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1. Classical Fields: General Principles

Classical field theory is a very vast subject which traditionally includes the Maxwell

theory of electromagnetism describing electromagnetic properties of matter and the

Einstein theory of General Relativity. The main scope of classical field theory is
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to construct the mathematical description of dynamical systems with an infinite

number of degrees of freedom. As such, this discipline also naturally incorporates

the classics aspects of fluid dynamics. The basic mathematical tools involved are

partial differential equations with given initial and boundary conditions, theory of

special functions, elements of group and representation theory.

1.1 Lagrangian and Hamiltonian formalisms

We start with recalling the two ways the physical systems are described in classical

mechanics. The first description is known as the Lagrangian formalism which is

equivalent to the “principle of least action1” (Maupertuis’s principle). Consider a

point particle which moves in a n-dimensional space with coordinates (q1, . . . , qn) and

in the potential U(q). The Newtons equations describing the corresponding motion

(trajectory) are

mq̈i = −∂U
∂qi

. (1.1)

These equations can be obtained by extremizing the following functional

S =

∫ t2

t1

dt L(q, q̇, t) =

∫ t2

t1

dt
(mq̇2

2
− U(q)

)
. (1.2)

Here S is the functional on the space of particle trajectories: to any trajectory

which satisfies given initial qi(t1) = qiin and final qi(t2) = qif conditions it puts in

correspondence a number. This functional is called the action. The specific function

L depending on particle coordinates and momenta is called Lagrangian. According

to the principle of stationary action, the actual trajectories of a dynamical system

(particle) are the ones which deliver the extremum of S.

Compute the variation of the action

δS = −
∫ t2

t1

dt
[ d
dt

(mq̇i) +
∂U

∂qi

]
δqi + total derivative ,

where we have integrated by parts. The total derivative term vanishes provided

the end points of a trajectory are kept fixed under the variation. The quantity δS

vanishes for any δqi provided eq.(1.1) is satisfied. Note that in our particular example,

the Lagrangian coincides with the difference of the kinetic and the potential energy

L = T − U and it does not explicitly depend on time.

In general, we simply regard L as an arbitrary function of q, q̇ and time. The

equations of motion are obtained by extremizing the corresponding action

δS

δqi
=

d

dt

(∂L
∂q̇i

)
− ∂L

∂qi
= 0

1More accurately, the principle of stationary action.
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and they are called the Euler-Lagrange equations. We assume that L does not depend

on higher derivatives q̈,
...
q and so on, which reflects the fact that the corresponding

dynamical system is fully determined by specifying coordinates and velocities. In-

deed, for a system with n degrees of freedom there are n Euler-Lagrange equations

of the second order. Thus, an arbitrary solution will depend on 2n integration con-

stants, which are determined by specifying, e.g. the initial coordinates and velocities.

Suppose L does not explicitly depend2 on t, then

dL

dt
=
∂L

∂q̇i
q̈i +

∂L

∂qi
q̇i .

Substituting here ∂L
∂qi

from the Euler-Lagrange equations, we get

dL

dt
=
∂L

∂q̇i
q̈i +

d

dt

(∂L
∂q̇i

)
q̇i =

d

dt

(∂L
∂q̇i

q̇i
)
.

Therefore, we find that

d

dt

(∂L
∂q̇i

q̇i − L
)

= 0 (1.3)

as the consequence of the equations of motion. Thus, the quantity

H =
∂L

∂q̇i
q̇i − L , (1.4)

is conserved under the time evolution of our dynamical system. For our particular

example,

H = mq̇2 − L =
mq̇2

2
+ U(q) = T + U ≡ E .

Thus, H is nothing else but the energy of our system; energy is conserved due

to equations of motion. Dynamical quantities which are conserved during the time

evolution of a dynamical system are called conservation laws or integrals of motion.

Energy is our first non-trivial example of a conservation law.

Introduce a quantity called the (canonical) momentum

pi =
∂L

∂q̇i
, p = (p1, . . . , pn) .

For a point particle pi = mq̇i. Suppose that U = 0. Then

ṗi =
d

dt

(∂L
∂q̇i

)
= 0

by the Euler-Lagrange equations. Thus, in the absence of the external potential, the

momentum p is an integral of motion. This is our second example of a conservation

law.
2This is homogenuity of time.
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Now we remind the second description of dynamical systems which exploits the

notion of the Hamiltonian. The conserved energy of a system expressed via canonical

coordinates and momenta is called the Hamiltonian

H ≡ H(p, q) =
1

2m
p2 + U(q) .

Let us again verify by direct calculation that it does not depend on time,

dH

dt
=

1

m
piṗi + q̇i

∂U

∂qi
=

1

m
m2q̇iq̈i + q̇i

∂U

∂qi
= 0

due to the Newton equations of motion.

Having the Hamiltonian, the Newton equations can be rewritten in the form

q̇j =
∂H

∂pj
, ṗj = −∂H

∂qj
.

These are the fundamental Hamiltonian equations of motion. Their importance lies

in the fact that they are valid for arbitrary dependence of H ≡ H(p, q) on the

dynamical variables p and q.

In the general setting the Hamiltonian equations are obtained as follows. We take the full differential of the

Lagrangian

dL =
∂L

∂qi
dqi +

∂L

∂q̇i
dq̇i = ṗidq

i + pidq̇
i = ṗidq

i + d(piq̇
i)− q̇idpi ,

where we have used the definition of the canonical momentum and the Euler-Lagrange equations. From here we find

d(piq̇
i − L︸ ︷︷ ︸
H

) = q̇idpi − ṗidqi .

From the differential equality the Hamiltonian equations follow. Transformation

H(p, q) = piq̇
i − L(q, q̇)|q̇i→pi

is the Legendre transform.

The last two equations can be rewritten in terms of the single equation. Introduce

two 2n-dimensional vectors

x =

(
p

q

)
, ∇H =

(
∂H
∂pj
∂H
∂qj

)

and 2n× 2n matrix J :

J =

(
0 −1
1 0

)
.

Then the Hamiltonian equations can be written in the form

ẋ = J · ∇H , or J · ẋ = −∇H .
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In this form the Hamiltonian equations were written for the first time by Lagrange

in 1808.

A point x = (x1, . . . , x2n) defines a state of a system in classical mechanics. The

set of all these points form a phase space P = {x} of the system which in the present

case is just the 2n-dimensional Euclidean space with the metric (x, y) =
∑2n

i=1 x
iyi.

To get more familiar with the concept of a phase space, consider a one-dimensional

example: the harmonic oscillator. The potential is U(q) = q2

2
. The Hamiltonian

H = p2

2
+ q2

2
, where we choose m = 1. The Hamiltonian equations of motion are

given by ordinary differential equations:

q̇ = p , ṗ = −q =⇒ q̈ = −q .

Solving these equations with given initial conditions (p0, q0) representing a point in

the phase space3, we obtain a phase space curve

p ≡ p(t; p0, q0) , q ≡ q(t; p0, q0) .

Through every phase space point there is one and only one phase space curve (unique-

ness theorem for ordinary differential equations). The tangent vector to the phase

space curve is called the phase velocity vector or the Hamiltonian vector field. By

construction, it is determined by the Hamiltonian equations. The phase curve can

consist of only one point. Such a point is called an equilibrium position. The Hamil-

tonian vector field at an equilibrium position vanishes.

The law of conservation of energy allows one to find the phase curves easily. On

each phase curve the value of the total energy E = H is constant. Therefore, each

phase curve lies entirely in one energy level set H(p, q) = h. For harmonic oscillator

p2 + q2 = 2h

and the phase space curves are concentric circles and the origin.

The matrix J serves to define the so-called Poisson brackets on the space F(P)

of differentiable functions on P:

{F,G}(x) = (J∇F,∇G) = −J ij∂iF∂jG =
n∑
j=1

(∂F
∂pj

∂G

∂qj
− ∂F

∂qj
∂G

∂pj

)
.

The Poisson bracket satisfies the following conditions

{F,G} = −{G,F} ,
{F, {G,H}}+ {G, {H,F}}+ {H, {F,G}} = 0

3The two-dimensional plane in the present case.
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for arbitrary functions F,G,H.

Thus, the Poisson bracket introduces on F(P) the structure of an infinite-

dimensional Lie algebra. The bracket also satisfies the Leibnitz rule

{F,GH} = {F,G}H +G{F,H}

and, therefore, it is completely determined by its values on the basis elements xi:

{xj, xk} = −J jk

which can be written as follows

{qi, qj} = 0 , {pi, pj} = 0 , {pi, qj} = δji .

The Hamiltonian equations can be now rephrased in the form

ẋj = {H, xj} ⇔ ẋ = {H, x} = XH .

It follows from Jacobi identity that the Poisson bracket of two integrals of motion

is again an integral of motion. The Leibnitz rule implies that a product of two

integrals of motion is also an integral of motion. The algebra of integrals of motion

represents an important characteristic of a Hamiltonian system and it is closely

related to the existence of a symmetry group.

In the case under consideration the matrix J is non-degenerate so that there

exists the inverse

J−1 = −J
which defines a skew-symmetric bilinear form ω on phase space

ω(x, y) = (x, J−1y) .

In the coordinates we consider it can be written in the form

ω =
∑
j

dpj ∧ dqj .

This form is closed, i.e. dω = 0.

A non-degenerate closed two-form is called symplectic and a manifold endowed

with such a form is called a symplectic manifold. Thus, the phase space we consider

is the symplectic manifold.

Imagine we make a change of variables yj = f j(xk). Then

ẏj =
∂yj

∂xk︸︷︷︸
Ajk

ẋk = AjkJ
km∇x

mH = AjkJ
km ∂yp

∂xm
∇y
pH̃

– 7 –



or in the matrix form

ẏ = AJAt · ∇yH̃ .

The new equations for y are Hamiltonian with the new Hamiltonian is H̃(y) =

H(f−1(y)) = H(x) if and only if

AJAt = J .

Hence, this construction motivates the following definition.

Transformations of the phase space which satisfy the condition

AJAt = J

are called canonical4.

Canonical transformations5 do not change the symplectic form ω:

ω(Ax,Ay) = −(Ax, JAy) = −(x,AtJAy) = −(x, Jy) = ω(x, y) .

In the case we considered the phase space was Euclidean: P = R2n. This is not

always so. The generic situation is that the phase space is a manifold. Considera-

tion of systems with general phase spaces is very important for understanding the

structure of the Hamiltonian dynamics.

Short summary

A Hamiltonian system is characterized by a triple (P, {, }, H): a phase space P,

a Poisson structure {, } and by a Hamiltonian function H. The vector field XH is

called the Hamiltonian vector field corresponding to the Hamiltonian H. For any

function F = F (p, q) on phase space, the evolution equations take the form

dF

dt
= {H,F} = XH · F .

Again we conclude from here that the Hamiltonian H is a time-conserved quantity

dH

dt
= {H,H} = 0 .

Thus, the motion of the system takes place on the subvariety of phase space defined

by H = E constant.

4In the case when A does not depend on x, the set of all such matrices form a Lie group known

as the real symplectic group Sp(2n,R) . The term “symplectic group” was introduced by Herman

Weyl. The geometry of the phase space which is invariant under the action of the symplectic group

is called symplectic geometry.
5Notice that AJAt = J implies that AtJA = J . Indeed, multiplying by J both sides of the first

equality from the right, we get AJAtJ = J2 = −1, which further implies AtJ = −J−1A−1 = JA−1.

Finally, multiplying both sides of the last expression from the right by A, we obtain the desired

formula.
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1.2 Noether’s theorem in classical mechanics

Noether’s theorem is one of the most fundamental and general statements concern-

ing the behavior of dynamical systems. It relates symmetries of a theory with its

conservation laws.

It is clear that equations of motion are unchanged if we add to a Lagrangian a

total time derivative of a function which depends on the coordinates and time only:

L→ L+ d
dt
G(q, t). Indeed, the change of the action under the variation will be

δS → δS ′ = δS +

∫ t2

t1

dt
d

dt
δG(q, t) = δS +

∂G

∂qi
δqi|t=t2t=t1 .

Since in deriving the equations of motion the variation is assumed to vanish at the

initial and final moments of time, we see that δS ′ = δS and the equations of motion

are unchanged.

Let now an infinitezimal transformation q → q + δq be such that the variation

of the Lagrangian takes the form (without usage of equations of motion!)6 of a total

time derivative of some function F :

δL =
dF

dt
.

Transformation δq is called a symmetry of the action.

Now we are ready to discuss Noether’s theorem. Suppose that q′ = q + δq is a

symmetry of the action. Then

δL =
∂L

∂qi
δqi +

∂L

∂q̇i
δq̇i =

∂L

∂qi
δqi +

∂L

∂q̇i
d

dt
δqi =

dF

dt
.

By the Euler-Lagrange equations, we get

δL =
d

dt

(∂L
∂q̇i

)
δqi +

∂L

∂q̇i
d

dt
δqi =

dF

dt
.

This gives

δL =
d

dt

(∂L
∂q̇i

δqi
)

=
dF

dt
.

As the result, we find the quantity which is conserved in time

dJ

dt
≡ d

dt

(∂L
∂q̇i

δqi − F
)

= 0 .

This quantity

J =
∂L

∂q̇i
δqi − F = piδq

i − F

is called Noether’s current. Now we consider some important applications.

6As we have already seen, a variation of the Lagrangian computed on the equations of motion is

always a total derivative!
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• Momentum conservation. Momentum conservation is related to the freedom of

arbitrary choosing the origin of the coordinate system. Consider a Lagrangian

L =
m

2
q̇2
i .

Consider a displacement

q′i = qi + ai ⇒ δqi = ai,

q̇′i = q̇i ⇒ δq̇i = 0 .

Obviously, under this transformation the Lagrangian remains invariant and we

can take F = 0 or F = any constant. Thus,

J = piδq
i = pia

i ,

Since ai arbitrary, all the components pi are conserved.

• Angular momentum conservation. Consider again

L =
m

2
q̇2
i

and make a transformation

q′i = qi + εijqj ⇒ δqi = εijqj .

Then,

δL = mq̇iεij q̇j .

Thus, if εij is anti-symmetric, the variation of the Lagrangian vanishes. Again,

we can take F = 0 or F = any constant and obtain

J = piδq
i = piε

ijqj ,

Since εij is arbitrary, we find the conservation of angular momentum compo-

nents

J ji = piq
j − pjqi .

• Particle in a constant gravitational field . The Lagrangian

L =
m

2
ż2 −mgz .

Shift z → z + a, i.e. δz = a. We get δL = −mga = d
dt

(−mgat). Thus, the

quantity

J = mżδz − F = mża+mgat

is conserved. This is a conservation law of the initial velocity ż + gt = const.
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• Conservation of energy. Energy conservation is related to the freedom of

arbitrary choosing the origin of time (you can perform you experiment today

or after a several years but the result will be the same provided you use the

same initial conditions).

We derive now the conservation law of energy in the framework of Noether’s

theorem. Suppose we make an infinitesimal time displacement δt = ε. The

Lagrangian response on it is

δL =
dL

dt
ε .

On the other hand,

δL =
∂L

∂qi
δqi +

∂L

∂q̇i
δq̇i +

∂L

∂t
δt =

d

dt

(∂L
∂q̇i

)
δqi +

∂L

∂q̇i
δq̇i ,

where we have used the Euler-Lagrange equations and assumed that L does

not explicitly depends on time. Obviously, δqi = q̇iε and δq̇i = q̈iε, so that

δL =
d

dt

(∂L
∂q̇i

)
q̇iε+

∂L

∂q̇i
q̈iε =

dL

dt
ε .

Cancelling ε, we recover the conservation law for the energy

dH

dt
= 0 , H = piq̇

i − L .

Finally, it remains to note that in all the symmetry transformations we have consid-

ered so far the integration measure dt in the action did not transform (even for in

the last example dt→ d(t+ ε) = dt ).

1.3 Lagrangians for continuous systems

So far our discussion concerned a dynamical system with a finite number of degrees

of freedom. To describe continuous systems, such as vibrating solid, a transition to

an infinite number of degrees of freedom is necessary. Indeed, one has to specify the

position coordinates of all the points which are infinite in number.

The continuum case can be reached by taking the appropriate limit of a system

with a finite number of discrete coordinates. Our first example is an elastic rod of

fixed length ` which undergoes small longitudinal vibrations. We approximate the

rod by a system of equal mass m particles spaced a distance ∆a apart and connected

by uniform massless springs having the force constant k. The total length of the

system is ` = (n + 1)∆a. We describe the displacement of the ith particle from its

equilibrium position by the coordinate φi. Then the kinetic energy of the particles is

T =
n∑
i=1

m

2
φ̇2
i .
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The potential energy is stored into springs and it is given by the sum

U =
1

2
k

n∑
i=0

(φi+1 − φi)2 .

Here we associate φ0 = 0 = φn+1 with the end points of the interval which do not

move. The force acting on ith particle is Fi = − ∂U
∂φi

:

Fi = k(φi+1 + φi−1 − 2φi) .

This formula shows that the force exerted by the spring on the right of the ith

particle equals to k(φi+1 − φi), while the force exerted from the left is k(φi − φi−1).

The Lagrangian is

L = T − U =
n∑
i=1

m

2
φ̇2
i −

1

2
k

n∑
i=0

(φi+1 − φi)2 .

At this stage we can take a continuum limit by sending n → ∞ and ∆a → 0 so

that ` = (n + 1)∆a is kept fixed. Increasing the number of particles we will be

increasing the total mass of a system. To keep the total mass finite, we assume that

the ratio m/∆a → µ, where µ is a finite mass density. To keep the force between

the particles finite, we assume that in the large particle limit k∆a→ Y , where Y is

a finite quantity. Thus, we have

L = T − U =
1

2

n∑
i=1

∆a
( m

∆a

)
φ̇2
i −

1

2

n∑
i=0

∆a(k∆a)
(φi+1 − φi

∆a

)2

.

Taking the limit, we replace the discrete index i by a continuum variable x. As a

result, φi → φ(x). Also

φi+1 − φi
∆a

→ φ(x+ ∆a)− φ(x)

∆a
→ ∂xφ(x) .

Thus, taking the limit we find

L =
1

2

∫ `

0

dx
[
µφ̇2 − Y (∂xφ)2

]
.

Also equations of motion can be obtained by the limiting procedure. Starting from

m

∆a
φ̈i − k∆a

φi+1 + φi−1 − 2φi
∆a2

= 0,

and using

lim
∆a→0

φi+1 + φi−1 − 2φi
∆a2

=
∂2φ

∂x2
≡ ∂xxφ
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we obtain the equation of motion

µφ̈− Y ∂xxφ = 0 .

Just as there is a generalized coordinate φi for each i, there is a generalized coordinate

φ(x) for each x. Thus, the finite number of coordinates φi has been replaced by a

function of x. Since φ depends also on time, we are dealing with the function of two

variables φ(x, t) which is called the displacement field. The Lagrangian is an integral

over x of the Lagrangian density

L =
1

2
µφ̇2 − 1

2
Y (∂xφ)2 .

The action is a functional of φ(x, t):

S[φ] =

∫ t2

t1

dt

∫ `

0

dxL (φ(x, t), φ̇(x, t), ∂xφ(x, t)) .

It is possible to obtain the equations of motion for the field φ(x, t) directly from

the continuum Lagrangian. One has to understand how the action changes under an

infinitesimal change of the field

φ(x, t)→ φ(x, t) + δφ(x, t) . (1.5)

The derivatives change accordingly,

∂

∂t
φ(x, t)→ ∂

∂t
φ(x, t) +

∂

∂t
δφ(x, t) , (1.6)

∂

∂x
φ(x, t)→ ∂

∂x
φ(x, t) +

∂

∂x
δφ(x, t) . (1.7)

This gives

δS[φ] = S[φ+ δφ]− S[φ] =

∫ t2

t1

dt

∫ `

0

dx
[∂L
∂φ

δφ+
∂L

∂φ̇
∂tδφ+

∂L

∂(∂xφ)
∂xδφ

]
.

Integrating by parts, we find

δS[φ] =

∫ t2

t1

dt

∫ `

0

dx
[∂L
∂φ
− ∂t

∂L

∂φ̇
− ∂x

∂L

∂(∂xφ)

]
δφ

+

∫ `

0

dx
∂L

∂(∂tφ)
δφ|t=t2t=t1 +

∫ t2

t1

dt
∂L

∂(∂xφ)
δφ|x=`

x=0 . (1.8)

The action principle requires that the action principle be stationary w.r.t. in-

finitezimal variations of the fields that leave the field values at the initial and finite

time unaffected, i.e.

δφ(x, t1) = δφ(x, t2) = 0 .
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On the other hand, since the rod is clamped, the displacement at the end points

must be zero, i.e.

δφ(0, t) = δφ(`, t) = 0 .

Under these circumstances we derive the Euler-Lagrange equations for our continuum

system
∂

∂t

( ∂L

∂(∂tφ)

)
+

∂

∂x

( ∂L

∂(∂xφ)

)
− ∂L

∂φ
= 0 .

Let us now discuss the solution of the field equation

φ̈− c2∂xxφ = 0 , c =

√
Y

µ
,

where c is the propagation velocity of vibrations through the rod. This equation is

linear and, for this reason, its solutions satisfy the superposition principle. Take an

ansatz

φ(x, t) = eikxak(t) + e−ikxbk(t) .

If we impose φ(0, t) = 0, then bk(t) = −ak(t) and we can refine the ansatz as

φ(x, t) = ak(t) sin kx .

Requiring that φ(`, t) = 0 we get sin k` = 0, i.e. k ≡ kn = πn
`

. Coefficients ak(t)

then obey

äk + c2k2ak(t) = 0 → ak(t) = eiωktak ,

where ωk = ±ck is the dispersion relation. Thus, the general solution is

φ(x, t) =
∑
n

sin knx
(
An cosωnt+Bn sinωnt

)
, ωn = ckn ,

and the constants An, Bn are fixed by the initial conditions, which is an initial profile

φ(x, 0) and an initial velocity φ̇(x, 0).

Scalar and Vector Fields

The generalization to continuous systems in more space dimensions is now straight-

forward. In two-dimensions one can start with two-dimensional lattice of springs.

The displacement of a particle at the site (i, j) is measured by the quantity ~φij,

which is a two-dimensional vector. In the limit when we go to a continuum, this be-

comes a displacement field ~φ(x, y, t) of a membrane subjected to small vibrations in

the (x, y)-plane. In three dimensions we get a vector ~φijk. The continuous limit yields

a three-dimensional displacement field ~φ(x, y, z, t) of a continuous solid vibrating in

the x, y, z directions with eoms of a partial differential equation type:

~̈φ− c1∂xx~φ− c2∂yy~φ− c3∂zz~φ− c4∂xy~φ− c5∂yz~φ− c6∂xz~φ = 0 ,
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the coefficients ci encode the properties of the solid.

In general, fields depending on the space-time variables are tensors, i.e. they

transforms under general coordinate transformations in a definite way. Namely, a

tensor field φ
i1...ip
j1...jq

of rank (p, q) under general coordinate transformations of the

coordinates xi: xi → x′i(xj) transforms as follows7

φ
′k1...kp
l1...lq

(x′) =
∂x′k1

∂xi1
· · · ∂x

′kp

∂xip
∂xj1

∂x′l1
· · · ∂x

jq

∂x′lq
φ
i1...ip
j1...jq

(x) .

Here tensor indices are acted with the matrices ∂x′i

∂xj
which form a group GL(d,R).

This is a group of all invertible real d × d matrices. A simplest example is a scalar

field that does not carry any indices. Its transformation law under coordinate trans-

formations is φ′(x′) = φ(x). We stress that a point with coordinates x in the original

frame and a point with coordinates x′ in the transformed frame is the one and the

same geometric point.

1.4 Noether’s theorem in field theory

In order to fully describe a dynamical system, it is not enough to only know the

equations of motion. It is also important to be able to express the basic physical

characteristics, in particular, the dynamical invariants, of the systems via solutions

of these equations.

Noether’s theorem: To any finite-parametric, i.e. dependent on s constant param-

eters, continuous transformation of the fields and the space-time coordinates which

leaves the action invariant corresponds s dynamical invariants, i.e. the conserved

functions of the fields and their derivatives.

To prove the theorem, consider an infinitezimal transformation

xi → x′i = xi + δxi , i = 1, . . . , d,

φI(x)→ φ′I(x
′) = φI(x) + δφI(x) .

As in the finite-dimensional case, the variations δxi and δφI are expressed via in-

finitezimal linearly independent parameters δωn:

δxi =
∑

1≤n≤s

X i
nδωn , δφI(x) =

∑
1≤n≤s

ΦI,nδωn . (1.9)

Here all δωn are independent of the coordinates x. Such transformations are called

global. The coefficients X i
n and ΦI,n may depend on x and the fields, and they

7There is a simple rule to remember the appearance of primed and unprimed indices in the tensor

transformation rule. Assuming that all indices on the left hand side of the tensor transformation

formula are ”primed”, then they must label ”primed” coordinates in the right hand side of the

formula.
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describe a response of coordinates and fields on the infinitezimal transformation

with a parameter δωn.

Obviously, particular cases of the transformations above arise, when Xk
n = 0

or ΦI,n = 0. In the first case the coordinates xi do not change under symmetry

transformations at all, while the fields are transformed according to

φI(x)→ φ′I(x) = φI(x) + δφI(x) .

In the second case the symmetry acts on the space-time coordinates only and the

condition ΦI,n = 0 implies that φ′I(x
′) = φI(x), i.e. the fields under considerations

are scalars. We point out that in the case when φI is not a scalar but rather a tensor,

ΦI,n is not zero even if the symmetry acts on the space-time coordinates only! To

illustrate this point, consider a vector field φi(x). Under coordinate transformation

xi → x′i = xi + δxi one gets

φ′i(x′) =
∂x′i

∂xj
φj(x) =

∂(xi + δxi)

∂xj
φj(x) = φi(x) +

∂δxi

∂xj
φj(x)︸ ︷︷ ︸
δφi

,

which implies that the corresponding quantity ΦI is non-trivial; the trivial case occurs

only when δxi does not depend on coordinates, i.e. it is a constant.

In the general case symmetry transformations act on both the space-time coor-

dinates and the fields, cf. eq.(1.9). Consider

φ′I(x
′) = φ′I(x+ δx) = φ′I(x) + ∂kφ

′
I(x)δxk + . . . = φ′I(x) + ∂kφI(x)Xk

nδωn + . . .

It is important to realize that the operations δ and ∂/∂x do not commute. This is

because δ is the variation of the fields due to both the change of their form and their

arguments xi. We therefore introduce the notion of the variation of the form of the

field function

δ̄φI(x) = φ′I(x)− φI(x) = (ΦI,n − ∂kφI Xk
n)δωn .

Variation of the form does commute with the derivative ∂/∂x. For the variation of

the Lagrangian density we, therefore, have

L ′(x′) = L ′(x) +
dL

dxk
δxk = L (x) + L ′(x)−L (x)︸ ︷︷ ︸

δ̄L (x)

+
dL

dxk
δxk .

The change of the action is8

δS =

∫
dx′L ′(x′)−

∫
dxL (x) =

∫
dx′ [L (x) + δ̄L (x) +

dL

dxk
δxk]−

∫
dxL (x) .

8We consider a field theory in d-dimensions, so that the integration measure dx must be under-

stood as dx = dx1dx2 . . . dxd ≡ ddx.
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Transformation of the integration measure is

dx′ = J · dx ≡ det


∂x′1

∂x1
· · · ∂x′d

∂x1

...
...

∂x′1

∂xd
· · · ∂x′d

∂xd


︸ ︷︷ ︸

Jacobian

dx = det

 1 + ∂δx1

∂x1
· · · ∂δxd

∂x1

...
...

∂δx1

∂xd
· · · 1 + ∂δxd

∂xd

 dx .

Thus, at leading order in δωn we have

dx′ = dx(1 + ∂kδx
k + . . .).

Plugging this into the variation of the action, we find

δS =

∫
dx
[
δ̄L (x) +

dL

dxk
δxk + ∂kδx

k L
]

=

∫
dx
[
δ̄L (x) +

d

dxk
(L δxk)

]
.

We further note that

δ̄L (x) =
∂L

∂φI
δ̄φI +

∂L

∂(∂kφI)
∂kδ̄φI = ∂k

( ∂L

∂(∂kφI)

)
δ̄φI +

∂L

∂(∂kφI)
∂kδ̄φI =

= ∂k

( ∂L

∂(∂kφI)
δ̄φI

)
,

where we have used the Euler-Lagrange equations. Thus, we arrive at the following

formula for the variation of the action

δS =

∫
dx

d

dxk

[ ∂L

∂(∂kφI)
δ̄φI+L δxk

]
=

∫
dx

d

dxk

[ ∂L

∂(∂kφI)
(ΦI,n−∂mφI Xm

n )+LXk
n

]
δωn .

Since the integration volume is arbitrary we conclude that

dJkn
dxk

= 0 ⇐⇒ divJn = 0 ,

where

Jkn = − ∂L

∂(∂kφI)
(ΦI,n − ∂mφI Xm

n )−LXk
n

and n = 1, . . . s. Thus, we have shown that the invariance of the action under the

s-parametric symmetry transformations implies the existence of s conserved currents.

An important remark is in order. The quantities Jkn are not uniquely defined.

One can add

Jkn → Jkn + ∂mχ
km
n ,

where χkmn = −χmkn . Adding such anti-symmetric functions does not influence the

conservation law ∂kJ
k
n = 0.

Now we are ready to investigate concrete examples of symmetry transformations

and derive the corresponding conserved currents.
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• Energy-momentum tensor. Consider the infinitezimal space-time translations

x′k = xk + δxk = xk + δknδωn =⇒ Xk
n = δkn

and ΦI,n = 0. Thus, the conserved current Jkn becomes in this case a second

rank tensor T kn

T kn =
∂L

∂(∂kφI)
∂nφI − δknL .

Here, as usual, the sum over the index I is assumed. The quantity T kn is the

so-called stress-energy or energy-momentum tensor. If all the fields vanish at

spacial infinity then the integral9

Pn =

∫
dn−1xT 0

n

is a conserved quantity. Here 0 signifies the time direction and the integral is

taken over the whole (n− 1)-dimensional space. Indeed,

dPn
dt

=

∫
dx
dT 0

n

dt
= −

∫
dn−1x

dT in
dxi

= −
∫

Ω→∞
dΩ (~Tn · ~n) ,

where Ω is a (n− 2)-dimensional sphere which surrounds a n− 1-dimensional

volume; its radius tends to infinity. The vector ~n is a unit vector orthogonal

to Ω.

