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Symmetry breaking (very briefly)

I Thoroughly discussed in previous talks
I Spontaneous symmetry breaking occurs when a system

with some symmetry (described by a symmetry group G)
possesses vacuum states that are not invariant under this
symmetry.

I Perturbations are made around one such a solution.
I Best explained through an example.
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Symmetry breaking: An example

I We can for instance consider the Lagrangian:
(in (2 + 1)D, so xµ = (t, x1, x2))

L = −∂µφ∂µφ− V(φ), with V(φ) = λ(1− |φ|2)2

where φ is a complex scalar field and λ > 0.
We have a U(1) symmetry under φ 7→ eiαφ.

I The energy for this system is

E =
∫

d3x
(
|φ̇|2 + |∇φ|2 + V(φ)

)
I V(φ) is minimal on the ‘vacuum manifold’M = S1,

so this is minimised by the constant solution

φ(x, t) = φ ∈M
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Symmetry breaking: Phase transitions

I V(φ) should actually be replaced by an effective
potential Veff(φ) even at T = 0 due to loop diagrams.

I At finite temperatures this changes into Veff(φ,T)

I At large temperatures the broken symmetry may be
restored.
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FIG. 47: Toy model potential for a real scalar field with two degenerate local minima used to illustrate a

radiatively induced phase transition. Crossover or a second order transition.

where here Tr stands for the integral
∫

d4x. This can be evaluated by observing that

c−2!2∂δΓ1[φ0]

∂m2
= −1

2
〈x| i√−g (−!− c2!−2m2)

|x〉 = −1

2
i∆(x; x) . (205)

where i∆(x; x) denotes the scalar field propagator evaluated at the coincidence x′µ = xµ.

We shall now evaluate (205) by making use of the thermal propagator (191) and in Minkowski space.

Even though we want to describe a rapidly expanding Universe, this simplification is justified since

we are interested in describing the situations where the processes which lead to thermalisation are

much faster than the expansion rate of the Universe. At the electroweak scale this is justified since

the expansion rate is !HEW ∼ (kBTEW)2/(MP c2) ∼ 10−5 eV, which is indeed much smaller than the

equilibration rate which is of the order ΓEW ∼ 10−100 GeV. The one-loop contribution to the effective

potential for a real scalar field (up to an unphysical constant) reads,

VT1(φ) =
1

2

kBT

!c

∞∑
n=−∞

∫
d3p

(2π!)3
ln [iD̃−1(k; φ0)] (206)

where

iD̃−1 = ω2
n − &p 2c2 −m2c4 (207)

denotes the inverse propagator (190) in momentum space.

The integral in (206) can be evaluated to yield (see Problem 2.11),

VT1 = ∆V0,vac + ∆VT1 , (208)

where

∆V0,vac =

∫
d3p

(2π!)3

E

2c!
, E = (p2c2 + m2c4)1/2 (209)
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FIG. 47: Toy model potential for a real scalar field with two degenerate local minima used to illustrate a

radiatively induced phase transition. Crossover or a second order transition.
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Topological solitons

I A topological soliton is a solution that cannot be
continuously deformed into the vacuum solution due to
some topological constraint (the exact definition varies).

I The constraint we put on our solutions is that their total
energy is finite
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Topological solitons

I We had energy density (still in 2 + 1 dimensions)

E = |φ̇|2 + |∇φ|2 + V(φ),

so we need r |∇φ| → 0 and r V(φ)→ 0 as r→∞.

