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Symmetry breaking (very briefly)

Symmetry
breaking

» Thoroughly discussed in previous talks

» Spontaneous symmetry breaking occurs when a system
with some symmetry (described by a symmetry group G)
possesses vacuum states that are not invariant under this

symmetry.
» Perturbations are made around one such a solution.
» Best explained through an example.
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Symmetry breaking: An example

» We can for instance consider the Lagrangian:

(in (2 4+ 1)D, so x* = (t,x!,x?)) Symmetry

breaking

L= —0,00r¢ —V(¢), with V() =A(1— |¢|*)?

where ¢ is a complex scalar field and A > 0.
We have a U(1) symmetry under ¢ — e'*¢.
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Symmetry breaking: An example

» We can for instance consider the Lagrangian:
Symmetry
breaking

(in (2 4+ 1)D, so x* = (t,x!,x?))

L= —0,00r¢ —V(¢), with V() =A(1— |¢|*)?

where ¢ is a complex scalar field and A > 0.
We have a U(1) symmetry under ¢ — e'*¢.

» The energy for this system is
B= [ & (1o + V0P + V(o))
» V(¢) is minimal on the ‘vacuum manifold’ M = S?,

so this is minimised by the constant solution

p(x,t) =p e M

A%
N

Universiteit Utrecht

/A
|

5



Symmetry breaking: Phase transitions

» V(¢) should actually be replaced by an effective
potential V(¢) even at T = 0 due to loop diagrams. S—

» At finite temperatures this changes into Vg (¢, T) breaking
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Symmetry breaking: Phase transitions
» V(¢) should actually be replaced by an effective

potential V(o) even at T = 0 due to loop diagrams. S—
» At finite temperatures this changes into Vg (¢, T) Laling

» At large temperatures the broken symmetry may be

restored.
— T>Te
T=T.
T<T,
T=0
- M - NI
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Topological solitons

Topological
solitons
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Topological solitons

Topological
solitons

» A topological soliton is a solution that cannot be
continuously deformed into the vacuum solution due to
some topological constraint (the exact definition varies).

» The constraint we put on our solutions is that their total
energy is finite
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Topological solitons

» We had energy density (still in 2 + 1 dimensions)

8 = ’¢‘2 + ‘v¢’2 + V(¢)’ Topological
solitons

so we need r|V¢| — 0 and rV(¢) — 0 asr — oo.
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Topological solitons

» We had energy density (still in 2 + 1 dimensions)

S = ’¢‘2 + ‘v¢’2 + V(¢)’ Topological
solitons

so we need r|V¢| — 0 and rV(¢) — 0 asr — oo.

» This tells us that ¢(r,0) — ¢oo(0) € M asr — oo, which
defines a function

Goot ST = M, 0 §(00,0).
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Topological solitons

» We had energy density (still in 2 + 1 dimensions)

&= ’¢‘2 + ‘v¢’2 + V(¢)’ Topological
solitons

sowe need r |V¢| — 0 and rV(¢) — 0 as r — oc.

» This tells us that ¢(r,0) — ¢oo(0) € M asr — oo, which
defines a function

Goot ST = M, 0 §(00,0).

» We also need thatrey - V¢ = 9gpop — 0 asr — oo,
SO ¢oo(0) = oo actually has to be constant
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Topological solitons

v

We had energy density (still in 2 + 1 dimensions)

5 = ’¢‘2 + ‘v¢’2 + V(¢)’ Topological
solitons

sowe need r |V¢| — 0 and rV(¢) — 0 as r — oc.

» This tells us that ¢(r,0) — ¢oo(0) € M asr — oo, which
defines a function

Goot ST = M, 0 §(00,0).