• Angular momentum. Consider infinitezimal rotations x′n → xn + xmδΩ
nm,

where δΩnm = −δΩmn. Because of anti-symmetry, we can choose δΩnm = δωnm

with n < m as linearly independent transformation parameters. We find

δxk = Xk
j δω

j =
∑
n<m

Xk
nmδω

nm = xlδω
kl = xlδ

k
mδω

ml

=
∑
m<l

xlδ
k
mδω

ml +
∑
m>l

xlδ
k
mδω

ml =
∑
m<l

(xlδ
k
m − xmδkl )δωml . (1.10)

From here we deduce that

Xk
nm = xmδ

k
n − xnδkm, n < m .

If we consider a scalar field then φ′(x′) = φ(x) and δφ = 0. As a result,

ΦI,n = 0. Using the general formula

Jkn = − ∂L

∂(∂kφI)
(ΦI,n − ∂mφI Xm

n )−LXk
n ,

9Here we explicitly distinguished a time direction t and write the integration measure in the

action as dx = dtdn−1x.
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we therefore find the following angular momentum tensor

Mk
lm =

∂L

∂(∂kφ)
(∂lφxm − ∂mφxl) + L (xlδ

k
m − xmδkl ) .

Notice that the last formula can be written in the form

Mk
lm = xm

( ∂L

∂(∂kφ)
∂lφ −L δkl

)
− xl

( ∂L

∂(∂kφ)
∂mφ −L δkm

)
= xmT

k
l − xlT km ,

where T kl is the stress-energy tensor.

If we consider now a vector field φi, then according to the discussion above, we

will have

δφi =
∑
m<l

Φi
mlδw

ml =
∂δxi

∂xj
φj(x) =

∂

∂xj

(∑
m<l

(xlδ
i
m − xmδil)δωml

)
so that

Φi
ml = (gjlδ

i
m − gjmδil)φj = φlδ

i
m − φmδil ,

where gij is a space-time metric. According to our general formula, the set of

corresponding Noether currents will have the form

Jkmn = − ∂L

∂(∂kφi)
(Φi

mn − ∂lφiX l
mn)−LXk

mn .

Substitution of all the quantities gives

Jkmn = − ∂L

∂(∂kφi)

[
φnδ

i
m − φmδin − ∂lφi(xnδlm − xmδln)

]
−L (xnδ

k
m − xmδkn) .

We, therefore, see that for the vector field, the angular-momentum tensor takes

the form

Jkmn = xnT
k
m − xmT kn −

( ∂L

∂(∂kφn)
φm −

∂L

∂(∂kφm)
φn

)
.

The first piece here, which depends on the stress-energy tensor is called the

orbital momentum and the second piece characterizes polarization properties

of the field and is related with a notion of spin.

The final remark concern continuous s-parametric transformations which leave

the action invariant up to a total derivative term (in the original formulation of the

Noether’s an exact invariance of the action was assumed!)

δS = δωn

∫
dx ∂kF

k
n .

These transformations also lead to conservation laws. It obtain them, it is enough

to subtract from the canonical current Jkn the term F k
n :

J k
n = Jkn − F k

n .

One can verify that this new current is conserved ∂kJ k
n as the consequence of the

equations of motion.
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1.5 Hamiltonian formalism in field theory

As was discussed above, in the Lagrangian formalism the dynamics of classical fields

φi is described by the action functional

S =

∫
Ldt =

∫
dtd~xL (φi, ∂µφ

i) ,

where L is the Lagrangian density being a function of φi and ∂µφ
i taken at the same

point x. The transition to the Hamiltonian formalism is performed by introducing

the canonical momenta conjugate to the “coordinates” φi:

pi(x) =
δL

δφ̇i(x)
=

∂L

∂φ̇i(x)
.

The Hamiltonian has the form

H =

∫
d~xH , H =

∂L

∂φ̇i(x)
φ̇i(x)−L ,

where in the right hand side of the last formula one has to substitute the expression

for φ̇i(x) via pi(x) and φi(x).

The definition of the Poisson brackets is also generalized to the field-theoretic

case. For any two local in time functionals F and G of fields and their momenta we

define their Poisson bracket as the following functional

{F,G} =

∫
d~x
[ δF

δpi(x)

δG

δφi(x)
− δG

δpi(x)

δF

δφi(x)

]
,

where F and G are taken at the same moment of time. The Hamiltonian equations

are then

φ̇i = {H,φi} , ṗi = {H, pi} .
The canonical Poisson brackets are

{φi(t, ~x), φj(t, ~y)} = 0 ,

{pi(t, ~x), pj(t, ~y)} = 0 ,

{pi(t, ~x), φj(t, ~y)} = δji δ(~x− ~y) .

Note that all the fields for which the brackets are computed are taken at the one and

the same moment of time!

Consider the simplest example of a real massive scalar field φ described by the

Lagrangian density

L =
1

2
(∂µφ∂

µφ−m2φ2) .

The momentum is

p(x) =
∂L

∂φ̇(x)
= φ̇(x)

and, therefore, the Hamiltonian density is

H =
1

2

(
p2 − ∂iφ ∂iφ+m2φ2

)
.
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2. Electrostatics

Classical electrodynamics is a theory of electric and magnetic fields caused by macro-

scopic distributions of electric charges and currents. Within the field of electrody-

namics, one can study electromagnetic fields under certain static conditions leading

to electrostatics (electric fields independent of time) and magnetostatics (magnetic

fields independent of time). First, we focus on the laws of electrostatics.

2.1 Laws of electrostatics

Electrostatics is the study of electric fields produced by static charges. It is based

entirely on Coulomb’s law (1785). This law defines the force that two electrically

charged bodies (point charges) exert on each other

~F (~x) = k q1q2
~x1 − ~x2

|~x1 − ~x2|3
, (2.1)

where k is Coulomb’s constant (depends on the system of units used10), q1 and q2

are the magnitudes of the two charges, and ~x1 and ~x2 are their position vectors (as

presented in Figure 1).

p -�
�
�
�
�
��

~x2

~x1

q

q

q2

q1

Figure 1: Two charges q1 and q2 and their respective posi-

tion vectors ~x1 and ~x2. The charges exert an electric force on

one another.

One can introduce the concept of an electric field ~E as the force experienced by

a point-like charge q in the limit of vanishing q

~E (~x) = lim
q→0

~F (~x)

q
.

We have used the limiting procedure to introduce a test charge such that it will only

measure the electric field at a certain point and not create its own field. Hence, using

10In SI units (SI – the international system of units ), the Coulomb’s constant is k = 1
4πε0

, while

force is measured in newtons, charge in coulombs, length in meters, and the vacuum permittivity

ε0 is given by ε0 = 107

4πc2 = 8.8542 · 10−12F/m . Here, F indicates farad, a unit of capacitance being

equal to one coulomb per volt. One can also use the Gauss system of units (CGS – centimetre-gram-

second). In CGS units, force is expressed in dynes, charge in statcoulombs, length in centimeters,

and the vacuum permittivity then reduces to ε0 = 1
4π .

– 21 –



Coulomb’s law, we obtain an expression for the electric field of a point charge

~E (~x) = kq
~x− ~x′
|~x− ~x′|3 .

Since ~E is a vector quantity, for multiple charges we can apply the principle of linear

superposition. Consequently, the field strength will simply be a sum of all of the

contributions, which we can write as

~E (~x) = k
∑
i

qi
~x− ~xi
|~x− ~xi|3

. (2.2)

Introducing the electric charge density ρ (~x), the electric field for a continuous dis-

tribution of charge is given by

~E (~x) = k

∫
ρ (~x′)

~x− ~x′
|~x− ~x′|3 d3x′ . (2.3)

The Dirac delta-function (distribution) allows one to write down the electric charge

density which corresponds to local charges

ρ (~x) =
N∑
i=1

qiδ (~x− ~xi) . (2.4)

Substituting this formula into eq.(2.3), one recovers eq.(2.2).

However, eq.(2.3) is not very convenient for finding the electric field. For this

purpose, one typically turns to another integral relation known as the Gauss theorem,

which states that the flux through an arbitrary surface is proportional to the charge

contained inside it. Let us consider the flux of ~E through a small region of surface

dS, represented graphically in Figure 2,

dN =
(
~E · ~n

)
dS =

q

r3
(~r · ~n) dS

=
q

r2
cos (~r, ~n) dS =

q

r2
dS ′ ,

where on the first step we have used that ~E = q ~r
r3

. By the definition of dS ′, we

observe that it is positive for an angle θ between ~E and ~n less than π
2
, and negative

otherwise. We introduce the solid angle dΩ′

dΩ′ =
dS ′

r2
. (2.5)

Plugging this relation into eq.(2.5) leaves us with the following expression for the

flux

dN = q · dΩ′ . (2.6)
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Figure 2: The electric flux through a surface, which is pro-

portional to the charge within the surface.

By integrating eq.(2.6), we obtain the following equation for the flux N∮
S

(
~E · ~n

)
dS =

{
4πq if q is inside the surface

0 otherwise

Equivalently, using the fact that the integral of the charge distribution over volume

V is equal to the total charge enclosed in the volume, i.e. q =
∫
V
ρ (x) d3x, one finds

a similar expression

N =

∮
S

(
~E · ~n

)
dS = 4π

∫
ρ(x) d3x .

By making use of the Gauss-Ostrogradsky theorem, one may rewrite the above

integral in terms of the volume integral of the divergence of the vector field ~E∮
S

(
~E · ~n

)
dS =

∫
V

div ~E (~x) d3x .

Recalling that the left hand side is equal to 4πq, a relation between the divergence

of the electric field and the charge density arises

0 =

∫
V

[
div ~E (~x)− 4πρ (~x)

]
d3x .

Since the relation holds for any chosen volume, then the expression inside the integral

must equal to zero. The resulting equation is then

div ~E (~x) = 4πρ (~x) .

This is known as the differential form of the Gauss (law) theorem for electrostatics.

This is the first equation from the set of four Maxwell’s equations, the latter being

the essence of electrodynamics.

– 23 –



The Gauss theorem is not enough, however, to determine all the components of
~E. A vector field ~A is known if its divergence and its curl, denoted as div ~A and

rot ~A respectively, are known. Hence, some information is necessary about the curl

of electric field. This is in fact given by the second equation of electrostatics

rot ~E = 0 . (2.7)

The second equation of electrostatics is known as Faraday’s law in the absence of

time-varying magnetic fields, which are obviously not present in electrostatics (since

we required all fields to be time independent). We will derive this equation in the

following way. Starting from the definition of the electric field (Coulomb’s law)

given by equation (2.3), we rewrite it in terms of a gradient and pull the differential

operator outside of the integral

~E (~x) =

∫
ρ (~x′)

~x− ~x′
|~x− ~x′|3 d3x′ = −

∫
ρ (~x′) ~∇x

1

|~x− ~x′|d
3x′

= −~∇x

∫
ρ (~x′)

|~x− ~x′|d
3x′ = −grad

∫
ρ(~x′)

|~x− ~x′|d
3x′ . (2.8)

From vector calculus we know that the curl of gradient is always equal to zero, such

that

rot (grad f) = 0 ⇒ rot ~E = 0 .

This derivation shows that the vanishing of rot ~E is not related to the inverse square

law. It also shows that the electric field is the minus gradient of some scalar potential

~E(~x) = −grad ϕ .

From the above, it then follows that this scalar potential is given by

ϕ(x) =

∫
ρ(x′)

|x− x′|d
3x′ , (2.9)

where the integration is carried out over the entire space. Obviously, the scalar

potential is defined up to an additive constant; adding any constant to a given ϕ(x)

does not change the corresponding electric field ~E.

What is the physical interpretation of ϕ(x)? Consider the work which has to be

done to move a test charge along a path from point A to B through an electric field
~E

W = −
∫ B

A

~F · d~l = −q
∫ B

A

~E · d~l .
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Figure 3: The work that has to be done over a charged particle to move it

along the path from A to B through an electric field ~E.

The minus sign represents the fact that the test charge does work against the electric

forces. By associating the electric field as the gradient of a scalar potential, one

obtains

W = q

∫ B

A

gradϕ · d~l = q

∫ B

A

∂ϕ

∂x
dx+

∂ϕ

∂y
dy +

∂ϕ

∂z
dz

=

∫ tB

tA

(∂ϕ
∂x

dx

dt
+
∂ϕ

∂y

dy

dt
+
∂ϕ

∂z

dz

dt

)
dt = q (ϕB − ϕA) ,

where we have parametrized the path as (x(t), y(t), z(t)). The result is just a dif-

ference between the potentials at the end points of the path. This implies that the

potential energy of a test charge is given by

V = q ϕ .

In other words, the potential energy does not depend on the choice of path (hence,

the electric force is a conservative force). If a path is chosen such that it is closed,

i.e. A = B, the integral reduces to zero∮
~E · d~l = 0 .

This result can also be obtained from Stokes’ theorem∮ (
~E · d~l

)
=

∮
S

rot ~E · d~S = 0 ,

where we have used the fact that rot ~E = 0.

To summarize, we have derived two laws of electrostatics in the differential form

~∇ · ~E (~x) = div ~E (~x) = 4πρ (~x) , (2.10)

~∇× ~E (~x) = rot ~E (~x) = 0 . (2.11)
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2.2 Laplace and Poisson equations

In the previous section it was shown that the curl of the electric field is equal to zero,

thus the field is simply the gradient of some scalar function, which can be written as

rot ~E (~x) = 0 ⇒ ~E (~x) = −~∇ϕ (~x) .

Substituting the right hand side of this expression into equation (2.10), we obtain

div ~∇ϕ (~x) = −4πρ (~x) .

This gives

∇2ϕ (~x) ≡ ∆ϕ (~x) = −4πρ (~x) . (2.12)

Equation (2.12) is known as the Poisson equation. In case ρ (~x) = 0, i.e. in a region

of no charge, the left hand side of (2.12) is zero, which is known as the Laplace

equation. Substituting into (2.12) the form scalar potential ϕ, given by (2.9) , we

get

∇2ϕ (~x) = ∇2

∫
ρ(~x′)

|~x− ~x′|d
3x′ =

∫
d3x′ ρ(~x′)∇2

(
1

|~x− ~x′|

)
.

Without loss of generality we can take x′ = 0, which is equivalent to choosing the

origin of our coordinate system. By switching to spherical coordinates, we can show

that

∇2 1

|~x− ~x′| = ∇2 1

r
=

1

r

d2

dr2

(
r

1

r

)
= 0 .

This is true everywhere except for r = 0, for which the expression above is undeter-

mined. To determine its value at r = 0 we can use the following trick. Integrating

over volume V , using the Gauss law and the fact that ~∇r = ~n, one obtains∫
V

∇2

(
1

r

)
d3x =

∫
V

div ~∇
(

1

r

)
d3x =

∮
S

~n · ~∇1

r
dS

=

∮
S

~n · ∂
∂r

(
1

r

)
~n dS =

∮
S

∂

∂r

(
1

r

)
r2dΩ︸ ︷︷ ︸

dS

= −4π .

Therefore,

∇2

(
1

r

)
= −4πδ(~x) ,

or

∇2
x

1

|~x− ~x′| = −4πδ (~x− ~x′) .

Thus, we find

∇2ϕ =

∫
ρ(x′) (−4πδ(x− x′)) d3x′ = −4πρ(x) .

Hence, we have proved that 1
r

solves the Poisson equation with the point charge

source. In general, the functions satisfying ~∇2ϕ = 0 are called harmonic functions.
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2.3 The Green theorems

If in electrostatics we would always deal with discrete or continuous distributions

of charges without any boundary surfaces, then the general expression (where one

integrates over all of space)

ϕ(x) =

∫
ρ(x′)

d3x′

|x− x′| (2.13)

would be the most convenient and straightforward solution of the problem. In other

words, given some distribution of charge, one can find the corresponding potential

and, hence, the electric field ~E = −~∇ϕ.

In reality, most of the problems deals with finite regions of space (containing

or not containing the charges), on the boundaries of which definite boundary condi-

tions are assumed. These boundary conditions can be created by a specially chosen

distribution of charges outside the region in question. In this situation our general

formula (2.13) cannot be applied with the exception of some particular cases (as in

the method of images). To understand boundary problems, one has to invoke the

Green theorems.

Consider an arbitrary vector field11 ~A. We have∫
V

div ~A d3x =

∮
S

(
~A · ~n

)
dS . (2.14)

Let us assume that ~A has the following specific form

~A = ϕ · ~∇ψ ,

where ψ and ϕ are arbitrary functions. Then

div ~A = div
(
ϕ · ~∇ψ

)
= div

(
ϕ
∂ψ

∂xi

)
=

∂

∂xi

(
ϕ
∂ψ

∂xi

)
= ~∇ϕ · ~∇ψ + ϕ∇2ψ .

Substituting this back into eq.(2.14), we get∫
V

(
~∇ϕ · ~∇ψ + ϕ∇2ψ

)
d3x =

∮
S

ϕ ·
(
~∇ψ · ~n

)
dS =

∮
S

ϕ

(
dψ

dn

)
dS .

which is known as the first Green formula. When we interchange ϕ for ψ in the above

expression and take a difference of these two we obtain the second Green formula∫
V

(
ϕ∇2ψ − ψ∇2ϕ

)
d3x =

∮
S

(
ϕ

dψ

dn
− ψdϕ

dn

)
dS . (2.15)

11Now introduced for mathematical convenience, but it will later prove to be of greater impor-

tance.

– 27 –



By using this formula, the differential Poisson equation can be reduced to an integral

equation. Indeed, consider a function ψ such that

ψ ≡ 1

R
=

1

|~x− ~x′| ⇒ ∇2ψ = −4πδ (~x) . (2.16)

Substituting it into the second Green formula (2.15) and assuming x is inside the

space V integrated over, one gets∫
V

(
−4πϕ(~x′)δ (~x− ~x′) +

4πρ(~x′)

|~x− ~x′|

)
d3x′ =

∮
S′

[
ϕ

d

dn′

(
1

R

)
− 1

R

dϕ

dn′

]
dS ′ .

Here we have chosen ϕ (~x′) to satisfy the Poisson equation ∆ϕ (~x′) = −4πρ (~x′). By

using the sampling property of the delta function, i.e.
∫
V
ϕ (~x′) δ (~x− ~x′) = ϕ (~x),

the expression above allows one to express ϕ(~x) as

ϕ (~x) =

∫
V

ρ (~x′)

R
d3x′ +

1

4π

∮
S

[
1

R

∂ϕ

∂n′
− ϕ ∂

∂n′

(
1

R

)]
dS ′ , (2.17)

which is the general solution for the scalar potential. The terms inside the integrals

are equal to zero if x lies outside of V .

Consider the following two special cases:

• If S goes to ∞ and the electric field vanishes on it faster than 1
R

, then the

surface integral turns to zero and ϕ(~x) turns into our general solution given by

eq.(2.13).

• For a volume which does not contain charges, the potential at any point (which

gives a solution of the Laplace equation) is expressed in terms of the potential

and its normal derivative on the surface enclosing the volume. This result,

however, does not give a solution of the boundary problem, rather it represents

an integral equation, because given ϕ and ∂ϕ
∂n

(Cauchy boundary conditions)

we overdetermined the problem.

Therefore, the question arises which boundary conditions should be imposed to

guarantee a unique solution to the Laplace and Poisson equations. Experience shows

that given a potential on a closed surface uniquely defines the potential inside (e.g.

a system of conductors on which one maintains different potentials). Giving the

potential on a closed surface corresponds to the Dirichlet boundary conditions.

Analogously, given an electric field (i.e. normal derivative of a potential) or

likewise the surface charge distribution (E ∼ 4πσ) also defines a unique solution.

These are the Neumann boundary conditions12.

12Note that both Dirichlet as well as Neumann boundary conditions are not only limited to elec-

trodynamics, but are more general and appear throughout the field of ordinary or partial differential

equations.
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One can prove, with the help of the first Green formula, that the Poisson equation

~∇2ϕ = −4πρ ,

in a volume V has a unique solution under the Dirichlet or the Neumann conditions

given on a surface S enclosing V . To do so, assume there exist two different solutions

ϕ1 and ϕ2 which both have the same boundary conditions. Consider

U = ϕ2 − ϕ1 .

It solves ∇2U = 0 inside V and has either U = 0 on S (Dirichlet) or ∂U
∂n

= 0 on S

(Neumann). In the first Green formula one plugs ϕ = ψ = U , so that∫
V

(∣∣∣~∇U ∣∣∣2 + U∇2U

)
d3x =

∮
S

U

(
∂U

∂n

)
dS . (2.18)

Here the second term in the integral vanishes as ~∇2U = 0 by virtue of being the

solution to the Laplace equation and the right hand side is equal to zero, since we

have assumed that the value of the potential (Dirichlet) or its derivative (Neumann)

vanish at the boundary. This equation is true iff 13∫
V

|~∇U |2 = 0 −→ |~∇U | = 0

−→ ~∇U = 0 (2.19)

Thus, inside V the function U is constant everywhere. For Dirichlet boundary con-

ditions U = 0 on the boundary and so it is zero uniformly, such that ϕ1 = ϕ2

everywhere, i.e. there is only one solution. Similarly, the solution under Neumann

boundary conditions is also unique up to unessential boundary terms.

2.4 Method of Green’s functions

This method is used to find solutions of many second order differential equations and

provides a formal solution to the boundary problems. The method is based on an

impulse from a source, which is later integrated with the source function over entire

space. Recall

∇2 1

|~x− ~x′| = −4πδ (~x− ~x′) . (2.20)

However, the function 1
|~x−~x′| is just one of many functions which obeys ∇2ψ =

−4πδ (~x− ~x′). The functions that are solutions of this second order differential

equation are known as Green’s functions. In general,

~∇2G (~x, ~x′) = −4πδ (~x− ~x′) , (2.21)
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S1

S2

Figure 4: Choosing arbitrarily the surfaces S1 and S2, where

S is the area between them, we let them expand so that the

average value of the scalar potential tends to zero.

where G (~x, ~x′) = 1
|~x−~x′| + F (~x, ~x′), so that ~∇2F (~x, ~x′) = 0, i.e. it obeys the Laplace

equation inside V .

The point is now to find such F (~x, ~x′), that gets rid of one of the terms in the

integral equation (2.17) we had for ϕ (~x). Letting ϕ = ϕ (~x) and ψ = G (~x, ~x′), we

then get

ϕ (~x) =

∫
V

ρ (~x′)G (~x, ~x′) d3x
′
+

1

4π

∮
S

[
G (~x, ~x′)

∂ϕ (~x′)

∂n′
− ϕ (~x′)

∂G (~x, ~x′)

∂n′

]
dS ′ .

By using the arbitrariness in the definition of the Green function we can leave in

the surface integral the desired boundary conditions. For the Dirichlet case we can

choose Gboundary (~x, ~x′) = 0 when ~x′ ∈ S, then ϕ(~x) simplifies to

ϕ (~x) =

∫
V

ρ (~x′)G (~x, ~x′) d3x′ − 1

4π

∮
S

ϕ (~x′)
∂G (~x, ~x′)

∂n′
dS ′ ,

where G (~x, ~x′) is referred to as the bulk-to-bulk propagator and ∂G(~x,~x′)
∂n′

is the bulk-

to-boundary propagator.

For the Neumann case we could try to choose ∂G(~x,~x′)
∂n′

= 0 when ~x′ ∈ S. However,

one has ∮
∂G (~x, ~x′)

∂n′
dS ′ =

∮
S

(
~∇G · ~n

)
dS ′ =

∫
div~∇G d3x′ =

∫
∇2G d3x′

= −4π

∫
δ(~x− ~x′) d3x′ = −4π . (2.22)

For this reason we can not demand ∂G(~x,~x′)
∂n′

= 0. Instead, one chooses another simple

condition ∂G(~x,~x′)
∂n′

= −4π
S

, where S is the total surface area, and the left hand side of

13“If and only if”.
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the equation is referred to as the Neumann Green function. Using this condition:

ϕ (~x) =

∫
V

ρ (~x′)GN (x, x′) d3x′ +
1

4π

∮
S

GN (~x, ~x′)
∂ϕ (~x′)

∂n′
dS ′

+
1

S

∮
S

ϕ (~x′) dS ′ (2.23)

The last term represents 〈ϕ〉, the averaged value of the potential on S. If one takes

the limit S = S1 + S2 →∞, where S1 and S2 are two surfaces enclosing the volume

V and such that S2 tends to infinity, this average disappears. In any case, the extra

term 1
S

∮
S
ϕ (~x′) dS ′ is just a constant (does not depend on x) and, therefore, does

not contribute to the electric field ~E = −~∇ϕ.

2.5 Electrostatic problems with spherical symmetry

Frequently, when dealing with electrostatics, one encounters the problems exhibiting

spherical symmetry. As an example, take the Coulomb law (2.1), which depends

on the radial distance only and has no angular dependence. When encountering

a symmetry of that sort, one often chooses a set of convenient coordinates which

greatly simplifies the corresponding problem.

 

  y

x

z

 

 

 

 

( ), ,P r θ φ

r

 

 

 
 

θ

φ

Figure 5: Spherical coordinate system.

It is no surprise that in this case, we will be making use of spherical coordinates,

which in terms of the Cartesian coordinates, are given by

r =
√
x2 + y2 + z2 ,

θ = arccos

(
z√

x2 + y2 + z2

)
, (2.24)

φ = arctan
(y
x

)
,

To obtain the Cartesian coordinates from the spherical ones, we use

x = r sin θ cosφ ,

y = r sin θ sinφ , (2.25)

z = r cos θ .
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In terms of spherical coordinates our differential operators look different. The

one we will be most interested in, the Laplace operator, becomes

~∇2 =
1

r2

(
∂

∂r
r2 ∂

∂r

)
+

1

r2 sin θ

(
∂

∂θ
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2
.

Hence, in these coordinates the Laplace equation reads as

~∇2ϕ =
1

r

∂2

∂r2
(rϕ) +

1

r2 sin θ

∂

∂θ

(
sin θ

∂ϕ

∂θ

)
+

1

r2 sin2 θ

∂2ϕ

∂φ2
= 0 .

We use the ansatz that ϕ (r, θ, φ) = U(r)
r
P (θ)Q (φ). Upon substituting this into the

Laplace equation and multiplying both sides by r3 sin2 θ
U(r)P (θ)Q(φ)

, one obtains

r2 sin2 θ

[(
1

U

∂2U

∂r2

)
+

1

r2 sin θP

(
∂

∂θ
sin θ

∂P

∂θ

)]
+

1

Q

∂2Q

∂φ2
= 0 .

Since we only have φ dependence in the last term we can state that, since there are

no other terms with φ, then this term has to be constant (chosen here for convenience

with anticipation of the solution)

1

Q

∂2Q

∂φ2
= −m2 .

Hence the solution is Q = e±imφ, where m is an integer such that Q is single valued.

This leaves us with two separated equations. For P (θ) the equation simplifies to

1

sin θ

d

dθ

(
sin θ

dP

dθ

)
+

[
l(l + 1)− m2

sin2 θ

]
P = 0 ,

and for U (r) one obtains
d2U

dr2
− l (l + 1)

r2
U = 0 ,

where we have just again conveniently picked l(l + 1) to be the integration constant

such that in our solution it will appear in a convenient form. It is easy to verify that

the solution to the equation for U(r) is given by

U (r) = Arl+1 +Br−l ,

where l is assumed to be positive and A and B are arbitrary constants. The second

equation, on the other hand, is a bit more complicated and upon substitution cos θ =

x it transforms into

d

dx

[(
1− x2

) dP

dx

]
+

[
l(l + 1)− m2

1− x2

]
P = 0 ,
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which one can recognize as the so-called generalized Legendre equation. Its solutions

are the associated Legendre functions. For m2 = 0, we obtain the Legendre equation

d

dx

[
(1− x2)

dP

dx

]
+ l(l + 1)P = 0 . (2.26)

The solutions to this equation are referred to as the Legendre polynomials. In order

for our solution to have physical meaning, it must be finite and continuous on the

interval −1 ≤ x ≤ 1. We try as a solution the following power series (the Frobenius

method)

P (x) = xα
∞∑
j=0

ajx
j , (2.27)

where α is unknown. Substituting our trial solution (2.27) into the Legendre equation

(2.26), we obtain

∞∑
j=0

(
(α + j) (α + j − 1) ajx

α+j−2

− [(α + j) (α + j + 1)− l (l + 1)] ajx
α+j

)
= 0 .

For j = 0 and j = 1, the first term will have xα−2 and xα−1 and the second term

will have xα and xα+1 respectively, which will never make the equation equal to zero

unless

• a0 6= 0, then α (α− 1) = 0 so that (A) α = 0 or α = 1

• a1 6= 0, then α (α + 1) = 0 so that (B) α = 0 or α = −1

For other j, one obtains a recurrence relation

aj+2 =
(α + j) (α + j + 1)− l (l + 1)

(α + j + 1) (α + j + 2)
aj

Cases (A) and (B) are actually equivalent. We will consider case (A) for which α = 0

or 1. The expansion contains only even powers of x for α = 0 and only odd powers

of x for α = 1. We note two properties of this series:

1. The series is convergent for x2 < 1 for any l.

2. The series is divergent at x = ±1 unless it is truncated.

It is obvious from the recurrent formula that the series is truncated in the case

that l is a non-negative integer. The corresponding polynomials are normalized in
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Figure 6: Profiles of a few Legendre polynomials.

such a way that they are all equal to identity at x = 1. These are the Legendre

polynomials Pl(x):

P0 (x) = 1 ;

P1 (x) = x ;

P2 (x) =
1

2

(
3x2 − 1

)
;

P3 (x) =
1

3

(
5x3 − 2x

)
;

· · ·
Pl (x) =

1

2ll!

dl

dxl
(
x2 − 1

)l
.

The general expression given in the last line is also known as the Rodrigues formula.