I This tells us that φ(r, θ)→ φ∞(θ) ∈M as r→∞, which
defines a function

φ∞ : S1 →M, θ 7→ φ(∞, θ).
I We also need that r eθ · ∇φ = ∂θφ→ 0 as r→∞,

so φ∞(θ) = φ∞ actually has to be constant
I We can continuously deform such a solution to
φ(r, θ) = φ∞ everywhere, so there are no topological
solitons (according to this definition).
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Topological solitons: Gauge theory

I The same definitions also apply to gauge theories, so
suppose we add some gauge field Aµ (in the usual
manner) to make the symmetry local:

L = −DµφDµφ− V(φ)− 1
4FµνFµν

I If we choose a gauge such that A0 = 0 and Ar = 0 for
r ≥ 1, then the energy density is

E = (∂0Ai)2 + |∂0φ|2 + |Diφ|2 + V(φ) + 1
4(Fij)2,

I We still need limr→∞ r V(φ) = 0, but we now require

lim
r→∞ r eθ · Dφ = lim

r→∞ ∂θφ− r i e Aθφ→ 0.

It is possible to choose an Ai such that this holds.
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Topological solitons: Gauge theory

I A goes like r−1, so F goes like r−2 and F2 like r−4.
I The first time derivatives actually forms a separate

boundary value problem, so we can find a solution with
finite energy:∫

d2x
{

(∂0Ai)2 + |∂0φ|2 + |Diφ|2 + V(φ) + 1
4(Fij)2} <∞

I The same argument also works in three spatial
dimensions (but not four!) and for other fields.

I We haven’t specified φ, only that limr→∞ r V(φ) = 0
I Any two functions with the same behaviour at infinity

can be continuously transformed into each other,
so only φ∞ is important to classify solutions.
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Topological solitons: Gauge theory

I We’re interested in classes of solutions that cannot be
continuously deformed into a vacuum solution.
This comes down to classes of functions φ∞ : Sd−1∞ →M
that cannot be deformed into a constant function.

I But when is this possible?

I There is a word for continuous deformation: homotopy.
I We have the so-called homotopy groups

πn(M) = {f : Sn → M}/ ∼

which exactly describe our classification.

I Our theory admits topological solitonsof this type
if and only if πd−1(M) 6= {1}.
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Topological solitons: Gauge theory

I If d = 3 then such solutions are called monopoles and
we can see why from the 2-dimensional case:

I Our example hadM = S1 and π1(S1) = Z 6= {1}, so it
admits topological solitons of this type.

I We can for instance find a non-trivial solution that
points radially outwards:
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GUT monopoles

I GUTs embed GSM = SU(2)Iw × SU(3)c ×U(1)Y in a larger,
more pleasing, compact connected gauge group GGUT.

(e.g. GGUT = SU(5) or GGUT = SO(10), etc)

I The standard model is recovered after spontaneous
symmetry breaking.

I This happens after a phase transition at the GUT scale,
so at around T = TGUT ∼ 1016 GeV.

I Symmetry breaking in stages also possible:

GGUT → . . .→ GSM → SU(3)c × U(1)em

I Do GUTs predict the existence of monopoles?
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GUT monopoles: Homotopy theorems

I Assume a symmetry G is broken to H.
I SinceM = G/H we have π2(M) = π2(G/H)

I There exists a canonical map ψ : π2(G/H)→ π1(H),
which is bijective if π2(G) = π1(G) = {1}

I Most GUTs have (a covering group with)
π2(G) = π1(G) = {1}, so π2(G/H) ' π1(H).

I The fundamental group of GSM is

π1(GSM) = π1(SU(3)× SU(2)× U(1))
= π1(SU(3))× π1(SU(2))× π1(U(1))

= π1(U(1)) = π1(S1) = Z

I Therefore π2(M) ' π2(GGUT/GSM) ' π2(GSM) ' Z
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GUT monopoles

I GUT theories allow for the existence of monopoles.

I If we assume a single phase transition at the GUT scale,
then monopoles with a mass of ∼ 1017GeV would form.

I At time of the phase transition, the Higgs field has a
correlation length ξ, so domains of size ∼ ξ−3 form.

I At the intersection point of domains there is some
probability (p ∼ 0.1) that monopoles will form.

