particular need the (convergent)
angular integral I(r, φ) to vanish as r → ∞. Since the integrand is non-negative ev-
erywhere, this can only happen if the integrand vanishes as r →∞, so for any x̂ ∈ S2.
We therefore see that r2(Dφ(r x̂))2 → 0 and r2V (φ(r x̂))→ 0 as r →∞.

This tells us in particular that x̂ · r (Dφ) = r (∂r + i e x̂ · A)φ) = r ∂rφ vanishes as
r →∞ (recall that x̂ ·A = 0), so that for any x̂ ∈ S2, the limit

φ∞(x̂) ≡ lim
r→∞φ(r x̂) = lim

r→∞φ(r, ϕ, ϑ) (2.5)

necessarily exists. Because we also know that r2V (φ(r x̂)) → 0, we find that fur-
thermore φ∞(x̂) ∈ M [7, 9]. This defines a new function φ∞ : S2 → M which is
continuous5.

We have seen that that in order for a field configuration φ(r x̂) to give a finite en-
ergy we need r∂rφ(r x̂) and r2V (φ(r x̂)) to vanish at infinity and that an asymptotic
function φ∞ : S2 → M generally exists in this case. Conversely, for any continuous
function φ∞ : S2 → M, there clearly exists a field configuration φ(r x̂) such that
φ(r x̂) = φ∞(x̂) for all r ≥ 1.

5Technically, we could only conclude that the integrand converges everywhere except on a subset of S2

of measure 0, which would also spoil the continuity of φ∞. Since this exceptional situation is of no
consequence for the final result, we will step over it.

Magnetic monopoles 11



CHAPTER 2. MONOPOLES AS TOPOLOGICAL SOLITONS

For this solution that φ(r x̂) = φ∞(x̂) ∈ M for r ≥ 1, so it follows that ∇φ(r x̂) =
(∂1, ∂2, ∂3)φ(r x̂) consists of three vectors tangent toM. The assumption that G acts
transitively on M tells us that the tangent space of M at φ(r x̂) is spanned by the
action of the Lie algebra on this point, so that an infinitesimal change in φ can be
cancelled by an infinitesimal group action. Let hx̂ = {s ∈ g | s φ∞(x̂) = φ∞(x̂)} and
h⊥x̂ = {s ∈ g | ∀s′ ∈ hx̂ : Tr(s s′) = 0} (the trace defines an inner product on g),
then for any r x̂ ∈ R3 there exists a unique vector A(rx̂) = (A1, A2, A3) ∈ (h⊥x̂ )3 such
that A(rx̂)φ(r x̂) = (A1φ,A2φ,A3φ)(r x̂) = i e−1∇φ(r x̂). For this choice we see that
the covariant derivative Dφ(r x̂) = ∇φ + i eA(rx̂)φ(r x̂) = 0 whenever r ≥ 1, so the
covariant derivative term only contributes a finite amount to the energy6.

We can choose the gauge fields in such a way that the contribution from the covariant
derivatives becomes finite (only the finite region with r ≤ 1 contributes). This choice
for the gauge fields actually links the behaviour of A for large r to that of φ. This is
because at the point y = (y1, y2, y3) = α z = (α z1, α z2, α z3) with |z| = 1 and α > 1

∇φ(αz) =
∂

∂yi
φ(y) =

1
α

∂

∂zi
φ(αz) =

1
α

∂

∂zi
φ(z) =

1
α
∇φ(z) (2.6)

since φ(y) = φ∞(y/|y|) for any y with |y| ≥ 1, which implies that

lim
r→∞ rA(r x̂)φ(r x̂) = lim

r→∞ i e−1r∇φ(r x̂) = lim
r→∞ i e−1∇φ(x̂) = i e−1∇φ(x̂), (2.7)

which is finite. Therefore the gauge fields go like 1/r as r → ∞ [7], which means
that the field strength Fµν goes like 1/r2 and that the square of the field strength
goes like 1/r4. Since we are working in three spatial dimensions, this tells us that
the field strength term in equation (2.3) will give a finite contribution. Note that in
four or more dimensions this argument will no longer work because the integral of
the Yang-Mills term, which goes like 1/r4 diverges then.

If we look at the expression for T in equation (2.2), we see that the energy also
has a contribution from the time derivates ∂0A

a
i and ∂0φ. These time derivatives

however form a completely independent set of initial data and we can even choose
∂0φ(xi, t) = ∂0Aj(xi, t) = 0 for any xi at the fixed time t, in which case T = 0. It is
furthermore always possible to continuously deform any other set of initial values for
the time derivatives giving a finite energy contribution into this trivial case without
blowing up the energy by simply gradually scaling all time derivatives down to 0,
so the choice of initial values for the time derivatives is of no consequence for the
classification of solutions up to continuous deformations. We should note that this
freedom in the choice of initial values for the time derivatives does not imply that we
can choose a static solution because we cannot say anything about the second time
derivatives.

2.3 Topological conservation laws

We have shown that for any initial field configuration for φ and Ai there generally
exists a asymptotic function φ∞ : S1 →M and conversely that for any such function
there exists a finite energy field configuration.

6N.B. The radial gauge is not broken: (x̂ ·A)φ = x̂ · (i e−1∇φ) = 0 (since φ(r x̂) = φ∞(x̂) implies that
∇φ has no radial component), so A = A− (x̂ ·A)x̂ since A was unique, so it has no radial component

12 Arjen Baarsma
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2.3. TOPOLOGICAL CONSERVATION LAWS

Any two field configurations with the same asymptotic function φ∞ can be contin-
uously deformed into each other without blowing up the energy by first gradually
resolving things around infinity (without straying farther away from the vacuum man-
ifold) and using the gauge fields to make the angular part of the gradient vanish. After
that nothing we do (smoothly) in the finite region of space that remains can make the
energy blow up. The asymptotic function φ∞ is therefore enough to classify solutions
up to continuous deformations [9,6].

In fact, any two field configurations can be continuously deformed into each other
without blowing up the energy if and only if the associated functions φ∞ : S2 → M
can be continuously deformed into each other [7]. This therefore gives us a one-one
correspondence between the classes of field configurations that can be deformed into
each other without blowing up the energy and the classes of asymptotic functions
φ∞ : S2 → M that can be deformed into each other. With the definitions from sec-
tion 1.1 we see that these are exactly the homotopy classes of maps from S2 to M
(without reference to a basepoint), so we can associate any class of solutions that
cannot be deformed into each other with a single such homotopy class [φ∞].

We now see the second homotopy group from section 1.1 appearing naturally, as we
had seen that π2(M) was non-trivial if and only if there exist maps from S2 toM that
cannot be deformed into a constant map. The system therefore admits topological
solitons (of this type) if and only if π2(M) is non-trivial. We call topological solitons
that arise by this argument monopoles.

IfM is simply-connected (π1(M) = {1}) we can associate any solution to an element
of the homotopy group π2(M) since its definition is then completely independent of
the basepoint used. If this is not the case, we can only associate it to an element of the
homotopy group up to changes of the base point. The groundstate solution however
always corresponds to just the trivial element 1 ∈ π2(M) since it is uniquely carried
over to different basepoints (no group homomorphism can send an identity elements
to anything other than an identity element).

This classification of solutions leads to a topological conservation law: Since time evo-
lution basically defines a continuous deformation of the initial configuration that pre-
serves the energy, we would find exactly the same class [φ∞] of maps from S2 to
M if we look at the field configurations some time later. We can therefore view
the homotopy class [φ∞] corresponding to a solution as a conserved charge, which
we appropriately call the topological charge. In some cases this charge corresponds
to some other physical observable, such as the magnetic charge in the case of the
’t Hooft-Polyakov monopole, which will be discussed in chapter 3.

Magnetic monopoles 13
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3. MAGNETIC MONOPOLES

3.1 The Dirac monopole

The well-known Maxwell equations can be consistently modified to include the possi-
bility of particles carrying a magnetic charge [10]. After this modification, the equa-
tions look like

∇ ·E = ρe ∇×E = −∂B
∂t
−jm

∇ ·B = ρm ∇×B =
∂E
∂t

+ je, (3.1)

where E and B are the electric and magnetic field respectively, ρe and je are the
electric charge density and current. Two additional terms have been added, namely
the magnetic charge ρm and magnetic current jm.

In analogy with the electric monopole, the magnetic field of a typical magnetic monopole
of charge g is expected to look like

Bmm(r) =
g

4π r2
r̂, (3.2)

which results in a total flux of

Φ mm =
∫
S

dS ·B = g

∫
S

dS · r̂
4π r2

= g. (3.3)

When this is done in the classical theory of electrodynamics, no inconsistencies arise,
but for the quantum-mechanical description, the existence of a vector potential A
such that B = ∇ × A is essential [6, 9, 11]. Plugging an expression of the form
Bmm = ∇×Amm into equation (3.3) however will always yield a zero flux by Stokes’
theorem so, even if we exclude the singularity at the origin, the vector potential A
will not be well-defined.