The Legendre polynomials form a complete system of orthogonal functions on

−1 ≤ x ≤ 1. To check whether they are indeed orthogonal, one takes the differential

equation for Pl, multiplies it by Pl′ , and then integrates∫ 1

−1

Pl′

[
d

dx
(1− x2)

dPl
dx

+ l(l + 1)Pl

]
dx = 0 ,

or ∫ 1

−1

[
(x2 − 1)

dPl′

dx

dPl
dx

+ l(l + 1)Pl′Pl)

]
dx = 0 .
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Now subtract the same equation, but with the interchange of l and l′, such that

the following expression is left

[(l′(l′ + 1)− l(l + 1)]

∫ 1

−1

Pl′Pl = 0 .

The equation above shows that for l 6= l′ the polynomials are orthogonal∫ 1

−1

Pl′Pl = 0 .

By using the Rodrigues formula, one can get an identity∫ 1

−1

Pl′(x)Pl(x)dx =
2

2l + 1
δl′,l .

For any function defined on −1 ≤ x ≤ 1

f(x) =
∞∑
l=0

AlPl(x) ,

Al =
2l + 1

2

∫ 1

−1

f(x)Pl(x)dx .

Note that this expansion and its coefficients is not different to any other set of

orthogonal functions in the function space. In situations where there is an azimuthal

symmetry, one can take m = 0. Thus,

ϕ (r, θ) =
∞∑
l=0

(
Alr

l +Blr
−(l+1)

)
Pl (cos θ) .

If charge is absent anywhere in the vicinity of the coordinate system, one should take

Bl = 0. Take a sphere of radius a with the potential V (θ). Then

V (θ) =
∞∑
l=0

Ala
lPl(cos θ)

so that

Al =
2l + 1

2al

∫ π

0

V (θ)Pl(cos θ) sin θdθ .

The Legendre equation is of the second order. Therefore, it must have another independent solution Q. It can

be found in the following way. Consider

d

dx
(1− x2)P ′ + l(l + 1)P = 0

d

dx
(1− x2)Q′ + l(l + 1)Q = 0 .
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Multiply the first equation by Q and another by P and subtract one from the other. We get

d

dx

[
(1− x2)(PQ′ −QP ′)

]
= 0 .

Integration gives

(1− x2)(PQ′ −QP ′) = C ,

where C is an integration constant. This can be brought to the form

d

dx

(
Q

P

)
=

C

(1− x2)P 2
.

Integration gives

Q(x) = P (x)

∫ x

∞

dy

(1− y2)P 2(y)
,

where normalization has been chosen such that Q(∞) = 0. For n integer

Qn(x) = Pn(x)

∫ x

∞

dy

(1− y2)P 2
n(y)

,

the functions Qn(x) are not polynomials because the integrand above exhibits logarithmic singularities at y = ±1.

Qn(x) are called as Legendre functions of the second kind.

Example: find the potential of an empty sphere of radius r = a which has two

semi-spheres with separate potentials V (θ), such that the potential is equal to V for

0 ≤ θ < π
2

and equal to −V for π
2
< θ ≤ π. For such a system, the scalar potential

is given by

ϕ(r, θ) =
V√
π

∞∑
j=1

(−1)j−1 (2j − 1
2
)Γ(j − 1

2
)

j!

(r
a

)2j

P2j−1(cos θ)

= V

[
3

2

(r
a

)
P1(cos θ)− 7

8

(r
a

)3

P3(cos θ) +
11

16

(r
a

)5

P5(cos θ)− . . .
]
.

Here Γ (z) for < (z) > 0 is defined as

Γ (z) =

∫ ∞
0

tz−1e−tdt .

Finally, we would like to comment on the solutions of the Laplace equation

4ϕ = 0. It is not difficult to show that one cannot have an absolute minimum or

maximum in the region (in both directions, x and y) because for an extremum to

exist one requires ∂ϕ
∂xi

= 0 which results in ∂2ϕ
∂x2i

> 0 or ∂2ϕ
∂x2i

< 0 implying that in the

other direction the second derivative must have an opposite sign.

Now we come back to the general case when azimuthal symmetry is absent. In

this case we have an equation

d

dx

[(
1− x2

) dP

dx

]
+

[
l(l + 1)− m2

1− x2

]
P = 0 ,
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S

∆ϕ = 0

Figure 7: The field ϕ (~x), which obeys the Laplace equation,

has no maximum or minimum inside a region S.

whose solutions are associated Legendre polynomials which can be also written ex-

plicitly with the help of the Rodriges formula

Pm
l =

(−1)m

2ll!
(1− x2)

m
2
dl+m

dxl+m
(x2 − 1)l .

As in the case of Legendre polynomials, one can show that finiteness of the solution

on −1 ≤ x ≤ 1 requires m to be an integer running −l,−(l − 1), . . . , 0, . . . , l − 1, l.

Solutions of the Laplace equation are represented as the product of three terms

depending on r, θ and φ respectively. It is convenient to combine an angular depen-

dence and construct a complete system of orthogonal functions on a sphere. Such

functions are called spherical harmonics. Such functions are chosen to be

Ylm(θ, φ) =

(
2l + 1

4π

(l −m)!

(l +m)!

)1
2

Pm
l (cos θ)eimφ .

They are normalized as∫ 2π

0

dφ

∫ π

0

dθ sin θ Y ∗lm(θ, φ)Yl′m′(θ, φ) = δll′δmm′ .

An arbitrary function f(θ, φ) on a sphere can be expanded in a series over spherical

harmonics

f(θ, φ) =
∞∑
l=0

m=1∑
m=−l

AlmYlm(θ, φ) .

Coefficients Alm are found by using orthogonality condition for spherical harmonics.

This completes our discussion of solving the Laplace equation in spherical coordi-

nates.14

14Analogously, one can treat the case of cylindrical, elliptical or other orthogonal coordinate

systems.
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Figure 8: Multipole expansion is an expansion of the exact expression for the scalar

potential on distances that are large in comparison with a region of charge localization.

2.6 Multipole expansion for scalar potential

Let us assumed that electric charge is localized with the local charge density ρ(x)

inside a bounded region V . We chose an origin of a coordinate system somewhere

inside V . Let us call max |y| = L, where y is an arbitrary point in V , “the size” of

our system of charges.

It is interesting to know the scalar potential ϕ(x) outside V , that is in the region

r ≡ |x| ≥ L. Clearly, on large distances one can treat the system of charges as a

point-like charge q that creates the potential ϕ = q/r. The multipole expansion is a

representation of the exact answer

ϕ(x) =

∫
V

dy
ρ(y)

|x− y|
in the form of a power series, which contains all the corrections to the simplest

approximation ϕ = q/r. To build up the multipole expansion, we simply expand

|x− y|−1 into Taylor series in variable y:

1

|x− y| =
∞∑
n=0

(−1)n

n!
yi1 · · · yin ∂i1 · · · ∂in

1

r
,

where |y| < |x| = r. Substituting this expansion into the expression for the potential,

we get

ϕ(x) =
∞∑
n=0

(−1)n

n!
Ti1...in ∂i1 · · · ∂in

1

r
,

where

Ti1...in =

∫
dy ρ(y)yi1 · · · yin .
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This is a multipole expansion and Ti1...in are called the multipole momenta. The first

ones are

Q =

∫
dy ρ(y) − total electric charge

di =

∫
dy ρ(y)yi − dipole moment

Tik =

∫
dy ρ(y)yiyk − quadrupole moment

(2.28)

The multipole momenta have the following properties:

• Symmetry with respect to permutation of indices i1 . . . in.

• They are tensors with respect to the action of the orthogonal group.

• Transformation properties with respect to shifts of the origin: yi → y′i = yi+a.

Since dy′ = dy, one gets

T ′i1...in =

∫
dy ρ(y)(yi1 + ai) · · · (yin + ain)

that upon opening the brackets give 2n terms. The first term is the tensor

Ti1...in itself, while all the other terms will contain a multiplied by multipole

momenta of lower rank than n, i.e.;

T ′i1...in = Ti1...in + contributions of lower T .

Thus, Ti1...in do not depend on the choice of the origin of the coordinate system

if and only if all lower multipole moments vanish. In other words, only the first

non-trivial moment is invariant with respect to shifts of the origin. The first

moment which is a total charge is always invariant under shifts. The second

moment, which is the dipole moment, is invariant only if the total charge q is

equal to zero.15

Now we discuss how to construct the multipole expansion in terms of irreducible

moments. Recall that a tensor is called irreducible if being contracted on any pair

of two indices it gives zero. Irreducibility means that that from a given tensor one

15For a discrete system of charges the arguing is very similar. The dipole moment is ~d =∑N
i=1 ei~xi , where ei is the magnitude of a charge at some distance Ri taken from an arbitrary

point, in this case chosen to be the origin. For neutral system
∑N
i=1 di = 0 . Thus, shifting all

~Ri → ~Ri − ~a gives

~d~a =

N∑
i=1

ei (~xi − ~a) =

N∑
i=1

ei~xi − ~a
N∑
i=1

ei =

N∑
i=1

ei~xi = ~d .
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cannot construct by contacting indices a simpler object – a tenor of lower rank.

Any tensor can be reduced to its irreducible component by adding proper terms

containing Kronecker’s delta. For, instance, for a second rank tensor one finds that

its irreducible component is

Tij = Tij −
δij
3
Tkk ,

so that the irreducible tensor of quadrupole moment is

Tij =

∫
dy ρ(y)

(
yiyj −

y2

3
δij
)
.

It turns out that the multipole expansion is unchanged if one replaces all multi-

pole momenta for their irreducible components. This follows from the fact that

δij∂i∂j
1

r
= ∆

1

r
= 0 ,

as there is no charge located at x. Thus, the multipole expansion can be written as

ϕ(x) =
∞∑
n=0

(−1)n

n!
Ti1...in ∂i1 · · · ∂in

1

r
.

We further notice that

∂i
1

r
= −xi

r3
,

∂i∂j
1

r
= −δij

r3
+ (−1)(−3)

xixj

r3

(2.29)

and so on. In general,

∂i1 · · · ∂in
1

r
= (−1)n(2n− 1)!!

xi1 · · ·xin
r2n+1

+ . . . ,

where . . . stand for all the terms containing Kronecker’s delta. Since all such terms

drop out when being contracted with irreducible tensors, one finds that the multipole

expansion takes the form

ϕ(x) =
∞∑
n=0

(2n− 1)!!

n!
Ti1...in

xi1 · · ·xin
r2n+1

.

Explicitly,

ϕ(x) =
q

r
+
dixi
r3

+
3Tijxixj

r5
+ . . .

The first term vanishes as 1/r as r → ∞, the second one representing the dipole

moment as 1/r2, the third term as 1/r3 and so on. Thus, if a potential vanishes

faster than 1/r, its first several moments must be zero. For instance, if ϕ ∼ 1/r3,
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then the total charge and the dipole moment must be zero, while the quadrupole

moment must not.

If one knows an expansion of ϕ(x) in power series in 1/r, then one can restore

all irreducible moments Ti1...in and vice versa, knowing all Ti1...in one can restore

the potential. That is there is a one-to-one map between a set of multiple moments

and the corresponding potential. Knowing Ti1...inone can also uniquely restore the

potential, but the inverse is not true.

Thus, for the potential we find

ϕ =
q

r
+

(~x · ~d)

r3
+ . . . ,

where we have used neutrality of the system of charges. Thus, the electric field is

~E = −~∇(~x · ~d)

r3
=

3~n(~n · ~d)− ~d

r3
.

Thus, for a neutral system the electric field at large distances from this system

behaves itself as 1/r3!

3. Magnetostatics

3.1 Laws of magnetostatics

In the case when electric field is static, i.e. it does not depend on time, the second

pair of the Maxwell equations take the form

div ~H = 0 , rot ~H =
4π

c
~j .

The first equation allows one to write

~H = rot ~A .

Substituting this in the second equation, we obtain

grad div ~A−∆ ~A =
4π

c
~j .

Because of gauge invariance the vector potential is not uniquely defined, therefore,

we can subject it to one additional constraint, which will chose to be

div ~A = 0 .

Then, the equation defining the vector potential of time-independent magnetic field

takes the form

∆ ~A = −4π

c
~j .
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Obviously, this is the Poisson equation, very similar to the equation for the electro-

static potential. Therefore, the solution reads as

~A(x) =
1

c

∫
d3x′

~j(x′)

|x− x′| .

Now we can determine the corresponding magnetic field

~H = rot ~A =
1

c

∫
d3x′

[
~∇ 1

|x− x′| ,
~j(x′)

]
=

1

c

∫
d3x′

[~j(x′), ~R]

R3
,

where the bracket means the vector product16. This is the Biot-Savart law. It

describes the magnetic field produced by time-independent currents.

The integral form of Maxwell’s equation rot ~H = 4π
c
~j is called Ampère’s law. To

derive it, consider a surface S enclosed by a contour C. The flux of both sides of the

last equation through S is∫
S

(rot ~H · ~n)dS =
4π

c

∫
S

(~j · ~n)dS .

Application of the Stocks theorem gives∮
C

~H · ~d` =
4π

c

∫
S

(~j · ~n)dS =
4π

c
I ,

where I =
∫
S

(~j · ~n)dS is the full current through the surface S. This is the Ampère

law.

3.2 Magnetic (dipole) moment

Free magnetic charges do not exist. The really existing object which plays the basic

role17 in study of magnetic phenomena is the so-called magnetic dipole. A small

magnetic dipole is a magnetic arrow (like the compass arrow) which aligns along the

direction of an external magnetic field.

Consider magnetic field created by a system of stationary moving charges on

distances large in comparison with the size of this system. We choose a center of a

reference frame somewhere inside the system of moving charges. Then x′ << x and

we can expand
1

|x− x′| =
1

|x| +
(~x · ~x′)
|x|3 + . . .

Therefore, for the vector potential we get

Ai(x) =
1

c|x|

∫
ji(x

′)d3x′ +
1

c|x|3 ·
∫
ji(x

′)(~x · ~x′)d3x′ + · · ·

16Here we have used the formula rot f ~A = frot ~A+ [grad f, ~A].
17The same role as elementary electric charge in electrostatics.

– 42 –



From the continuity equation ∂ρ
∂t

+ div~j = 0 we have div~j = 0. Taking this into

account, for any function f(x) we can write

0 =

∫
f(x′) div~j d3x′ = −

∫
(~∇f ·~j) d3x′ ,

where we have integrated by parts. Picking now f = xi, we get (~∇xi)j = δij, so that

(~∇xi ·~j) = ji. Thus, we arrive at∫
ji(x

′)d3x′ = 0 for any i .

This is also intuitively clear, because the current is assumed to have vanishing normal

components everywhere on the surface S – the current is concentrated in the volume

surrounded by S and never flows out through S. Hence, the leading term of the

vector potential is

~A(x) =
1

c|x|3 ·
∫
~j(x′)(~x · ~x′) d3x′

To make further progress, we recall an identity

[~a, [~b,~c]] = (~a · ~c)~b− (~a ·~b)~c ,

which allows one to write

(~x · ~x′)~j = (~x ·~j)~x′ − ~x× (~x′ × j) .

It turns out that the integral from (~x · ~x′)~j is equal up to the minus sign to the

integral from (~x ·~j)~x′. Indeed, since div~j = 0, we have∫
d3x′ jkx

′
i =

∫
d3x′ div (x′k~j)x

′
i

by parts
= −

∫
d3x′ x′k(~j · grad ′)x′i = −

∫
d3x′ x′kji .

From here we deduce that∫
d3x′ (~x ·~j)x′i = −

∫
d3x′ (~x · ~x′) ji ,

or, in the vector form, ∫
d3x′ (~x ·~j) ~x′ = −

∫
d3x′ (~x · ~x′)~j .

Therefore, we arrive at

~A = − ~x

|x|3 ×
1

2c

∫
d3x′ ~x′ ×~j(x′) .

Define the density of the magnetic moment as

~M =
1

2c
~x′ ×~j(x′)
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and the magnetic moment as

~M =

∫
d3x′ ~M(x′) =

1

2c

∫
d3x′ ~x′ ×~j(x′) .

a b c d

R12 R12 R12 R12

Force between magnetic dipoles depends not only on the distance between them

but also on their mutual orientation: a) magnetic dipoles attract (UM < 0), b) and

c) magnetic dipoles repeal UM > 0), d) the sign of energy UM is determined by the

general formula UM = ( ~M1· ~M2)−3( ~M1·~n12)( ~M2·~n12)
R3

12
, ~n12 =

~R12

R12
.

We, therefore, find

~A(x) =
~M × ~x
|x|3 .

This is the leading term in the expansion of the vector potential for a bounded

stationary current distribution. As a result, the magnetic field of a magnetic dipole

is

~H = rot ~A =
3~n(~n · ~M)− ~M

|x|3 ,

where ~n is the unit vector in the direction of ~x. This expression for the magnetic

field coincides with the formula for the electric field of an electric dipole.

3.3 Gyromagnetic ratio. Magnetic moment of electron.

Suppose that the current I flows over a closed flat loop C on an arbitrary shape. For

the magnetic moment we have

~M =

∫
d3x′ ~M(x′) =

1

2c

∫
d3x′ ~x′ ×~j(x′) =

1

2c

∫
dS ′d` ~x′ ×~j(x′) ,

where dS ′ is an area differential corresponding the transverse section of the (thin)

loop C. Since the current I is defined as

I =

∫
S

(~j · ~n)dS ,

we have
~M =

1

2c

∫
dS ′ ~x′ × (~j(x′) · ~n)d~̀
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so that the magnetic moment can be written in the form

~M =
I

2c

∮
C

~x× d~̀ .

Since ~x × d~̀ = 2 d~S, where d~S is the area of an elementary triangle formed by the

radii drawn from the origin of the coordinate system to the end points of the element

d~̀, the integral above is equal to the total area S enclosed by the current loop C.

Therefore,

|M | = IS

c

independently of the shape of the contour. Here |M | is a magnitude of the magnetic

dipole moment of a current loop.

If the current is formed by particles of masses mi with charges ei moving with

velocities ~vi << c, then the magnetic moment can be expressed via the angular

momentum. We have
~j(x) =

∑
i

ei~viδ(~x− ~xi) ,

where ~xi is the radius-vector of i’th particle. In this case the magnetic moment is

~M =
1

2c

∑
i

ei(~xi × ~vi) =
∑
i

ei
2cmi

(~xi ×mi~vi) =
∑
i

ei
2cmi

[~xi, ~pi]︸ ︷︷ ︸
~Li

,

where ~Li = [~xi, ~pi] is the angular momentum of the i’th particle and we have used

the fact that for v << c the expression m~v coincides with the particle momentum ~p.

If for all the particles the ratio of charge to mass is the same, ei/mi ≡ e/m, then

~M =
e

2cm

∑
i

~Li =
e

2cm
~L ,

where ~L is the total angular momentum of a system of particles. The relation

~M =
e

2mc
~L ⇒ M

L
=

e

2mc

is an important classical relation between the magnetic and the angular momenta.

This relation is remarkable – for a loop of current it expresses the ratio of two macro-

scopic quantities (the magnetic moment of the current loop and the total angular

momentum of electrons) via a combination of microscopic quantities characterizing

the charge carriers! The quantity

γ =
M

L
=

e

2mc

is called a gyromagnetic ratio. In a conductor charge carriers are electrons, i. e.

γ =
e

2mec
.
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Gyromagnetic ratio is often measured in units of γ = e
2mec

, in particular, γ is taken

for unity. Indeed, if the current in a conductor would be carried by ions rather than

electrons, then the gyromagnetic ratio will be thousand times less. It is difficult to

imagine that gyromagnetic ratio could be bigger than one – electrons the lightest

particles carrying the charge!

4. Relativistic Mechanics

4.1 Newton’s relativity principle

In order to describe a dynamical system one has to choose a reference frame. The

reference frame is a system of coordinates and a clock which measures the time in

this coordinate system, see Figure 9. In mechanics one introduces the notion of an

intertial frame. In such frames a free motion (i.e. the motion in the absence of forces)

happens with a uniform velocity. Excluding trivial translations of coordinates, any

two inertial frames are related by an orthogonal transformation, i.e. by a rotation

with possible reflections of coordinate axes.

Experience shows that that the relativity principle is valid. According to this

principle, all laws of Nature are the same in all inertial frames. In other words, the

equations which encode the laws of Nature are invariant with respect to transfor-

mations from one inertial system of coordinates to another. This means that an

equation encoding a physical law when expressed through spatial coordinates and

time in different inertial frames must have the one and the same form.

In order to give a mathematical description of the relativity principle, one has to

find formulas which relate special coordinates and time in different inertial frames. In

Newtonian mechanics it was assumed for a long time that inertial frames are related

by Galilean transformations

~x′ = R(~x− ~vt)
t′ = t

(4.1)

Here R is a matrix of orthogonal transformations of coordinates.

4.2 Einstein’s relativity principle

In classical mechanics interaction of particles is described by means of potential

energy, which is a function of coordinates of interacting particles. Such a description

is based on an assumption of instantaneous interactions. Indeed, forces which act on

particles depend only on the positions of particles in the same moment when these

positions are measured. Any change in the motion of any of the particles immediately

reflects on the others with no time delay. On the other hand, experience shows that

instantaneous interactions are impossible in Nature. Therefore, any mechanics which
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Figure 9: Reference frame – a coordinate system and a clock.

is based on the principle of instantaneous interactions has certain limitations. If

something happens to one body, the time is needed for the corresponding changes to

reach another body. Therefore, there must exist a maximal velocity of propagating

the interactions and it must be the same in all inertial frames. This universal velocity

happens to coincide with the speed of light in vacuum and it is equal to

c = 2.99792458 · 108 m/sec.

This is a fundamental physical constant. Since this speed is so high, in our everyday

life the classical mechanics is a good approximation.

Conjunction of the relativity principle with the finiteness of the speed of inter-

action propagation (speed of light) is called Einstein’s relativity principle (Einstein,

1905). The mechanics which is based on Einstein’s relativity principle is called rel-

ativistic. The mechanics which arises in the limiting case when formally c → ∞ is

called Newtonian or classical.

Three fundamental effects of Special Relativity are

• Time delay measured by a moving clock

• Lorentz contraction of the length of a moving body

• Abberation of light
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x

x’vt

t

xO

Figure 10: Galilean boost. The inclined line represents the trajectory of the origin of

the reference frame M ′ which moves with velocity v in the x-direction with respect to the

reference frame M . An event which happens in M at the position x at time t occurs at x′

at time t′ = t in the moving frame M ′. Hence, x′ = x− vt.

4.3 Defining Lorentz transformations

We will use the notion of ”event”. Every event is characterized by the place (coor-

dinates) where it happened and by the time when it happened. Define the so-called

interval between two events

s12 = c2(t2 − t1)2 − (x2 − x1)2 − (y2 − y1)2 − (z2 − z1)2 .

If two events are close to each other we have an infinitezimal interval:

ds2 = c2dt2 − dx2 − dy2 − dz2 .

The fact that the speed of light is the one and the same constant in all inertial frames

leads to the fact that the infinitezimal interval between two events is also the same

in all inertial frames

ds2 = ds′2 .

From the equality of infinitezimal intervals, the equality of finite intervals follows

s = s′.

The interval between two events is the same in all inertial frames, i.e. it is

invariant under transformations from one inertial frame to another. This invariance

encodes the constancy of the speed of light.

The intervals can be naturally classified as follows. Introduce

`2
12 = (x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2.
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Then, s2
12 = c2t212−`2

12 and the equality of the intervals in two different inertial frames

is expressed as

s2
12 = c2t212 − `2

12 = c2t′
2
12 − `′212 .

• Time-like interval. This is an interval for which s2
12 > 0, i.e. the interval is

real. For such an interval there exists an inertial system for which the two

events happen in the one and the same space point, i.e. `′212 = 0. If two events

happened to the one and the same body then the interval between them is

always time-like. Indeed, the distance `12 = vt12 which the body passes cannot

be bigger than ct12 as v < c.

Remember: Real intervals are time-like. They describe events which happen

to a (massive) body.

• Space-like intervals. For these intervals s2
12 < 0, i.e. they are imaginary.

For a space-like interval one can always find an inertial system in which the

corresponding two events happened as the same moment of time, so that t′12 =

0. The distance between these events is `′12 = is12.

• Light-like intervals (null intervals). For these intervals s12 = 0.

It is convenient introduce the diagonal 4× 4-matrix

ηµν = ηµν = diag(+1,−1,−1,−1) .

It is called the Minkowski metric and it defines a quadratic form

ds2 = ηµνdx
µdxν ,

which is an infinitezimal interval and we consider the index µ running from 0 to 3,

so that x0 = ct and x1 ≡ x, x2 ≡ y, and x3 ≡ z stand for three spacial coordinates.

Thus, the set (ct, x, y, z) can be considered as components of a vector in a four-

dimensional space. The square of the ”length” of the vector is

x2 ≡ (x0)2 − (x1)2 − (x2)2 − (x3)2 = ηµνx
µxν .

Geometry in which the length of a vector is given by the above formula is called

pseudo-euclidean.

According to the discussion above, the transformations from one inertial frame

to another must be such that they preserve the interval. In the four-dimensional

space they can be only the global shifts of the coordinate system

xµ → xµ + aµ
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or rotations

xµ → Λµ
νx

ν .

Under the rotations the quadratic form transforms as

x′2 = ηµνΛ
µ
αx

αΛν
βx

β = ηµνΛ
µ
αΛν

βx
αxβ = x2 ,

so that the transformation matrices must satisfy the requirement

ηµνΛ
µ
αΛν

β = ηαβ .

The matrices satisfying this requirement are called Lorentz transformations.

4.4 Lorentz group and its connected components

Lorentz transformations for a group. Before showing this, we give a general definition

of a group.

A group G is a set of any nature which satisfies the following set of axioms:

1. For any two elements g1, g2 ∈ G one can define their product g1g2 which is also

an element of G. The product is associative

(g1g2)g3 = g1(g2g3) .

2. There exists a unit element e ∈ G such that for any g ∈ G

ge = eg = g .

3. For any g ∈ G there exists it’s inverse g−1 ∈ G. that is

gg−1 = g−1g = e .

In other words, all elements in a group are invertible.

An important class of groups constitute Lie groups. A Lie group is a group which

is also a smooth manifold.18 The Lorentz group is a Lie group.

Let us show that Lorentz transformations form a group. In the matrix form the

Lorentz transformations can be written as

ΛtηΛ = η .

Any matrix Λ which satisfies this relation (defining relation) defines a Lorentz trans-

formation.19 Suppose we have two such matrices

Λt
1ηΛ1 = η , Λt

2ηΛ2 = η ,

18In other words, group elements of a Lie group can be continuously parametrized by a set of

parameters.
19Would η be identity matrix, then the relation ΛtΛ = 1 would define the group of orthogonal

transformations.
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then their product is also satisfies the defining relation of the Lorentz group:

(Λ1Λ2)tη(Λ1Λ2) = Λt
2(Λt

1ηΛ1)Λ2 = Λt
2ηΛ2 = 1 .

Identity matrix is a (trivial) Lorentz transformation. Finally, any Λ has an inverse

which also a Lorentz transformation. Indeed,

det(ΛtηΛ) = det(Λ)2detη = detη =⇒ detΛ = ±1 .

This means that Λ is non-degenerate. Then, from the defining relation20

Λ−1 = ηΛtη .

Thus,

(Λ−1)tηΛ−1 = (ηΛtη)tη(ηΛtη) = ΛηΛt = η ,

that is Λ−1 is a Lorentz transformation. Thus, Lorentz transformations form a group.

We have also shown that if Λ is a Lorentz transformation, then

Λ−1 , Λt , (Λt)−1

are also Lorentz transformations.

Notice that the defining relation of the Lorentz group implies that

ηµνΛ
µ
0Λν

0 = (Λ0
0)2 − (Λi

0)2 = 1 ,

that is (Λ0
0)2 = 1 + (Λi

0)2 ≥ 1. Thus, for any Lorentz transformation either Λ0
0 ≥ 1

or Λ0
0 ≤ −1.

The Lorentz group is a 6-dimensional non-compact Lie group O(1, 3) which con-

sists of four connected components (four topologically separated pieces), each of them

is not simply connected, see Figure 11. To understand this topological structure of

the Lorentz group, let us notice that a Lorentz transformation may or may not

• reverse the direction of time (or more precisely, transform a future-pointing

time-like vector into a past-pointing one),

• reverse the orientation of a four-dimensional reference frame.

Lorentz transformations with Λ0
0 > 0 preserve the direction of time and are called

orthochronous. The product of two orthochronous transformations is also an or-

thochronous transformation. To see this, we notice that (Λ0
0)2 = 1+(Λi

0)2 ≥ 1 implies

that |Λ0
0| > ||Λi

0|| and analogously, by changing Λ→ Λt, one gets |Λ0
0| > ||Λ0

i ||, where

20It follows from Λ−1 = ηΛtη by multiplying it from the right with Λ that the following relation

is also true ΛηΛt = η. This shows that matrix Λt is also a Lorentz transformation.
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Λ0
0 ≥ 0, det Λ = 1

Λ0
0 ≥ 0, det Λ = − 1 Λ0

0 ≤ 0, det Λ = − 1

Λ0
0 ≤ 0, det Λ = 1

P T

PT

Figure 11: Four connected components of the Lorentz group. The component with

Λ0
0 ≤ 1 and det Λ = 1 is a subgroup of proper orthochronous transformations SO+(1, 3)

(the restricted Lorentz group).

Λi
0 and Λ0

i are understood as vectors with components i = 1, 2, 3. For a product of

two transformations Λ and Λ′ one has

(ΛΛ′)0
0 = Λ0

0Λ′00 + Λi
0Λ′0i .

By the Cauchy-Bunyakovsky-Schwarz inequality21, one obtains that

|Λi
0Λ′0i | ≤ ||Λi

0||||Λ′0i || < |Λ0
0||Λ′00 | = Λ0

0Λ′00 .

Hence, (ΛΛ′)0
0 > 0 if both Λ0

0 and Λ′00 are positive. The subgroup of orthochronous

transformations is often denoted O+(1, 3).

Lorentz transformations which preserve orientation are called proper, and as

linear transformations they have determinant +1. (The improper Lorentz transfor-

mations have determinant -1.) The subgroup of proper Lorentz transformations is

denoted SO(1, 3).

The identity component of the Lorentz group, i.e. the component containing the

identity element, is the set of all Lorentz transformations preserving both orientation

and the direction of time. It is the proper, orthochronous Lorentz group, which is

sometimes also called the restricted Lorentz group SO+(1, 3).