I Monopole density can be estimated to be nMM ∼ pξ−3

I By causality ξ < `GUT ∼ 10−27 cm
I This gives n ∼ 1080 cm−3 at the phase transition
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GUT monopoles

I Annihilation can reduce this density, but not
significantly, so nMM ∝ a−3 (and d

dtnMM = −3 H nMM).
I The Entropy density s scales in the same way, so n/s is

approximately conserved (without inflation).
I Monopole density today would therefore be

nMM,now = nMM, GUT(snow)/(sGUT), with s ∼ g∗T3

I This gives us approximately nnow ∼ 10−7 cm−3, which
is absurd (comparable to the baryon density).
This is the monopole problem.

I Inflation solves this problem: As long as the
temperature after preheating is below the GUT scale
the monopole density will be too low to oberve.
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The Dirac monopole

I Classical Magnetic monopoles with Bmm = g
4π r2 x̂ is

allowed by Maxwell’s equations (after extension).

∇ · E = 4π ρe ∇× E = −∂B
∂t
−4πjm

∇ · B = 4π ρm ∇× B =
∂E
∂t

+ 4πje

I Charge density: ∇ · Bmm(x) = g δ3(x) = 4π ρm(x)
I Net magnetic flux:

∫
S Bmm · dS = g

(for any surface S around the monopole)
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The Dirac monopole

I Classical Magnetic monopoles with Bmm = g
4π r2 x̂ is

allowed by Maxwell’s equations (after extension).

I To formulate quantum mechanics, we need B = ∇× A.
I No such potential can be defined for the magnetic

monopole, even if the origin is excluded from its domain
since by Stokes’ theorem:∫

S
B · dS =

∫
S
∇× A · dS =

∫
∂S

A · dl = 0

I We can define an A such that B = ∇× A on any
contractible region that does not contain the origin.
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The Dirac monopole

I If we cut out a line, the
magnetic field lines can
disappear through it and
there is no problem.

I We can define a potential A
everywhere except in this
line (so for 0 ≤ θ < π)

A(1) =
g

4πr
1− cos θ

sin θ
eϕ

such that Bmm = ∇× A.

466 PRESKILL

monopole solution of ’t Hooft and Polyakov is introduced. The theory of

magnetic monopoles carrying nonabelian magnetic charge is developed in

Section 4, and the general connection between the topology of a classical

monopole solution and its magnetic charge is established there. Various

examples illustrating and elucidating the formalism of Section 4 are

discussed in Section 5. Section 6 is concerned with the properties of dyons,

which carry both magnetic and electric charge. Aspects of the interactions

of fermions and monopoles are considered in Section 7. In Section 8, the

cosmological production of monopoles and astrophysical bounds on the

monopole abundance are described. Some remarks about the detection of
monopoles are contained in Section 9.

The reader who finds gaps in the present treatment may wish to consult

some of the other excellent reviews of these topics. For a general review of
grand unified theories~see (1.7, 18). For more about some of the topics 

Section 2-4, see (19-21); for Section 6, see (21); for Section 8, see (22-26);

and for Section 9, see (27, 28).

2. THE DIRAC MONOPOLE

2.1 Monopoles .and Charge Quantization

Measured electric charges are always found to be integer multiples of the
electron charge. This quantization of electric charge is a deep property of

Nature crying out for an explanation. More than fifty years ago, Dirac (1)

discovered that the existence of magnetic monopoles could "explain"

electric charge quantization.

Dirac envisaged a magnetic monopole as a semi-infinitely long, in-

finitesimally thin solenoid (Figure 2). The end of such a solenoid looks like 

Fioure 2 The end of a semi-infinite solenoid.
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The Dirac monopole

I If we cut out a line, the
magnetic field lines can
disappear through it and
there is no problem.