It is however possible to define such a vector potential on any contractible region of
space that does not contain the origin, so we can define such a potential everywhere
except for the origin and some line (not necessarily straight) from the origin to in-
finity. We can see why this is from figure 3.1 because the field lines can vanish to
infinity through this so-called Dirac string, which we could for instance imagine to be
an infinitely long and thin solenoid (coil).

15



CHAPTER 3. MAGNETIC MONOPOLES

466 PRESKILL

monopole solution of ’t Hooft and Polyakov is introduced. The theory of

magnetic monopoles carrying nonabelian magnetic charge is developed in

Section 4, and the general connection between the topology of a classical

monopole solution and its magnetic charge is established there. Various

examples illustrating and elucidating the formalism of Section 4 are

discussed in Section 5. Section 6 is concerned with the properties of dyons,

which carry both magnetic and electric charge. Aspects of the interactions

of fermions and monopoles are considered in Section 7. In Section 8, the

cosmological production of monopoles and astrophysical bounds on the

monopole abundance are described. Some remarks about the detection of
monopoles are contained in Section 9.

The reader who finds gaps in the present treatment may wish to consult

some of the other excellent reviews of these topics. For a general review of
grand unified theories~see (1.7, 18). For more about some of the topics 

Section 2-4, see (19-21); for Section 6, see (21); for Section 8, see (22-26);

and for Section 9, see (27, 28).

2. THE DIRAC MONOPOLE

2.1 Monopoles .and Charge Quantization

Measured electric charges are always found to be integer multiples of the
electron charge. This quantization of electric charge is a deep property of

Nature crying out for an explanation. More than fifty years ago, Dirac (1)

discovered that the existence of magnetic monopoles could "explain"

electric charge quantization.

Dirac envisaged a magnetic monopole as a semi-infinitely long, in-

finitesimally thin solenoid (Figure 2). The end of such a solenoid looks like 

Fioure 2 The end of a semi-infinite solenoid.
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Figure 3.1: Two choices for the Dirac string. This figure originally appeared in [6].

It turns out that if the magnetic charge satisfies a simple quantisation condition, the
Dirac string becomes completely undetectable [11, 12, 6]. We can for instance hope
to describe electromagnetism throughout our space with two vector potentials A(1)

and A(2) defined on the entire space apart from the negative and positive z-axis
respectively (so corresponding to figure 3.1(a) and 3.1(b) respectively). In polar
coordinates (r, θ, ϕ) (with θ the zenith angle, ϕ the azimuth angle and r the distance
to the origin) we can for instance write down the vector potentials

A(1) =
g

4π r
1− cos θ

sin θ
eϕ and A(2) =

−g
4π r

1 + cos θ
sin θ

eϕ, (3.4)

where eϕ = (− sinϕ, cosϕ, 0). The first can be defined as long as θ 6= π and the
second as long as θ 6= 0 and a simple calculation furthermore shows that taking the
curl of these potentials yields the magnetic field for a monopole from equation (3.1).

In addition to this, we see that on the intersection of the regions where these poten-
tials are defined (everywhere except for the entire z-axis in this case) they are related
by the gauge transformation

A(2) = A(1) +∇α with α =
g

2π
ϕ. (3.5)

By looking at this transformation however, we immediately see a problem: While
∇α may be well-defined, α is not as it increases by g if you turn around the z-axis
once. We say that α is multiply-defined, so it is only defined up to the addition of
some multiple of g, which is not really a problem, since α itself has not yet appeared
anywhere, only its gradient ∇α. For different choices for the location of the Dirac
strings similar results would be obtained, so to be able to glue together the vector
potentials on any two contractible regions we need to allow gauge parameters that
are defined up to multiples of g.

When another field φ, corresponding to particles with an electric charge e, is added,
it should couple to the magnetic field (and also to the electric field, which we are

16 Arjen Baarsma
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3.2. GRAND UNIFIED MONOPOLES

ignoring for the moment) via the covariant derivative through Diφ = ∂iφ + i eAiφ
and transform under the gauge transformations described above as φ 7→ ei e αφ [12].
This field φ cannot be multiply defined since a change in phase as it rotates around
the z-axis would be measurable, so we require that ei e α = ei e (α+n g) for any n ∈ Z.
This holds if and only if e g ∈ 2π Z.

This tells us that the charge of the monopole should be a multiple of the Dirac charge,
2π/e, and that everything is still well-defined everywhere except in the origin if this
is the case [11,6,12]. Conversely, this condition also tells us that if a single magnetic
monopole with charge g exists, any electrically charged particle should have a charge
that is a multiple of 2π/g. This is called the Dirac quantisation condition [6,12].

Thus, the existence of magnetic monopoles explain the observed (but unexplained)
quantisation of electric charge, making the idea of the existence of magnetically
charged particles extremely appealing. Nevertheless, the Dirac monopole is not com-
pletely satisfactory as we have had to cut out a point (the origin) from our space
to define it. In section 3.4 we will see a more successful description of a magnetic
monopole (as a topological soliton) that replaces the singularity in the origin by a
(smooth) core, but can be described in exactly the same way when observed from
large distances.

3.2 Grand Unified Monopoles

Grand Unified Theories (GUTs) seek to unify the electroweak and strong forces into
a single fundamental interaction described by a simple compact gauge group GGUT

that contains the Standard model gauge group GSM = SU(3)c × SU(2)Iw × U(1)Y as a
subgroup. The GUT itself is a linear gauge theory of roughly the type discussed in sec-
tion 2.1. It has a Higgs field coupling to gauge fields through a covariant derivative,
a Yang-Mills field-strength term and some gauge invariant potential. If the potential
for the Higgs field is chosen right, the original symmetry described by GGUT will be
broken to the Standard model gauge group at low temperatures and eventually to
SU(3)c × U(1)em [12, 13, 14]. The original GUT symmetry is expected to be restored
at temperatures around the GUT scale, about 1016 GeV.

The appeal of Grand Unified Theories lies not only in the fact that a single simple
symmetry group is more aesthetically pleasing than the product of Lie groups that
the Standard model gives. Unification of the three fundamental forces into a single
symmetry group means that only a single coupling constant is needed to describe the
coupling of fields to all the gauge groups, which after symmetry breaking reduce to
the separate coupling constants for SU(3)c, SU(2)Iw and U(1)Y. Embedding the elec-
tromagnetic gauge group U(1)em in a compact simple Lie group would furthermore
make the quantisation of electric charge, which is not a strict requirement of quantum
electrodynamics, necessary [13].

In section 2.3 we have analysed the conditions for such linear gauge theories to admit
monopole solutions and the conclusion was that monopole solutions exist if and only
if the vacuum manifoldM of the potential contains non-contractible 2-spheres, i.e. if
π2(M) 6= {1}. Under the reasonable assumption that the Grand Unified Gauge group
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CHAPTER 3. MAGNETIC MONOPOLES

acts transitively1 onM, the vacuum manifold will be diffeomorphic to the coset space
M ∼= GGUT/GSM. Since GGUT is a simple Lie group, it can be replaced by a compact
covering group which has both a trivial second and first homotopy group2, so the
homotopy theorems mentioned in section 1.2 tell us that

π2(M) ' π1(SU(3)× SU(2)×U(1)) = π1(U(1)) ' Z, (3.6)

which is non-trivial. The existence of monopole solutions is therefore a general pre-
diction of Grand Unified Theories. The mass of such a monopole is the result of
an integral of the energy density from equations (2.2) and (2.3) and is typically of
the order 1017 GeV [6, 8, 12]. Between the Grand Unified phase transition and now
there has also been an electroweak symmetry breaking in which the standard model
gauge group breaks further, to SU(3)c ×U(1)em. This does not change a lot about the
monopoles already created since π1(SU(3)×U(1)) = π1(GSM) = Z, .

The magnetic behaviour of these monopoles is not immediately obvious at first sight
since we have not even defined what we mean by electromagnetism. The value of the
Higgs field at some point in space-time far away from the monopole corresponds to
an element g GSM ' GSM of GGUT/GSM. This element is the symmetry group to which
the original GUT symmetry breaks at that point, so around a monopole the definition
of electromagnetism itselfrotates in some sense, which explains the magnetic nature
of the monopole. This can be seen explicitly in the example discussed in section 3.4.

Although it would be preferable to assume that the gauge group GGUT is simple,
semisimple Lie groups are also often considered. Grand Unified Theories with semisim-
ple Lie groups also admit monopole solutions by exactly the same arguments. If also
the assumption that GGUT is semisimple is dropped, the existence of monopole solu-
tions is no longer guaranteed and a more detailed analysis of the groups involved and
the way in which symmetry is broken is required.