» We also need thatrey - V¢ = 9gpop — 0 asr — oo,
SO ¢oo(0) = oo actually has to be constant

» We can continuously deform such a solution to
o(r,0) = ¢ everywhere, so there are no topological
solitons (according to this definition). o

= Universiteit Utrecht

= b
KN}

9



Topological solitons: Gauge theory

» The same definitions also apply to gauge theories, so
suppose we add some gauge field A, (in the usual
manner) to make the symmetry local:

L = —D,¢Di¢p — V(¢) — 1F,, F*

» If we choose a gauge such that Ao = 0 and A, = O for
r > 1, then the energy density is

£ = (00Ai)* + 000> + IDig|* + V(¢) + L(Fyj)?,
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Topological solitons: Gauge theory

» The same definitions also apply to gauge theories, so
suppose we add some gauge field A, (in the usual
manner) to make the symmetry local:

Topological
solitons

L = —D,¢Di¢p — V(¢) — 1F,, F*

» If we choose a gauge such that Ao = 0 and A, = O for
r > 1, then the energy density is

€ = (00A)* + 1009 + [Dig|* + V(9) + 4 (Fy)?,
» We still need lim,_,, 7 V(¢) = 0, but we now require
lim rep-D¢ = lim 0y¢p —rieApp — O.

It is possible to choose an A; such that this holds. i
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Topological solitons: Gauge theory

» A goes like !, so F goes like r—2 and F? like r—*

» The first time derivatives actually forms a separate
boundary value problem, so we can find a solution with .
Topological
solitons

finite energy:

/ dx { (@00 + 8062 + [Dio2 + V(@) + L(Fy)?) < oo

» The same argument also works in three spatial
dimensions (but not four!) and for other fields.
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Topological solitons: Gauge theory

v

A goes like r~1, so F goes like =2 and F? like r—*.
» The first time derivatives actually forms a separate

boundary value problem, so we can find a solution with Topological
finite energy: solitons

/ dx { (@00 + 8062 + [Dio2 + V(@) + L(Fy)?) < oo

» The same argument also works in three spatial
dimensions (but not four!) and for other fields.

» We haven’t specified ¢, only that lim, ., rV(¢) =0

» Any two functions with the same behaviour at infinity
can be continuously transformed into each other,

so only ¢ is important to classify solutions. Ay,
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Topological solitons: Gauge theory

» We're interested in classes of solutions that cannot be
continuously deformed into a vacuum solution.
This comes down to classes of functions ¢, : S4-1 — M
that cannot be deformed into a constant function. Topological

solitons

» But when is this possible?
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Topological solitons: Gauge theory

» We're interested in classes of solutions that cannot be
continuously deformed into a vacuum solution.
This comes down to classes of functions ¢, : S4-1 — M
that cannot be deformed into a constant function. Topological

solitons

» But when is this possible?

» There is a word for continuous deformation: homotopy.
» We have the so-called homotopy groups

(M) = {f: S — M}/ ~
which exactly describe our classification.

RN
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Topological solitons: Gauge theory

» We're interested in classes of solutions that cannot be
continuously deformed into a vacuum solution.
This comes down to classes of functions ¢, : S4-1 — M
that cannot be deformed into a constant function. Topological

solitons

» But when is this possible?

» There is a word for continuous deformation: homotopy.
» We have the so-called homotopy groups

(M) = {f: 8" — M}/ ~

which exactly describe our classification.

» Our theory admits topological solitonsof this type
if and only if 7g_1 (M) # {1}. §
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Topological solitons: Gauge theory

» If d = 3 then such solutions are called monopoles and
we can see why from the 2-dimensional case:

Topological
solitons

» Our example had M = S! and 71 (S') = Z # {1}, so it
admits topological solitons of this type.
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Topological solitons: Gauge theory

» If d = 3 then such solutions are called monopoles and
we can see why from the 2-dimensional case:

Topological
solitons

» Our example had M = S! and 71 (S') = Z # {1}, so it
admits topological solitons of this type.

» We can for instance find a non-trivial solution that
points radially outwards:
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GUT monopoles

GUT monopoles
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GUT monopoles

» GUTs embed Gsy = SU(2);, x SU(3). x U(1)y in a larger,

more pleasing, compact connected gauge group Ggur-

(e.g. Gour = SU(5) or Ggur = SO(10), etc)
GUT monopoles

» The standard model is recovered after spontaneous '

symmetry breaking.
» This happens after a phase transition at the GUT scale,

so at around T = Tgyr ~ 1016 GeV.