I We can define a potential A
everywhere except in this
line (so for 0 < θ ≤ π)

A(2) =
−g
4πr

1 + cos θ
sin θ

eϕ

such that Bmm = ∇× A.
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The Dirac monopole

I We had found A(1) =
g

4πr
1− cos θ

sin θ
eϕ (0 ≤ θ < π)

and also A(2) =
−g
4πr

1 + cos θ
sin θ

eϕ (0 < θ ≤ π).

I These are related by the gauge transformation

A(2) = A(1) −∇α with α =
g

2π
ϕ.

I Find a similar gauge transformation wherever you
choose your ‘Dirac string’.

I One problem: α(ϕ = 2π)− α(ϕ = 0) = g,
i.e. α is multiply-valued (up to multiples of g).
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The Dirac monopole

I α itself is not observable, so is this really a problem?
I A field ψ with charge e couples to A via

Djψ = ∂jϕ− i e Ajψ

and it transforms under gauge transformations as

ψ(x) 7→ e−i eα(x)ψ(x)

I Because α is multiply-defined we want

e−i eα(x)ψ(x) = e−i e (α(x)+g)ψ(x),

for which we need e g ∈ 2π Z.
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The Dirac monopole: Charge quantisation

I If e g ∈ 2π Z then everything is consistent.
I The monopole charge therefore needs to be a multiple of

2π/e.

I Conversely, if a single magnetic monopole with charge g
exists, then the electric charge of any particle has to be
an integer multiple of 2π/g (charge quantisation).

I Attempts to make a quantum field theory with Dirac
monopoles have failed.
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A ’t Hooft-Polyakov monopole

I Consider the Georgi-Glashow SU(2) theory with the
following Lagrangian density:

L = −1
2Tr(DµΦDµΦ)− 1

4λ(η2 − |Φ|2)2 − 1
4 Tr(FµνFµν),

with |Φ|2 = (Φ1)2 + (Φ2)2 + (Φ3)2 = 2Tr(Φ2)

I Ingredients:
• A Higgs field Φ = Φata

• A gauge field Aµ = Aa
µta

• Fµν = ∂µAν − ∂νAµ − i e [Aµ,Aν ]
• DµΦ = ∂µΦ− i e [Aµ,Φ]

I Here ta = 1
2 τ

a with [ta, tb] = i εabctc generate of SU(2)
(τ 1, τ 2 and τ 3 are the Pauli matrices.)

The field Φ transforms in the adjoint representation:

Φ 7→ g Φ g−1 or Φ 7→ [ξata,Φ] (infinitesimally)
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A ’t Hooft-Polyakov monopole

I V(Φ) = 1
4 λ(η2 − |Φ|2)2 is minimised at |Φ| = η, so we

have a spontaneously broken symmetry with vacuum
manifold S2.

I What we usually do:
In the unitary gauge we can write Φ = (η + φ)t3 and
Aµ = W1

µt1 + W2
µt2 + aµt3

I The Higgs field (φ) gets a mass
√

2λ η, the W-bosons get
mass 2 η and the photon aµ is massless.

I The unbroken U(1) is generated by t3.
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A ’t Hooft-Polyakov monopole

I A static solution to the field equations of the form

Φ(x) = η h(r)
xa

r
ta, Ai = 1

e (1− k(r))εija
xj

r2 ta, A0 = 0

with h(0) = k(∞) = 0 and h(∞) = k(0) = 1 (A0 = 0)
exists and has been computed numerically.

I Core size is of order (e η)−1 '
√

137
4π η

−1 due to
exponential convergence.

I For r� (e η)−1 we get

Φ(x) ' η xa

r
ta ∈ S2 and Ai ' 1

e εija
xj

r2 ta

I The solution is stable and the mass (energy) can be
calculated to be of order 8πη/e2 ' 2× 137 η.
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A ’t Hooft-Polyakov monopole

h (h(0) = 0) and k (k(0) = 1) for λ → 0 (solid),
λ = e2/40 (dashed) and λ = e2/4 (dotted).
The horizontal axis is scaled by 2/(e η).
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A ’t Hooft-Polyakov monopole

I We can choose fµν = 2 Tr(FµνΦ/|Φ|) =
∑

a Fa
µν

Φa

|Φ|
and define the magnetic field as

Bi ≡ −1
2εijkfjk '

1
e

xi

r3 =
r

e r2 (r� (e η)−1)

I This describes a magnetic monople of charge 4π/e

I We can choose the unitary gauge (Φ = (1 + φ)t3) on a
contractible region that does not contain the origin.