3.3 Monopole formation

We have argued in section 3.2 why Grand Unified Theories with semisimple symmetry
groups generally predict the existence of magnetic monopole solutions after symmetry
breaking, but this does not explain why we might expect them to appear in nature
and it certainly does not give any predictions about how many we might expect to
find in the visible Universe. For now, we will assume that there is only a single phase
transition from the original GUT symmetry group to the standard model gauge group
at the GUT scale, so at a temperature of around TGUT ∼ 1016 GeV and that there is no
inflation.

Above this critical temperature the original GUT symmetry was restored and the Higgs
field Φ had a vanishing expectation value. As the temperature drops below TGUT, it
becomes favourable for the Higgs field to assume a non-zero expectation value in the

1Recall that this means that for any two element x, y ∈M there exists a g ∈ GGUT such that y = g x. This
assumption is reasonable because any deviation from it would be completely coincidental and highly
unlikely once thermal contributions to the potential are considered (you would need to choose the
temperature just right).

2This is possible because any representation of GGUT is also a representation of its covering group, which
has a trivial first and second homotopy group, as mentioned in section 1.2
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vacuum manifold of the effectively potential and thereby break the symmetry. What
value is chosen for the expectation value 〈Φ〉 depends on random fluctuations, so we
would expect different choices to be made in different regions of space. At the time
of monopole formation, there is some correlation length, denoted by ξ, which is the
typical range beyond which fluctuations in Φ are uncorrelated. The regions in which
Φ assumes a different expectation value are determined by such fluctuations and will
thus have a size of roughly order ξ3 [6,8,12,15].

The value of this correlation length depends on the details of phase transition (it gen-
erally diverges at the critical temperature), but we can write down an upper bound
for it. Since regions that are not in causal contact cannot possibly be correlated in any
way, the correlation length should satisfy ξ < `GUT, where `GUT is the causal horizon at
the time of the GUT phase transition3, which is roughly of the order of 10−27 cm. The
discussion above assumed that the phase transition was of second order, but it also
applies to the case with a first order phase transition. In this case the relevant time
and temperature become those at which the nucleation of bubbles becomes probable.
The parameter ξ should then be replaced by the typical bubble size, which is still
bounded in the same way by causality [6].

Where different regions meet, they will generally try to align to minimise their energy,
but this is not always possible if the vacuum manifold has a non-trivial homotopy
group. In the case of monopoles π2(M) is the relevant homotopy group, so if this
homotopy group is non-trivial (as is the case for any GUT with a semisimple symmetry
group) then there is a probability p that the orientation of the Higgs field around this
point is topologically non-trivial and a monopole will form. This is called the Kibble
mechanism. The exact value of p will not be much smaller than 1 and depends on
the shape of the vacuum manifold and can be estimated by discretising the vacuum
manifold and looking at how of the possible configuration around a point result in
monopoles. We will assume p to be of order 0.1, which is the value that would be
obtained if the vacuum manifold is the 2-sphere. If we take the GUT scale to be
roughly 1016 GeV, the horizon to be `GUT ∼ 8 × 10−28(TGUT/1016GeV)−2 cm and
p ∼ 0.1, then right after the phase transition the number density of monopoles is at
least [6]

nMM,GUT ∼ p ξ−3 & p `−3
GUT ∼ 2× 1080(TGUT/1016 GeV)6 cm−3. (3.7)

Another way to express this is through the dimensionless ratio of the monopole num-
ber density and the temperature, nMM,GUT/T

3
GUT ∼ 4 × 10−7(TGUT/1016 GeV)3, at the

time of the phase transition.

3.3.1 The monopole problem

A monopole and an anti-monopole4 can annihilate, a process which preserves the
total topological charge, releasing their total mass as energy (in the form of parti-

3The horizon is approximately given by ` ' CmP T
−2
GUT where mP ' 1019GeV is the Planck mass and

C = 0.6 g
−1/2
∗ ∼ 1/20 with g∗ the effective number of spin degrees of freedom [6]. It is roughly equal

to the Hubble radius, 1/HGUT, and to one over the age of the universe at the time of the GUT phase
transition, 1/tGUT.

4An anti-monopole is a monopole with an opposite charge. A monopole and an anti-monopole can anni-
hilate because their combination is actually a topologically trivial solution, but they need to be brought
together first.
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cles). Because of their topological nature, monopoles cannot decay into other par-
ticles and pair annihilation is therefore the only possible way in which the number
of monopoles in a comoving volume can be reduced. The attractive force between
monopoles of opposite charge should of the order of the Coulomb force, so the rate at
which monopoles and anti-monopoles capture each other and subsequently annihilate
can be estimated [16,17]. Pair annihilation is a relatively slow and inefficient process
due to the high monopole mass and it turns out to be unable to keep up with the
expansion of the universe when the ratio nMM/T

3 falls below 10−8(mMM/1017 GeV),
where T is the temperature and mMM is the monopole mass [6].

Since monopoles cannot decay, their number density must scale as a−3 once monopole
annihilation has ceased to be effective, where a is the scale factor. Under the assump-
tion that the universe has cooled down adiabatically afterwards, the total entropy is
preserved and the entropy density s therefore also scales as a−3, which tells us that
the ratio nMM/s is preserved [12]. At a temperature T the entropy density is given by
s = g∗ 2π2

45 T
3, with g∗ is the effective number of spin degrees of freedom [18,19].

If the initial ratio, nMM,GUT/T
3
GUT ∼ 4 × 10−7(TGUT/1016 GeV)3, is smaller than the

threshold 10−8(mMM/1017 GeV), monopole annihilation plays no role and the ratio
between the monopole density and the entropy at a later time will be the same as at
the GUT scale. If we now take g∗ ∼ 100 then

nMM/s ∼ 4× 10−9(TGUT/1016 GeV)3, (3.8)

which corresponds to nMM ' 2×10−7(TGUT/1016 GeV)3 cm−3 today (T = 2.725 K and
g∗ ∼ 3.91 [19]).

If on the other hand the initial ratio is greater, then pair annihilation reduces the
monopole density to this threshold, after which the number of monopoles per co-
moving volume freezes [17]. If initially g∗ ∼ 100, then at a later time this gives a
monopole density of

nMM/s ∼ 10−10(mMM/1017 GeV), (3.9)

which gives nMM ' 4 × 10−9(mMM/1017 GeV) cm−3 today. For TGUT ∼ 1016 GeV and
mMM ∼ 1017 GeV, the latter scenario applies and the total monopole energy density
today would thus be ρMM ∼ 4× 108 GeV/cm3.

The total energy density of baryonic matter is around 2 × 10−7 GeV/cm3, which
corresponds to about 4% of the total energy density of our Universe [18, 19]. This
would mean that the energy density of monopoles would exceed that of baryonic
matter by around 15 orders of magnitude and would therefore completely dominate
the energy density of the universe today. If the abundance of monopoles is this great,
it should be possible to observe them, so the fact that no evidence of the existence
monopoles has been found conflicts with this prediction (see chapter 4 for more on
detection methods and upper bounds on the monopole density). This defines the
monopole problem.

The easiest way to solve the monopole problem would of course be give up the idea of
grand unification or to loosen the demands for the grand unified gauge group. If the
electromagnetic gauge group U(1)em is not embedded in a semisimple Lie group, but
for instance in a group of the form H ×U(1), then there is no need for monopoles to
appear [12,17]. Allowing for this would however more or less undermine the whole
idea behind Grand Unified Theories. Alternatively, it may be possible that reality is
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described by a Grand Unified Theory, but that the unification temperature was never
reached in the early universe [8].

An interesting possibility was suggested by Langacker and Pi [14] in 1980, who re-
alised that when the GUT symmetry group is broken down to the standard model
gauge group in several stages the monopole density could be reduced through the
formation of cosmic strings (for more on those, see [8,12,20] or the paper by Maarten
Verdult). The GUT symmetry could for instance be broken in the pattern

GGUT → SU(3)× SU(2)×U(1)→ SU(3)→ SU(3)×U(1)em. (3.10)

After the second phase transition, the monopoles and anti-monopoles that were cre-
ated during the first phase transition would get connected by strings. This causes the
monopoles and anti-monopoles to be pulled together by the string’s tension, making
the pair-annihilation process a lot more efficient and reducing the monopole density
to about one monopole per horizon. During the third phase transition the electro-
magnetic U(1) symmetry group is restored and any remaining strings disappear.