Every element in O(1, 3) can be written as the semidirect product of a proper,

orthochronous transformation and an element of the discrete group

{1, P, T, PT}
21For any two vectors x and y: |(x, y)| ≤ ||x||||y||.
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where P and T are the space inversion and time reversal operators:

P = diag(1,−1,−1,−1)

T = diag(−1, 1, 1, 1)

The four elements of this isomorphic copy of the Klein four-group label the four

connected components of the Lorentz group.

As stated above, the restricted Lorentz group is the identity component of the

Lorentz group. This means that it consists of all Lorentz transformations which can

be connected to the identity by a continuous curve lying in the group. The restricted

Lorentz group is a connected normal subgroup22 of the full Lorentz group with the

same dimension (in this case, 6 dimensions).

4.5 Structure of Lorentz transformations

Introduce two four-vectors in the original and a Lorentz-transformed coordinate sys-

tems, respectively,

x =

(
x0

~x

)
, x′ =

(
x′0

~x′

)
.

The relation is x′ = Λx and x = Λ−1x′. In what follows it is convenient to parametrize

Λ =

(
a vt1
v2 S

)
, Λt =

(
a vt2
v1 S

t

)
, Λ−1 = ηΛtη =

(
a −vt2
−v1 St

)
.

Here a is a scalar, v1 and v2 are vectors and S is a 3 × 3 matrix. We recall that

a matrix Λ of Lorentz transformation satisfies the conditions ΛtηΛ = η and, as a

consequence, ΛηΛt = η. In particular, ΛtηΛ = η implies(
1 0

0 −1

)
=

(
a vt2
v1 S

t

)(
1 0

0 −1

)(
a vt1
v2 S

)
=

(
a2 − v2

2 avt1 − vt2S
av1 − Stv2 v1 ⊗ vt1 − StS

)
.

Thus, we find three conditions

a2 − v2
2 = 1 , avt1 − vt2S = 0 , v1 ⊗ vt1 − StS = −1 .

The change Λ→ Λt gives

a2 − v2
1 = 1 , av2 − Stv1 = 0 , v2 ⊗ vt2 − StS = −1 .

Now we are going to clarify the meaning of the vectors v1 and v2 and the matrix S.

To this end, consider the transformation x = Λ−1x′. Explicitly, it is

x0 = ax′0 − (~v2~x
′) ,

~x = −~v1x
′0 + St~x′.

22A subgroup N ⊂ G is called normal, if gNg−1 ⊂ N for any g ∈ G.

– 53 –



In the moving coordinate system M ′, it’s origin O′ has coordinates ~x′ = 0, therefore,

the formulae before takes the form

x0 = ax′0 ,

~x = −~v1x
′0 .

Dividing second formula by the first, we get ~x
x0

= ~v
c

= −~v1
a

, where ~v is the velocity of

O′ with respect to the stationary coordinate system M . Thus, ~v1 = −a~v
c
. Further,

from the condition a2 − v2
1 = 1 it follows that

a = ± 1√
1− v2

c2

.

We chose “+” sign here which corresponds considering orthochronous transforma-

tions Λ0
0 ≥ 1.

Now we turn our attention to the equation

StS = 1 + v1 ⊗ vt1 .

Explicitly, the matrix 1 + v1 ⊗ vt1 has the following matrix elements

(1 + v1 ⊗ vt1)ij = δij + vivj .

Consider for the moment another matrix

Q ≡ (1 + α v1 ⊗ vt1)ij = δij + α vivj , .

where α is an arbitrary number. Compute its squire

Q2
ij = (δik + α vivk)(δkj + α vkvj) = δij +

(
2α + α2(a2 − 1)

)
vivj .

Thus, we see that if we subject the coefficient α to the condition

2α + α2(a2 − 1) = 1 ,

then the following property will be satisfied

1 + v1 ⊗ vt1 = Q2 .

Solving the quadratic equation for α, one finds

α =
1

1± a .

We pick the solution with “+” and denote the corresponding Q by Q+. The relation

StS = Q2
+ can be written as Q−1

+ StSQ−1
+ = (SQ−1

+ )t(SQ−1
+ ) = 1, since Q+ is a sym-

metric matrix. Hence R = SQ−1
+ is an orthogonal matrix, as RtR = 1. Furthermore,

since now S = RQ+, we get that

vt2 =
1

a
vt1S

t =
1

a
vt1Q+R

t =
1

a
vt1(1 + α v1 ⊗ vt1)Rt =

1

a
(1 + α(a2 − 1))vt1R

t = vt1R
t ,
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that is v2 = Rv1. To summarize, we have established that generic matrix Λ has the

following structure

Λ =


1√

1− v2
c2

− 1√
1− v2

c2

vt

c

− 1√
1− v2

c2

R v
c

RQ+

 .

We immediately see that this matrix factorizes into a product of the following ma-

trices

Λ =

 1 0

0 R




1√
1− v2

c2

− 1√
1− v2

c2

vt

c

− 1√
1− v2

c2

v
c

1 +
(

1√
1− v2

c2

− 1
)
v⊗vt
v2

 .

The first matrix is just an orthogonal transformation of a three-dimensional vector of

spacial coordinates, while the second matrix is the Lorentz boost. With this matrix

Λ at hand, we find for x′ = Λx the following explicit formulae, where we use that

x0 = ct and x′0 = ct′,

t′ =
t− (~x~v)

c2√
1− v2

c2

,

~x′ = R

~x− ~vt√
1− v2

c2

+

 1√
1− v2

c2

− 1

 ~v(~v~x)

v2

 . (4.2)

These are Lorentz transformations23 which describe how coordinates (~x, t) of an even

in a stationary reference frame transform to coordinates (~x′, t′) of a reference frame

which moves with respect to the stationary frame with an arbitrary velocity ~v. Note

that for c → ∞, i.e. when v << c, the factor
√

1− v2

c2
→ 1 and the Lorentz

transformations reduce to the Galilean ones:

t′ = t

~x′ = R(x− vt) .

Inverse Lorentz transformations are obtained from x = Λ−1x′, but they can be alter-

natively obtained from direct transformations above by changing primed indices for

23Regrouping terms, the expression for x′ can be also written in the following form

~x′ = R

 [~v, [~x,~v]]√
1− v2

c2

− ~v t−
(~v~x)
v2√

1− v2

c2

 .
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unprimed and changing the sign of velocity ~v (Check it!). One obtains

t =
t′ + (~x′~v)

c2√
1− v2

c2

,

~x = R

~x′ + ~vt′√
1− v2

c2

+

 1√
1− v2

c2

− 1

 ~v(~v~x′)

v2

 . (4.3)

It is of interest to see what the second solution with α = 1
1−a gives. Denoting

the corresponding Q by Q−, we get

StS = Q2
− = Q2

+

or

Q−1
− S

tSQ−1
− = Q−1

+ StSQ−1
+ = 1

which gives rise to two orthogonal matrices R+ = SQ−1
+ and R− = SQ−1

− . Obviously,

R+ and R− differ from each other by an orthogonal transformation R−1
− R+. The

nature of this transformation can be understood by computing its determinant

det(R−1
− R+) = det(Q−S

−1SQ−1
+ ) =

detQ−
detQ+

.

The direct computation shows that for Q(α), the corresponding determinant is

detQ(α) = 1 + αv2 = 1 + α(a2 − 1). Thus, detQ+ = a and detQ− = −a, so

that det(R−1
− R+) = −1 contains a reflection of the coordinate axes. Hence, we see

that the choice of ±a and α = 1
1±a precisely give rise to four connected components

of the Lorentz group.

Note that the simplest example of the Lorentz transformation is a rotation in the tx-plane.

This rotation must leave the interval (ct)2 − x2 invariant. The relation between the old and the

new coordinates is described by the formulas

x = x′ coshψ + ct′ sinhψ , ct = x′ sinhψ + ct′ coshψ .

Indeed,

(ct)2 − x2 = (x′ sinhψ + ct′ coshψ)2 − (x′ coshψ + ct′ sinhψ)2 = (ct′)2 − x′2 .
Substituting here the coordinate x′ = 0 of the center of the moving system, we get

x = ct′ sinhψ , ct = ct′ coshψ =⇒ tanhψ =
x

ct
=
v

c
.

From here we find

sinhψ =
v
c√

1− v2

c2

, coshψ =
1√

1− v2

c2

.

and, therefore,

x =
x′ + vt′√

1− v2

c2

, y = y′ , z = z′ , t =
t′ + v

c2x
′√

1− v2

c2

,

This transformation is called the Lorentz boost as it describes the change of coordinates and time

due to boosting one coordinate system with respect to the other. The reader can verify that this

particular example fits our general discussion of arbitrary Lorentz transformations.
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4.6 Addition of velocities

Suppose in the moving frame M ′ a particle is moving with velocity ~u, that is ~x′ = ~ut.

We want to find its velocity in the stationary frame M . To this end, we take the

inverse Lorentz transformations and substitute there ~x′ = ~ut. We get

t =
1 + (~u~v)

c2√
1− v2

c2

t′ ,

~x =

~u+
~v√

1− v2

c2

+

 1√
1− v2

c2

− 1

 ~v(~v~u)

v2

 t′ . (4.4)

In the stationary frame the particle moves according to ~x = ~wt, where ~w is the

velocity we are looking for. Thus,

~w =
~x

t
=

~u+ ~v√
1− v2

c2

+

(
1√

1− v2
c2

− 1

)
~v(~v~u)
v2

1+
(~u~v)

c2√
1− v2

c2

.

This is a low for addition of velocities in the relativistic case. In the non-relativistic

limit c→∞, it reduces to the Galilean law: ~w = ~u+ ~v.

4.7 Lie algebra of the Lorentz group

First we recall the basic facts about the rotation group in three dimensions and then

concentrate our attention on certain aspects of the Lorentz group.

Any rotation has the formx′

y′

z′

 = R

x

y

z

 or r′ = Rr .

Under rotations the distance to the origin remains unchanged, that is

x′2 + y′2 + z′2 = x2 + y2 + z2 , or r′tr′ = rtr .

This means that

rtRtRr = rtr i .e. RtR = 1 .

This means that R is an orthogonal 3× 3 matrix. Orthogonal matrices form a group

called O(3).

Rotation of a vector on a finite angle θ around z-axis isV ′x
V ′y
V ′z

 =

 cos θ sin θ 0

− sin θ cos θ 0

0 0 1

Vx
Vy
Vz
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so that

Rz(θ) =

 cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 .

Analogously, the rotation matrices around the axes x and y have the form

Rx(φ) =

 1 0 0

0 cosφ sinφ

0 − sinφ cosφ

 , Ry(ψ) =

 cosψ 0 − sinψ

0 1 0

sinψ 0 cosψ

 .

These matrices do not commute between themselves:

Rz(θ)Rx(φ) 6= Rx(φ)Rz(θ) .

This means that the rotation group is a non-abelian group. That is also a Lie group,

i.e. a continuous group with infinite number of elements, because the values of the

group parameters (angles) form a continuum. Any rotation is determined by three

parameters: the matrix R has 9 elements and the relation RtR = 1 imposes on them

6 conditions. These three parameters can be chosen to be the Euler angles. Three

parameters give rise to three generators defined as

Jz =
1

i

dRz(θ)

dθ
|θ=0 =

 0 −i 0

i 0 0

0 0 0

 ,

Jx =
1

i

dRx(φ)

dφ
|φ=0 =

 0 0 0

0 0 −i
0 i 0

 ,

Jy =
1

i

dRy(ψ)

dψ
|ψ=0 =

 0 0 i

0 0 0

−i 0 0

 .

These generators are hermitian. The infinitezimal rotations are given by

Rz(δθ) = 1 + iJzδθ , Rx(δφ) = 1 + iJxδφ , Ry(δψ) = 1 + iJyδψ .

Commutators of two generators

[Jx, Jy] = iJz + cyclic permutations

coincide with the commutation relations of angular momentum. Rotation on a finite

angle around z-axis is

Rz(θ) = eiJzθ =

 cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 .
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If one considers a rotation around an arbitrary axis ~n, then

R~n(θ) = ei(
~J ·~n)θ .

Now we turn our attention to the Lorentz group. Mathematically, the Lorentz

group may be described as the generalized orthogonal group O(1, 3), the matrix Lie

group which preserves the quadratic form

(ct, x, y, z)→ (ct)2 − x2 − y2 − z2 .

This quadratic form is the metric tensor of Minkowski spacetime, so this definition

is simply a restatement of the fact that Lorentz transformations are precisely the

linear transformations which are also isometries of Minkowski spacetime.24

The restricted Lorentz group is generated by ordinary spatial rotations and

Lorentz boosts (which can be thought of as hyperbolic rotations in a plane that

includes a time-like direction). The set of all boosts, however, does not form a sub-

group, since composing two boosts does not, in general, result in another boost.

Indeed, introducing the identification

x0 = ct , x1 = x, x2 = y, x3 = z

we can write the Lorentz boost as
x0′

x1′

x2′

x3′

 =


coshϕ sinhϕ 0 0

sinhϕ coshϕ 0 0

0 0 1 0

0 0 0 1



x0

x1

x2

x3


The generator corresponding to the infinitezimal boost is defined as

Kx =
1

i

dBx(ϕ)

dϕ
|ϕ=0 =


0 −i 0 0

−i 0 0 0

0 0 0 0

0 0 0 0

 .

The other boost generators are

Ky =


0 0 −i 0

0 0 0 0

−i 0 0 0

0 0 0 0

 , Kz =


0 0 0 −i
0 0 0 0

0 0 0 0

−i 0 0 0

 .

24The Lorentz group is a subgroup of the Poincaré group, the group of all isometries of Minkowski

spacetime. The Lorentz transformations are precisely the isometries which leave the origin fixed.

Thus, the Lorentz group is an isotropy subgroup of the isometry group of Minkowski spacetime.

For this reason, the Lorentz group is sometimes called the homogeneous Lorentz group while the

Poincaré group is sometimes called the inhomogeneous Lorentz group.
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The set of all rotations forms a Lie subgroup isomorphic to the ordinary rotation

group SO(3). The usual rotation generators now look like

Jx =


0 0 0 0

0 0 0 0

0 0 0 −i
0 0 i 0

 , Jy =


0 0 0 0

0 0 0 i

0 0 0 0

0 −i 0 0

 , Jz =


0 0 0 0

0 0 −i 0

0 i 0 0

0 0 0 0

 .

One can compute the commutators

[Kx, Ky] = −iJz + cyclic permutations

[Jx, Kx] = [Jy, Ky] = [Jz, Kz] = 0 (4.5)

[Jx, Ky] = iKz + cyclic permutations

Boosts do not form a group; commutator of two boosts is a rotation.

A boost in some direction, or a rotation about some axis, each generate a one-

parameter subgroup. An arbitrary rotation is specified by 3 real parameters, as is an

arbitrary boost. Since every proper, orthochronous Lorentz transformation can be

written as a product of a rotation and a boost, it takes 6 real numbers (parameters)

to specify an arbitrary proper orthochronous Lorentz transformation.

The 6 generators K and J can be combined into one skew-symmetric matrix Mab

with the following commutation relations

[Mµν ,Mρλ] = i(ηµρMνλ − ηνρMµλ − ηµλMνρ + ηνλMµρ)

representing the Lie algebra relations of the Lorentz group.

4.8 Relativistic particle

Let us first revisit some of the basics of special relativity written using tensor no-

tation. The Minkowski metric ηµν that we will use has the signature (+,−,−,−)

and we will use the convention that the Latin indices run only over the space coor-

dinates (i.e. i, j, k... = 1, 2, 3), whereas the Greek indices will include both time and

space coordinates (i.e. µ, ν, σ, ρ... = 0, 1, 2, 3). Additionally, in special relativity we

will have to distinguish between 3-vectors (those with only space components) and

4-vectors (having both space and time components). The convention that we will

use is that ~A will denote a 3-vector, whereas Aµ will denote a 4-vector.

Using these definitions, we can define the Lorentz invariant relativistic interval

given by the expression

ds2 = dxµdxµ = c2dt2 −
(
dxi
)2
. (4.6)

The action for a relativistic particle has the following form

S = −α
∫ b

a

√
ds2 = −α

∫ b

a

ds .
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A

B

r
r

Figure 12: The simplest form of action is given by the length

of the space-time interval between points A and B.

Rewriting (4.6), we get

ds =

√
dxµ
dt

dxµ

dt
dt2 =

√
dxµ
dt

dxµ

dt
dt . (4.7)

Here we have used the convention VµV
µ = ηµνV

µV ν , where ηµν is the Minkowski

metric.

dxµ

dt
= (c, ~v) , ds =

√
c2 − ~v2 = c

√
1− ~v2

c2
.

Therefore,

S = −αc
∫ t1

t0

√
1− ~v2

c2
dt ,

where in non-relativistic physics we assume ~v2

c2
� 1. In general, S =

∫ t1
t0
L dt where L

is the so-called Lagrangian of the system, which in the non-relativistic limit is given

by:

L = −αc
√

1− ~v2

c2
≈ −αc

(
1− ~v2

2c2
+ · · ·

)
≈ −αc+ α

~v2

2c
. (4.8)

If we want to recover the usual form of the Lagrangian L = Kin Energy − V ext

for a free particle V ext = 0 (hence L = 1
2
m~v2), we need to set α = mc. When we do

so, equation (4.8) turns into

L = −mc2 +
1

2
m~v2 .

Thus, one can rewrite L as

L = −mc
√
ẋµẋµ .

When we use the canonical momentum pµ defined as the derivative of L with respect

to ẋµ, we get

pµ =
∂L
∂ẋµ

= −mc ẋµ√
ẋν ẋν

.

Now when we take

p2 ≡ pµp
µ = m2c2 ẋµẋ

µ(√
ẋν ẋν

)2 = m2c2 .
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Hence, the particle trajectories which minimize the action must satisfy the constraint

p2 −m2c2 = 0, which is referred to as the mass-shell condition.

The action is invariant under reparametrizations of τ :

δxµ = ξ(τ)∂τx
µ as long as ξ(τ0) = ξ(τ1) = 0 .

Let us show this

δ(
√
ẋµẋµ) =

1

2
√
ẋµẋµ

(2ẋνδẋν) =
1√
ẋµẋµ

ẋν∂τ (ξẋν) =

=
1√
ẋµẋµ

[
ẋν ẋν ξ̇ + ξẋν ẍν

]
=

1√
ẋµẋµ

ẋν ẋν ξ̇ + ξ∂τ (
√
ẋµẋµ)

=
√
ẋµẋµξ̇ + ξ∂τ (

√
ẋµẋµ) = ∂τ (ξ

√
ẋµẋµ) .

Therefore, we arrive at

δS = −m
∫ τ1

τ0

dτ ∂τ (ξ
√
ẋµẋµ) = −m

[
ξ
√
ẋµẋµ

]
|τ=τ1
τ=τ0

= 0 ,

i.e., the action is indeed invariant w.r.t. the local reparametrization transformations.

In the static (temporal) gauge t = τ , the mass-shell condition takes the form

p0p
0 − ~p2 = m2c2 =⇒ E2

c2
− ~p2 = m2c2 .

5. Classical Electrodynamics

5.1 Relativistic particle in electromagnetic field

Let us now define the vector potential, which is an underlying field (a Lorentz in-

variant 4-vector) in electrodynamics that we will base our further derivations on. It

reads

Aµ =
(
ϕ (x) , ~A (x)

)
.

Notice that

Aµ → Aµ = ηµνA
ν =

(
ϕ (x) ,− ~A (x)

)
.

The properties of a charged particle with respect to its interaction with electro-

magnetic field are characterized by a single parameter: the electric charge e. The

properties of the electromagnetic field itself are determined by the vector Aµ, the

electromagnetic potential introduced above. Using these quantities, one can intro-

duce the action of a charged particle in electromagnetic field, which has the form

S = −mc
∫ b

a

ds− e

c

∫
Aµdxµ .
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A

B

r
r

(
ϕ, ~A

)

Figure 13: In the presence of the vector potential Aµ =
(
ϕ, ~A

)
the action

of a charged particle contains an additional term describing an interaction

with the vector potential.

Using Hamilton’s principle, stating that particles follow paths that minimize their

action (δS = 0), we can derive the equations of motion in which we neglect the back

reaction of the charge on the electromagnetic field

0 = δS = −mc
∫

dxµ
ds

d(δxµ)− e

c

∫
[(δAµ)dxµ + Aµd(δxµ)] . (5.1)

Using (4.7), the term δs in the first integral becomes δds = dxµdδxµ√
dxνdxν

, whereas in

the second integral we have simply used the product rule of differentiation. Let us

consider for a moment the Uµ = dxµ

ds
term, which we will refer to as 4-velocity. The

explicit form of Uµ is

Uµ =
dxµ

ds
=

dxµ

c
√

1− ~v2

c2
dt

=

 1√
1− ~v2

c2

,
~v

c
√

1− ~v2

c2

 . (5.2)

and it has an interesting property that

UµU
µ =

dxµ
ds

dxµ

ds
= 1 .

Note that this result is only valid for the signature of the metric that we chose. If

we were to invert the signature, the result would be −1 instead. Using the fact that

δAµ = Aµ(xν + δxν) − Aµ(xν) = ∂νAµδx
ν + · · · , we can rewrite equation (5.1) as

follows

δS = mc

∫
dUµδx

µ +
e

c

∫
(∂νAµdxνδxµ − ∂νAµδxνdxµ) = 0 .

This imposes the following condition for the extremum

mc
dUµ
ds

+
e

c
(∂νAµ − ∂µAν)Uν = 0 .

Identifying the tensor Fµν of the electromagnetic field

∂νAµ − ∂µAν = Fνµ = −Fµν , (5.3)
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we can write the equation of motion of the charge in the electromagnetic field as

follows

mc
dUµ

ds
=
e

c
F µνUν . (5.4)

This expression can also be written in a more suggestive form if we define the

momentum pµ = mcUµ (which is consistent with the requirement p2 = m2c2 since

U2 = 1), so that one can express the acceleration term dUµ

ds
= d2xµ

ds2
as

dpµ

ds
=

dpµ

dt

dt

ds
=
e

c
F µνUν , (5.5)

where the right hand side of the equation is referred to as the Lorentz force, whereas

the left hand side is simply the rate of change of momentum with respect to the

relativistic interval. This equation is comparable with the Newtonian statement:

force is the rate of change of momentum. Note that this derivation has assumed that

the electromagnetic field is given (fixed) and that we vary the trajectory of the particle

only (the endpoints remain fixed).

The tensor of the electromagnetic field can be then written as

Fµν =


0 Ex Ey Ez
−Ex 0 −Hz Hy

−Ey Hz 0 −Hx

−Ez −Hy Hx 0

 (5.6)

and, therefore,

F µν = ηµσηνρFσρ =


0 −Ex −Ey −Ez
Ex 0 −Hz Hy

Ey Hz 0 −Hx

Ez −Hy Hx 0

 , (5.7)

where we have defined the F0i components to be the electric fields and the Fij com-

ponents to be magnetic fields. Equation (5.3) leads to the following relation between

electric and magnetic fields and the corresponding components of the 4-potential

~E = −~∇ϕ− 1

c

∂ ~A

∂t
and ~H = rot ~A . (5.8)

For reader’s convenience we also present the relationship between the electromagnetic

tensor and its components via indices

ϕ = A0, ~Ai = Ai, Ei = F i0 = −F 0i = F0i, F ik = −εiklHl , Hi = −1

2
εiklF

kl .
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5.2 Lorentz transformations of the electromagnetic field

First we consider the 4-potential Aµ. Under Lorentz transformations of space-time

coordinates, Aµ transforms as a vector:

A′µ(x′) = Λµ
νA

ν(x) .

Recall that the matrix Λ of a Lorentz transformation from a stationary to a moving

with velocity ~v frame is of the form

Λ =

(
a −a

c
vt

−a
c
v Λij

)
, (5.9)

where Λij = δij + a−1
v2
vivj and a = 1√

1− v2
c2

. Thus, the scalar and vector potentials in

the moving frame are

ϕ′ = aϕ− a

c
(v · A) =

ϕ− (A·v)
c2√

1− v2

c2

,

~A′ = −a
c
ϕv + ~A+ d~v(~v · ~A) = ~A− ϕ~v

c√
1− v2

c2

+

 1√
1− v2

c2

− 1

 ~v(~v · ~A)

v2
.

Now we come to the electromagnetic field ( ~E, ~H). It is important to realize that

components of the electromagnetic field transform as components of the second rank

tensor! Namely, one has

F µν′(x′) = Λµ
ρΛν

τF
ρτ (x) .

For Ei one therefore gets

E′i = F i0
′

= ΛiµΛ0
νF

µν = Λi0Λ0
kF

0k + ΛikΛ
0
0F

k0 + ΛikΛ
0
jF

kj

= (ΛikΛ
0
0 − Λi0Λ0

k)Ek + ΛikΛ
0
j (−εkjmHm)

= a(δik + dvivk)Ek −
a2

c2
vivkEk − (δik + dvivk)

a

c
vj(−εkjmHm)

= aEi +
(
ad− a2

c2

)
vi(~v · ~E) +

a

c
εijmvjHm .

The final formula reads as

E ′i = aEi −
a− 1

v2
vi(~v · ~E) +

a

c
[~v, ~H]i .

Now we come to the magnetic field. We have

H ′i = −1

2
εijkF

′jk = −1

2
εijk(Λ

j
0ΛknF

0n + ΛjnΛk0F
n0 + ΛjmΛknF

mn)

= −1

2
εijk(Λ

j
0Λkn − ΛjnΛk0)F 0n − 1

2
εijkΛ

j
mΛknF

mn .
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We proceed by substituting the matrix elements of Λ:

H ′i =
1

2
εijk

(
− a

c
vj(δnk + dvnvk) +

a

c
vk(δnj + dvnvj)

)
En

− 1

2
εijk

(
(δmj + dvmvj)(δnk + vnvk)

)
Fmn .

Making use of the formula for the pairing of two ε-tensors in the second line of the
last formula, we arrive at

H ′i = −a
c
εijnvjEn +Hi −

d

2

(
(δinδks − δisδnk)vkvnHs + (δimδjs − δisδjm)vjvmHs

)
= Hi −

a

c
εijnvjEn + d(Hiv

2 − vi(~v · ~H)) (5.10)

The final expression is

H ′i = aHi −
a− 1

v2
vi(~v · ~H)− a

c
[~v, ~E]i .

We summarize the transformation formulae

ϕ′ = aϕ− a

c
(~v · ~A) ,

~A′ = ~A− a

c
ϕ~v +

a− 1

v2
~v(~v · ~A)

(5.11)

and

~E ′ = a ~E − a− 1

v2
~v(~v · ~E) +

a

c
[~v, ~H] ,

~H ′ = a ~H − a− 1

v2
~v(~v · ~H)− a

c
[~v, ~E] .

(5.12)

The inverse transformations are

ϕ = aϕ′ +
a

c
(~v · ~A′) ,

~A = ~A′ +
a

c
ϕ′ ~v +

a− 1

v2
~v(~v · ~A′)

(5.13)

and

~E = a ~E ′ − a− 1

v2
~v(~v · ~E ′)− a

c
[~v, ~H ′] ,

~H = a ~H ′ − a− 1

v2
~v(~v · ~H ′) +

a

c
[~v, ~E ′] .

(5.14)

This completes our discussion of the transformation properties of the 4-potential and

the electromagnetic field under Lorentz transformations.
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5.3 Momentum and energy of a particle in a static gauge

In a static gauge t = τ , where t is a time measured by a non-moving (static) observer.

In this gauge the action takes the form

S =

∫
L dt =

∫ [
−mc2

√
1− v2

c2
dt− e

c
A0dx0 − e

c
Aidx

i
]
,

i.e. the Lagrangian is

L = −mc2

√
1− v2

c2
+
e

c
~A~v − e ϕ

The momentum is

~P =
∂L

∂~v
=

m~v√
1− v2

c2

+
e

c
~A (5.15)

and the Hamiltonian

H =
∂L

∂~v
~v − L =

mc2√
1− v2

c2︸ ︷︷ ︸
kinetic energy

+ e ϕ︸︷︷︸
potential energy

.

Expressing from eq.(5.15) the velocity ~v in terms of the canonical momentum ~P , we

find that

H =

√
m2c4 + c2

(
~P − e

c
~A
)2

+ e ϕ .

We stress that such an expression for the hamiltonian arises only due to our choice

of the static gauge.

5.4 Maxwell’s equations and gauge invariance

All the physical properties of the electromagnetic field as well as the properties of

charge in the electromagnetic field are determined not by Aµ, but rather by Fµν . The

underlying reason for this is that electrodynamics exhibits an important new type of

symmetry25. To understand this issue, we may decide to change the vector potential

in the following way

Aµ → Aµ − ∂µχ , (5.16)

which can be rewritten in a less abstract form of space and time components sepa-

rately:

~A→ ~A+ ~∇χ and ϕ→ ϕ− 1

c

∂χ

∂t
. (5.17)

25This symmetry extends to many other physical theories besides electrodynamics.
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These transformations are referred to as the gauge transformations. Let us see what

effect they have on the tensor of the electromagnetic field:

δFµν = ∂µ (Aν + ∂νχ)− ∂ν (Aµ + ∂µχ)− Fµν
= ∂µ∂νχ− ∂ν∂µχ = 0 . (5.18)

Thus, the transformation (5.16) does not change the form of the electromagnetic

field tensor. For this reason electromagnetism is a gauge invariant theory!

From the electric and magnetic fields one can make invariants, i.e. objects that

remain unchanged under Lorentz transformations. In terms of the tensor of the

electromagnetic field two such invariants are

FµνF
µν = inv ; (5.19)

εµνρσFµνFρσ = inv . (5.20)

Let us inspect the gauge invariance of the electric and magnetic fields ~E and ~H, which

from the form and their in terms of the electromagnetic field tensor components can

be expressed in terms of the vector potential as

~E = −~∇ϕ− 1

c

∂ ~A

∂t
and ~H = rot ~A . (5.21)

One can easily see that in the first case an extra ϕ term cancels with an extra ~A term

and in the second case we have the gauge transformation contribution vanishing due

to the fact that rot gradχ = 0. We look back at the expression for the Lorentz force

and try to write it in terms of electric and magnetic fields. Rearranging (5.5), we get

dpi

dt
=
(e
c
F i0U0 +

e

c
F ijUj

) ds

dt
=

=

e
c
Ei 1√

1− ~v2

c2

− e

c
F ij vj

c
√

1− ~v2

c2

 c

√
1− ~v2

c2
. (5.22)

Here we used the fact that F i0 = −F 0i = −(−Ei) = Ei and Uj = − vj

c
√

1− v2
c2

. We can

thus rewrite the expression for the Lorentz force as

dpi

dt
= eEi +

e

c

[
~v, ~H

]i
. (5.23)
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Concerning this result, it is interesting to point out that26

dEkin

dt
=

d

dt

mc2√
1− v2

c2

= ~v · d~p

dt
= e
(
~E · ~v

)
.