I In this gauge we can write Fµν = F1
µνt1 + F2

µνt2 + fµνt3

and Aµ = W1
µ + W2

µt2 + aµt3 and obtain

fµν = ∂µaν − ∂νaµ

I The field equations tell us that now ∂µfµν = 0.
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Observational bounds: Overclosure

I The Friedmann equation H2 = 8π GN
3 c2 ρ+ Λ

3 − c2 k
a2 can be

rewritten as

ρcr = ρb + ργ + . . .+ ρΛ + ρMM − c2 k/H2
0,

so we need ρMM < ρcr = 3 c2

8π GN
H2

0 ' 5× 10−5 GeV/cm3

to prevent overclosure of our universe.
I Thus nMM < 5× 10−23(m/1017 GeV)−1 cm−3

I Magnetic monopoles expected to have velocity ∼ 10−3c
I Resulting flux limit:

F < Fu ∼ 10−15(mMM/1017 GeV)−1 cm−2s−1sr−1.
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Observational bounds: The Parker bound

I Our Galaxy has a magnetic field of the order of
∼ 3µG ' 10−9 T varying over typical distances of
L ∼ 1021 cm ' 300 pc.

I This is generated by the dynamo effect and refreshed
over a typical timescale of τ ∼ 108 yrs.

I Magnetic monopoles are accelerated by these magnetic
fields over a distance L and gain energy.

I The energy of the magnetic field should not be trained
faster than τ

I Parker bound F < FP ∼ 10−15 cm−2s−1sr−1 obtained
I Result was later improved:

F < FPE ∼ 10−16(m/1017 GeV) cm−2s−1sr−1
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Observational bounds: Induction
340 D. E. Groom, In search ofthe supermassive magnetic monopole

ji~

Fig. 3. Field line behavior as a monopole goes througha superconducting loop. Although lines never “cut” the conductor, they distort and then pinch
off (see inset), resulting in radial lines from the monopole after it goes through the loop, as well as those due to the induced current in the loop.

also produce no induced current. More complicated loop structures can be constructed, in two or three

dimensions to eliminate flux change sensitivity to as high an order as desired. For example, the planar

gradiometer shown in fig. 5(b) is insensitive through third derivative changes in the plane of the paper.

Given reasonably good magnetic shielding, no special field reduction techniques are required.*

Motivated primarily by the desire to reduce sensitivity to the vortex currents deposited on the

enclosure walls, the University of Chicago—Fermilab—Michigan group arrived at quite similar structures

[77,78]. Their argument was that if the larger loop could be twisted and deformed into a number of

smaller loops with alternating current flow directions, just as is shown for four loops in fig. 5, then the flux

from eddy vortices would induce cancelling e.m.f.’s in adjacent cells if the cell size were small compared
with the distance to the shield. The first such “macramés” were literally woven. They were later plated

onto G-10, using solder as the superconductor. The boards were two-sided, with plated-through holes to

connect loops in the appropriate sense. A nine-loop example of such a macrame is shown in fig. 6(a). It,

like the gradiometer coil shown in fig. 5, can be deformed back into a single loop if several twists out of
the plane are made.

However, there is no reason not to run several loops in parallel. As the simplest example, consider a

square loop with the SQUID connected across a diagonal. The diagonal connection may be deformed to

* Henry Frisch has pointed out that Ampere invented the device in 1820. to reduce the effect of the earth’s fields in his experiments [76].