By far the most satisfying solution to the monopole problem is inflation, which was in
fact in part motivated by the monopole problem (along with the horizon and flatness
problem) [8, 12, 21]. If monopoles are produced before or in the early stages of
inflation they are diluted along with all other matter up to the point where they
become entirely unobservable and there might not even be a single monopole in the
currently observable universe. If the temperature after inflation due to preheating is
high enough, monopoles could still be produced through thermal fluctuations. This
would typically result in a very low monopole density, but according to some models
it could be high enough to make them potentially detectable [12,22].

3.4 An example of a ’t Hooft-Polyakov monopole

In the previous section we have argued why any Grand Unified Theory that embeds
a gauge group containing U(1)em in a semisimple compact gauge group allows for
the existence of magnetic monopoles. This was actually first realised in 1974 by
’t Hooft [23] and Polyakov [24], which is why magnetic monopoles that occur through
this argument are often called ’t Hooft-Polyakov monopoles. These monopoles are
fundamentally different from the Dirac monopole discussed before because they are
non-singular and all fields involved are globally defined. Instead of a singularity
they have a core in which the broken symmetry is restored, but outside this core the
’t Hooft-Polyakov and the Dirac monopole turn out to look very similar. In this section
we will discuss an example of a ’t Hooft-Polyakov monopole and we will explicitly see
why it is magnetic.

At the time when ’t Hooft and Polyakov published their findings, it was not yet es-
tablished that the SU(2) × U(1) mechanism for the electroweak symmetry breaking,
which is incorporated in the standard model, was the right way to go. One appealing
competitor was was the Georgi-Glashow SU(2) model. This model [13] embeds the
electromagnetic gauge group U(1)em in the compact, simple Lie group SU(2) (instead
of SU(2)Iw×U(1)em). It has a three-dimensional Higgs field that transforms via the ad-
joint representation of SU(2) (instead of a two dimensional complex Higgs field) and
after symmetry breaking only a photon field and two massive, electrically charged,
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gauge bosons appear (contradicting the later observation of weak neutral current in-
teractions). Since SU(2) is a simple compact Lie group, it has a trivial first and second
homotopy group and magnetic monopoles are therefore expected to appear if this
original SU(2) symmetry is broken to U(1).

The Lie algebra corresponding to the Lie group SU(2) is su(2). This Lie algebra is
generated by the complex 2×2-matrices ta = τa/2 for a = 1, 2, 3, where τ1, τ2, τ3 are
the three Pauli matrices, so we can write any element g ∈ SU(2) as g = exp(igata)
for some coefficients ga. This choice of generators means that the commutator of two
of these generators is given by [ta, tb] = i εabctc. We furthermore have 2 Tr(tatb) =
2 Tr(τaτ b) = δab, so twice the trace defines an inner product on su(2) with respect to
which the generators ti are orthonormal. It is furthermore useful to note that each of
the generators ta separately generate a subgroup of SU(2) that is isomorphic to U(1).

Apart from this group, the model has the following ingredients:

- A 3 dimensional scalar Higgs field Φ = Φata that takes values in the Lie algebra
su(2). The Higgs field Φ transforms via the adjoint representation of SU(2), so a
group element g(xµ) ∈ SU(2) sends Φ(xµ) to g(xµ) ·Φ(xµ) · g(xµ)−1, where the
multiplication is just matrix multiplication. For an infinitesimal transformation
by iξ(xµ) = iξa(xµ)ta this reads Φ(xµ) 7→ Φ(xµ) + [iξ(xµ),Φ(xµ)].
We will write |Φ|2 ≡ 2 Tr(Φ2) = (Φ1)2 + (Φ2)2 + (Φ3)2, which can easily be
verified to be gauge invariant.

- A gauge field Aµ = Aaµt
a that also takes values in su(2) and couples to the Higgs

field via the covariant derivative DµΦ = ∂µΦ + i e [A,Φ]. This field transforms
under gauge transformations in such a way that DνΦ transforms the same way
as Φ does. This tells us that |DµΦ|2 ≡ 2 Tr(DµΦDµΦ) = DµΦaDµΦa is also
gauge invariant.

- This defines the field-strength tensor Fµν = [Dµ, Dν ]/(i e) = ∂µAν − ∂νAµ +
i e [Aµ, Aν ], which is an element of su(2) and can be written as Fµν = F aµνt

a

as with Aµ. Due to the orthonormality of ta with respect to twice the trace,
we have 2 Tr(FµνFµν) = F aµνF

aµν , which turns out to be a gaugeinvariant
expression.

- A (Mexican hat) potential V (Φ) given by V (Φ) = 1
4λ(η2 − |Φ|2), that takes the

minimal value zero on the vacuum manifoldM = S2 ⊆ su(2).

In addition to these fields, we would also need some number of fermionic fields to
describe our world, but we will ignore these for the moment as they are not important
for the symmetry breaking. With the fields that we have, we can write down the
following gauge invariant Lagrangian density, which determines the dynamics of the
Georgi-Glashow SU(2) model

L = −Tr(DµΦaDµΦa)− 1
4F

a
µνF

aµν − 1
4λ(η2 − |Φ|2)2, (3.11)

where |Φ|2 := 2 Tr(Φ2) = (Φ1)2 + (Φ2)2 + (Φ3)2. This gives us the following field
equations [9]

DµD
µΦ = −λ (η2 − |Φ|2) Φ and DµF

µν = −i e [DνΦ,Φ]. (3.12)

By expanding the Higgs field Φ = (η + φ) t3 around the vacuum solution Φ = η t3

and writing Aµ = W 1
µt

1 +W 2
µt

2 + aµt
3, it is possible to read off the masses of all the
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particles that appear. Since this is not what we are interested in, I will not do this
here, but just state that the Higgs particle attains a mass

√
2λ η, that there are two W

bosons particles (there are no Z-bosons in this theory) with mass 2 η and a massless
photon [9,13].

Since the original symmetry was described by SU(2), which is a (semi)simple Lie
group, and the remaining symmetry after symmetry breaking is U(1), we know from
sections 1.1 and 3.2 that π2(M) = π1(U(1)) = Z. This is indeed the case as M is a
2-sphere in su(2) and π2(S2) = Z, so monopole solutions should indeed exist.

3.4.1 The static monopole solution

A static solution representing a pure magnetic monopole was found by ’t Hooft [23]
and Polyakov [24]. The solution is described by fields Φ and Aµ (which are time-
independent) of the form

Φ = η h(r)
xa

r
ta, A0 = 0 and Ai = −1

e (1− k(r)) εija
xj

r2
ta, (3.13)

where h and k are functions of the distance r =
√
Xixi to the origin [6, 9]. These

fields are rotationally symmetric in the sense that a rotation has the same effect as a
global (i.e. coordinate independent) gauge transformation [9].

We of course need h(0) = 0 and k(0) = 1 to avoid getting a singularity at the origin.
To make sure that the total energy is finite (see section 2.2) we furthermore demand
that limr→∞ h(r) = 1 and limr→∞ k(r) = 0. An important question is of course
whether such a solution defines a monopole and this turns out to be the case. To
see this we note that Φ points outwards radially and that |Φ| → η as r → ∞, so the
asymptotic function Φ∞ : S2 →M (as defined in section 2.2) sends a point x̂ on the
unit sphere to η x̂ ∈M = η S2. Since the 2-sphere is not contractible, it is easily seen
that there exists no continuous deformation of Φ∞ that maps S2 into a single point,
so Φ defines a monopole solution.

Unfortunately the field equations cannot be solved analytically, even for solutions
of this form, so numerical methods need to be used to find the functions h and k.
In terms of the dimensionless parameter s = 1

2η e r, the field equations (3.12) for
solutions of this form reduce to (N.B. in our units e2 = 4π α, where α ' 1

137)

d2h

ds2
+

2
s

dh
ds

=
2
s2
k2h− 4 e−2λ (1− h2)h, (3.14)

d2k

ds2
=

1
s2

(k2 − 1) k + h2k. (3.15)

A few solutions to these equations for different values of e−2λ have been plotted in
figure 3.2. What is most important to note about these solutions is that both h and
k converge exponentially to their asymptotic values (1 and 0 respectively) as r →∞.
For r � (η e)−1 the fields Φ and Ai therefore look approximately like

Φ ' η x
a

r
ta, A0 = 0 and Ai ' −εijk x

j

e r2
ta, (3.16)

but for r . (η e)−1 their behaviour is more complicated. The region where r . (η e)−1

is called the core of the monopole.
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−→
k
(s

)

−→
h
(s

)

−→ s = η e r/2

Figure 3.2: Solutions h(s) (going up) and k(s) (going down) to the field equa-
tions (3.14) for λ→ 0 (solid), λ = e2/40 (dashed) and λ = e2/4 (dotted).
This figure originally appeared in [9].