This is the work of the electromagnetic field on the charge. Hence, the magnetic field

does not play any role is kinetic energy changes, but rather only affects the direction

of the movement of the particle! Using basic vector calculus and the definitions of

the electric and magnetic fields (5.21), the first two Maxwell’s equations are attained

div ~H = div rot ~A = 0⇒ div ~H = 0 ; (5.24)

rot ~E = −1

c
rot grad ϕ− 1

c

∂

∂t
rot ~A⇒ rot ~E = −1

c

∂ ~H

∂t
. (5.25)

Equation (5.24) is known as the no magnetic monopole rule and (5.25) is referred

to as Faraday’s law, which we have already encountered in the previous section,

but then the right hand side was suppressed due to time independence requirement.

Together these two equations constitute the first pair of Maxwell’s equations. Notice

that these are 4 equations in total, as Faraday’s law represents three equations - one

for every space direction. Additionally, notice that Faraday’s law is consistent with

electrostatics; if the magnetic field is time independent then the right hand side of

the equation is equal 0, which is exactly equation (2.11). These equations also have

an integral form. Integrating (5.25) over a surface S with the boundary ∂S and using

Stokes’ theorem, we arrive at∮
S

rot ~E · d~S =

∮
∂S

~E · d~l = −1

c

∂

∂t

∮
S

~Hd~S . (5.26)

For eq.(5.24) one integrates both sides over the volume and uses the Gauss-Ostrogradsky

theorem to arrive at ∫
V

div ~HdV =

∮
∂V

~H · d~S = 0 . (5.27)

5.5 Fields produced by moving charges

Let us now consider the case where the moving particles produce the fields themselves.

The new action will be then

S = Sparticles + Sint + Sfield ,

26We have
d~p

dt
=

ṁ~v√
1− v2

c2

+
m~v(

1− v2

c2

)3/2 (~v ·~̇v)

c2

so that

~v · d~p

dt
=

m(~v ·~̇v)(
1− v2

c2

)3/2 =
dEkin

dt
.
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where we have added a new term Sfield, which represents the interaction between the

particles and the field that they have produced themselves. We will write it as

Sfield ∼
∫
FµνF

µν d4x =

∫
FµνF

µνcdt d3x .

Then adding the proportionality constants the total action is written as

S = −mc
∫

ds− e

c

∫
Aµdxµ − 1

16πc

∫
FµνF

µν cdt d3x ,

where we have adopted the Gauss system of units, i.e. µ0 = 4π and ε0 = 1
4π

. Note

that we can rewrite the second term as

e

c

∫
Aµdxµ =

1

c

∫
ρAµdxµdV =

1

c

∫
ρAµ

dxµ

dt
dV dt

=
1

c

∫
jµAµdV dt =

1

c2

∫
jµAµd4x , (5.28)

where in the second line we have introduced, the current ji = ρdxi

dt
= (ρc, ρ~v).

Including this, we can now write the action of the moving test charge as

S = −mc
∫

ds− 1

c2

∫
jαAα d4x− 1

16πc

∫
FµνF

µνcdtd3x .

Keeping sources constant and the path unchanged (i.e. δjµ = 0 and δs = 0), we can

write the deviation from the action as follows

δS = − 1

c2

∫
jαδAα d4x− 1

8πc

∫
FµνδF

µνcdtd3x

= −1

c

[
1

c

∫
jαδAα d4x+

1

4π

∫
∂F µν

∂xν
δAµcdtd

3x

]
, (5.29)

where in the last term in the first line, we have used that

δF µν = ∂µδAν − ∂νδAµ .

To find the extremum, we need to satisfy δS = 0, which due to eq.(5.29), is

equivalent

− 1

c2
jµ − 1

4πc
∂νF

µν = 0 .

Upon rearrangement, this gives us the second pair of Maxwell’s equations

∂F µν

∂xν
= −4π

c
jµ .

Notice that for vanishing currents, these equation resemble the first pair of Maxwell’s

equations, when currents are to vanish (i.e. jµ = 0). Below we dwell more on this

point.
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Identifying the respective components of the electromagnetic tensor we can

rewrite the second pair of Maxwell’s equations in a more familiar form

rot ~H =
4π

c
~j +

1

c

∂ ~E

∂t
and div ~E = 4πρ , (5.30)

where 4π
c
~j and 4πρ are the sources and 1

c
∂ ~E
∂t

is the so-called displacement current.

The first expression is Ampére’s law (also known as the Biot-Savart law), whereas

the second one is Coulomb’s law, which we have already found before, but using a

different principle. Finally, we notice that the covariant conservation of the current
∂jµ

∂xµ
= 0 is equivalent to the continuity equation

∂ρ

∂t
+ div~j = 0 .

Below we include here a short digression on the tensor of the electromagnetic

field. It is easy to check that, using the definition of the tensor, the following is true:

dF =
∂Fµν
∂xσ

+
∂Fνσ
∂xµ

+
∂Fσµ
∂xν

= 0 . (5.31)

With a change of indices, this takes the form

εµνσρ
∂Fνσ
∂xρ

= 0 , (5.32)

which are four equations in disguise, since we are free to pick any value of the index

µ. Let us introduce the so-called dual tensor

F ∗µν =
1

2
εµνρσFρσ . (5.33)

Then we can rewrite equation (5.32) as

∂F ∗µν

∂xν
= 0 . (5.34)

Omitting the currents in the second pair, the first and second pair of Maxwell’s

equations are similar. Indeed, we have

∂F ∗µν

∂xµ
= 0 ,

∂F µν

∂xµ
= 0 .

The main difference between them is that the first pair never involves any currents:

• first pair of Maxwell’s equations does not involve any density or current: ρ,~j;

• second pair of Maxwell’s equations does involve the density and current: ρ,~j.
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This has a deeper meaning. The magnetic field, as opposed to the electric field,

is an axial vector, i.e. one that does not change sign under reflection of all coordinate

axes. Thus, if there would be sources for the first pair of Maxwell equations, they

should be an axial vector and a pseudoscalar27. The classical description of particles

does not allow to construct such quantities from dynamical variables associated to

particle.

5.6 Electromagnetic waves

When the electric charge source and current terms are absent, we obtain the electro-

magnetic wave solutions. In this case the Maxwell equations reduce to

rot ~E = −1

c

∂ ~H

∂t
, div ~E = 0 ,

rot ~H =
1

c

∂ ~E

∂t
, div ~H = 0 .

These equations can have non-zero solutions meaning that the electromagnetic

fields can exist without any charges or currents. Electromagnetic fields, which exist

in the absence of any charges, are called electromagnetic waves. Starting with the

definitions of the electric and magnetic fields given in terms of the vector potential

in equation (5.21), one can choose a gauge, i.e. fix Aµ, which will simplify the

mathematical expressions as well as the calculations, we will be dealing with. The

reason why we are allowed to make this choice is that gauge symmetry transforms

one solution into another, both solutions being physically equivalent28. By making a

gauge choice one breaks the gauge symmetry. This removes the excessive, unphysical

degrees of freedom, which make two physically equivalent solutions to the equations

of motion appear different. Obviously the simplicity of these equations and their

solutions drastically depends on the gauge choice.

One of the convenient gauge choices involves setting ∂µA
µ = 0, which is the

covariant gauge choice known as the Lorenz gauge29. This however is not a complete

gauge choice, because, as will be shown later, there are still the gauge transformations

that leave the electromagnetic field tensor unchanged. A further specification of the

Lorenz gauge known as the Coulomb gauge sets the divergence of the vector or the

scalar potential equal to zero, i.e. div ~A = 0 and ϕ = 0. We will return back to the

comparison of these gauge choices later.

27A physical quantity that behaves like a scalar, only it changes sign under parity inversion e.g.

an improper rotation.
28Both solutions belong the same gauge orbit.
29Often erroneously referred to as the Lorentz gauge, due to the similarity with the name Lorentz

as in Lorentz transformations, developed by Dutch physicist Hendrik Lorentz. However it was a

Danish physicist, Ludvig Lorenz, who actually introduced the Lorenz gauge.
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To see the process of gauge fixing and how we can use it to simplify the equations

of motion, consider the gauge transformations

~A → ~A+ ~∇f ,
ϕ → ϕ− 1

c

∂f

∂t
.

If f does not depend on t, ϕ will not change, however ~A will. On the other hand, div ~A

does not depend on t by the Maxwell equations30. Thus, in this gauge, equations

(5.21) become

~E = −~∇ϕ− 1

c

∂ ~A

∂t
= −1

c

∂ ~A

∂t
,

~H = rot ~A .

Plugging this into (5.30), our Maxwell’s equation describing the curl of the magnetic

field, we obtain

rot ~H = rot rot ~A =
1

c

∂

∂t

(
−1

c

∂ ~A

∂t

)
= −1

c

∂2 ~A

∂t2
,

⇒ −∆ ~A+ grad div ~A =
−1

c2

∂2 ~A

∂t2
.

In this gauge we can choose f , such that the term involving the divergence of ~A

disappears. The equation that remains is known as d’Alembert’s equation (or the

wave equation)

∆ ~A− 1

c2

∂2 ~A

∂t2
= 0 .

When we only consider the plane-wave solutions (i.e. only x-dependence), then

the equation reduces to

∂2f

∂x2
− 1

c2

∂2f

∂t2
= 0 .

It can be further written in the factorized form(
∂

∂t
− c ∂

∂x

)(
∂

∂t
+ c

∂

∂x

)
f = 0 .

With a change of variables ξ = t− x
c

and η = t+ x
c
⇒ ∂2f

∂ξ∂η
= 0. Hence, the solution

to the equation is

f = f (ξ) + f (η) .

30Under the gauge transformation with the time-independent function f we have

div ~A→ div ~A+ div∇f , therefore, the function f should be determined from the Poisson equation

∆f = −div ~A.

– 73 –



Changing our variables back to x and t, we find that the general solution for f is

given by

f = f1

(
t− x

c

)
+ f2

(
t+

x

c

)
.

Notice that this solution simply represents the sum of right- and left-moving plane

waves of any arbitrary profile, respectively.

Let us return to the issue of the Coulomb versus the Lorenz gauge choice, and

first consider the latter. The Lorenz gauge condition reads as follows

0 =
∂Aµ

∂xµ
= div ~A+

1

c

∂ϕ

∂t
.

We see that under gauge transformations the Lorenz gauge condition transforms as

∂µ (Aµ + ∂µχ) =
∂Aµ

∂xµ
+ ∂µ∂

µχ

and it remains unchanged provided ∂µ∂
µχ = 0. Thus, the Lorenz gauge does not

kill the gauge freedom completely. We still have a possibility to perform gauge

transformations of the special type ∂µ∂
µχ = 0. Hence there will be still an excessive

number of solutions that are physically equivalent and transform into each other

under gauge transformations involving harmonic functions.

This problem is fixed with the introduction of the complete gauge choice. Start-

ing over, one can always fix ϕ = 0 by choosing a suitable function χ (~x, t), i.e. a

function such that ϕ = 1
c
∂χ
∂t

. Under the gauge transformations we have

ϕ→ ϕ− 1

c

∂χ

∂t
⇒ ϕ = 0 .

Transforming the new ϕ = 0 with a new, only space-dependent function χ̃ (x, y, z),

we obtain31

0 = ϕ→ ϕ− 1

c

∂χ̃

∂t
= 0 and ~A→ ~A+∇χ̃ .

Since ~E = −~∇ϕ− 1
c
∂ ~A
∂t

and ϕ = 0, we find

div ~E = −1

c

∂

∂t
div ~A and div ~E = 0 ,

where the right hand side has to be equal to zero from our original assumption -

lack of sources of electromagnetic fields. From the above equation we can infer that
∂
∂t

div ~A = 0. We can use yet another gauge freedom to set the space-dependent and

time-independent χ̃, such that div ~A = −div ~∇χ̃, which means that we have reached

the Coulomb gauge

div ~A→ div ~A+ div ~∇χ̃ = 0 .

31Note that ∂χ̃
∂t = 0.
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direction of propagation

E
r

H
r

Figure 14: Oscillations of the electric and magnetic fields

in electromagnetic wave.

Having fixed the gauge, let us now consider plane wave solution to the d’Alambert

equation. In this case the derivatives of the y and z component of the vector potential

with respect to y and z components respectively should vanish as we will only look

at oscillations in the x direction. This implies that

div ~A = 0 =
∂Ax
∂x

+
∂Ay
∂y

+
∂Az
∂z
⇒ ∂Ax

∂x
= 0 .

If ∂Ax
∂x

= 0 everywhere, then ∂2Ax
∂x2

= 0, which leaves the wave equation in the form

∂2Ax
∂x2

− 1

c2

∂2Ax
∂t2

= 0

− 1

c2

∂2Ax
∂t2

= 0⇒ ∂2Ax
∂t2

= 0⇒ ∂Ax
∂t

= const.

Since we are not interested in a constant electric field Ex, we need to fix Ax = 0.

Since ~E = −1
c
∂ ~A
∂t

and ~H = rot ~A, then

~H =
[
~∇(t−xc )

, ~A
]

= −1

c

[
~n,

∂

∂t
~A

]
=
[
~n, ~E

]
,

where
[
~A, ~B

]
denotes the cross-product of two vectors. From the definition of the

cross product one can see that the electric field ~E and the magnetic field ~H are

perpendicular to each other. Waves with this property are referred to as transversal

waves.

Electromagnetic waves are known to carry energy; we can define the energy flux

to be
~S =

c

4π

[
~E, ~H

]
=

c

4π

[
~E,
[
~n, ~E

]]
.
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Since
[
~a,
[
~b,~c
]]

= ~b
(
~a,~c
)
− ~c
(
~a,~b
)
, where

(
~a,~b
)

denotes the scalar product between

vectors ~a and ~b, we find the following result

~S =
c

4π
~n~E2 ,

where due to orthogonality of ~n and ~E the contribution of the second term vanishes.

The energy density is given by

W =
1

8π

(
~E2 + ~H2

)
.

For electromagnetic waves
∣∣ ~E∣∣ =

∣∣ ~H∣∣, so that W = 1
4π
~E2. Hence, there exists a

simple relationship
~S = cW~n .

We define the momentum associated to the electromagnetic wave to be

~p =
~S

c2
=
W

c
~n .

For a particle moving along ~n, we have p = W
c

. Consider a particle moving with

velocity ~v. We then have p = vE
c2

which for v → c becomes p = E
c
; the dispersion

relation for a relativistic particle moving at the speed of light (photon).

5.7 Hamiltonian formulation of electrodynamics

To obtain the Hamiltonian formulation of classical electrodynamics (without sources),

we start for the action for electromagnetic field (we put c = 1)

S = − 1

16π

∫
d4xFµνF

µν

and rewrite it in the first order formalism. To do so, we first compute the canonical

momentum conjugate to Aµ. We have

pµ(x) =
δL

δȦµ(x)
= − 1

4π

∫
d3y F ρ

ν(y)
δ(∂ρA

ν(y))

δ(∂tAµ(x))
= − 1

4π
F 0

µ(x) = − 1

4π
F0µ(x) .

We see that we have a primary constraint32

p0 = 0 ,

i.e. the momentum conjugate to A0 vanishes. This is a straightforward consequence

of the fact that the Lagrangian does not contain the time derivative of A0. In other

32Thus, we are dealing with a singular Lagrangian system.

– 76 –



words, the velocity for A0 is absent so that A0 is not a dynamical field! As to the

components of the canonical momentum, they simply coincide with the electric field:

pi(x) = − 1

4π
F0i(x) = − 1

4π
(∂0Ai − ∂iA0) = − 1

4π
Ei .

This relation allows us to find the velocities Ȧi via the electric field

Ȧi = Ei + ∂iA0 .

Now we write the Lagrangian in the Hamiltonian form

L =

∫
d3x pi(x)Ȧi(x)︸ ︷︷ ︸

symplectic structure

−rest

or

rest =

∫
d3x pi(x)Ȧi(x)− L =

∫
d3x pi(x)Ȧi(x) +

1

16π

∫
d3x (−2F0iF0i + FijFij) .

The rest must be reexpressed via canonical coordinates and momenta (electric field),

i.e. all the velocities must be excluded in favor of the canonical momenta. We have

rest =
1

4π

∫
d3xEi(Ei + ∂iA0) +

1

16π

∫
d3x (−2E2

i + FijFij) .

We also notice that ~H = rot ~A which can be also written as

Hi = −1

2
εijkFjk .

Since we have

εijkεimn = δjmδkn − δjnδkm ,
we see that

H2
i =

1

4
εijkεimnFjkFmn =

1

2
FijFij .

Thus, we arrive at

rest =
1

8π

∫
d3x

(
E2
i +H2

i − 2A0∂iEi

)
.

Thus, the original Lagrangian takes the following form

L =
1

4π

∫
d3xEiȦi︸ ︷︷ ︸

symplectic structure

− 1

8π

∫
d3x

(
E2
i +H2

i

)
︸ ︷︷ ︸

Hamiltonian

− 1

4π

∫
d3xA0∂iEi︸ ︷︷ ︸

Constraint

.

Here

H =
1

8π

∫
d3x

(
E2
i +H2

i

)
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is the Hamiltonian of the electromagnetic field. This is nothing else as the energy of

the electromagnetic field! The first term defines the Poisson bracket

{Ei(~x), Aj(~y)} =
1

4π
δijδ(~x− ~y) .

The last term in the Lagrangian is a constraint. Indeed, varying the Lagrangian with

respect to A0 we find the following constraint:

C(x) ≡ ∂iEi(x) = 0 =⇒ div ~E = 0 ,

which is nothing else as the Gauss law. As an exercise, check that

Ċ = {H,C(x)} = 0 ,

that is the constraint is preserved in time. Also, one can easily see that

{C(x), C(y)} = 0.

We can also verify that the Lagrangian (written in the Hamiltonian form) is invariant

with respect to gauge transformations

Ai → Ai + ∂iχ

A0 = ϕ → A0 − χ̇.

Under the gauge transformations we find

δL =
1

4π

∫
d3xEi∂iχ̇+

1

4π

∫
d3x χ̇∂iEi .

After integrating by parts ∂i we obtain δL = 0.

Concluding this chapter, we will list the gauge conditions usually used in the

literature

∂µA
µ = 0 Lorenz gauge

A0 = 0 Hamilton gauge

∂iA
i = 0 Coulomb gauge

A3 = 0 Axial gauge

xµA
µ = 0 Fixed point gauge

The last gauge has been introduced by Fock. It is easy to check that the potential

Aµ(x) =

∫ 1

0

λdλ xνFµν(λx)

satisfies the gauge condition xνA
µ = 0 and that ∂µAν − ∂νAµ = Fµν .
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5.8 Solving Maxwell’s equations with sources

Continuing, we are now interested in the case of fields created by moving charges.

So far we have discussed

• Motion of a charged particle in an external electromagnetic field (the Lorentz

force);

• Time-dependent fields but without charges (electromagnetic waves).

We will now study time-dependent fields in the presence of arbitrary moving charges33.

Consider

∂F µν

∂xν
= −4π

c
jµ ,

∂

∂xν
(∂µAν − ∂νAµ) =

∂2

∂xν∂xµ
Aν − ∂2

∂xν∂xν
Aµ = −4π

c
jµ .

Imposing the Lorenz condition

∂Aν

∂xν
= 0 ,

we obtain from the previous equation

∂2

∂xν∂xν
Aµ =

4π

c
jµ .

The last equation can be split into two

∆ ~A− 1

c2

∂2 ~A

∂t2
= −4π

c
~j ,

∆ϕ− 1

c2

∂2ϕ

∂t2
= −4πρ .

These wave equations represent a structure, which is already familiar to us, namely

∆ψ − 1

c2

∂2ψ

∂t2
= −4πf (~x, t) . (5.35)

To solve this problem, as in electrostatics, it is useful to first find the Green’s function

G (~x, t; ~x′, t′), defined as a solution of the following equation(
∆x −

1

c2

∂2

∂t2

)
G (~x, t; ~x′, t′) = −4πδ (~x− ~x′) δ (t− t′) . (5.36)

33The motion of the charges has to be strictly defined, i.e. even though the charges produce an

electromagnetic field, their motion will not be influenced by the presence of external electromagnetic

fields.
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Note that G (~x, t; ~x′, t′) is not unique and it has to be specified in a number of ways.

Additionally, it is referred to as the propagator (especially in the field of quantum

electrodynamics). The solution to equation (5.35) reads

ψ (~x, t) =

∫
G (~x, t; ~x′, t′) f (~x′, t′) d3x′dt .

To check that this is actually the solution, one can apply the operator ∆x − 1
c2

∂2

∂t2

and move it into the integral - two delta functions will emerge by virtue of (5.36),

which upon integration will turn f (~x′, t′) into f (~x, t). In what follows we will need

the Fourier transforms of all the elements of equation (5.36)

δ (~x− ~x′) δ (t− t′) =
1

(2π)4

∫ ∞
−∞

d3k

∫ ∞
−∞

dω ei
~k·(~x−~x′)e−iω(t−t′) ,

G (~x, t; ~x′, t′) =

∫ ∞
−∞

d3k

∫ ∞
−∞

dω g
(
~k, ω

)
ei
~k·(~x−~x′)−iω(t−t′) .

Plugging these into the equation, we obtain

g
(
~k, ω

)(
−k2 +

ω2

c2

)
= −4π

1

(2π)4
= − 1

4π3
,

which amounts to

g
(
~k, ω

)
=

1

4π3

1

~k2 − ω2

c2

.

From this one can find an integral expression for G (~x, t; ~x′, t′)

G (~x, t; ~x′, t′) =
1

4π3

∫ ∞
−∞

d3k

∫ ∞
−∞

dω
ei
~k·(~x−~x′)−iω(t−t′)

~k2 − ω2

c2

.

The complex function inside the integral is singular at ~k2 = ω2

c2
and thus has two first

order poles at ω = ±c
∣∣~k∣∣. We have to find the proper way to treat this singularity.

This is done by using the following physical reasoning. The Green function is a wave-

type perturbation produced by a point source sitting at x′ and emanating during an

infinitesimal time at t = t′. We can expect that this wave propagates with the speed

of light as a spherical wave. Thus, we should require that

a) G = 0 in the whole space for t < t′

b) G is a diverging wave for t > t′

We shall see that the above only represents one of the possible Green’s functions,

since a different treatment of the poles produces different Green’s functions - an

advanced or a retarded one:
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Retarded Green function states G = 0 if t < t′

Advanced Green function states G = 0 if t > t′

Notice that the difference of the two Gadv − Gret, called the Pauli Green’s function

GPauli, satisfies the homogenous equation.

Consider the retarded Green’s function. For t > t′, it should give a wave prop-

agating from a point-like source. Let us define τ = t− t′, ~R = ~x− ~x′ and R =
∣∣~R∣∣.

Then we have

e−iω(t−t′) ∼ e=ωτ ,

since τ > 0. Thus we need to require that =ω < 0 in order to have a decaying function

at large ω, hence we have to integrate over the lower complex plane. In opposite, for

t < t′, the contour over which we integrate in the upper half of the complex plane

should give zero contribution due to the aforementioned physical reasons. As a result,

one could infinitesimally shift the poles into the lower half plane when performing

the analytic continuation. According to this prescription, the Green’s function is

specified as follows

G(~x, t; ~x′, t′) =
1

4π3

∫
d3k

∫
dω

ei
~kR−iωτ

k2 − 1
c2

(ω + iε)2
.

We can conveniently rewrite the previous statement, by making use of partial frac-

tions

G (~x, t; ~x′, t′) = (5.37)

=
1

4π3

∫ ∞
−∞

d3k

∫ ∞
−∞

dωei
~kR c

2k

[
1

ck − iε− ω −
1

−ck − iε− ω

]
e−iωτ .
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In the limit ε→ 0, using Cauchy’s theorem34, we find

G (~x, t; ~x′, t′) =
1

4π3

∫ ∞
−∞

d3kei
~k·~R2πi

c

2k

[
e−ickτ − eickτ

]
(5.38)

=
c

2π2

∫ ∞
−∞

d3k
ei
~k·~R

k
sin(ckτ)

=
c

2π2

∫ ∞
0

dk k sin(ckτ)

∫ π

0

sin θdθ

∫ 2π

0

dϕ eikR cos θ

=
c

π

∫ ∞
0

dk k sin(ckτ)

∫ 1

−1

dx eikRx

=
2c

πR

∫ ∞
0

dk sin(kR) sin(ckτ) (5.39)

=
1

πR

∫ ∞
−∞

d (ck) sin

(
(ck)R

c

)
sin ((ck) τ) (5.40)

= − 1

4πR

∫ ∞
−∞

dx
(
eix

R
c − e−ixRc

) (
eixτ − e−ixτ

)
(5.41)

=
1

2πR

∫ ∞
−∞

dx
(
eix(τ−

R
c ) − eix(τ+R

c )
)

=
1

R
δ

(
τ − R

c

)
− 1

R
δ

(
τ +

R

c

)
(5.42)

=
1

R
δ

(
τ − R

c

)
(5.43)

Note that in the meantime we have used: partial fractions (5.37), the Cauchy theorem

in (5.37-5.38), switched to spherical coordinates and integrated over the angles(5.39),

substituted ck = x (5.40), expanded the trigonometric functions in terms of their

complex exponentials (5.41), and identified Fourier transforms of delta functions

(5.42). On the last step we have rejected δ
(
τ + R

c

)
, because for τ, R, c > 0, the

result will always be zero. Substituting back our original variables, we get

Gret (~x, t; ~x′, t′) =
δ
(
t′ + |~x−~x′|

c
− t
)

|~x− ~x′| .

The result can be understood as the signal propagating at the speed of light, which

was emitted at t′ and will travel for |~x−~x
′|

c
and will be observed at time t. Thus,

this Green function reflects a natural causal sequence of events. The time t is then

34Cauchy integral formula reads

f(a) =
1

2πi

∮
C

f(z)

z − ad z ,

where a function f(z) is holomorphic inside the region surrounded by a contour C and integration

is performed in counter-clockwize direction.
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expressed in terms of the retarded time t′

t = t′ +
|~x− ~x′|

c
.

Substituting this solution and integrating over t′, we obtain the “retarded” potentials

ϕ (~x, t) =

∫ δ
(
t′ + |~x−~x′|

c
− t
)

|~x− ~x′| ρ (~x′, t′) d3x′dt′ + ϕ0

=

∫ ρ
(
~x′, t− |~x−~x′|

c

)
|~x− ~x′| d3x′ + ϕ0 , (5.44)

~A (~x, t) =
1

c

∫ δ
(
t′ + |~x−~x′|

c
− t
)

|~x− ~x′|
~j (~x′, t′) d3x′dt′ + ~A0

=
1

c

∫ ~j
(
~x′, t− |~x−~x′|

c

)
|~x− ~x′| d3x′ + ~A0 , (5.45)

where ϕ0 and ~A0 are the solutions of the homogeneous d’Alambert equations (those

corresponding to the free electromagnetic field).

Note that for ϕ in the case of time-independent ρ and ~j we have

ϕ =

∫
ρ(~x′)

|~x− ~x′|d
3x′ .

This is just the electrostatic formula for the scalar potential. Moreover, if the current
~j is time-independent, we obtain

~A(~x) =
1

c

∫ ~j(~x′)

|~x− ~x′|d
3x′ .

This potential defines the following magnetic field

~H = rotx ~A =
1

c

∫ [
rotx~j(~x

′)

|~x− ~x′| + ~∇x
1

|~x− ~x′| ×
~j(~x′)

]
d3x′ . (5.46)

Note the use above of the following identity

rot(ϕ~a) = ϕ rot~a+ ~∇ϕ× ~a .

The first term in (5.46) vanishes, because curl is taken with respect to coordinates

x, while the current ~j depends on x′. This leaves

~H = −1

c

∫ ~R×~j(~x′)
R3

d3x′ =
1

c

∫ [
~j(~x′), ~x− ~x′

]
|~x− ~x′|3 d3x′ .
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This is the famous law of Biot-Savart, which relates magnetic fields to their source

currents.

Let us now show that Gret is Lorentz invariant. We write

Gret (~x, t; ~x′, t′) = Θ (t− t′)
δ
(
t′ + |~x−~x′|

c
− t
)

|~x− ~x′| .

Here the extra term Θ (t− t′) ensures that Gret (~x, t; ~x′, t′) = 0 for t < t′, because

Θ (t− t′) =

{
0, t < t′

1, t ≥ t′

When we use

δ (f (x)) =
∑
i

δ (x− xi)
|f ′ (xi)|

.

In the last formula the derivative is evaluated at the set of points xi, such that

f (xi) = 0. Realizing that for a wave propagating at the speed of light ds2 = 0 and

using some algebraic trickery35, we get

Gret (~x, t; ~x′, t′) = 2cΘ (t− t′) δ (|~x− ~x′| − c (t− t′))
2 |~x− ~x′|

= 2cΘ (t− t′) δ (|~x− ~x′| − c (t− t′))
|~x− ~x′|+ c (t− t′)

= 2cΘ (t− t′) δ
(
|~x− ~x′|2 − c2 (t− t′)2

)
,

where the argument of the delta function is the 4-interval between two events (~x, t)

and (~x′, t′), which is a Lorentz invariant object. From this we can conclude that

the Green’s function is invariant under proper orthochronical (ones that maintain

causality) Lorentz transformations.

5.9 Causality principle

A quick word on intervals. A spacetime interval we have already defined as

ds2 = c2dt2 − dx2
i (5.47)

We refer to them differently depending on the sign of ds2:

35Introduce u = |~x− ~x′| − c (t− t′). Then

δ
(
|~x− ~x′|2 − c2 (t− t′)2

)
= δ
(
u(u+ 2c(t− t′))

)
= δ
(
u2 + 2uc(t− t′))

)
.