» Symmetry breaking in stages also possible:
Gour — - .. — Gsy — SU(3)e X U(1)em
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GUT monopoles

» GUTs embed Gsy = SU(2);, x SU(3). x U(1)y in a larger,

more pleasing, compact connected gauge group Ggur-

(e.g. Gour = SU(5) or Ggur = SO(10), etc)
GUT monopoles

» The standard model is recovered after spontaneous '

symmetry breaking.
» This happens after a phase transition at the GUT scale,

so at around T = Tgyr ~ 1016 GeV.

» Symmetry breaking in stages also possible:
Gour — - .. — Gsy — SU(3)e X U(1)em
» Do GUTs predict the existence of monopoles?
<y
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GUT monopoles: Homotopy theorems

» Assume a symmetry G is broken to H.
» Since M = G/H we have my(M) = m2(G/H)

GUT monopoles

Universiteit Utrecht
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GUT monopoles: Homotopy theorems

» Assume a symmetry G is broken to H.
» Since M = G/H we have my(M) = m2(G/H)

» There exists a canonical map ¢: m(G/H) — m(H),
which is bijective if m2(G) = m(G) = {1}

» Most GUTs have (a covering group with)
m2(G) = m1(G) = {1}, so m2(G/H) ~ w1 (H).

GUT monopoles
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GUT monopoles: Homotopy theorems

» Assume a symmetry G is broken to H.
» Since M = G/H we have my(M) = m2(G/H)

» There exists a canonical map ¢: m(G/H) — m(H),
which is bijective if m2(G) = m(G) = {1}

» Most GUTs have (a covering group with)
m2(G) = m1(G) = {1}, so m2(G/H) ~ w1 (H).

» The fundamental group of Ggy, is

GUT monopoles

71(Gsu) = m1(SU(3) x SU(2) x U(1))
= 11(SU(3)) x m1(SU(2)) x 71 (U(1))
=m(U(1) =m((SH) =2
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GUT monopoles: Homotopy theorems

» Assume a symmetry G is broken to H.
» Since M = G/H we have my(M) = m2(G/H)

» There exists a canonical map ¢: m(G/H) — m(H),
which is bijective if m2(G) = m(G) = {1}

» Most GUTs have (a covering group with)
m2(G) = m1(G) = {1}, so m2(G/H) ~ w1 (H).

» The fundamental group of Ggy, is

GUT monopoles

m1(Gsm) = m1(SU(3) x SU(2) x U(1))
= m1(SU(3)) x m1(SU(2)) x 71 (U(1))
=m(U(1) =m((SH) =2
» Therefore 7o (M) ~ 72(Ggyr/Gsm) =~ T2(Gsm) =~ Z 3@;@ R
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GUT monopoles

» GUT theories allow for the existence of monopoles.

GUT monopoles

» If we assume a single phase transition at the GUT scale,
then monopoles with a mass of ~ 107GeV would form.
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GUT monopoles

v

GUT theories allow for the existence of monopoles.

» If we assume a single phase transition at the GUT scale,

N GUT monopoles
then monopoles with a mass of ~ 107GeV would form. ’

» At time of the phase transition, the Higgs field has a
correlation length &, so domains of size ~ ¢~2 form.

» At the intersection point of domains there is some
probability (p ~ 0.1) that monopoles will form.

» Monopole density can be estimated to be nyy ~ p£~3
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GUT monopoles

v

GUT theories allow for the existence of monopoles.

If we assume a single phase transition at the GUT scale,
then monopoles with a mass of ~ 107GeV would form.

At time of the phase transition, the Higgs field has a
correlation length &, so domains of size ~ ¢~2 form.

At the intersection point of domains there is some
probability (p ~ 0.1) that monopoles will form.

Monopole density can be estimated to be nyy ~ p& 3
By causality ¢ < fgyr ~ 10727 cm
This gives n ~ 10%% cm~3 at the phase transition

N

GUT monopoles
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GUT monopoles

» Annihilation can reduce this density, but not
significantly, so nyy o a~3 (and %nMM = —3Hnyy).
» The Entropy density s scales in the same way, so n/s is

approximately conserved (without inflation). CUT monopoles

» Monopole density today would therefore be
Nvim,now = M, Gut(Snow)/ (Sgur), With s ~ g*TS
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GUT monopoles

» Annihilation can reduce this density, but not
significantly, so nyy o a~3 (and %nMM = —3Hnyy).
» The Entropy density s scales in the same way, so n/s is

approximately conserved (without inflation). CUT monopoles

» Monopole density today would therefore be
NyvM,now = Mvm, GuT (Snow)/(SGUT); with s ~ g*T3

» This gives us approximately nyow ~ 10~/ cm~3, which
is absurd (comparable to the baryon density).
This is the monopole problem.