3.4.2 Properties of the solution

For these solutions the mass (total energy with respect to the groundstate) of the
monopole solution can be calculated by integration of the energy density obtained
from the Lagrangian. The resulting mass for several values of e−2λ has been plotted
in figure 3.3. We see that for very large values of λ the energy asymptotically goes to
about 1.787 × 8π η/e2 and that it goes to 8π η/e2 for very small values of λ [9, 25].
These two extremes are not very far apart, so we can safely say that it is of order
8π η/e2 for any value of λ.

−→
E
e
2

8
π
η

−→
E
e
2

8
π
η

−→ 4λ/e2 −→ 4λ/e2

Figure 3.3: The dependence of the mass of the monopole solution on λ. The parame-
ter 4λ/e2 has been plotted on the horizontal axis and on the vertical axis
we see E e2/(8π η). This figure originally appeared in [9].

Although it does seem likely, it has not been proven that the energy of the solution
described above is a minimum for all solutions in its class except in the limit for
λ → 0 [9]. It has however been shown numerically that small deformations of this
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solution increase its energy [26], so in that sense we are certain that we are dealing
with a stable solution.

It is not immediately obvious why this solution should describe a magnetic monopole,
because for that we first need to define exactly what we even mean by electromag-
netism in this situation. Luckily, there is a relatively easy way to do this. At any point
in space-time, there is a preferential direction for the fields taking values in the Lie
algebra su(2) which is set by the direction in which Φ points, so we can define the
new field-strength tensor fµν to be the part of Fµν pointing in this direction, so

fµν ≡ 2
|Φ| Tr(FµνΦ) = F aµν

Φa

|Φ| . (3.17)

Under a gauge transformation defined through g(xµ), Φ transforms to gΦg−1 and Fµν
transforms to gFµνg−1, so both Tr(FµνΦ) and |Φ| = √2 Tr(Φ2) are invariant and fµν
is therefore gauge-invariant as well.

It is not possible to globally impose the unitary gauge5 because the configuration
of Φ is non-trivial. We can however locally choose the unitary gauge on any con-
tractible region that does not contain the origin, so we can do it simultaneously
do this everywhere except in the origin and a line (string) from the origin to in-
finity. If we write Φ = (η + φ)t3 (possible by definition of the unitary gauge) and
Aµ = W 1

µt
1 +W 2

µt
2 + aνt

3, then we see that outside the core (for r � (η e))

Fµν ' fµνt3, Aµν ' aµt3 and fµν ' ∂µaν − ∂νaµ (3.18)

and that the field equations for Fµν furthermore reduce to ∂µf
µν ' 0. Outside the

core we thus get the usual field strength tensor in terms of the photon field aµ, satis-
fying the usual field equations.

We can define the magnetic field Bi as we would usually do, but now in terms of
this new field-strength tensor, to be given by Bi = − 1

2εijkfjk. If we do this for the
monopole solution we see that outside the core of the monopole (so for r � (η e)−1)
the magnetic field is approximately given by

Bi = − 1
2εijkfjk ' −

1
e

xi

r3
, so B ' − r̂

e r2
, (3.19)

which we recognise as the magnetic field of a Dirac monopole with a magnetic charge
of −4π/e, which is twice the Dirac charge (up to a sign).

A monopole with the opposite charge can be obtained by reflecting this solution
through the origin (xi 7→ −xi) or by changing the sign in front of the Higgs field
(Φ 7→ −Φ). This solution also has the opposite topological charge (it corresponds to
the inverse element of π2(M)) and thus describes the so-called anti-monopole. In
addition to this stable (stable against small perturbations) monopole solutions have
been found that carry an electric charge in addition to a magnetic charge. These
states are generally periodic instead of static and they have a higher energy, so in
that sense they are excitations of the ordinary monopole state. Monopoles with an
additional electric charge are called Dyons [9].

5The unitary gauge is the gauge in which Φ has been forced into the form Φ = (η + φ)t3, which is what
we did before when we expanded around the vacuum.
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Since fij is defined independently from any gauge, the magnetic field is also gauge-
independent and it is well-defined everywhere (except for the origin). The photon
field aµ on the other hand is gauge dependent and cannot be simultaneously defined
on the entire space, exactly like in the case of the Dirac monopole. We now see that at
long range this solution exactly describes a Dirac monopole, but with the singularity
now replaced by a non-singular core.

The field-strength tensor fµν determines the magnetic field, but the choice we made
for it was not entirely unique. Instead of the choice we made in equation (3.17),
’t Hooft [23] suggested the following definition for the electromagnetic gauge field

fµν =
1
|Φ|Φ

1F aµν +
1

e |Φ|3 εabcΦ
a(DµΦb)(DνΦc). (3.20)

If we now choose the unitary gauge (locally), write Φ = (η + φ)t3 and Aµ = W 1
µt

1 +
W 2
µt

2 + aµt
3, then the equations

fµν = ∂µaν − ∂νaµ and ∂µf
µν = 0 (3.21)

become exact and hold everywhere except in the origin [23], making this an attractive
choice. Inside the core the magnetic field would look completely different, but outside
the core, the magnetic field for the Dirac monopole is again obtained. We see that
different choices are possible for the electromagnetic field strength tensor that give
rise to different electromagnetic fields in the core, but outside the core the Dirac
monopole is always retrieved [7, 12]. The total magnetic charge of the monopole is
therefore well-defined and we know that this charge is necessarily located somewhere
in the core of the monopole, but exactly how it is distributed depends on the choice
made for the field strength fµν .
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Many people feel that magnetic monopoles should exist and an enormous amount of
theoretical work has been done to derive their behaviour and their properties, but the
fact of the matter is that not a single shred of evidence of their existence has been to
confirm or hint at their existence. Even long before it was realised that GUT theories
predicted the existence of monopoles, people have been searching for them in earth-
bound materials, moon rocks and meteorites, as well as among the by-products of
high-energy collisions in particle accelerators, with only negative results [27,28].

Upper bounds for the possible monopole abundance can however be obtained by
cosmological and astrophysical considerations. Furthermore, since many people have
searched for monopoles in cosmic radiation in earth-bound experiments and none
have yet been found, further bounds can be put on the scarcity of monopole, which
will be the subject of this chapter.

4.1 The overclosure bound

A simple bound on the magnetic monopole density follows from the fact that we re-
quire the current magnetic monopole mass density to be smaller than the (observed)
Critical density of the universe [12, 29, 30]. This simply follows from the Friedmann
equation [18,19]

H2
0 = 8

3 πGNρ− k

a2
, (4.1)

which holds if we assume energy to be distributed roughly uniformly throughout the
Universe. Here H0 ∼ 73 km/s/Mpc is the value of the Hubble parameter today [18]
and GN is Newton’s constant. The parameters ρ and k are the total energy density of
the Universe and the observed curvature of the universe. This can be rewritten as

ρ = ρcr + k/H2
0 , with ρcr =

3H2
0

8πGN
' 5.6× 10−6 GeV/cm3, (4.2)

where ρcr is the aforementioned critical density [12, 30, 19]. Since the cosmological
constant is expected to give a positive contribution [31] and the universe is observed
to be approximately flat [18, 21] this gives us an upper bound for the contribution
of magnetic monopoles to the total energy density of the Universe. This is called the
overclosure bound a larger energy density would necessarily imply that the curvature
parameter k is large, which would result in a (“very”) closed universe [18,19].
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Because magnetic monopoles are expected to be extremely heavy (masses of the order
of 1017 GeV) they will move very slowly, with velocities of the order of 10−20 c [32]
if left alone. Nearby monopoles will however have been accelerated to velocities of
around 10−3c by the gravitational pull of the Galaxy (this is the escape velocity of
our Galaxy) [12, 33, 34] and relatively light monopoles can be accelerated further
by the Galaxy’s magnetic field (see section 4.2 for details). This means that mag-
netic monopoles are generally non-relativistic, so we obtain an upper bound for their
number density, which is [12,30]

nMM . 10−22(mMM/1017 GeV)−1 cm−3, (4.3)

where mMM is the monopole mass (in GeV). This density is 13 orders of magnitude
below the number density calculated in section 3.3.1, which further explains why that
prediction was unacceptable.

We would like to give this bound as a bound on the flux of monopoles instead of
a density because the flux is something we can actually hope to measure. The flux
of monopoles is given by F ' β nMM, where β is the monopole speed as a fraction
of the speed of light. With our previous estimate that β ∼ 10−3c we obtain the
bound [28,12]

F < Funiform ∼ 10−12(m/1017 GeV) cm−2s−1sr−1. (4.4)

This upper bound was obtained by assuming a uniform distribution of monopoles
throughout the Universe, which is why it is labelled the uniform bound in figure 4.3
on page 34.