I A magnetic monopole
travelling through a
superconducting loop
leaves behind a flux
2 Φ0 (flux quantum).

I Flux can be measured
using SQUIDs

I Independent of
velocity, mass etc.

I Shielding is a problem
I No monopoles found

but upper bound
obtained:
2×10−14 cm−2s−1sr−1
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Observational bounds: Energy loss
I Fast (v > 10−2c) magnetic monopoles are strongly

ionizing
I Due to their large mass they are nevertheless very

penetrating
I Exact energy loss rate depends on the monopole velocity

and the material used

10

Flux upper Limits (10−16 cm2 s−1 sr−1)
β range CR39 WFD Stream. H Stream. V PHRASE Stream.+scint. Global

(4.0÷ 10.0) × 10−5 3.1÷ 2.1 3.1÷ 2.1
(1.0÷ 1.1) × 10−4 2.8 2.7 1.6
(1.1÷ 2.6) × 10−4 2.2÷ 7.5 2.5 2.8 7.9 1.3÷ 1.5
(2.6÷ 12.0) × 10−4 2.5 2.8 7.9 1.6
(1.2÷ 1.9) × 10−3 2.5÷2.6 2.8 7.9 2.2 1.4
(1.9÷ 3.0) × 10−3 7.5÷ 3.9 2.6÷2.9 2.8 7.9 2.2 1.3
(3.0÷ 4.1) × 10−3 3.9÷ 3.1 2.9÷3.1 2.8 7.9 2.2 1.6
(4.1÷ 5.0) × 10−3 3.1÷ 2.8 2.8 2.2 5.5 1.6÷ 1.66
5.0 × 10−3 ÷ 0.1 2.8÷ 1.5 2.2 5.5 1.8÷ 1.5

0.1÷ 1.0 1.5 5.5 1.4

Table 1. The 90% C.L. flux upper limits (in units of 10−16 cm−2 s−1 sr−1) as a function of β for an isotropic flux of g = gD

magnetic monopoles with m ≥ 1017 GeV/c2. The limits discussed in Section 2 are given in columns two to six; the global
MACRO limit discussed in Section 3 is given in the last column.

both the temporal independence as well as the spatial
(geometric) independence versus the dominant analysis.
The temporal independence is determined by comparing
the “time efficiencies” εt

i of the analyses, defined as the
ratios of each analyses live time to the covered solar
time. If εt

2 > εt
1, the coefficient representing the temporal

independence of “2” versus “1” is ct
2,1 = εt

2−εt
1; otherwise,

ct
2,1 = 0. In the case of the track-etch subdetector, there

is no dead-time, so its temporal efficiency is equal to 1.
The coefficient representing the geometric independence of
analysis “2” versus “1”, cs

2,1, originates from the difference
between the acceptances of the analyses. It is obtained by
Monte Carlo simulations, assuming an incoming isotropic
flux of magnetic monopoles with respect to subdetector
“2”: cs

2,1 = (N2 − N1,2)/N2, where N2 and N1,2 are
the number of MMs detected by “2” and both analyses,
respectively.

The global time integrated acceptance is then:
AG = A1 + ct

2,1A2 + (1− ct
2,1)c

s
2,1A2

The global 90% C.L. limit for the flux of magnetic
monopoles is ΦG = 2.3/AG.

The algorithm used to combine the actual MACRO
limits is more complicated than the example above.
For each analysis we took into consideration its actual
history, eliminating the longer periods of time in which
it was eventually missing, and the changes in the detector
configuration (super-modules involved). Those corrections
were more critical in the case of earlier analyses, that
were carried on during the construction of the MACRO
detector and during initial tests; note that limits obtained
by such older searches are not presented in Fig. 8 and in
Tab.1, as they are considerably higher than the included
ones, but they have still their imprint on the global limit.