» Inflation solves this problem: As long as the
temperature after preheating is below the GUT scale
the monopole density will be too low to oberve.
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The Dirac
monopole

The Dirac monopole
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The Dirac monopole

» Classical Magnetic monopoles with By, = #f{ is

allowed by Maxwell’s equations (after extension).

V- -E=47pe VXE=———47jn

The Dirac
monopole

V-B=47pn V XB=—+4nje

» Charge density: V - Bym(X) = g6%(X) = 47 pm(X)
» Net magnetic flux: [(Bny,-dS=¢
(for any surface S around the monopole)
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The Dirac monopole

» Classical Magnetic monopoles with By, = ﬁf( is

allowed by Maxwell’s equations (after extension).

» To formulate quantum mechanics, we need B = V x A.
The Dirac

» No such potential can be defined for the magnetic monopole
monopole, even if the origin is excluded from its domain
since by Stokes’ theorem:

/B-dS:/VxA~dS:/ A-dl=0
s S s
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The Dirac monopole

» Classical Magnetic monopoles with By, = ﬁf( is
allowed by Maxwell’s equations (after extension).

» To formulate quantum mechanics, we need B = V x A.
The Dirac

» No such potential can be defined for the magnetic monopole
monopole, even if the origin is excluded from its domain
since by Stokes’ theorem:

/B-dS:/VxA~dS:/ A-dl=0
s S s

» We can define an A such that B=V x A on any
contractible region that does not contain the origin.
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The Dirac monopole

» If we cut out a line, the
magnetic field lines can
disappear through it and — N[

there is no problem.
» We can define a potential A The Dirac

. . monopole
everywhere except in this
line (so for 0 < 8§ < )

AL _ 8 1—cosd

= . e
47r sing °

such that Bpym = V x A.
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The Dirac monopole

» If we cut out a line, the
magnetic field lines can
disappear through it and

there is no problem.
» We can define a potential A \ / monopole
everywhere except in this -
line (so for 0 < 6 < ) /
—g 1+ cos?d
A2 —8 2T oS0
47r sing ¥

such that By, = V x Al
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The Dirac monopole

1 —cosf

» We had found AV = i&ew O0O<bO<m

47r 1 sind 0
and also A® = _—gﬁew (0 <0 <m).

47r sinf

» These are related by the gauge transformation

A® = AV _vq with a = icp.
27
» Find a similar gauge transformation wherever you
choose your ‘Dirac string’.
ws

The Dirac
monopole
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The Dirac monopole

v

v

>

v

il—cos@

We had found AV = T e, O0O<bO<m
and also A® = 4_75”1;:1(;59% 0<0<m).

These are related by the gauge transformation

A® = AV _vq with a = icp.
27

Find a similar gauge transformation wherever you
choose your ‘Dirac string’.

One problem: a(p = 27) —a(p =0) =g,

i.e. « is multiply-valued (up to multiples of g).

s
L

The Dirac
monopole
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The Dirac monopole

» « itself is not observable, so is this really a problem?
» A field ¢) with charge e couples to A via
Djlﬂ = 8]'@ — ieAji/)

The Dirac
and it transforms under gauge transformations as I

Y(x) = ey (x)
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The Dirac monopole

» « itself is not observable, so is this really a problem?

» A field ¢) with charge e couples to A via

Djlﬂ = 8]'@ — ieAji/)
The Dirac
and it transforms under gauge transformations as monopole

w(x) s efiea(x)l/}(x)

» Because « is multiply-defined we want
e—iea(x)¢(x) — e—ie (a(x)—&—g)w(x)’
for which we need eg € 27 Z.
N
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The Dirac monopole: Charge quantisation

» If eg € 27 Z then everything is consistent.

» The monopole charge therefore needs to be a multiple of
2 71'/6. The Dirac

monopole
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The Dirac monopole: Charge quantisation

» If eg € 27 Z then everything is consistent.