4.2 The Parker bound

Another bound for the magnetic monopole flux that is widely accepted is the so-
called Parker bound [12, 33, 34, 35]. Our Galaxy has a magnetic field of about about
∼ 3 µG = 1.2 × 10−9 T due to a Dynamo effect by which the rotation of the galaxy
induces tiny currents. Unlike the Earth’s magnetic field, this field is distributed more
or less randomly and varies over distance of the order of 1021 cm ∼ 300 pc [12, 29].
The dynamo effect generating these fields is not completely understood, but it is
believed to be able to renew these currents over a typical timescale of about 108 yrs,
which is about the galactic rotation period.

A magnetic monopole with negligible velocity travelling through a domain in which
the magnetic fields points in some direction (over a distance of ∼ 300 pc) is accel-
erated to a velocity of roughly vmag ' 10−3(m/1017 GeV)−1/2 [32, 12], which corre-
sponds to an energy gain of ∆E ' 1011GeV [32]. For monopoles with a mass less
than 1017 GeV this velocity is larger than their initial velocity, so the monopoles are
more or less swept along by the magnetic fields, either gaining or losing this energy
when they pass through a domain. Since their kinetic energy cannot become negative
this looks like a random walk and after passing through N domains the kinetic energy
will be roughly

√
N ∆E [32].

A more detailed analysis [33,32] for monopoles passing through the Galaxy gives us
an estimate for the rate at which the Galactic magnetic field is dissipated. Since this

28 Arjen Baarsma
(0433764)



4.3. DIRECT MONOPOLE DETECTION

should be smaller than the renewal rate of 108 yrs the following upper bound for the
monopole flux is obtained [32,33,12]

F < FParker,< 1017 GeV ∼ 10−15 cm−2s−1sr−1. (4.5)

For heavy monopoles with a mass greater than 1017 GeV the analysis becomes com-
pletely different since the monopole velocity will then not be significantly influenced
by the magnetic fields and they will mainly get deflected. The monopoles will still
gain energy overall while travelling through the Galaxy because they are acceler-
ated in directions transverse to their original velocity while travelling through a
domain [12, 32]. This gives the higher, mass dependent limit for the monopole
flux [12,32,34]

F < FParker,> 1017 GeV ∼ 10−15(m/1017 GeV) cm−2s−1sr−1. (4.6)

This bound was later improved and the new bound by taking many new factors into
account [35,36]. This new bound is called the Extended Parker bound and is given by

F < FParker, Extended ∼ 10−16(m/1017 GeV) cm−2s−1sr−1. (4.7)

Both the normal Parker bound and this extended Parker bound are shown in figure 4.3
on page 34 from which we see that the Parker bounds are an improvement on the
overclosure bound only for masses below 1017 GeV.

4.3 Direct monopole detection

Detection methods for magnetic monopoles can be classified into three categories:
Induction, Energy loss and Catalysis techniques. In the remainder of this section I will
describe each these techniques in some detail and discuss their (negative) results.

4.3.1 Induction techniques

Whenever a magnetic monopole passes through a closed loop of superconducting
wire, something special happens. To see exactly what happens we can use Maxwell’s
equations, extended to include the magnetic charge and current. The relevant ex-
tended Maxwell equation reads

∇×E = −∂B
∂t
− jm, or equivalently

∫
∂S

E · dr = −∂Φm

∂t
− Im, (4.8)

where E and B are the electric and magnetic field respectively and jm is the magnetic
current density. In the integrated version of the equation the integral is over the
boundary ∂S of an arbitrary some surface S and Φm and Im are the magnetic flux and
total magnetic current through this surface.

Inside the superconducting wire E = 0, so the left-hand side of the integrated Maxwell
equation vanishes completely if we choose the surface S in such a way that ∂S is en-
tirely contained in the wire. The resulting equation, ∂

∂tΦm = −Im, tells us that when
a magnetic monopole with magnetic charge g passes through the loop, the total mag-
netic flux through the loop also changes, by ∆Φ = −g. For a monopole with the Dirac
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charge g = gD = 2π/e the total flux change is ∆Φ = −2 Φm,0, where Φm,0 = π/e is
the magnetic flux quantum.

340 D. E. Groom, In search ofthe supermassive magnetic monopole

ji~

Fig. 3. Field line behavior as a monopole goes througha superconducting loop. Although lines never “cut” the conductor, they distort and then pinch
off (see inset), resulting in radial lines from the monopole after it goes through the loop, as well as those due to the induced current in the loop.

also produce no induced current. More complicated loop structures can be constructed, in two or three

dimensions to eliminate flux change sensitivity to as high an order as desired. For example, the planar

gradiometer shown in fig. 5(b) is insensitive through third derivative changes in the plane of the paper.

Given reasonably good magnetic shielding, no special field reduction techniques are required.*

Motivated primarily by the desire to reduce sensitivity to the vortex currents deposited on the

enclosure walls, the University of Chicago—Fermilab—Michigan group arrived at quite similar structures

[77,78]. Their argument was that if the larger loop could be twisted and deformed into a number of

smaller loops with alternating current flow directions, just as is shown for four loops in fig. 5, then the flux

from eddy vortices would induce cancelling e.m.f.’s in adjacent cells if the cell size were small compared
with the distance to the shield. The first such “macramés” were literally woven. They were later plated

onto G-10, using solder as the superconductor. The boards were two-sided, with plated-through holes to

connect loops in the appropriate sense. A nine-loop example of such a macrame is shown in fig. 6(a). It,

like the gradiometer coil shown in fig. 5, can be deformed back into a single loop if several twists out of
the plane are made.

However, there is no reason not to run several loops in parallel. As the simplest example, consider a

square loop with the SQUID connected across a diagonal. The diagonal connection may be deformed to

* Henry Frisch has pointed out that Ampere invented the device in 1820. to reduce the effect of the earth’s fields in his experiments [76].

Figure 4.1: Bending and breaking of magnetic lines as a monopole passes through a
loop of superconducting wire. This figure originally appeared in [32].

What happens has been depicted in figure 4.1: Because the magnetic field lines of a
monopole cannot pass through the superconducting wire, they will bend around the
wire loop as the monopole approaches it. Once the monopole has gone through, its
total magnetic flux will therefore pass back through the loop, causing the aforemen-
tioned magnetic flux. The field lines will break where the magnetic field vanishes and
form loops around the wire as the monopole moves away from it [32,6].

An electric supercurrent, Iind = g/L,where L is the inductance of the loop, is in
fact induced in this process through the Meissner-effect [37]. If the superconducting
loop is shielded from external magnetic fields, then the jump in the magnetic flux
through the loop (and the supercurrent) whenever a monopole passes through it
should be measurable using a SQUID (superconducting quantum interference device)
magnetometer.

Experiments with pseudopoles, which are the poles of very long magnetic dipoles
(such as electromagnets), show that it should be possible to detect the current in-
duced by a monopole with the Dirac charge with such a set-up. In 1982 a candidate
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4.3. DIRECT MONOPOLE DETECTION

events of a magnetic monopole passing through such a superconducting loop was
discovered [38], but this result is controversial as no one has been able to reproduce
it [37].

An advantage of this approach is that the measurement of a magnetic monopole (or
dyon) depends only on its magnetic charge and not on its mass, velocity, its possible
electric charge or any other properties. Unfortunately however, building large arrays
of such detectors and shielding them properly would be very difficult and expensive
and the combination of all experiments based on induction techniques have only been
able to provide us with an upper bound of about 2× 10−14 cm−2s−1sr−1 for the total
monopole flux [29]1 at the 90% confidence level [28, 27], which is well above (i.e.
weaker than) the original Parker bound of ∼ 10−15 cm−2s−1sr−1 and the overclosure
bound for any monopole mass.

4.3.2 Energy loss techniques

Since magnetic monopoles carry a magnetic charge, it makes sense to expect them
to interact with matter through electromagnetism and slow down. Monopoles trav-
elling through matter are indeed expected to lose energy through interactions and
this can happen through a variety of mechanisms. Which mechanism is most dom-
inant depends on the nature of the matter they travel through and is also strongly
dependent on the monopole velocity [32, 39]. The exact mechanisms for this energy
loss is quite complicated, but has been thoroughly reviewed in [32,29]. Although the
energy loss of GUT monopoles is very significant (of the order of ∼ 100 MeV/cm),
the kinetic energy of a magnetic monopole is large enough (even at non-relativistic
velocities) to nevertheless make them very penetrating. Larger and more dense as-
trophysical objects on the other hand can capture a significant number of magnetic
monopoles [29,32,36].

A number of results that have been obtained through energy loss techniques have
been shown in figure 4.2. Most notably among these are the results from the MACRO
detector, which is a large multipurpose detector that was mainly designed to detect
(the absence of) magnetic monopoles travelling through the earth both through the
energy loss mechanisms described here and through catalysed nucleon decay, which
is described in section 4.3.3 (for more details see [32, 40, 41]). None of these exper-
iments have resulted in the detection of even a single monopole, which tells us that
the flux of magnetic monopoles with a velocity above 4×10−5c is bounded by [28,41]

F < 1.4× 10−16 cm−2s−1sr−1, (4.9)

which is well below the original Parker bound, as can be seen in figure 4.2.