Thus, we introduce f(u) = u2 + 2uc(t − t′) with f ′(u) = 2u + 2c(t − t′). Equation f(u) = 0 has

two solutions: u = 0 and u = −2c(t − t′). The second one will not contribute into the formula

describing the change of variables in the delta-function because of Θ(t− t′). Thus,

δ
(
|~x− ~x′|2 − c2 (t− t′)2

)
=
δ (|~x− ~x′| − c (t− t′))
(2u+ 2c(t− t′))|u=0

=
δ (|~x− ~x′| − c (t− t′))

2c(t− t′) .
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Figure 15: At every point in time every observer has his past light cone,

which is a set of all events that could have influenced his presence, and a

future light cone, the set of events which the observer can influence. The

boundaries of the light cones also define the split between different kinds of

space-time intervals. On the light cone itself the intervals are all light-like,

time-like on the inside and space-like on the outside.

time-like intervals if ds2 > 0

space-like intervals if ds2 < 0

light-like intervals (also called null intervals) if ds2 = 0

Consider Figure 10 representing the light-cone built over a point X. Signals in

X can come only from points X ′, which are in the past light-cone of X. We say

X > X ′ (X is later than X ′). The influence of a current j in X ′ on potential A at

X is a signal from X ′ to X. Thus, the causality principle is reflected in the fact that

A(X) can depend on 4-currents j(X ′) only for those X ′ for which X > X ′. Thus,

δA(X)

δj(X ′)
∼ G(X −X ′) = 0 (5.48)

for X < X ′ or points X ′ that are space-like to X. Hence, the causality principle for

the Green function is

G(X ′ −X) = 0 , (5.49)

in terms of the conditions described above. The retarded Green’s function is the only

relativistic Green’s function which has this property.

6. Radiation

The last part of these lectures will treat two classical radiation problems: Liénard-

Wiechert potentials and the dipole radiation. Before studying the radiation problems,
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we consider the field produced by an electric charge which moves uniformly with

velocity ~v.

6.1 Fields of a uniformly moving charge

The Lorentz transformation of ~x is

~x′ = ~x− a~vt+
a− 1

v2
~v(~v~x) .

In what follows we need to know x′2. We compute

x′2 = x2 + a2v2t2 +
(a− 1)2

v2
(~v~x)2 − 2a(~v~x)t+ 2

a− 1

v2
(~v~x)2 − 2a(a− 1)(~v~x)t

= x2 + a2v2t2 +
(~v~x)2

v2

(
(a− 1)2 + 2(a− 1) + 1︸ ︷︷ ︸−1

)
− 2a2(~v~x)t

= x2 + a2v2t2 +
a2 − 1

v2
(~v~x)2 − 2a2(~v~x)t = x2 + a2v2t2 +

a2

c2
(~v~x)2 − 2a2(~v~x)t ,

since a2−1
v2

= a2

c2
. Then, we proceed as follows

x′2 = x2 − 2(~v~x)t+ v2t2︸ ︷︷ ︸+(a2 − 1)(v2t2 − 2(~v~x)t+ x2 − x2) +
a2

c2
(~v~x)2

= (~x− ~vt)2 + a2 v
2

c2
(~x− ~vt)2 − a2

c2
(v2x2 − (~v~x)2)

= (~x− ~vt)2
(

1 + a2 v
2

c2

)
︸ ︷︷ ︸

a2

−a
2

c2
(v2x2 − (~v~x)2)

Thus,

x′2 = a2(~x− ~vt)2 − a2

c2
(v2x2 − (~v~x)2) = a2(~x− ~vt)2 − a2

c2
[~v, ~x]2 .

We further note that in the vector product [~v, ~x] one can replace ~x for ~x−~vt without

changing the result. The final answer we need reads as

x′2 = a2(~x− ~vt)2 − a2

c2
(v2x2 − (~v~x)2) = a2

(
(~x− ~vt)2 − 1

c2
[~v, ~x− ~vt]2

)
.

The electric and magnetic fields in the stationary frame are

~E = a ~E ′ − a− 1

v2
~v(~v · ~E ′)− a

c
[~v, ~H ′] = a ~E ′ − a− 1

v2
~v(~v · ~E ′) ,

~H = a ~H ′ − a− 1

v2
~v(~v · ~H ′) +

a

c
[~v, ~E ′] =

a

c
[~v, ~E ′] ,

(6.1)

because in the moving frame ~H ′ = 0. The electric field is ~E ′ = e ~x
′

x′3
. Thus, we

compute

~E =
e

x′3

(
a~x− a2~vt+

a(a− 1)

v2
~v(~v~x)− a− 1

v2
~v
(

(~v~x)− av2t+ (a− 1)(~v~x)
))

,
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which results into a very simple formula

~E(x, t) =
e(~x− ~vt)

a2
(

(~x− ~vt)2 − 1
c2

[~v, ~x− ~vt]2
)3/2

.

We recall that in the last formula (~x, t) is a (observation) point in a stationary frame

where the field ~E(~x, t) is measured and ~R = ~x− ~vt is vector from the charge to the

observation point. Note that ~E is collinear to ~R. Introducing an angle θ between

velocity ~v (the direction of motion) and ~R, the last formula can be written as

~E(x, t) =
e~R

R3

(
1− v2

c2

)
(

1− v2

c2
sin2 θ

)3/2
.

As to the magnetic field, one gets

~H =
a

c

[
~v,

e

x′3
(~x− a~vt+

a− 1

v2
~v(~v~x))

]
=

1

c

[
~v,
ae

x′3
~x
]
.

Obviously, the last expression can be written as

~H(x, t) =
1

c
[~v, ~E] .

The corresponding energy flux is

~S(x, t) =
c

4π
[ ~E, ~H] =

1

4π
[ ~E[ ~E,~v]] =

1

4π
(~vE2 − ~E( ~E · ~v)) .

A charge moving with a uniform velocity is not radiating energy. It is not radiating

energy in the rest frame, and, therefore, the same must hold in any other inertial

frame.

6.2 Fields of an arbitrary moving charge

The charge distribution in space and time of a single point-like charge is given by

ρ (~x, t) = eδ (~x− ~r (t)) ,

~j (~x, t) = e~vδ (~x− ~r (t)) .

Here ~x is the position of the observer, ~r (t) is the trajectory of the charge and ~v = ṙ (t),

its velocity. The potential then reads

ϕ (~x, t) =

∫ δ
(
t′ + |~x−~x′|

c
− t
)

|~x− ~x′| eδ (~x′ − ~r (t′)) d3x′dt′ (6.2)
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Let us take ~x′ = ~r (t′), because only then the integrand is non-zero. Then eq.(6.2)

can be integrated over ~x′ and we get

ϕ (~x, t) = e

∫ δ
(
t′ + |~x−~r(t′)|

c
− t
)

|~x− ~r (t′)| dt′ . (6.3)

Take f (t′) = t′ + |~x−~r(t′)|
c
− t and use δ (f (x)) = δ(x)

|f ′(x)| , where f ′ (x) is evaluated at

the point were f (x) = 0, i.e. at t′ which solves t′ + |~x−~r(t′)|
c
− t = 0

df (t′)

dt′
= 1− 1

c

(~x− ~r(t′)) · ~̇r(t′)
|~x− ~r (t′)| = 1− 1

c

~R · ~v
R

.

In the last equation we have used the fact that ~R = ~x − ~r (t′) and ~v = ~̇r (t). The

potential then becomes

ϕ (~x, t) =
e

R

1

1− 1
c

~R·~v
R

=
e

R− ~R·~v
c

. (6.4)

We can use the same line of reasoning to show

~A (~x, t) =
e

c

~v

(R− ~R·~v
c

)
. (6.5)

The formulae (6.4) and (6.5) are the Liénard-Wiechert potentials. Let us compute

the corresponding electric and magnetic fields.

We have

~E = −
1

c

∂ ~A

∂t
− ~∇ϕ ;

~H = rot ~A .

Moreover, R(t′) is given by the difference in the times t and t′ with an overall factor of c

R
(
t′
)

= c
(
t− t′

)
.

Therefore,

∂R (t′)

∂t
=
∂R (t′)

∂t′
∂t′

∂t
= −

~R · ~v
R

∂t′

∂t
= c

(
1−

∂t′

∂t

)
. (6.6)

From this relation, it follows that
∂t′

∂t
=

1

1− ~R·~v
Rc

.

Analogously, one can also start from the expressions R(t′) = c(t− t′) and t′ = t′(t, ~x), such that

~∇R
(
t′
)

= −c~∇t′ ⇒ ~∇t′ = −
1

c
~∇R

(
t′
)

= −
1

c
~∇x
∣∣~x− ~r (t′ (~x, t))∣∣

= −
1

c

(
~R

R
+
∂R

∂t′
~∇t′
)
,
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where one can again identify ∂R
∂t′ with the previous result from (6.6) and finally obtain

~∇t′ = −
~R

c
(
R− ~R·~v

c

) and ~∇R =
~R

R− ~R·~v
c

.

Now we have all the necessary ingredients, which we can use to find ~E and ~H, i.e. to obtain the Liénard-Wiechert

fields.

First let’s calculate the quantity ∇ϕ,

∇ϕ =
−e

(R− ~R·~v
c

)2
∇(R−

~R · ~v
c

).

The first term is

∇R = −c∇t′

and we can rewrite the second term by using of the vector identities

∇(~R · ~v) = (~R · ∇)~v + (~v · ∇)~R+ ~R× (∇× ~v) + ~v × (∇× ~R).

Now we have to calculate these quantities one at a time. A difficult quantity is

(~v · ∇)~R = (~v · ∇)~x− (~v · ∇)~r(t′).

Switching to index notation hugely simplifies this

vm∂mRi = vm∂mxi − vm∂mri
= vmδmi − vmvi∂mt′

= vi − vivm∂mt′vi.

Here I have used that ∂mri = dri
dxm

= dri
dt′

dt′

dxm
= vi∂mt

′. Going back to vector notation

(~v · ∇)~R = ~v − (~v · ∇t′)~v.

Similarly

(~R · ∇)~v = (~R · ∇t′)~̇v.

Now we calculate

(∇× ~v)i = εijk∂jvk

= εijk∂jt
′v̇k

= ((∇t′)× ~̇v)i,

and similarly

∇× ~R = ∇× ~x−∇× ~r = −(∇t′)× ~v.

Now use an identity ~A× ( ~B × ~C) = ~B( ~A · ~C)− ~C( ~A · ~B), and we finally get

∇(~R · ~v) = ~v +∇t′(~R · ~̇v − v2).

Substituting all the quantities finally gives

∇ϕ =
e

c2(R− ~R·~v
c

)3

(
−~R(c2 − v2 + ~R · ~̇v) + c~v(R−

~R · ~v
c

)

)
.

A similar (but a little bit easier) exercise for d ~A
dt

gives

d ~A

dt
=

e

c(R− ~R·~v
c

)3

(
(R−

~R · ~v
c

)(~̇vR− c~v) +
~vR

c
(c2 − v2 + ~R · ~̇v)

)
.
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Putting these together we obtain

~E =
e

(R− ~R·~v
c

)3

(
(~R−

~vR

c
)(1−

v2

c2
) +

1

c2
(~R(~R · ~̇v)−R2~̇v)

−
R

c3
(~v(~R · ~̇v)− ~̇v(~R · ~v))

)
.

By using R2 = ~R · ~R and again the relation ~A× ( ~B × ~C) = ~B( ~A · ~C)− ~C( ~A · ~B) we now find

~E =
e

(R− ~R·~v
c

)3

(
(~R−

~vR

c
)(1−

v2

c2
) +

1

c2
(~R× ((~R−

R~v

c
)× ~̇v))

)
.

For the magnetic field we use

~H = ∇× ~A =
1

c
∇× (ϕ~v) =

1

c
(ϕ(∇× ~v) + (∇ϕ)× ~v) .

Substituting the quantities gives

~H =
~R

R
×

e

(R− ~R·~v
c

)3

(
(−
~vR

c
)(1−

v2

c2
) +

1

c2
(−R2~̇v)

−
R

c3
(~v(~R · ~̇v)− ~̇v(~R · ~v))

)
.

We see that we almost have the electric field (from the equation just above the final result for ~E), but we are missing

the quantities ~R(1− v2

c2
) and 1

c2
~R(~R·~̇v). However, the cross product with these quantities will vanish, since ~R× ~R = 0,

and therefore we can simply add these quantities. We finally have

~H =
~R

R
× ~E.

To summarize, the Liénard-Wiechert fields are given by the following expressions

~H =
1

R

[
~R, ~E

]
,

~E = e

(
1− v2

c2

)(
~R− ~v

c
R
)

(
R− ~R·~v

c

)3 +
e
[
~R,
[
~R− ~v

c
R, ~̇v

]]
c2
(
R− ~R·~v

c

)3 .

Notice that in the last equation the first term only depends on the velocity of the

moving particle and is proportional to 1
R2 (short distance), whereas the second term

depends on acceleration and is proportional to 1
R

providing, therefore, the long-

distance dominating contribution, the so-called wave-zone. Note also that flux is

proportional to ~E2 hence is also proportional to 1
R2 . Therefore,∫

~E2dV ∼
∫

1

R2
R2dΩ = 4π ,

which is a constant flux of ~E at large distances. It is worth stressing that there is

no energy (radiation) coming from a charge moving at a constant velocity, because

we can always choose a frame where it is stationary, hence ~H = 0 ⇒ ~E · ~H = 0,

consequently it cannot emit energy.
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Figure 16: A diagrammatic representation of a dipole

6.3 Dipole Radiation

Field of a neutral system is expressed with the help of the so-called electric moment

given in its discretized form as

~d =
N∑
i=1

ei ~Ri , (6.7)

where ei is the magnitude of a charge at some distance Ri taken from an arbitrary

point, in this case chosen to be the origin. For a neutral system we require that

N∑
i=1

ei = 0 .

Note that for such a system, electric moment does not depend on the choice of the

origin of the reference frame, i.e. shifting all ~Ri → ~Ri − ~a gives

~d~a =
N∑
i=1

ei

(
~Ri − ~a

)
=

N∑
i=1

ei ~Ri − ~a
N∑
i=1

ei =
N∑
i=1

ei ~Ri = ~d .

Let us now consider a neutral system of moving charges. From diagram 16 using

Pythagorean theorem and assuming that ~l � R0, l being the characteristic size, we
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get36

R =

√(
~R0 − ~R′

)2

=

√
~R2

0 − 2~R0 · ~R′ + ~R′2 ≈

≈

√√√√~R2
0

(
1− 2

~R0 · ~R′
~R2

0

)
≈ R0

(
1−

~R0 · ~R′
~R2

0

)
= R0 −

~R0 · ~R′
R0

.

By using (5.44), we then find the retarded scalar potential

ϕ =

∫
ρ
(
x′, t− R

c

)
R

d3x′ =

=

∫
d3x′

ρ
(
x′, t− R0

c

)
R0

−
~R0 · ~R′
R0

∂

∂R0

ρ
(
x′, t− R0

c

)
R0

+ · · · =

= −
~R0

R0

· ∂

∂R0

1

R0

∫
d3x′ ~R′ρ

(
x′, t− R0

c

)
,

where the first term vanishes because it is proportional the complete charge of the

system, which we have set to zero, by defining the system to be neutral. In the

remaining term we will write the integral as ~d
(
t− R0

c

)
, the electric moment at time

t− R0

c
, which is just a continuous version of (6.7)

~d

(
t− R0

c

)
=

∫
d3x′ ~R′ρ

(
x′, t− R0

c

)
. (6.8)

Therefore37,

ϕ = −
~R

R
· ∂
∂R

~d
(
t− R

c

)
R

.

Further, we find

div
~d
(
t− R

c

)
R

= ~d · ~∇ 1

R
+

1

R
div ~d = −

~d · ~R
R3

+
1

R
div ~d ,

div ~d =
∂di
∂xi

=
∂di
∂R

∂R

∂xi
=

(
~R

R
· ∂

~d

∂R

)
,

so that

div
~d
(
t− R

c

)
R

= −
~d · ~R
R3

+
~R

R2

∂~d

∂R
.

On the other hand,

ϕ =
~d · ~R
R3
−

~R

R2

∂~d

∂R
.

36Here ~R′ ≡ (x′, y′, z′).
37To simplify our further treatment, the have changed the notation R0 → R.
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Thus,

ϕ = −div
~d
(
t− R

c

)
R

.

Here divergence is taken over coordinates of the point P (x, y, z) where the observer

is located. Using expression (5.45), the vector potential becomes

~A =
1

c

∫ ~j
(
x′, t− R

c

)
R

d3x′ =

=
1

c

∫
d3x′

[~j (x′, t− R0

c

)
R0

−
~R0 · ~R′
~R0

∂

∂R0

~j
(
x′, t− R0

c

)
R0

+ · · ·
]
.

First integral can also be expressed via electric moment, which can be achieved by

using the continuity equation

∂

∂t
ρ

(
x′, t− R0

c

)
= −div′ ~j

(
x′, t− R0

c

)
.

Multiplying both sides of this equation by time independent ~R′, integrating over

entire space and using the definition (6.8), we can then state that

∂

∂t
~p

(
t− R0

c

)
= −

∫
d3x′ ~R′div′ ~j

(
x′, t− R0

c

)
.

To proceed, let us sidetrack and consider an arbitrary unit vector ~a, i.e. |~a| = 1.

Then (
~a~R′
)
div~j = div

(
~j
(
~a~R′
))
−~j · ~∇′

(
~a~R′
)

= div
(
~j
(
~a~R′
))
−~j · ~a ,

where the last step follows from ~a being a constant and ∇′ ~R′ = 1. Based on that we

can write

~a · ∂
∂t
~d

(
t− R0

c

)
= −

∫
d3x′div′

(
~j
(
~a~R′
))

+ ~a ·
∫

d3x′~j

(
x′, t− R0

c

)
.

Since currents do not leave the volume V , we find that∫
d3x′div′

[
~j
(
~a~R′
)]

=

∮
(aR′) jndS = 0

as the normal component jn of the current vanishes (all currents never leave the

integration volume V ). This gives

~a · ∂
∂t
~d

(
t− R0

c

)
= ~a ·

∫
d3x′~j

(
x′, t− R0

c

)
.
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Since the last relation is valid for any unit vector ~a, we obtain that

∂

∂t
~d

(
t− R0

c

)
=

∫
d3x′~j

(
x′, t− R0

c

)
.

Therefore, we arrive at38

~A =
1

cR
· ∂
∂t
~d

(
t− R

c

)
.

We see that both the scalar and the vector potential of any arbitrary neutral system

on large distances are defined via the electric moment of this system.

The simplest system of this type is a dipole, i.e. two opposite electric charges

separated by a certain distance from each other. A dipole whose moment ~d changes

in time is called an oscillator (or a vibrator).

Radiation of an oscillator plays an important role in the electromagnetic the-

ory (radiotelegraphic antennae, radiating bodies, proton-electron systems, etc.). To

advance our investigation of a dipole, let us introduce the Hertz vector

~P (t, R) =
~d
(
t− R

c

)
R

. (6.9)

It is interesting to see that

∆~P (t, R) = ~∇2 ~P (t, R) =
1

c2

∂2 ~P

∂t2
.

This can be derived as follows. First, we notice that

∂

∂x
~P = − 1

R2

∂R

∂x
~d− 1

cR

∂~d

∂t

∂R

∂x
= − x

R3
~d− x

cR2

∂~d

∂t
,

since ∂R
∂x

= x
R

. Differentiating once again, we get

∂2

∂x2
~P = − 1

R3
~d+ 3

x2

R5
~d+

3

c

x2

R4

∂~d

∂t
− 1

cR2

∂~d

∂t
+

1

c2

x2

R3

∂2~d

∂t2
,

so that

3∑
i=1

∂2

∂x2
i

~P =
1

c2R

∂2~d

∂t2
,

which represents the spherically symmetric solution of the wave equation.

Consider the retarded potentials

ϕ(~R, t) = −div ~P (t, R) , ~A(~R, t) =
1

c

∂ ~P (t, R)

∂t
;

38Here we again changed the notation R0 → R.
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The potentials are spherically symmetric, i.e. they depend on the distance R only.

For the electromagnetic fields we have

~H = rot ~A (t) =
1

c

∂

∂t
rot~P (t, R) ;

~E = −1

c

∂ ~A (t)

∂t
− ~∇ϕ = − 1

c2

∂2 ~P (t, R)

∂t2
− ~∇div ~P (t, R)

= − 1

c2

∂2 ~P (t, R)

∂t2
+ ~∇2 ~P (t, R) + rot rot ~P (t, R) .

On the last line the sum of the first two terms is equal to zero by virtue of the wave

equation. This results in
~E = rot rot ~P (t, R) . (6.10)

Assume that the electric moment changes only its magnitude, but not its direction,

i.e.
~d (t) = ~d0f (t) .

This is not a restriction because moment ~d of an arbitrary oscillator can be decom-

posed into three mutually orthogonal directions and a field in each direction can be

studied separately. Based on this we have

~P (t, R) = ~d0

f
(
t− R

c

)
R

,

rot ~P =
f

R
rot ~d0 +

[
~∇ f
R
, ~d0

]
=

∂

∂R

(
f
(
t− R

c

)
R

)[
~R

R
, ~d0

]
=

=
1

R

∂

∂R

(
f
(
t− R

c

)
R

)[
~R, ~d0

]
as rot ~d0 = 0. In the spherical coordinate system we compute the corresponding

components ∣∣∣[~R, ~d0

]∣∣∣ = Rd0 sin θ ,[
~R, ~d0

]
R

=
[
~R, ~d0

]
θ

= 0 ,[
~R, ~d0

]
φ

= −Rd0 sin θ .

and get39 (
rot ~P

)
R

=
(

rot ~P
)
θ

= 0 ,(
rot ~P

)
φ

= −d0 sin θ
∂

∂R

(
f
(
t− R

c

)
R

)
= − sin θ

∂

∂R
P (t, R) .

39Note that P here is the numerical value of the Herz vector ~P .

– 95 –



Since the magnetic field components are the components of the curl of the vector

potential, the latter is written in terms of the Hertz vector (6.9), where we find

HR = Hθ = 0

Hφ = − sin θ
1

c

∂2P (t, R)

∂t ∂R
.

The components of curl of any vector field ~a in spherical coordinates are given by

(rot ~a)R =
1

R sin θ

(
∂

∂θ
(sin θaφ)− ∂aθ

∂R

)
;

(rot ~a)θ =
1

R sin θ

(
∂aR
∂φ
− ∂

∂R
(R sin θaφ)

)
;

(rot ~a)φ =
1

R

(
∂

∂R
(Raθ)−

∂aR
∂θ

)
.

Using these formulae together with equation (6.10), we also find the components of

the electric field

ER =
1

R sin θ

∂

∂θ

[
sin θ (− sin θ)

∂

∂R
P (t, R)

]
= − 1

R sin θ

∂

∂θ

[
sin2 θ

∂P

∂R

]
= −2 cos θ

R

∂P

∂R
;

Eθ = − 1

R sin θ
sin θ

∂

∂R

[
R (− sin θ)

∂

∂R
P (t, R)

]
=

=
sin θ

R

∂

∂R

(
R
∂P

∂R

)
;

Eφ = 0 .

From the above expressions we can see that electric and magnetic fields are always

perpendicular; magnetic lines coincide with circles parallel to the equator, while

electric field lines are in the meridian planes. Now let us further assume that

f (t) = cosωt ⇒ ~d

(
t− R

c

)
= ~d0 cosω

(
t− R

c

)
or in a complex form

~d

(
t− R

c

)
= ~d0e

iω(t−Rc ) . (6.11)

Then

∂P

∂R
=

∂

∂R

(
d0e

iω(t−Rc )

R

)
= − 1

R2
d0e

iω(t−Rc ) − iω

c

1

R
d0e

iω(t−Rc ) =

= −
(

1

R
+
iω

c

)
P (R, t) ,
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and

∂

∂R

(
R
∂P

∂R

)
= − ∂

∂R

[(
1 +

iωR

c

)
P

]
=

(
1

R
+
iω

c
− ω2R

c

)
P .

Thus, for this particular case we get the following result

Hφ =
iω

c
sin θ

(
1

R
+
iω

c

)
P (R, t) ;

ER = 2 cos θ

(
1

R2
+
iω

cR

)
P (R, t) ;

Eθ = sin θ

(
1

R2
+
iω

cR
− ω2

c2

)
P (R, t) .

These are the exact expressions for electromagnetic fields of a harmonic oscillator.

They are complicated and we will look more closely only on what happens close and

far away from the oscillator. To do that we will aid ourselves with the concept of a

characteristic scale, which is determined by the competition between

1

R
and

ω

c
=

2π

Tc
=

2π

λ
,

where T and λ are the period and the wavelength of the electromagnetic wave,

respectively.

Close to the oscillator

By “close to the oscillator” we mean:

R� λ

2π
or

1

R
� ω

c
=

2π

λ
,

i.e. distances from oscillator are smaller than the wavelength. Thus we can simplify

ω

(
t− R

c

)
= ωt−Rω

c
= ωt− 2πR

λ
≈ ωt ,

so that

P (t, R) =
d
(
t− R

c

)
R

≈ d (t)

R
.

Using the “close to oscillator condition”, fields are determined by the electric moment

d (t) and its derivative ∂d
∂t

without retarding

Hφ ≈
iω

c
sin θ

P

R
≈ iω

c
sin θ

d (t)

R2
=

1

c

sin θ

R2

∂d (t)

∂t
,

because iωd (t) = ∂d(t)
∂t

, which follows from the particular choice of the time depen-

dence of the oscillator that we have made in (6.11). Similarly in this limit the electric
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field components become

ER =
2 cos θ

R2
P =

2 cos θ

R3
d (t) ;

Eθ =
sin θ

R2
P =

sin θ

R3
d (t) .

At any given moment t, this is a field of a static dipole. For the magnetic field we

find

~H =
1

cR3

[
∂~d (t)

∂t
, ~R

]
=

J

cR3

[
~̀, ~R

]
.

Given that this introduced current J obeys J~̀ = ∂ ~d(t)
∂t

, this expression gives the

magnetic field of a current element of length `. This is known as the Biot-Savart

law40.

Far away from the oscillator

Let us now consider the region far away from the oscillator, i.e. the region where

R� λ

2π
or

1

R
� ω

c
=

2π

λ
.

Distances greater than the wavelength are called wave-zone. In this particular limit

our field components become

Hφ = −ω
2

c2
sin θP = −ω

2

c2
sin θ

d
(
t− R

c

)
R

;

ER = 0 ;

Eθ = −ω
2

c2
sin θ

d
(
t− R

c

)
R

= Hφ .

Thus summarizing we get

ER = Eφ = HR = Hθ = 0 ,

and

Eθ = Hφ = −ω
2 sin θ

c2R
d0 cosω

(
t− R

c

)
,

or

Eθ = Hφ =
sin θ

c2R

∂2d
(
t− R

c

)
∂t2

.

This last result is valid for any arbitrary d (t), not necessarily d0f (t), because we

can always perform a harmonic Fourier decomposition of any function. Thus in the

40Note that E ∼ 1
R3 and H ∼ 1

R2 .
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wave zone the electric and magnetic fields are equal to each other and vanish as 1
R

.

Additionally, vectors ~E, ~H, and ~R are perpendicular41. Note that the phase of ~E

and ~H, i.e. ω
(
t− R

c

)
moves with the speed of light.

Thus, in the wave zone of the oscillator an electromagnetic wave is propagating!

λ = cT =
2πc

ω
.

This wave propagates in the radial direction, i.e. its phase depends on the distance

to the center.

Let us now look at the Poynting vector

S =
c

4π

∣∣∣[ ~E, ~H]∣∣∣ =
c

4π
EH =

1

4π

sin2 θ

c3R2

(
∂2d

(
t− R

c

)
∂t2

)2

,

where on the first step we have used the fact that the electric and the magnetic fields

are perpendicular. Additionally note that the second derivative with respect to time

inside the square is an acceleration. Energy flux through the sphere of radius R is

Σ =

2π∫
0

π∫
0

SR2 sin θdφdθ =

=

2π∫
0

π∫
0

1

4π

sin2 θ

c3R2

(
∂2d

(
t− R

c

)
∂t2

)2

R2 sin θdφdθ =
2

3c3

[
∂2d

(
t− R

c

)
∂t2

]2

=
2

3c3
d̈2 .

For d
(
t− R

c

)
= d0 cosω

(
t− R

c

)
the flux for one period is

T∫
0

Σ dt =
2

3c3
d2

0ω
4

T∫
0

cos2 ω

(
t− R

c

)
dt =

=
d2

0ω
4T

3c3
=

2πd2
0ω

3

3c3
=

2πd2
0

3

(
2π

λ

)3

.

The averaged radiation in a unit time is then

〈 Σ 〉 =
1

T

T∫
0

Σdt =
cd2

0

3

(
2π

λ

)4

. (6.12)

Thus, the oscillator continuously radiates energy into surrounding space with average

rate 〈Σ 〉 ∼ d2
0

1
λ4

. In particular this explains that when transmitting radio signals by

41Note that ~E, ~H and ~R have completely mismatching components i.e. if one vector has a

particular non-zero component, for the other two this component is zero.
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telegraphing one should use waves of relatively short wavelengths42 (or equivalently

high frequencies ω). On the other hand, radiation of low frequency currents is highly

suppressed, which explains the effect of the sky appearing in blue, which is to the

high frequency end of the visible light43 spectrum.

Lastly, let us finally focus on the concept of resistance to radiation, which is

given by Rλ such that

〈 Σ 〉 = Rλ〈 J2 〉 .

Recall that we have previously defined J such that it obeys J~̀=
∂ ~d(t−Rc )

∂t
. Using this

definition, we get

〈 J2 〉 =
1

T

T∫
0

J2dt =
1

T`2

T∫
0

(
∂~p
(
t− R

c

)
∂t

)2

dt =

=
1

T`2

T∫
0

d2
0ω

2 sin2 ω

(
t− R

c

)
dt =

d2
0ω

2

T`2

π

ω
=
πd2

0ω
2

`2 2π
ω
ω

=
d2

0ω
2

2`2
.