» The monopole charge therefore needs to be a multiple of
2 71'/6. The Dirac

monopole

» Conversely, if a single magnetic monopole with charge g
exists, then the electric charge of any particle has to be
an integer multiple of 2 7 /g (charge quantisation).
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The Dirac monopole: Charge quantisation

» If eg € 27 Z then everything is consistent.

» The monopole charge therefore needs to be a multiple of
2 71'/6. The Dirac

monopole

» Conversely, if a single magnetic monopole with charge g
exists, then the electric charge of any particle has to be
an integer multiple of 2 7 /g (charge quantisation).

» Attempts to make a quantum field theory with Dirac
monopoles have failed.
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A’t
Hooft-Polyakov
monopole

A ’t Hooft-Polyakov monopole
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A ’t Hooft-Polyakov monopole

» Consider the Georgi-Glashow SU(2) theory with the
following Lagrangian density:

L = —iTr(D, D ®) — IA(n? — |9*)? — L Te(F. F"),

with |®? = (®1)2 + (92)? + (8°)% = 2Tr(?)

A’t
Hooft-Polyakov
monopole
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A ’t Hooft-Polyakov monopole

» Consider the Georgi-Glashow SU(2) theory with the
following Lagrangian density:

L = —iTr(D, D ®) — IA(n? — |9*)? — L Te(F. F"),

with |®> = (®')% 4 ($%)? + (D)% = 2Tr(d?)
» Ingredients: e
« A Higgs field & = ¢%° i‘gif;';;‘i?‘“kw
* A gauge field A, = Aft*
* F, =0,A, —0,A, —ielA,,A)]
*D,®=0,2—ie[A,,P]
> Here t% = 1 7% with [t%, t?] = i g4.t° generate of SU(2)
(!, 72 and 7° are the Pauli matrices.)
The field ® transforms in the adjoint representation:
®—gdg ! or ® — [¢%°, @] (infinitesimally)
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A ’t Hooft-Polyakov monopole

> V(®) = 7 A(n* — |®|?)? is minimised at || = n, so we
have a spontaneously broken symmetry with vacuum

manifold S2.

A’t
Hooft-Polyakov
monopole
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A ’t Hooft-Polyakov monopole

> V(®) = 7 A(n* — |®|?)? is minimised at || = n, so we
have a spontaneously broken symmetry with vacuum
manifold S2.

» What we usually do: o
In the unitary gauge we can write & = (n + ¢)t> and s
Ay =With + Wit + a,t3

» The Higgs field (¢) gets a mass /2 A7, the W-bosons get
mass 27 and the photon a,, is massless.

» The unbroken U(1) is generated by t°.
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A ’t Hooft-Polyakov monopole

» A static solution to the field equations of the form

x4 1 x "
(I)(X) = nh(r)Tt ) Ai = E(]- - k(r))gijarjt , AO =0

with h(0) = k(c0) = 0 and h(oc) = k(0) =1 (Ag = 0)
exists and has been computed numerically.
At

Hooft-Polyakov
monopole
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A ’t Hooft-Polyakov monopole

» A static solution to the field equations of the form

x4 x
(I)(X) = nh(r)Tta, Aj = %(1 — k(r))&ijaﬁta, Ap=0
with h(0) = k(c0) = 0 and h(oc) = k(0) =1 (Ag = 0)
exists and has been computed numerically.

> Core size is of order (en) ™! ~ /237 =1 due to A rolvator
exponential convergence. e

» Forr > (en)~! we get
xa
D(x) ~n Tt“ €s? and A= e St0

» The solution is stable and the mass (energy) can be
calculated to be of order 8 mnp/e? ~ 2 x 1371. §W%
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A ’t Hooft-Polyakov monopole

osb B

06 [

A’t
Hooft-Polyakov
monopole

04t

o

L ST L i
0 2 4 6 8 10

h (h(0) = 0) and k (k(0) = 1) for A — 0 (solid),
A = ¢€2/40 (dashed) and \ = e?/4 (dotted).
The horizontal axis is scaled by 2/(en). R
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A ’t Hooft-Polyakov monopole

» We can choose f,,, = 2Tr(F,,®/|®|) = aFZV%
and define the magnetic field as
1 xt r
_ 1 ~ _ -1
Bi=—§5ijkfjk—grf3—? (r>(en)™)

» This describes a magnetic monople of charge 4 /e

A’t
Hooft-Polyakov
monopole
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A ’t Hooft-Polyakov monopole

» We can choose f,,, = 2Tr(F,,®/|®|) = anV%
and define the magnetic field as
1 xt r
_ 1 ~ _ -1
Bl:_fellkflk—gﬁ_ erz (r>>(e77) )

» This describes a magnetic monople of charge 4 /e

A’t
Hooft-Polyakov

» We can choose the unitary gauge (® = (1 + ¢)t3) on a monopole
contractible region that does not contain the origin.