4.3.3 Catalysis techniques

Inside the core a Grand Unified monopole, the original GUT symmetry is restored,
which means that in the vicinity of a monopole processes can occur that are otherwise
impossible in the standard model. We could say that the monopole catalyses these

1sr stands for steradian and is a unit of solid angle. 4π sr corresponds to an entire sphere.
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Flux upper Limits (10−16 cm2 s−1 sr−1)
β range CR39 WFD Stream. H Stream. V PHRASE Stream.+scint. Global

(4.0÷ 10.0) × 10−5 3.1÷ 2.1 3.1÷ 2.1
(1.0÷ 1.1) × 10−4 2.8 2.7 1.6
(1.1÷ 2.6) × 10−4 2.2÷ 7.5 2.5 2.8 7.9 1.3÷ 1.5
(2.6÷ 12.0) × 10−4 2.5 2.8 7.9 1.6
(1.2÷ 1.9) × 10−3 2.5÷2.6 2.8 7.9 2.2 1.4
(1.9÷ 3.0) × 10−3 7.5÷ 3.9 2.6÷2.9 2.8 7.9 2.2 1.3
(3.0÷ 4.1) × 10−3 3.9÷ 3.1 2.9÷3.1 2.8 7.9 2.2 1.6
(4.1÷ 5.0) × 10−3 3.1÷ 2.8 2.8 2.2 5.5 1.6÷ 1.66
5.0 × 10−3 ÷ 0.1 2.8÷ 1.5 2.2 5.5 1.8÷ 1.5

0.1÷ 1.0 1.5 5.5 1.4

Table 1. The 90% C.L. flux upper limits (in units of 10−16 cm−2 s−1 sr−1) as a function of β for an isotropic flux of g = gD

magnetic monopoles with m ≥ 1017 GeV/c2. The limits discussed in Section 2 are given in columns two to six; the global
MACRO limit discussed in Section 3 is given in the last column.

both the temporal independence as well as the spatial
(geometric) independence versus the dominant analysis.
The temporal independence is determined by comparing
the “time efficiencies” εt

i of the analyses, defined as the
ratios of each analyses live time to the covered solar
time. If εt

2 > εt
1, the coefficient representing the temporal

independence of “2” versus “1” is ct
2,1 = εt

2−εt
1; otherwise,

ct
2,1 = 0. In the case of the track-etch subdetector, there

is no dead-time, so its temporal efficiency is equal to 1.
The coefficient representing the geometric independence of
analysis “2” versus “1”, cs

2,1, originates from the difference
between the acceptances of the analyses. It is obtained by
Monte Carlo simulations, assuming an incoming isotropic
flux of magnetic monopoles with respect to subdetector
“2”: cs

2,1 = (N2 − N1,2)/N2, where N2 and N1,2 are
the number of MMs detected by “2” and both analyses,
respectively.

The global time integrated acceptance is then:
AG = A1 + ct

2,1A2 + (1− ct
2,1)c

s
2,1A2

The global 90% C.L. limit for the flux of magnetic
monopoles is ΦG = 2.3/AG.

The algorithm used to combine the actual MACRO
limits is more complicated than the example above.
For each analysis we took into consideration its actual
history, eliminating the longer periods of time in which
it was eventually missing, and the changes in the detector
configuration (super-modules involved). Those corrections
were more critical in the case of earlier analyses, that
were carried on during the construction of the MACRO
detector and during initial tests; note that limits obtained
by such older searches are not presented in Fig. 8 and in
Tab.1, as they are considerably higher than the included
ones, but they have still their imprint on the global limit.

In Fig. 9 we present the global MACRO limit; for
comparison, the flux limits from other experiments which
searched for magnetic monopoles with similar properties,
are also shown [31]. In the figure the arrow indicates the
Extended Parker Bound (EPB) at the level of 1.2× 10−16

(m/1017) cm−2s−1sr−1, which was obtained by consider-

Fig. 9. The global MACRO limit for an isotropic flux of bare
magnetic monopoles, with m ≥ 1017 GeV/c2, g = gD and
σcat < few mb. For comparison, we present also the flux limits
from other experiments [31].

ing the survival probability of a magnetic monopole of
mass m in an early magnetic seed field [32].

4 Discussion

Our analysis applies to an isotropic flux of bare MMs with
charge g = gD=e/2α and nucleon decay catalysis cross
sections smaller than 1 mb [1].

The magnetic monopole flux at the detector site
is isotropic if magnetic monopoles have enough kinetic

Figure 4.2: The result of the MACRO energy loss experiments and several others. The
Parker bound has been indicated, as well as the extended Parker bound
(EPB) for monopoles with a mass of 1017 GeV. Bounds on the monopole
flux as a function of the monopole mass for white dwarfs and neutron
stars. The curved lines are the corrected results for g = gD(solid) and
g = 2 gD (dotted). The Parker bound and the extended Parker bound
have been shown, as well as the (uniform) overclosure bound. This figure
originally appeared in [36].

processes. A process of particular interest is the Catalysed decay of nucleons via the
Rubakov-Callan mechanism, where a nucleon decays into a positively charged lepton
and a meson. The most relevant contributions can be written schematically as [30,40]

M + p→M + e+π0, M + p→M + µ+K0,

M + n→M + e+π−, and M + n→M + µ+K−.

The cross section for such interactions was initially believed to be of approximately
the order of 10−56 cm2, but Rubakov [42] and Callan [43] have shown that the cross
section can in fact be much greater, namely comparable to the size of the nucleons.

The catalysis cross section is believed to roughly be of the form σ = σ0/β, with σ0 some
parameter of the order ∼ 10−28 cm2 and β the monopole velocity as a fraction of the
speed of light [30, 40, 42, 43].The exact cross section is not known, only its order
of magnitude, but the possibility that it is much smaller than this is not excluded.
Under the assumption that these cross sections are indeed “large” (of the order ∼
10−27 cm2 or larger), it becomes possible to detect a monopole travelling through
some materials. A monopole would cause one nucleon to decay for every few meters
or even every few centimeters it travels through ordinary matter depending on the
monopole velocity, the exact cross section and the material used.

Since a lot of energy is released in these processes (for decay into positrons around the
rest mass of the nucleon, so∼ 1 GeV) a magnetic monopole travelling through matter
should be observable through the nucelon decay it induces under the assumption
that the aforementioned cross section is indeed large. There have therefore been
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Experiment Technique Flux limit β range
Soudan1 Proportional tubes F < 8.8× 10−14 10−2 . β . 1

IMB Water Cherenkov F < (1− 3)× 10−15 10−5 . β . 10−1

Kamiokande Water Cherenkov F < 2.5× 10−15 5× 10−5 . β . 10−3

Baikal Underwater detector F < 6× 10−17 v ' 10−5

MACRO Streamer tubes F < 3× 10−16 1.1× 10−4 . β . 5× 10−5

Table 4.1: Flux limits obtained by studying catalysed nucleon decay. The flux limits
are in cm−2s−1sr−1. This table originally appeared in [40]

numerous attempts to detect magnetic monopoles by looking at catalysed nucleon
decay with detectors that specialise on different velocity ranges, but no catalysed
nucleon decay has yet been observed [28]. Table 4.1 shows a number of flux limits
that have been obtained in this way [40], although it should again be noted that
they are only valid under the assumption that the aforementioned cross section is not
negligible. All these bounds are roughly of the same order as the bound obtained
from energy loss experiments and the extended Parker bound.

4.4 Observations from astrophysical objects

It is also possible to obtain upper bounds for the monopole flux, under the assump-
tion of a large nucleon decay catalysis cross section, by looking at astrophysical ob-
jects (such as white dwarfs, neutron stars or large stars) [28,36,44]. The idea is that
monopoles travelling through such objects can lose so much energy that they are cap-
tured by the object and will start to continually catalyse the decay of nucleons. Since
energy is released in the processes described above, this should heat up the objects
and thereby increase their luminosity. As more and more monopoles are captured
as time progresses, monopoles could eventually become the main source of luminos-
ity [36]. By comparing the observed luminosity of such objects with the luminosity
they would have if they had been exposed to a certain monopole flux throughout their
existence, further bounds can be put on the total monopole flux (monopoles are not
needed to explain the luminosity of astrophysical objects, so only an upper bound is
obtained).