Using the result (6.12), it is now easy to find Rλ

Rλ =
cd2

0

3

(
2π

λ

)4
2`2

d2
0ω

2
=

2c

3`2

(
2π

λ

)4
1(

2π
λ
c
)2 =

2

3c

(
2π`

λ

)2

.

6.4 Applicability of Classical Electrodynamics

We conclude this section by pointing out the range of applicability of classical elec-

trodynamics.

The energy of the charge distribution in electrodynamics is given by

U =
1

2

∫
dV ρ(x)ϕ(x) .

Putting electron at rest, one can assume that the entire energy of the electron coin-

cides with its electromagnetic energy (electric charge is assumed to be homogeneously

distributed over a ball of the radius re)

mc2 ∼ e2

re
,

42Generally these range from tens of meters to tens of kilometers.
43In this case charge polarized chemical bonds between the atoms in the particles in the atmo-

sphere act as little oscillators.
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where m and e are the mass and the charge of electron. Thus, we can define the

classical radius of electron

re =
e2

mc2
∼ 2.818 · 10−15 m .

In SI units it reads as re = 1
4πε0

e2

mc2
. At distances less than re, the classical electro-

dynamics is not applicable.

In reality, due to quantum effects the classical electrodynamics fails even at

larger distances. The characteristic scale is the Compton wavelength, which is the

fundamental limitation on measuring the position of a particle taking both quantum

mechanics and special relativity into account. Its theoretical value is given by

~
mc
∼ 137 re ∼ 10−13 m ,

where α = 1
137

= e2

~c is the fine structure constant for electromagnetism. The most

recent experimental measurement of campton wavelenght (CODATA 2002) is one

order of magnitude larger and is approximately equal to 2.426 · 10−12 m.

6.5 Darvin’s Lagrangian

In classical mechanics a system of interacting particles can be described by a proper

Lagrangian which depends on coordinates and velocities of all particles taken at

the one and the same moment. This is possible because in mechanics the speed of

propagation of signals is assumed to be infinite.

On the other hand, in electrodynamics field should be considered as an inde-

pendent entity having its own degrees of freedom. Therefore, if one has a system

of interacting charges (particles) for its description one should consider a system

comprising both these particles and the field. Thus, taking into account that the

propagation speed of interactions is finite, we arrive at the conclusion that the rigor-

ous description of a system of interacting particles with the help of the Lagrangian

depending on their coordinates and velocities but do not containing degrees of free-

dom related to the field is impossible.

However, if velocities v of all the particles are small with respect to the speed

of light, then such a system can be approximately described by some Lagrangian.

The introduction of the Lagrangian function is possible up to the terms of order v2

c2
.

This is related to the fact that radiation of electromagnetic waves by moving charges

(that is an appearance of independent field) arises in the third order of v
c

only.

At zero approximation, i.e. by completely neglecting retarding of the potentials,

the Lagrangian for a system of charges has the form

L(0) =
∑
i

miv
2
i

2
−
∑
i>j

eiej
rij

.

– 101 –



The second term is the potential energy of non-moving charges.

In order to find higher approximation, we first write the Lagrangian for a charge

ei in an external electromagnetic field (ϕ, ~A):

Li = −mc2

√
1− v2

i

c2
− eiϕ+

ei
c

( ~A · ~vi) .

Picking up one of the charges, we determine electromagnetic potentials created by all

the other charges in a point where this charge sits and express them via coordinates

and velocities of the corresponding charges (this can be done only approximately:

ϕ can be determined up to the order v2

c2
and ~A up to v

c
). Substituting the found

expressions for the potentials in the previous formula, we will find the Lagrangian

for the whole system.

Consider the retarded potentials

ϕ(x, t) =

∫
d3x′dt′

δ
(
t′ + |x−x′|

c
− t
)

|x− x′| ρ(x′, t′) ,

~A(x, t) =
1

c

∫
d3x′dt′

δ
(
t′ + |x−x′|

c
− t
)

|x− x′|
~j(x′, t′) .

As before, integrating over t′ we get

ϕ(x, t) =

∫
d3x′

ρ
(
t− |x−x′|

c

)
|x− x′| , ~A(x, t) =

1

c

∫
d3x′

~j
(
t− |x−x′|

c

)
|x− x′| .

If velocities of all the charges are small in comparison to the speed of light,

then the distribution of charges does not change much for the time |x−x
′|

c
. Thus, the

sources can be expanded in series in |x−x′|
c

. we have

ϕ(x, t) =

∫
d3x′

ρ(t)

R
− 1

c

∂

∂t

∫
d3x′ ρ(t) +

1

2c2

∂2

∂t2

∫
d3x′Rρ(t) + . . .

where R = |x− x′|. Since
∫

d3x′ ρ(t) is a constant charge of the system, we have at

leading and subleading orders the following expression for the scalar potential

ϕ(x, t) =

∫
d3x′

ρ(t)

R
+

1

2c2

∂2

∂t2

∫
d3x′Rρ(t) .

Analogous expansion takes place for the vector potential. Since expression for the

vector potential via the current already contains 1/c and after the substitution in the

Lagrangian is multiplied by another power 1/c, it is enough to keep in the expansion

of ~A the leading term only, i.e.

~A =
1

c

∫
dx′

ρ~v

R
.

– 102 –



If the field is created by a single charge, we have

ϕ =
e

R
+

e

2c2

∂2R

∂t2
, ~A =

e~v

cR
.

To simplify further treatment, we will make the gauge transformation

ϕ′ = ϕ− 1

c

∂χ

∂t
, ~A′ = ~A+ ~∇χ ,

where

χ =
e

2c

∂R

∂t
.

This gives

ϕ′ =
e

R
, ~A′ =

e~v

cR
+

e

2c
~∇∂R
∂t

.

Here ~∇∂R
∂t

= ∂
∂t
~∇xR and ~∇xR =

~R
R

= ~n, where ~n is the unit vector directed from the

charge to the observation point. Thus,

~A′ =
e~v

cR
+

e

2c

∂

∂t

(
~R

R

)
=
e~v

cR
+

e

2c

(
~̇R

R
−
~RṘ

R2

)
=
e~v

cR
+

e

2c

(
−~v
R
−
~RṘ

R2

)
.

Finally, since R2 = ~R2, we find RṘ = ~R · ~̇R = −~R · ~v. In this way we find

ϕ′ =
e

R
, ~A′ =

e
[
~v + (~v · ~n)~n

]
2cR

.

If the field is created by several charges then this expression must be summed for all

the charges.

Now substituting the potentials created by all the other charges into the La-

grangian for a given charge ei we obtain

Li =
miv

2
i

2
+

1

8

miv
4
i

c2
− ei

∑
j 6=i

ej
rij

+
ei

2c2

∑
j 6=i

ej
rij

[
(~vi · ~vj) + (~vi · ~nij)(~vj · ~nij)

]
.

Here we have also expanded the relativistic Lagrangian for the point particle up to

the order v2

c2
. From this expression we can find the total Lagrangian

L =
∑
i

miv
2
i

2
+
∑
i

miv
4
i

8c2
−
∑
i>j

eiej
rij

+
∑
i>j

eiej
2c2rij

[
(~vi · ~vj) + (~vi · ~nij)(~vj · ~nij)

]
.

This Lagrangian was obtained by Darvin in 1922 and it expresses an effect of elec-

tromagnetic interaction between charges up to the second order in v
c
.

It is interesting to find out what happens if we expand the potential further. For

the scalar potential at third order in 1/c and for the vector potential at second order

in 1/c one finds

ϕ(3) = − 1

6c3

∂3t

∂t3

∫
d3x′ R2ρ , ~A(2) = − 1

c2

∂

∂t

∫
d3x′~j .
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Performing a gauge transformation

ϕ′ = ϕ− 1

c

∂χ

∂t
, ~A′ = ~A+ ~∇χ

with

χ = − 1

6c2

∂2

∂t2

∫
d3x′ R2ρ ,

we transform ϕ(3) into zero. The new vector potential will take the form

~A
′(2) = − 1

c2

∂

∂t

∫
d3x′~j − 1

6c2

∂2

∂t2
~∇
∫

d3x′ R2ρ

= − 1

c2

∂

∂t

∫
d3x′~j − 1

3c2

∂2

∂t2

∫
d3x′ ~Rρ =

= − 1

c2

∑
e~̇v − 1

3c2

∂2

∂t2

∫
d3x′ (~R0 − ~r)ρ = − 2

3c2

∑
e~̇v . (6.13)

In the last formula we pass to the discrete distribution of charges. This potential

leads to a vanishing magnetic field ~H = rot x ~A
′(2), as curl is taken with respect to the

coordinates x of observation point which ~A
′(2) does not depend on. For the electric

field one finds ~E = − ~̇A′(2)/c, so that

~E =
2

3c3

...
~d ,

where ~d is the dipole moment of the system. Thus, additional terms of the third

order in the expansion of fields lead to the appearance of additional forces which are

not contained in Darvin’s Lagrangian; these forces do depend on time derivatives of

charge accelerations.

Compute the averaged work performed by fields for one unit of time. Each charge

experienced a force ~F = e ~E so that

~F =
2e

3c3

...
~d .

The work produced is∑
(~F · ~v) =

2e

3c3
(
...
~d ·
∑

e~v) =
2

3c2
(
...
~d · ~̇d) =

2

3c3

d

dt
(ḋ · ~̈d)− 2

3c3
~̈d2 .

Performing time average we arrive at∑
(~F · ~v) = − 2

3c3
~̈d2 .

Now one can recognize that the expression of the right hand side of the last formula

is nothing else but the average radiation of the system for one unit of time. Thus,

the forces arising at third order describe the backreaction which radiation causes on

charges. These forces are known as bracing by radiation or Lorentz friction forces.
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7. Advanced magnetic phenomena

Magnetic properties of all substances admit a clear and logical systematization. At

high temperatures all of the substances are either diamagnetics or paramagnetics.

If some stuff is put between the poles of a magnet, the magnetic lines change in

comparison to the situation when the staff is absent. Under applying magnetic field,

all the substances get magnetized. This means that every piece of volume behave

itself as a magnetic, while the magnetic moment of the whole body is a vector sum

of magnetic moments of all volume elements. A measure of magnetization is given

by ~M which is the magnetic moment density (the magnetic dipole moment per unit

volume). The product ~MV , where V is the volume, gives a total magnetic moment

of a body ~M = ~MV .

A non-zero ~M appears only when external magnetic field is applied. When

magnetic field is not very strong, ~M changes linearly with the magnetic field ~H:

~M = χ ~H .

Here χ is called magnetic susceptibility (it is a dimensionless quantity). Then

• Paramagnetics are the substances for which χ > 0

• Diamagnetics are the substances for which χ < 0

• Substances with χ = 0 are absent in Nature

Magnetic properties of substances are often described not by χ but rather by the

magnetic permeability:

κ = 1 + 4πχ .

For paramagnetics κ > 1 and for diamagnetics κ < 1. Introduce the magnetic

induction ~B:
~B = ~H + 4π ~M .

Then, ~B = κ ~H and κ = 1+4πχ. Although vector ~B is called by a vector of magnetic

induction and ~H by a vector of magnetic field, the actual sense of ~B is that it is ~B

(but not ~H!) is the average magnetic field in media.

For χ = −1/4π we have κ = 0. This is the situation of an ideal diamagnetic,

in which the average magnetic field ~B = 0. Ideal magnetics do exists – they are

superconductors. Absence of a magnetic field inside a superconductor is known as

the Meissner-Ochsenfeld effect (1933).

In 1895 Pierre Curie discovered that magnetic susceptibility is inversely pro-

portional to the temperature. The behavior of χ = χ(T ) is well described by the

following Curie-Weiss law

χ(T ) =
C

T − Tc
,

where C is a constant and Tc is known as the paramagnetic Curie temperature.
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7.1 Exchange interactions

Identical particles behave very differently in classical and quantum mechanics. Clas-

sical particles move each over its own trajectory. If positions of all the particles

were fixed at the initial moment of time, solving equations of motion one can always

identify the positions of particles at later times. In quantum mechanics the situation

is different, because the notion of trajectory is absent. If we fix a particle at a given

moment of time, we have no possibility to identify it among other particles at later

moments of time. In other words, in quantum mechanics identical particles are ab-

solutely indistinguishable. This principle implies that permutation of two identical

particles does not change a quantum state of a system.

Consider a wave-function of two particles Ψ(1, 2). Under permutation Ψ(1, 2)→
Ψ(2, 1) a state of a system should not change. This means that

Ψ(2, 1) = eiαΨ(1, 2) ,

where eiα is a phase factor. Applying permutation again, we get e2iα = 1, i.e.

eiα = ±1. Thus, there are two types of particles:

1. Ψ(1, 2) = Ψ(2, 1) which corresponds to the Bose-Einstein statistics

2. Ψ(1, 2) = −Ψ(2, 1) which corresponds to the Fermi-Dirac statistics

Furthermore, an internal property which defines to which class/statistics a par-

ticle belongs is the spin. Particles with zero or integer spin obey the Bose-Einstein

statistics, particles with half-integer spin obeys the Fermi-Dirac statistics.

Spin of electron is 1/2, and, therefore, electrons are fermions. As such, they obey

the Pauli exclusion principle – in each quantum state one can find only one electron.

Consider a system consisting of two electrons which interact only electrostati-

cally. Neglecting magnetic interaction between the electrons means neglecting the

existence of spins. Let ψ(~r1, ~r2) be the orbital wave function. Here ~r1 and ~r2 are

coordinates of electrons. One cannot completely forget about spins because the total

wave function

Ψ(1, 2) = S(σ1, σ2)ψ(~r1, ~r2)

must be anti-symmetric. Here S(σ1, σ2) is the spin wave function which describes a

spin state of electrons. For two electrons there are four states which lead to either

anti-symmetric wave function with the total spin S = 0:

S = 0 , ↑↓ − ↓↑

or symmetric wave function with S = 1:

sz = −1 ↓↓
sz = 0 ↑↓ + ↓↑
sz = 1 ↑↑
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Here sz is the projection of spin on z-axis. For two electrons

~S = ~s1 + ~s2

and taking square (quantum mechanically!) we obtain

S(S + 1) = s1(s1 + 1) + s2(s2 + 1) + 2~s1 · ~s2

so that

~s1 · ~s2 =
1

2
(S(S + 1)− s1(s1 + 1)− s2(s2 + 1))

From this formula we therefore find that

~s1 · ~s2 =

{−3
4

for S = 0
1
4

for S = 1

Returning back to the wave function we conclude that

for S = 0 ψ(~r1, ~r2) = ψs −− symmetric function

for S = 1 ψ(~r1, ~r2) = ψa −− anti-symmetric function

Symmetric and anti-symmetric functions describe different orbital motion of electrons

and therefore they correspond to different values of energies. Which energy is realized

depends on a problem at hand. For instance, for a molecule of H2 the minimal energy

corresponds to the symmetric wave function and, as a result, the electron spin S is

equal to zero.

Es ⇐⇒ S = 0

Ea ⇐⇒ S = 1

Spin Hamiltonian

Hs =
1

4
(Es + 3Ea) + (Ea − Es)~s1 · ~s2

Here the first term 1
4
(Es + 3Ea) ≡ Ē does not depend on spin and represents the

energy averaged over all spin states (three states for S = 1 and one state for S = 0).

The second term depends on spins of electrons. Introducing A = Ea − Es, we can

write

Hs = Ē − A~s1 · ~s2

This allows to relate energetic preference of states with S = 0 and S = 1 with the

sign of A. For A < 0 the ”anti-parallel” configuration of spins is preferred, while for

A > 0 – ”parallel”. The parameter A is called an exchange integral. The Hamiltonian

Hs describes the so-called exchange interaction.
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7.2 One-dimensional Heisenberg model of ferromagnetism

Here we will study in detail so-called one-dimensional spin-1
2

Heisenberg model of

ferromagnetism. We will solve it exactly by a special technique known as coordinate

Bethe ansatz.

Consider a discrete circle which is a collection of ordered points labelled by the

index n with the identification n ≡ n + L reflecting periodic boundary conditions.

Here L is a positive integer which plays the role of the length (volume) of the space.

The numbers n = 1, . . . , L form a fundamental domain. To each integer n along the

chain we associate a two-dimensional vector space V = C2. In each vector space we

pick up the basis

| ↑〉 =

(
1

0

)
, | ↓〉 =

(
0

1

)
We will call the first element “spin up” and the second one “spin down”. We introduce

the spin algebra which is generated by the spin variables Sαn , where α = 1, 2, 3, with

commutation relations

[Sαm, S
β
n ] = i~εαβγSγnδmn .

The spin operators have the following realization in terms of the standard Pauli

matrices: Sαn = ~
2
σα and the form the Lie algebra su(2). Spin variables are subject

to the periodic boundary condition Sαn ≡ Sαn+L.

The Hilbert space of the model has a dimension 2L and it is

H =
L∏
n=1

⊗Vn = V1 ⊗ · · · ⊗ VL

This space carries a representation of the global spin algebra whose generators are

Sα =
L∑
n=1

I⊗ · · · ⊗ Sαn︸︷︷︸
n−th place

⊗ · · · ⊗ I .

The Hamiltonian of the model is

H = −J
L∑
n=1

SαnS
α
n+1 ,

where J is the coupling constant. More general Hamiltonian of the form

H = −
L∑
n=1

JαSαnS
α
n+1 ,

where all three constants Jα are different defines the so-called XYZ model. In what

follows we consider only XXX model. The basic problem we would like to solve is to

find the spectrum of the Hamiltonian H.
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The first interesting observation is that the Hamiltonian H commutes with the spin

operators. Indeed,

[H,Sα] = −J
L∑

n,m=1

[SβnS
β
n+1, S

α
m] = −J

L∑
n,m=1

[Sβn , S
α
m]Sβn+1 + Sβn [Sβn+1, S

α
m]

= −i~
L∑

n,m=1

(
δnmε

αβγSβnS
γ
n+1 − δn+1,mε

αβγSβnS
γ
n+1

)
= 0 .

In other words, the Hamiltonian is central w.r.t all su(2) generators. Thus, the

spectrum of the model will be degenerate – all states in each su(2) multiplet have

the same energy.

In what follows we choose ~ = 1 and introduce the raising and lowering operators

S±n = S1
n ± iS2

n. They are realized as

S+ =

(
0 1

0 0

)
, S− =

(
0 0

1 0

)
.

The action of these spin operators on the basis vectors are

S+| ↑〉 = 0 , S+| ↓〉 = | ↑〉 , S3| ↑〉 = 1
2
| ↑〉 ,

S−| ↓〉 = 0 , S−| ↑〉 = | ↓〉 , S3| ↓〉 = −1
2
| ↓〉 .

This indices the action of the spin operators in the Hilbert space

S+
k | ↑k〉 = 0 , S+

k | ↓k〉 = | ↑k〉 , S3
k | ↑k〉 = 1

2
| ↑k〉 ,

S−k | ↓k〉 = 0 , S−k | ↑k〉 = | ↓k〉 , S3
k | ↓k〉 = −1

2
| ↓k〉 .

The Hamiltonian can be then written as

H = −J
L∑
n=1

1
2
(S+

n S
−
n+1 + S−n S

+
n+1) + S3

nS
3
n+1 ,

For L = 2 we have

H = −J
(
S+ ⊗ S− + S− ⊗ S+ + 2S3 ⊗ S3

)
= −J


1
2 0 0 0

0 − 1
2 1 0

0 1 − 1
2 0

0 0 0 1
2

 .

This matrix has three eigenvalues which are equal to −1
2
J and one which is 3

2
J .

Three states

vhws=1 =


1

0

0

0


︸ ︷︷ ︸
h.w.

,


0

1

1

0

 ,


0

0

0

1
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corresponding to equal eigenvalues form a representation of su(2) with spin s = 1
and the state

vhws=0 =


0

−1

1

0


︸ ︷︷ ︸

h.w.

which corresponds to 3
2
J is a singlet of su(2). Indeed, the generators of the global

su(2) are realized as

S+ =


0 1 1 0

0 0 0 1

0 0 0 1

0 0 0 0

 , S− =


0 0 0 0

1 0 0 0

1 0 0 0

0 1 1 0

 , S3 =


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 −1

 .

The vectors vhw
s=1 and vhw

s=0 are the highest-weight vectors of the s = 1 and s = 0

representations respectively, because they are annihilated by S+ and are eigenstates

of S3. In fact, vhw
s=0 is also annihilated by S− which shows that this state has zero

spin. Thus, we completely understood the structure of the Hilbert space for L = 2.

In general, the Hamiltonian can be realized as 2L × 2L symmetric matrix which

means that it has a complete orthogonal system of eigenvectors. The Hilbert space

split into sum of irreducible representations of su(2). Thus, for L being finite the

problem of finding the eigenvalues of H reduces to the problem of diagonalizing a

symmetric 2L×2L matrix. This can be easily achieved by computer provided L is suf-

ficiently small. However, for the physically interesting regime L→∞ corresponding

to the thermodynamic limit new analytic methods are required.

In what follows it is useful to introduce the following operator:

P =
1

2

(
I⊗ I +

∑
α

σα ⊗ σα
)

= 2
(1

4
I⊗ I +

∑
α

Sα ⊗ Sα
)

which acts on C2 ⊗ C2 as the permutation: P (a⊗ b) = b⊗ a.

It is appropriate to call S3 the operator of the total spin. On a state |ψ〉 with

M spins down we have

S3|ψ〉 =
(1

2
(L−M)− 1

2
M
)
|ψ〉 =

(1

2
L−M

)
|ψ〉 .

Since [H,S3] = 0 the Hamiltonian can be diagonalized within each subspace of the

full Hilbert space with a given total spin (which is uniquely characterized by the

number of spins down).

Let M < L be a number of overturned spins. If M = 0 we have a unique state

|F 〉 = | ↑ · · · ↑〉.
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This state is an eigenstate of the Hamiltonian with the eigenvalue E0 = −JL
4

:

H|F 〉 = −J
L∑
n=1

S3
nS

3
n+1| ↑ · · · ↑〉 = −JL

4
| ↑ · · · ↑〉 .

Let M be arbitrary. Since the M -th space has the dimension L!
(L−M)!M !

one should

find the same number of eigenvectors of H in this subspace. So let us write the

eigenvectors of H in the form

|ψ〉 =
∑

1≤n1<···<nM≤L

a(n1, . . . , nM)|n1, . . . , nM〉

with some unknown coefficients a(n1, . . . , nM). Here

|n1, . . . , nM〉 = S−n1
S−n2

. . . S−nM |F 〉

and non-coincident integers describe the positions of the overturned spins. Obviously,

the coefficients a(n1, . . . , nM) must satisfy the following requirement of periodicity:

a(n2, . . . , nM , n1 +N) = a(n1, . . . , nM) .

The coordinate Bethe ansatz postulates the form of these coefficients (Hans Bethe,

1931)

a(n1, . . . , nM) =
∑
π∈SM

Aπ exp
(
i
M∑
j=1

pπ(j)nj

)
.

Here for each of the M overturned spins we introduced the variable pj which is

called pseudo-momentum and SM denotes the permutation group over the labels

{1, . . . ,M}. To determine the coefficients Aπ as well as the set of pseudo-momenta

{pj} we have to use the eigenvalue equation for H and the periodicity condition for

a(n1, . . . , nM). It is instructive to work in detail the cases M = 1 and M = 2 first.

For M = 1 case we have

|ψ〉 =
L∑
n=1

a(n)|n〉 , a(n) = Aeipn .

Thus, in this case

|ψ〉 = A

L∑
n=1

eipn|n〉

is nothing else but the Fourier transform. The periodicity condition leads to deter-

mination of the pseudo-momenta

a(n+ L) = a(n) =⇒ eipL = 1 ,
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i.e. the L!
(L−1)!1!

= L allowed values of the pseudo-momenta are

p =
2πk

L
with k = 0, · · · , L− 1 .

Further, we have the eigenvalue equation

H|ψ〉 = −JA
2

L∑
m,n=1

eipm
[
S+
n S
−
n+1 + S−n S

+
n+1 + 2S3

nS
3
n+1

]
|m〉 = E(p)|ψ〉 .

To work out the l.h.s. we have to use the formulae

S+
n S
−
n+1|m〉 = δnm|m+ 1〉 , S−n S

+
n+1|m〉 = δn+1,m|m− 1〉

as well as

2S3
nS

3
n+1|m〉 =

1

2
|m〉 , for m 6= n, n+ 1 ,

2S3
nS

3
n+1|m〉 = −1

2
|m〉 , for m = n, or m = n+ 1 .

Taking this into account we obtain

H|ψ〉 = −JA
2

[ L∑
n=1

(
eipn|n+ 1〉+ eip(n+1)|n〉

)
+

1

2

L∑
m=1

( L∑
n=1

n6=m,m−1

)
eipm|m〉

− 1

2

L∑
n=1

eipn|n〉 − 1

2

L∑
n=1

eip(n+1)|n+ 1〉
]
.

Using periodicity conditions we finally get

H|ψ〉 = −JA
2

L∑
n=1

(
eip(n−1) + eip(n+1) +

L− 4

2
eipn
)
|n〉 = −J

2

(
e−ip + eip +

L− 4

2

)
|ψ〉 .

From here we read off the eigenvalue

E − E0 = J(1− cos p) = 2J sin2 p

2
,

where E0 = −JL
4

. Excitation of the spin chain around the pseudo-vacuum |F 〉
carrying the pseudo-momentum p is called a magnon44. Thus, magnon can be viewed

44The concept of a magnon was introduced in 1930 by Felix Bloch in order to explain the reduction

of the spontaneous magnetization in a ferromagnet. At absolute zero temperature, a ferromagnet

reaches the state of lowest energy, in which all of the atomic spins (and hence magnetic moments)

point in the same direction. As the temperature increases, more and more spins deviate randomly

from the common direction, thus increasing the internal energy and reducing the net magnetiza-

tion. If one views the perfectly magnetized state at zero temperature as the vacuum state of the

ferromagnet, the low-temperature state with a few spins out of alignment can be viewed as a gas

of quasi-particles, in this case magnons. Each magnon reduces the total spin along the direction of

magnetization by one unit of and the magnetization itself by, where g is the gyromagnetic ratio.

The quantitative theory of quantized spin waves, or magnons, was developed further by Ted Hol-

stein and Henry Primakoff (1940) and Freeman Dyson (1956). By using the formalism of second

quantization they showed that the magnons behave as weakly interacting quasi-particles obeying

the Bose-Einstein statistics (the bosons).
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as the pseudo-particle with the momentum p = 2πk
L

, k = 0, . . . , L− 1 and the energy

E = 2J sin2 p

2
.

The last expression is the dispersion relation for one-magnon states.

Let us comment on the sign of the coupling constant. If J < 0 then Ek < 0

and |F 〉 is not the ground state, i.e. a state with the lowest energy. In other words,

in this case, |F 〉 is not a vacuum, but rather a pseudo-vacuum, or “false” vacuum.

The true ground state in non-trivial and needs some work to be identified. The

case J < 0 is called the anti-ferromagnetic one. Oppositely, if J > 0 then |F 〉 is a

state with the lowest energy and, therefore, is the true vacuum. Later on we will

see that the anti-ferromagnetic ground state corresponds M = 1
2
L and, therefore, it

is spinless. The ferromagnetic ground state corresponds to M = 0 and, therefore,

carries maximal spin S3 = 1
2
L.45

Let us now turn to the more complicated case M = 2. Here we have

|ψ〉 =
∑

1≤n1<n2≤L

a(n1, n2)|n1, n2〉 ,

where

a(n1, n2) = Aei(p1n1+p2n2) +Bei(p2n1+p1n2) .

The eigenvalue equation for H imposes conditions on a(n1, n2) analogous to the
M = 1 case. Special care is needed, however, when two overturned spins are sitting
next to each other. Thus, we are led to consider

H|ψ〉 = −J
2

∑
1≤n1<n2≤L

a(n1, n2)

L∑
m=1

[
S+
mS
−
m+1 + S−mS

+
m+1 + 2S3

mS
3
m+1

]
|n1, n2〉

=

−J2
[ ∑

1≤n1<n2≤L

n2>n1+1

a(n1, n2)
(
|n1 + 1, n2〉+ |n1, n2 + 1〉+ |n1 − 1, n2〉+ |n1, n2 − 1〉

)

+
L− 4

2

∑
1≤n1<n2≤L

n2>n1+1

a(n1, n2)|n1, n2〉 −
1

2
4

∑
1≤n1<n2≤L

n2>n1+1

a(n1, n2)|n1, n2〉
]+

+

−J2 ∑
1≤n1≤L

a(n1, n1 + 1)
[
|n1, n1 + 2〉+ |n1 − 1, n1 + 1〉+

(L− 2

2
− 1
)
|n1, n1 + 1〉

] .

45Many crystals possess the ordered magnetic structure. This means that in absence of external

magnetic field the averaged quantum-mechanical magnetic moment in each elementary crystal cell

is different from zero. In the ferromagnetic crystals (Fe, Ni, Co) the averaged values of magnetic

moments of all the atoms have the same orientation unless the temperature does not exceed a certain

critical value called the Curie temperature. Due to this, ferromagnets have a spontaneous magnetic

moment, i.e. a macroscopic magnetic moment different from zero in the vanishing external field.

In more complicated anti-ferromagnetic crystals (carbons, sulfates, oxides) the averaged values of

magnetic moments of individual atoms compensate each other within every elementary crystal cell.
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Here in the first bracket we consider the terms with n2 > n1+1, while the last bracket
represents the result of action of H on terms with n2 = n1 + 1. Using periodicity
conditions we are allowed to make shifts of the summation variables n1, n2 in the
first bracket to bring all the states to the uniform expression |n1, n2〉. We therefore
get

H|ψ〉 = −J
2

{ ∑
n2>n1

a(n1 − 1, n2)|n1, n2〉+
∑

n2>n1+2

a(n1, n2 − 1)|n1, n2〉

+
∑

n2>n1+2

a(n1 + 1, n2)|n1, n2〉+
∑
n2>n1

a(n1, n2 + 1)|n1, n2〉+
L− 8

2

∑
n2>n1+1

a(n1, n2)|n1, n2〉
}

−J
2

 ∑
1≤n1≤L

a(n1, n1 + 1)
[
|n1, n1 + 2〉+ |n1 − 1, n1 + 1〉+

L− 4

2
|n1, n1 + 1〉

] .