» In this gauge we can write F,, = F}th +F lzwt2 + fut
and A, = W} + W2t* + a,t> and obtain

fuw = 0uay — 0uay,

» The field equations tell us that now 0*f,, = 0. §*‘L%
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Observational
bounds

Observational bounds
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Observational bounds: Overclosure

p—i—f—@canbe

» The Friedmann equation H? =
rewritten as

per = po+ Py + -+ pa + pum — 2 k/HG,

so we need pyy < Per = 87TG 25 -HZ ~ 5 x 107> GeV/cm?®
to prevent overclosure of our universe.

» Thus nyy < 5 x 10723(m/107 GeV)~! cm—3 Observational

bounds

» Magnetic monopoles expected to have velocity ~ 10~3¢

» Resulting flux limit:
F < Fy ~ 107 (myy /107 GeV)~! em=2s~tsr 1.
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Observational bounds: The Parker bound

» Our Galaxy has a magnetic field of the order of
~ 3uG ~ 10~° T varying over typical distances of
L ~ 10%! cm ~ 300 pc.

» This is generated by the dynamo effect and refreshed
over a typical timescale of 7 ~ 108 yrs.

» Magnetic monopoles are accelerated by these magnetic
fields over a distance L and gain energy.

» The energy of the magnetic field should not be trained .
faster than 7 ot

» Parker bound F < Fp ~ 10~ cm—2s~1sr—! obtained

» Result was later improved:

F < Fpg ~ 107%%(m /10" GeV) cm =25 lsr!
A~‘vy.
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Observational bounds: Induction

» A magnetic monopole
travelling through a
superconducting loop
leaves behind a flux
2 & (flux quantum).

» Flux can be measured
using SQUIDs
» Independent of
Velocity, mass etc. Observational

bounds

» Shielding is a problem

» No monopoles found
but upper bound
obtained:

2x 107" em—2stsr 1
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Observational bounds: Energy loss

» Fast (v > 10~2c) magnetic monopoles are strongly
ionizing

» Due to their large mass they are nevertheless very
penetrating

» Exact energy loss rate depends on the monopole velocity
and the material used
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Observational bounds: Catalysed nucleon decay

» A GUT may allow for the following

M+p—M+e +7°, M+p—M+p" +K°,
M4+n—M+et+7°, M+n—M+u"+K .

» Monopoles might be able to catalyse such reactions

(Rubakov-Callan mechanism)

» Cross-section may be of order 1072°/(v/103) cm?

» If this is the case then this would be measurable. seaton

bounds
» No catalysed nucleon decay has been been measured,
which limits the flux (under the above assumption)
F<3x107"®em 257 lsr ! (107% <v < 5x1079),
F<3x107¥® em 257 lsr! (107> <v <107},
—13 prn—2c—1op—1 -2
F<3x107* cm™“s™"sr (107 <v<l) <
;
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Observational bounds: Catalysed nucleon decay

» Neutron stars and white dwarfs capture all monopoles
that hit them and these accumulate in the core

» Under the conditions from the previous slide
monopoles will catalyse nucleon decay and cause these
objects to heat up.

» Comparison with measured luminosity bounds flux:
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Conclusion

» A monopole in linear gauge theory can be defined as a
topological soliton and the existence of monopoles is a
topological property of the vacuum manifold.

» Grand Unified Theories generally predict the allow the
existence of massive magnetic monopoles.

» The monopole problem doesn’t need to be a problem.

» We've studied at an example of a magnetic monopole

» People are still searching, but no monopoles have thus St
far been observed.
If monopoles exist they must therefore be very rare.
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Questions

Any questions?

Conclusion
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