The strongest bounds are obtained for objects that by themselves have a low lumi-
nosity, like neutron stars and white dwarfs. It has been shown that a white dwarfs
and neutron stars capture almost all monopoles (with a mass below 1020 GeV) that
hit them. The total number of monopoles in such an object will therefore be approxi-
mately given by 4π F Aτ , where 4π F is the total monopole flux (from all directions),
A = 4π R2(1 + (2GM)/Rβ2)) is the capture area (G is Newton’s constant, and M
and R are the mass and radius of the object) of the object and τ is the age of the
object. It should be noted that annihilation of monopole anti-monopole pairs has not
been taken into account because even after monopoles sink to the core of the object
their density will not become high enough for annihilation to become effective [36].

These indirect searches based on astrophysical objects provide the lowest bounds
for the monopole flux, but as with the earth-bound experiments these bounds are
only meaningful under the assumption that the catalysis cross section is indeed large.
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WD 1136-286. Then from measurements of the luminosity

and Te f f , Eq. !6" implies that the radius is R#3.9
!108 cm.
We also use two different cooling models. First we use

the white dwarf cooling theory from the calculations of Se-

gretain et al. $19%, as communicated by Chabrier. The Seg-
retain et al. $19% model accounts for gravitational energy re-
lease due to carbon-oxygen differentiation at crystallization.

This treatment of crystallization yields significantly longer

white dwarf cooling times, which in turn imply an older age

for any particular white dwarf. These white dwarf models

correspond to a mass sequence of initially unstratified white

dwarfs composed of equal parts carbon and oxygen, with

helium atmospheres. With these models, the age of white

dwarf 1136-286 is 9.63 Gyr. For comparison we also use the

cooling curves of Wood $20% which do not include chemical
fractionation. Chemical fractionation provides an additional

source of energy to be radiated away; thus models that lack it

cool faster. With the Wood cooling models, the ages of white

dwarfs are somewhat younger. Hence these models give

younger white dwarfs that accumulate somewhat fewer

monopoles and provide somewhat less restrictive bounds.

With the Wood cooling curve, the age of white dwarf 1136-

286 is 6.47 Gyr. To illustrate the uncertainty we provide flux

bounds using both possible ages, but note that the discrep-

ancy is not very great.

The cooling models discussed above do not yet have an

additional heat source due to monopoles. If white dwarfs

have indeed been accumulating monopoles, then the mono-

pole contribution to the luminosity increases linearly in time,

and monopole catalyzed nucleon decay will eventually be-

come the dominant source of luminosity. Since white dwarf

WD 1136-286 with luminosity 10"4.94L! has been observed

to exist, we know that the monopole-induced contribution to

the white dwarf luminosity cannot exceed this value, i.e.,

Lmon#10
"4.94L! . Using the mass and radius discussed pre-

viously for this white dwarf, we then find from Eqs. !3"–!5"
that

NM&2.2!1019!'(""28
"1 s"2

"1 . !7"

With the cooling curves of Segretain et al., which include

the effects of chemical fractionation, the age for this particu-

lar white dwarf WD 1136-286 is given to be 9.63 Gyr as

mentioned above. We find a flux bound

F&1.3!10"20!'(""28
"1 s"2

"1("3
2 cm"2 s"1 sr"1. !8"

The factor of 160 improvement over previous white dwarf

bounds comes from the following: a factor of ten comes

from the fact that the white dwarf is an order of magnitude

dimmer, a factor of four comes from the bigger white dwarf

mass, and a factor of four from the smaller radius than the

white dwarfs used in $14%.
With the Wood $20% cooling curves, the age of the white

dwarf is 6.47 Gyr as mentioned above. Then Eq. !6" corre-
sponds to a flux bound

F&1.9!10"20!'(""28
"1 s"2

"1("3
2 cm"2 s"1 sr"1. !9"

This bound using the Wood cooling curves is less restric-

tive than the one obtained using the Segretain et al. cooling

curves. Hence, to be conservative, in Fig. 1 we plot the flux

bound of Eq. !9". Note that the monopole velocities far from
the white dwarf have been determined as a function of

monopole mass by the following equation: (M#3
!10"3c(1016 GeV/m)1/2 for monopole mass m#1017 GeV
and (M#10"3c for monopoles with mass greater or equal to

1017 GeV $8%. Thus the flux bound is flat for monopole
masses greater than 1017 GeV and drops as m"1 for smaller

masses. This behavior can be seen in Fig. 1.

If the monopole flux saturates the bound in Eqs. !8" and
!9", the heat release due to monopole-catalyzed nucleon de-
cay would explain the dearth of white dwarfs with luminos-

ity &10"5L! . That is, monopoles may be keeping white

dwarfs hot. Note that the white dwarf luminosity due to

monopole catalyzed nucleon decay scales as Lmon
)*10M 0.6

2 . If the luminosity of the coolest objects we see

today is in fact due primarily to the contribution from mono-

poles, then one would in principle be able to see this depen-

dence on white dwarf mass !this idea arose in conversations
with Nahm". However, one would need to be able to inde-

FIG. 1. Bounds on the monopole flux as a function of monopole

mass. The Parker bound $7% due to survival of the galactic magnetic
field is plotted, as is the extended Parker bound $9% due to survival
of the magnetic field early in the history of the Galaxy. Mass den-

sity limits (+h2#1) are plotted for a uniform density of monopoles
in the universe. Note that h is the Hubble constant in units of

100 km s"1 Mpc"1. The bounds due to catalysis in white dwarf

WD1136-286 as discussed in this paper are plotted; the plots as-

sume the cooling curves of Wood $20%, and are very similar to those
obtained using cooling curves of Segretain et al. In addition, the

bounds from this white dwarf with main sequence accretion !WD/
MS" are plotted for g$gD !solid line" and for g$2gD !dotted line".
The bounds due to calaysis in neutron star PSR 1929%10 are plot-
ted, as are bounds due to this neutron star with main sequence

accretion. Again the solid line is for g$gD and the dotted line is for

g$2gD . Note that the neutron star bounds with main sequence
accretion have dependence on the monopole mass.

BOUND ON THE FLUX OF MAGNETIC MONOPOLES . . . PHYSICAL REVIEW D 59 063007

063007-3

Figure 4.3: Bounds on the monopole flux as a function of the monopole mass for
white dwarfs (WD) and neutron stars (NS). The curved lines are the im-
proved results for g = gD (solid) and g = 2 gD (dotted). The Parker bound
and the extended Parker bound have been shown, as well as the (uniform)
closure bound. This figure originally appeared in [36].

The lowest bound that was found by considering white dwarfs was from WD1136-
286 [36]

F < 1.3× 10−20 cm−2s−1sr−1/(σ0/10−28 cm2), (4.10)

where σ is the cross section discussed above and β is the magnetic monopole velocity.
An even stronger bound that was obtained by looking at the pulsar PSR1929+10
[44], which limits the monopole flux to

F < 7× 10−22 cm−2s−1sr−1/(σ0/10−28 cm2)−1, (4.11)

where σ0 is the quantity from section 4.3.3 such that the catalysis cross section is
roughly σ ' σ0/β. These flux limits are for particles with a velocity of 10−3c, but
monopoles with a mass below 1017 GeV are expected to travel faster than β ∼
10−3 due to acceleration by the Galaxy’s magnetic field (see section 4.2). For such
monopoles the capture radius of the objects is smaller, so an additional velocity (or
mass) dependence should be added.

Both these results can be improved by also considering the monopoles that were
already captured by these objects before they became white dwarfs or neutron stars
(so when they were ordinary stars). Both the original results for white dwarfs and
neutron stars, as well as the improved results have been collected in figure 4.3. We
see that especially the improved bounds that follow from observations of the pulsar
PSR1929+10 significantly exceeds the Parker bounds and the (uniform) overclosure
bound by a few orders of magnitude [36]. It is important to once again note that these
results are based on the assumption that the nucleon decay catalysis cross section is
at least of the order ∼ 10−27 cm2, which has not been ascertained.
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The idea of particles carrying magnetic charge is already very old [32], but it was not
until Dirac [11] showed in 1931 that their existence could explain the observed (yet
unexplained) quantisation of electric charge that a widespread interest in it arose.
Dirac’s approach turned out to be a dead end, but when Unified Theories started to
emergy and ’t Hooft [23] and Polyakov [24] independently showed in 1974 that any
such theory involving a semisimple gauge group not only allows their existence, but
predicts it, magnetic monopoles once again became a hot topic.

Many years and numerous attempts to detect them later, one of the main problems
of the predicted existence of monopoles remains that no evidence of their existence
has been found [29, 37, 27]. This lack of observational evidence does not however
exclude the possibility that magnetic monopoles do exist, since simple explanations
for their scarcity are available. The question of whether or not magnetic monopoles
exist at all will likely remain unanswered until either an all-encompassing theory of
everything is found or until one is actually measured (both of which seem unlikely to
happen any time soon). While their existence remains a mystery, we can at least be
certain that if they do exist, they are a very rare phenomenon in our world.
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