In Fig. 9 we present the global MACRO limit; for
comparison, the flux limits from other experiments which
searched for magnetic monopoles with similar properties,
are also shown [31]. In the figure the arrow indicates the
Extended Parker Bound (EPB) at the level of 1.2× 10−16

(m/1017) cm−2s−1sr−1, which was obtained by consider-

Fig. 9. The global MACRO limit for an isotropic flux of bare
magnetic monopoles, with m ≥ 1017 GeV/c2, g = gD and
σcat < few mb. For comparison, we present also the flux limits
from other experiments [31].

ing the survival probability of a magnetic monopole of
mass m in an early magnetic seed field [32].

4 Discussion

Our analysis applies to an isotropic flux of bare MMs with
charge g = gD=e/2α and nucleon decay catalysis cross
sections smaller than 1 mb [1].

The magnetic monopole flux at the detector site
is isotropic if magnetic monopoles have enough kinetic



Symmetry
breaking

Topological
solitons

GUT monopoles

The Dirac
monopole

A ’t
Hooft-Polyakov
monopole

Observational
bounds

Conclusion

37

Observational bounds: Catalysed nucleon decay

I A GUT may allow for the following

M + p→ M + e+ + π0, M + p→ M + µ+ + K0,

M + n→ M + e+ + π−, M + n→ M + µ+ + K−.

I Monopoles might be able to catalyse such reactions
(Rubakov-Callan mechanism)

I Cross-section may be of order 10−25/(v/10−3) cm2

I If this is the case then this would be measurable.
I No catalysed nucleon decay has been been measured,

which limits the flux (under the above assumption)
F < 3× 10−16 cm−2s−1sr−1 (10−4 < v < 5× 10−3),
F < 3× 10−15 cm−2s−1sr−1 (10−5 < v < 10−1),
F < 3× 10−13 cm−2s−1sr−1 (10−2 < v < 1)
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Observational bounds: Catalysed nucleon decay
I Neutron stars and white dwarfs capture all monopoles

that hit them and these accumulate in the core
I Under the conditions from the previous slide

monopoles will catalyse nucleon decay and cause these
objects to heat up.

I Comparison with measured luminosity bounds flux:
WD 1136-286. Then from measurements of the luminosity

and Te f f , Eq. !6" implies that the radius is R#3.9
!108 cm.
We also use two different cooling models. First we use

the white dwarf cooling theory from the calculations of Se-

gretain et al. $19%, as communicated by Chabrier. The Seg-
retain et al. $19% model accounts for gravitational energy re-
lease due to carbon-oxygen differentiation at crystallization.

This treatment of crystallization yields significantly longer

white dwarf cooling times, which in turn imply an older age

for any particular white dwarf. These white dwarf models

correspond to a mass sequence of initially unstratified white

dwarfs composed of equal parts carbon and oxygen, with

helium atmospheres. With these models, the age of white

dwarf 1136-286 is 9.63 Gyr. For comparison we also use the

cooling curves of Wood $20% which do not include chemical
fractionation. Chemical fractionation provides an additional

source of energy to be radiated away; thus models that lack it

cool faster. With the Wood cooling models, the ages of white

dwarfs are somewhat younger. Hence these models give

younger white dwarfs that accumulate somewhat fewer

monopoles and provide somewhat less restrictive bounds.

With the Wood cooling curve, the age of white dwarf 1136-

286 is 6.47 Gyr. To illustrate the uncertainty we provide flux

bounds using both possible ages, but note that the discrep-

ancy is not very great.

The cooling models discussed above do not yet have an

additional heat source due to monopoles. If white dwarfs

have indeed been accumulating monopoles, then the mono-

pole contribution to the luminosity increases linearly in time,

and monopole catalyzed nucleon decay will eventually be-

come the dominant source of luminosity. Since white dwarf

WD 1136-286 with luminosity 10"4.94L! has been observed

to exist, we know that the monopole-induced contribution to

the white dwarf luminosity cannot exceed this value, i.e.,

Lmon#10
"4.94L! . Using the mass and radius discussed pre-

viously for this white dwarf, we then find from Eqs. !3"–!5"
that

NM&2.2!1019!'(""28
"1 s"2

"1 . !7"

With the cooling curves of Segretain et al., which include

the effects of chemical fractionation, the age for this particu-

lar white dwarf WD 1136-286 is given to be 9.63 Gyr as

mentioned above. We find a flux bound

F&1.3!10"20!'(""28
"1 s"2

"1("3
2 cm"2 s"1 sr"1. !8"

The factor of 160 improvement over previous white dwarf

bounds comes from the following: a factor of ten comes

from the fact that the white dwarf is an order of magnitude

dimmer, a factor of four comes from the bigger white dwarf

mass, and a factor of four from the smaller radius than the

white dwarfs used in $14%.
With the Wood $20% cooling curves, the age of the white

dwarf is 6.47 Gyr as mentioned above. Then Eq. !6" corre-
sponds to a flux bound

F&1.9!10"20!'(""28
"1 s"2

"1("3
2 cm"2 s"1 sr"1. !9"

This bound using the Wood cooling curves is less restric-

tive than the one obtained using the Segretain et al. cooling

curves. Hence, to be conservative, in Fig. 1 we plot the flux

bound of Eq. !9". Note that the monopole velocities far from
the white dwarf have been determined as a function of

monopole mass by the following equation: (M#3
!10"3c(1016 GeV/m)1/2 for monopole mass m#1017 GeV
and (M#10"3c for monopoles with mass greater or equal to

1017 GeV $8%. Thus the flux bound is flat for monopole
masses greater than 1017 GeV and drops as m"1 for smaller

masses. This behavior can be seen in Fig. 1.

If the monopole flux saturates the bound in Eqs. !8" and
!9", the heat release due to monopole-catalyzed nucleon de-
cay would explain the dearth of white dwarfs with luminos-

ity &10"5L! . That is, monopoles may be keeping white

dwarfs hot. Note that the white dwarf luminosity due to

monopole catalyzed nucleon decay scales as Lmon
)*10M 0.6

2 . If the luminosity of the coolest objects we see

today is in fact due primarily to the contribution from mono-

poles, then one would in principle be able to see this depen-

dence on white dwarf mass !this idea arose in conversations
with Nahm". However, one would need to be able to inde-

FIG. 1. Bounds on the monopole flux as a function of monopole

mass. The Parker bound $7% due to survival of the galactic magnetic
field is plotted, as is the extended Parker bound $9% due to survival
of the magnetic field early in the history of the Galaxy. Mass den-

sity limits (+h2#1) are plotted for a uniform density of monopoles
in the universe. Note that h is the Hubble constant in units of

100 km s"1 Mpc"1. The bounds due to catalysis in white dwarf

WD1136-286 as discussed in this paper are plotted; the plots as-

sume the cooling curves of Wood $20%, and are very similar to those
obtained using cooling curves of Segretain et al. In addition, the

bounds from this white dwarf with main sequence accretion !WD/
MS" are plotted for g$gD !solid line" and for g$2gD !dotted line".
The bounds due to calaysis in neutron star PSR 1929%10 are plot-
ted, as are bounds due to this neutron star with main sequence

accretion. Again the solid line is for g$gD and the dotted line is for

g$2gD . Note that the neutron star bounds with main sequence
accretion have dependence on the monopole mass.
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Conclusion

I A monopole in linear gauge theory can be defined as a
topological soliton and the existence of monopoles is a
topological property of the vacuum manifold.

I Grand Unified Theories generally predict the allow the
existence of massive magnetic monopoles.

I The monopole problem doesn’t need to be a problem.
I We’ve studied at an example of a magnetic monopole
I People are still searching, but no monopoles have thus

far been observed.
If monopoles exist they must therefore be very rare.
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Questions

Any questions?
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