Now we complete the sums in the first bracket to run the range n2 > n1. This is
achieved by adding and subtracting the missing terms. As the result we will get

H|ψ〉 =

−J
2

{ ∑
n2>n1

(
a(n1 − 1, n2) + a(n1, n2 − 1) + a(n1 + 1, n2) + a(n1, n2 + 1) +

L− 8

2
a(n1, n2)

)
|n1, n2〉

−
∑

1≤n1≤L

(
a(n1, n1)|n1, n1 + 1〉+ a(n1 + 1, n1 + 1)|n1, n1 + 1〉+

+ a(n1, n1 + 1)|n1, n1 + 2〉︸ ︷︷ ︸+ a(n1, n1 + 2)|n1, n1 + 2〉︸ ︷︷ ︸+
L− 8

2
a(n1, n1 + 1)|n1, n1 + 1〉

)}

−J
2

 ∑
1≤n1≤L

a(n1, n1 + 1)
[
|n1, n1 + 2〉+ |n1 − 1, n1 + 1〉︸ ︷︷ ︸+

L− 4

2
|n1, n1 + 1〉

] .

The underbraced terms cancel out and we finally get

H|ψ〉 =

−J
2

{ ∑
n2>n1

(
a(n1 − 1, n2) + a(n1, n2 − 1) + a(n1 + 1, n2) + a(n1, n2 + 1) +

L− 8

2
a(n1, n2)

)
|n1, n2〉

}

+
J

2

 ∑
1≤n1≤L

(
a(n1, n1) + a(n1 + 1, n1 + 1)− 2a(n1, n1 + 1)

)
|n1, n1 + 1〉

 .

If we impose the requirement that

a(n1, n1) + a(n1 + 1, n1 + 1)− 2a(n1, n1 + 1) = 0 (7.1)

then the second bracket in the eigenvalue equation vanishes and the eigenvalue prob-

lem reduces to the following equation

2(E − E0)a(n1, n2) = J
[
4a(n1, n2)−

∑
σ=±1

a(n1 + σ, n2) + a(n1, n2 + σ)
]
. (7.2)

Substituting in eq.(7.1) the Bethe ansatz for a(n1, n2) we get

Ae(p1+p2)n +Bei(p1+p2)n + Ae(p1+p2)(n+1) +Bei(p1+p2)(n+1)

− 2
(
Aei(p1n+p2(n+1)) +Bei(p2n+p1(n+1))

)
= 0 .
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This allows one to determine the ratio

B

A
= −e

i(p1+p2) + 1− 2eip2

ei(p1+p2) + 1− 2eip1
.

Problem. Show that for real values of momenta the ratio B
A is the pure phase:

B

A
= eiθ(p2,p1) ≡ S(p2, p1) .

This phase is called the S-matrix. We further note that it obeys the following relation

S(p1, p2)S(p2, p1) = 1 .

Thus, the two-magnon Bethe ansatz takes the form

a(n1, n2) = ei(p1n1+p2n2) + S(p2, p1)ei(p2n1+p1n2) ,

where we factored out the unessential normalization coefficient A.

Let us now substitute the Bethe ansatz in eq.(7.2). We get

2(E − E0)
(
Aei(p1n1+p2n2) +Bei(p2n1+p1n2)

)
= J

[
4
(
Aei(p1n1+p2n2) +Bei(p2n1+p1n2)

)
−

−
(
Aei(p1n1+p2n2)eip1 +Bei(p2n1+p1n2)eip2

)
−
(
Aei(p1n1+p2n2)e−ip1 +Bei(p2n1+p1n2)e−ip2

)
−
(
Aei(p1n1+p2n2)eip2 +Bei(p2n1+p1n2)eip1

)
−
(
Aei(p1n1+p2n2)e−ip2 +Bei(p2n1+p1n2)e−ip1

)]
.

We see that the dependence on A and B cancel out completely and we get the

following equation for the energy

E − E0 = J
(

2− cos p1 − cos p2

)
= 2J

2∑
k=1

sin2 pk
2
.

Quite remarkably, the energy appears to be additive, i.e. the energy of a two-magnon

state appears to be equal to the sum of energies of one-magnon states! This shows

that magnons essentially behave themselves as free particles in the box.

Finally, we have to impose the periodicity condition a(n2, n1 + L) = a(n1, n2). This

results into

ei(p1n2+p2n1)eip2L +
B

A
eip1Lei(p2n2+p1n1) = ei(p1n1+p2n2) +

B

A
ei(p2n1+p1n2)

which implies

eip1L =
A

B
= S(p1, p2) , eip2L =

B

A
= S(p2, p1) .
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The last equations are called “Bethe equations”. They are nothing else but the

quantization conditions for momenta pk.

Let us note the following useful representation for the S-matrix.
We have

S(p2, p1) = −e
ip2
(
eip1 − 1

)
+ 1− eip2

eip1
(
eip2 − 1

)
+ 1− eip1 = −e

ip2e
i
2p1
(
e

i
2p1 − e− i

2p1
)

+ e
i
2p2
(
e−

i
2p2 − e i

2p2
)

eip1e
i
2p2
(
e

i
2p2 − e− i

2p2
)

+ e
i
2p1
(
e−

i
2p1 − e i

2p1
)

= −e
i
2p2 sin p1

2 − e−
i
2p1 sin p2

2

e
i
2p1 sin p2

2 − e−
i
2p2 sin p1

2

=

(
cos p22 + i sin p2

2

)
sin p1

2 −
(

cos p12 − i sin p1
2

)
sin p2

2(
cos p12 + i sin p1

2

)
sin p2

2 −
(

cos p22 − i sin p2
2

)
sin p1

2

= −cos p22 sin p1
2 − cos p12 sin p2

2 + 2i sin p1
2 sin p2

2

cos p12 sin p2
2 − cos p22 sin p1

2 + 2i sin p1
2 sin p2

2

=
1
2 cot p22 − 1

2 cot p12 + i
1
2 cot p22 − 1

2 cot p12 − i
.

Thus, we obtained

S(p1, p2) =
1
2

cot p1
2
− 1

2
cot p2

2
+ i

1
2

cot p1
2
− 1

2
cot p2

2
− i .

It is therefore convenient to introduce the variable λ = 1
2

cot p
2

which is called

rapidity and get

S(λ1, λ2) =
λ1 − λ2 + i

λ1 − λ2 − i
.

Hence, on the rapidity plane the S-matrix depends only on the difference of rapidities

of scattering particles.

Taking the logarithm of the Bethe equations we obtain

Lp1 = 2πm1 + θ(p1, p2) , Lp2 = 2πm2 + θ(p2, p1) ,

where the integers mi ∈ {0, 1, . . . , L − 1} are called Bethe quantum numbers. The

Bethe quantum numbers are useful to distinguish eigenstates with different physical

properties. Furthermore, these equations imply that the total momentum is

P = p1 + p2 =
2π

L
(m1 +m2) .

Writing the equations in the form

p1 =
2πm1

L︸ ︷︷ ︸+
1

L
θ(p1, p2) , p2 =

2πm2

L︸ ︷︷ ︸+
1

L
θ(p2, p1) ,

we see that the magnon interaction is reflected in the phase shift θ and in the de-

viation of the momenta p1, p2 from the values of the underbraced one-magnon wave

numbers. What is very interesting, as we will see, that magnons either scatter off

each other or form the bound states.
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The first problem is to find all possible Bethe quantum numbers (m1,m2) for

which Bethe equations have solutions. The allowed pairs (m1,m2) are restricted to

0 ≤ m1 ≤ m2 ≤ L− 1 .

This is because switching m1 and m2 simply interchanges p1 and p2 and produces

the same solution. There are 1
2
L(L + 1) pairs which meet this restriction but only

1
2
L(L − 1) of them yield a solution of the Bethe equations. Some of these solutions

have real p1 and p2, the others yield the complex conjugate momenta p2 = p∗1.

The simplest solutions are the pairs for which one of the Bethe numbers is zero,

e.g. m1 = 0, m = m2 = 0, 1, . . . , L− 1. For such a pair we have

Lp1 = θ(p1, p2) , Lp2 = 2πm+ θ(p2, p1) ,

which is solved by p1 = 0 and p2 = 2πm
L

. Indeed, for p1 = 0 the phase shift vanishes:

θ(0, p2) = 0. These solutions have the dispersion relation

E − E0 = 2J sin2 p

2
, p = p2

which is the same as the dispersion for the one-magnon states. These solutions are

nothing else but su(2)-descendants of the solutions with M = 1.

One can show that for M = 2 all solutions are divided into three distinct classes

Descendents︸ ︷︷ ︸
L

, Scattering States︸ ︷︷ ︸
L(L−5)

2
+3

, Bound States︸ ︷︷ ︸
L−3

so that

L+
L(L− 5)

2
+ 3 + L− 3 =

1

2
L(L− 1)

gives a complete solution space of the two-magnon problem.

The most non-trivial fact about the Bethe ansatz is that many-body (multi-

magnon) problem reduces to the two-body one. It means, in particular, that the

multi-magnon S-matrix appears to be expressed as the product of the two-body

ones. Also the energy is additive quantity. Such a particular situation is spoken

about as “Factorized Scattering”. In a sense, factorized scattering for the quantum

many-body system is the same as integrability because it appears to be a consequence

of existence of additional conservation laws. For the M -magnon problem the Bethe

equations read

eipkL =
M∏
j=1
j 6=k

S(pk, pj) .
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The most simple description of the bound states is obtained in the limit when

L → ∞. If pk has a non-trivial positive imaginary part then eipkL tends to ∞ and

this means that the bound states correspond in this limit to poles of the r.h.s. of the

Bethe equations. In particular, for the case M = 2 the bound states correspond to

poles in the two-body S-matrix. In particular, we find such a pole when

1
2

cot p1
2
− 1

2
cot p2

2
= i .

This state has the total momentum p = p1 +p2 which must be real. These conditions

can be solved by taking

p1 =
p

2
+ iv , p2 =

p

2
− iv .

The substitution gives

cos 1
2

(
p
2

+ iv
)

sin 1
2

(
p
2
− iv

)
− cos 1

2

(
p
2
− iv

)
sin 1

2

(
p
2

+ iv
)

= 2i sin 1
2

(
p
2

+ iv
)

sin 1
2

(
p
2
− iv

)
,

which is

cos
p

2
= ev .

The energy of such a state is

E = 2J
(

sin2 p1

2
+ sin2 p2

2

)
= 2J

(
sin2

(p
4

+ i
v

2

)
+ sin2

(p
4
− iv

2

))
.

We therefore get

E = 2J
(

1− cos
p

2
cosh v

)
= 2J

(
1− cos

p

2

cos2 p
2

+ 1

2 cos p
2

)
= J sin2 p

2
.

Thus, the position of the pole uniquely fixes the dispersion relation of the bound

state.

8. Non-linear phenomena in media

Remarkably, there exist certain differential equations for functions depending on two

variables (x, t) which can be treated as integrable Hamiltonian systems with infinite

number of degrees of freedom. This is an (incomplete) list of such models

• The Korteweg-de-Vries equation

∂u

∂t
= 6uux − uxxx .
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• The non-linear Schrodinger equation

i
∂ψ

∂t
= −ψxx + 2κ|ψ|2ψ ,

where ψ = ψ(x, t) is a complex-valued function.

• The Sine-Gordon equation

∂2φ

∂t2
− ∂2φ

∂x2
+
m2

β
sin βφ = 0

• The classical Heisenberg magnet

∂~S

∂t
= ~S × ∂2~S

∂x2
,

where ~S(x, t) lies on the unit sphere in R3.

The complete specification of each model requires also boundary and initial condi-

tions. Among the important cases are

1. Rapidly decreasing case. We impose the condition that

ψ(x, t)→ 0 when |x| → ∞
sufficiently fast, i.e., for instance, it belongs to the Schwarz space L (R1), which

means that ψ is differentiable function which vanishes faster than any power

of |x|−1 when |x| → ∞.

2. Periodic boundary conditions. Here we require that ψ is differentiable and

satisfies the periodicity requirement

ψ(x+ 2π, t) = ψ(x, t) .

The soliton was first discovered by accident by the naval architect, John Scott Russell,

in August 1834 on the Glasgow to Edinburg channel.46 The modern theory originates

from the work of Kruskal and Zabusky in 1965. They were the first ones to call

Russel’s solitary wave a solition.
46Russel described his discovery as follows: “I believe I shall best introduce this phenomenon by

describing the circumstances of my own first acquaintance with it. I was observing the motion of a

boat which was rapidly drawn along a narrow channel by a pair of horses, when the boat suddenly

stopped-not so the mass of the water in the channel which it had put in motion; it accumulated

round the prow of the vessel in a state of violent agitation, then suddenly leaving it behind, rolled

forward with great velocity, assuming the form of a large solitary elevation, a rounded, smooth

and well-defined heap of water, which continued its course along the channel apparently without

change of form or diminution of speed. I followed it on horseback, and overtook it still rolling on

at a rate of some eight or nine miles an hour, preserving its original figure some thirty feet along

and a foot or foot and a half in height. Its height gradually diminished, and after a chase of one

or two miles I lost it in the windings of the channel. Such, in the month of August 1834, was my

first chance interview with that singular and beautiful phenomenon which I have called the Wave

of Translation, a name which it now very generally bears.
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8.1 Solitons

Here we discuss the simplest cnoidal wave type (periodic) and also one-soliton so-

lutions of the KdV and SG equations For the discussion of the cnoidal wave and

the one-soliton solution of the non-linear Schrodinger equation see the corresponding

problem in the problem set.

Korteweg-de-Vries cnoidal wave and soliton

By rescaling of t, x and u one can bring the KdV equation to the canonical form

ut + 6uux + uxxx = 0 .

We will look for a solution of this equation in the form of a single-phase periodic

wave of a permanent shape

u(x, t) = u(x− vt) ,
where v = const is the phase velocity. Plugging this ansatz into the equation we

obtain

−vux + 6uux + uxxx =
d

dx

(
− vu+ 3u2 + uxx

)
= 0 .

We thus get

−vu+ 3u2 + uxx + e = 0 ,

where e is an integration constant. Multiplying this equation with an integrating

factor ux we get

−vuux + 3u2ux + uxuxx + eux =
d

dx

(
− v

2
u2 + u3 +

1

2
u2
x + eu

)
= 0 ,

We thus obtain

u2
x = k − 2eu+ vu2 − 2u3 = −2(u− b1)(u− b2)(u− b3) ,

where k is another integration constant. In the last equation we traded the integra-

tion constants e, k for three parameters b3 ≥ b2 ≥ b1 which satisfy the relation

v = 2(b1 + b2 + b3) .

Equation

u2
x = −2(u− b1)(u− b2)(u− b3) ,

describes motion of a ”particle” with the coordinate u and the time x in the potential

V = 2(u − b1)(u − b2)(u − b3). Since u2
x ≥ 0 for b2 ≤ u ≤ b3 the particle oscillates

between the end points b2 and b3 with the period

` = 2

∫ b3

b2

du√
−2(u− b1)(u− b2)(u− b3)

=
2
√

2

(b3 − b2)1/2
K(m) ,
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where m is an elliptic modulus 0 ≤ m = b3−b2
b3−b1 ≤ 1.

The equation

u2
x = −2(u− b1)(u− b2)(u− b3) ,

can be integrated in terms of Jacobi elliptic cosine function cn(x,m) to give

u(x, t) = b2 + (b3 − b2) cn2
(√

(b3 − b1)/2(x− vt− x0),m
)
,

where x0 is an initial phase. This solution is often called as cnoidal wave. When

m→ 1, i.e. b2 → b1 the cnoidal wave turns into a solitary wave

u(x, t) = b1 +
A

cosh2
(√

A
2
(x− vt− x0)

) .
Here the velocity v = 2(b1 + b2 + b3) = 2(2b1 + b3) = 2(3b1 + b3 − b1) is connected to

the amplitude A = b3 − b1 by the relation

v = 6b1 + 2A .

Here u(x, t) = b1 is called a background flow because u(x, t) → b1 as x → ±∞.

One can further note that the background flow can be eliminated by a passage to

a moving frame and using the invariance of the KdV equation w.r.t. the Galilean

transformation u→ u+ d, x→ x− 6dt, where d is constant.

To sum up the cnoidal waves form a three-parameter family of the KdV solutions

while solitons are parametrized by two independent parameters (with an account of

the background flow).

Sine-Gordon cnoidal wave and soliton

Consider the Sine-Gordon equation

φtt − φxx +
m2

β
sin βφ = 0 ,

where we assume that the functions φ(x, t) and φ(x, t) + 2π/β are assumed to be

equivalent. Make an ansatz

φ(x, t) = φ(x− vt)
which leads to

(v2 − 1)φxx +
m2

β
sin βφ = 0 .

This can be integrated once

C =
v2 − 1

2
φ2
x −

m2

β2
cos βφ =

v2 − 1

2
φ2
x +

2m2

β2
sin2 βφ

2
− m2

β2
.
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where C is an integration constant. This is nothing else as the conservation law of

energy for the mathematical pendulum in the gravitational field of the Earth! We

further bring equation to the form

φ2
x =

2

v2 − 1

(
C +

m2

β2
− 2m2

β2
sin2 βφ

2

)
. (8.1)

As in the case of the pendulum we make a substitution y = sin βφ
2

which gives

(y′)2 =
m2

(v2 − 1)
(1− y2)

(
C + m2

β2

2m2

β2

− y2

)
.

This leads to solutions in terms of elliptic functions which are analogous to the cnoidal

waves of the KdV equation. However, as we know the pendulum has three phases

of motion: oscillatory (elliptic solution), rotatory (elliptic solution) and motion with

an infinite period. The later solution is precisely the one that would correspond to

the Sine-Gordon soliton we are interested in. Assuming v2 < 1 we see47 that such

a solution would arise from (8.1) if we take C = −m2

β2 . In this case equation (8.1)

reduces to

φx =
2m

β
√

1− v2
sin

βφ

2
.

This can be integrated to48

φ(x, t) = −ε0
4

β
arctan exp

(m(x− vt− x0)√
1− v2

)
.

Here ε0 = ±1. This solution can be interpreted in terms of relativistic particle moving

with the velocity v. The field φ(x, t) has an important characteristic – topological

charge

Q =
β

2π

∫
dx
∂φ

∂x
=

β

2π
(φ(∞)− φ(−∞)) .

On our solutions we have

Q =
β

2π

(
− ε0

4

β

)
(
π

2
− 0) = −ε0 ,

because arctan(±∞) = ±π
2

and arctan 0 = 0. In addition to the continuous pa-

rameters v and x0, the soliton of the SG model has another important discrete

characteristic – topological charge Q = −ε0. Solutions with Q = 1 are called solitons

(kinks), while solutions with Q = −1 are called ani-solitons (anti-kinks).

47Restoring the speed of light c this condition for the velocity becomes v2 < c2, i.e., the center

of mass of the soliton cannot propagate faster than light.
48From the equation above we see that if φ(x, t) is a solution then −φ(x, t) is also a solution.
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Here we provide another useful representation for the SG soliton, namely

φ(x, t) = ε0
2i

β
log

1 + ie
m(x−vt−x0)√

1−v2

1− ie
m(x−vt−x0)√

1−v2

.

Indeed, looking at the solution we found we see that we can cast it in the form arctanα = z ≡
− β

4ε0
φ(x, t) or α = tan z = −i e2iz−1e2iz+1 , where α = e

m(x−vt−x0)√
1−v2 . From here z = 1

2i log 1+iα
1−iα and the

announced formula follows.

Remark. The stability of solitons stems from the delicate balance of ”nonlinearity”

and ”dispersion” in the model equations. Nonlinearity drives a solitary wave to

concentrate further; dispersion is the effect to spread such a localized wave. If one

of these two competing effects is lost, solitons become unstable and, eventually,

cease to exist. In this respect, solitons are completely different from ”linear waves”

like sinusoidal waves. In fact, sinusoidal waves are rather unstable in some model

equations of soliton phenomena.

Sine-Gordon model has even more sophisticated solutions. Consider the following

φ(x, t) =
4

β
arctan

ω2

ω1

sin
(
mω1(t−vx)√

1−v2 + φ0

)
cosh

(
mω2(x−vt−x0)√

1−v2

) .
This is solution of the SG model which is called a double-soliton or breather. Except

motion with velocity v corresponding to a relativistic particle the breather oscillates

both in space and in time with frequencies mvω1√
1−v2 and mω1√

1−v2 respectively. The pa-

rameter φ0 plays a role of the initial phase. In particular, if v = 0 the breather is a

time-periodic solution of the SG equation. It has zero topological charge and can be

interpreted as the bound state of the soliton and anti-soliton.
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9. Appendices

9.1 Appendix 1: Trigonometric formulae

Some important trigonometric formulae

sin(x± y) = sinx cos y ± sin y cosx

cos(x± y) = cosx cos y ∓ sinx sin y

sinx± sin y = 2 sin
x± y

2
cos

x∓ y
2

cosx+ cos y = 2 cos
x+ y

2
cos

x− y
2

cosx− cos y = −2 sin
x+ y

2
sin

x− y
2

9.2 Appendix 2: Tensors

Many geometric and physical quantities can be described only as a set of functions

depending on a chosen coordinate system (x1, . . . , xn). The representation of these

quantities may drastically change if another coordinate system is chosen (z1, . . . , zn):

xi = xi(z1, . . . , zn) , i = 1, . . . , n.

Vectors

Consider, for instance, a velocity vector along a given curve zj = zj(t). In z-

coordinates the components of the velocity vector are(
dz1

dt
, . . . ,

dzn

dt

)
= (η1, . . . , ηn) .

In the other coordinate system we will have(
dx1

dt
, . . . ,

dxn

dt

)
= (ξ1, . . . , ξn) .

Obviously,

dxi

dt
=

n∑
j=1

∂xi

∂zj
dzj

dt
.

Therefore, for the components of the velocity vector one finds

ξi =
n∑
j=1

ηj
∂xi

∂zj
.

Here ξi are components of the vector in coordinates (x1, . . . , xn) at a given point,

while ηi are components of the vector in coordinates (z1, . . . , zn) at the same point.

– 124 –



Co-vectors

Consider the gradient of a function f(x1, . . . , xn):

∇f =

(
∂f

∂x1
, . . . ,

∂f

∂xn

)
= (ξ1, . . . , ξn) .

In z-coordinates one has

∇f =

(
∂f

∂z1
, . . . ,

∂f

∂zn

)
= (η1, . . . , ηn) .

Obviously,
∂f

∂zi
=

n∑
j=1

∂f

∂xj
∂xj

∂zi
=⇒ ηi =

∂xj

∂zi
ξj .

To compare vector and co-vector transformation laws, let us introduce the Jacobi

matrix A with elements Aij = ∂xi

zj
. It is convenient to think about a vector as being

a column and about a co-vector as being a row, i.e. transposed column. Then we

have

Velocity vector ξ = Aη ,

Gradient ηt = ξtA .

After taking transposition of the second line, we get

Velocity vector ξ = Aη ,

Gradient η = Atξ .

This clearly shows that vectors and co-vectors have different transformation laws.

Metric

Recall that the length of a curve is the length of the velocity vector integrated

over time. Therefore, in order for the length to be an invariant quantity, that is

not to depend on a choice of the coordinate system, the square of the length of the

velocity vector

|v|2 = gijξ
iξj

should be independent of the coordinates chosen. This requirement together with

the transformation law for vectors leads to the following transformation law for the

metric under general coordinate transformation

g′ij(z) = gkl(x)
∂xk

∂zi
∂xl

∂zj
, xi = xi(z) .

Metric constitutes an example of a second rank tensor (it has two indices) with two

lower indices, both of them transforming in the co-vector fashion.
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These examples of tensorial objects can be continued. For instance, a linear operator

Aji represents an example of a tensor with one index up and another index down

signifying that under general coordinate transformations the index j transforms in

the same way as the index of a vector, while i transforms in the same way as the

index of a co-vector. Finally, assuming that there is an object φ
j1...jq
i1...ip

with p upper

indices transforming in the vector fashion and q lower indices transforming in the

co-vector one, we arrive at the general definition of a (p, q)-type tensor presented in

section 1.4.

9.3 Appendix 3: Functional derivative

Let F [f ] be a functional and η is a differentiable function. The functional derivative

δF ≡ δF
δf(x)

is a distribution defined for a test function η as

〈δF, η〉 = lim
ε→0

d

dε
F [f + εη] .

Consider for instance the following functional

F [x(t)] =
1

2

∫
dt gij(x(t))ẋiẋj .

Here gij(x) is a metric on a smooth n-dimensional manifold Mn which has local

coordinates xk(t). Then

〈δF, η〉 = lim
ε→0

d

dε

1

2

∫
dt gij(x(t) + εη)(ẋi + εη̇i)(ẋj + εη̇j) =

= lim
ε→0

d

dε

1

2

∫
dt
[
gij(x) + ε

∂gij
∂xk

ηk + . . .
][
ẋiẋj + 2εẋiη̇j + . . .

]
=

∫
dt
[
− d

dt
(gikẋ

k) +
1

2

∂gij
∂xk

ẋiẋj
]
ηk .

Thus, for the corresponding variational derivative we find

δF

δxk(t)
= − d

dt
(gikẋ

k) +
1

2

∂gij
∂xk

ẋiẋj .

Vanishing of this functional derivative gives an extremality condition for the corre-

sponding functional.

Note that a function itself, i.e. u(x), can be considered as the functional

u(x) =

∫
dxu(y)δ(x− y) .

From this one can deduce the functional derivative

δu(x)

δu(y)
= δ(x− y) .
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9.4 Appendix 4: Introduction to Lie groups and Lie algebras

To introduce a concept of a Lie group we need two notions: the notion of a group

and the notion of a smooth manifold.

Definition of a group. A set of elements G is called a group if it is endowed with

two operations: for any pair g and h from G there is a third element from G which

is called the product gh, for any element g ∈ G there is the inverse element g−1 ∈ G.

The following properties must be satisfied

• (fg)h = f(gh)

• there exists an identity element I ∈ G such that Ig = gI = g

• gg−1 = I

Definition of a smooth manifold. Now we introduce the notion of a differentiable

manifold. Any set of points is called a differentiable manifold if it is supplied with

the following structure

• M is a union: M = ∪qUq, where Uq is homeomorphic (i.e. a continuous one-

to-one map) to the n-dimensional Euclidean space

• Any Uq is supplied with coordinates xαq called the local coordinates. The regions

Uq are called coordinate charts.

• any intersection Uq∩Up, if it is not empty, is also a region of the Euclidean space

where two coordinate systems xαq and xαp are defined. It is required that any

of these two coordinate systems is expressible via the other by a differentiable

map:

xαp = xαp (x1
q, · · ·xnq ) , α = 1, · · ·n

xαq = xαq (x1
p, · · ·xnp ) , α = 1, · · ·n (9.1)

Then the Jacobian det
(
∂xαp

∂xβq

)
is different from zero. The functions (9.1) are

called transition functions from coordinates xαq to xαp and vice versa. If all the

transition functions are infinitely differentiable (i.e. have all partial derivatives)

the corresponding manifold is called smooth.

Definition of a Lie group: A smooth manifold G of dimension n is called a Lie

group if G is supplied with the structure of a group (multiplication and inversion)

which is compatible with the structure of a smooth manifold, i.e., the group opera-

tions are smooth. In other words, a Lie group is a group which is simultaneously a

smooth manifold and the group operations are smooth.
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The list of basic matrix Lie groups

• The group of n× n invertible matrices with complex or real matrix elements:

A = aji , detA 6= 0

It is called the general linear group GL(n,C) or GL(n,R). Consider for in-

stance GL(n,R). Product of two invertible matrices is an invertible matrix is

invertible; an invertible matrix has its inverse. Thus, GL(n,R) is a group. Con-

dition detA 6= 0 defines a domain in the space of all matrices M(n,R) which is

a linear space of dimension n2. Thus, the general linear group is a domain in

the linear space Rn2
. Coordinates in M(n,R) are the matrix elements aji . If A

and B are two matrices then their product C = AB has the form

cji = aki b
j
k

It follows from this formula that the coordinates of the product of two matrices

is expressible via their individual coordinates with the help of smooth functions

(polynomials). In other words, the group operation which is the map

GL(n,R)×GL(n,R)→ GL(n,R)

is smooth. Matrix elements of the inverse matrix are expressible via the matrix

elements of the original matrix as no-where singular rational functions (since

detA 6= 0) which also defines a smooth mapping. Thus, the general Lie group

is a Lie group.

• Special linear group SL(n,R) or SL(n,C) is a group of real or complex matrices

satisfying the condition

detA = 1 .

• Special orthogonal group SO(n,R) or SO(n,C) is a group or real or complex

matrices satisfying the conditions

AAt = I , detA = 1 .

• Pseudo-orthogonal groups SO(p, q). Let g will be pseudo-Euclidean metric in

the space Rn
p,q with p+ q = n. The group SO(p, q) is the group of real matrices

which preserve the form g:

AgAt = g , detA = 1 .

• Unitary group U(n) – the group of unitary n× n matrices:

UU † = I .
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• Special unitary group SU(n) – the group of unitary n × n matrices with the

unit determinant

UU † = I , detU = 1 .

• Pseudo-unitary group U(p, q):

AgA† = g ,

where g is the pseudo-Euclidean metric. Special pseudo-unitary group requires

in addition the unit determinant detA = 1.

• Symplectic group Sp(2n,R) or Sp(2n,C) is a group or real or complex matrices

satisfying the condition

AJAt = J

where J is 2n× 2n matrix

J =

(
0 I
−I 0

)
and I is n× n unit matrix.

Question to the class: What are the eigenvalues of J? Answer:

J = diag(i, · · · i;−i, · · · ,−i).

Thus, the group Sp(2n) is really different from SO(2n)!

The powerful tool in the theory of Lie groups are the Lie algebras. Let us see how

they arise by using as an example SO(3). Let A be “close” to the identity matrix

A = I + εa

is an orthogonal matrix At = A−1. Therefore,

I + εat = (I + εa)−1 = I− εa+ ε2a2 + · · ·
From here at = −a. The space of matrices a such that at = −a is denoted as

so(3) and called the Lie algebra of the Lie group SO(3). The properties of this Lie

algebra: so(3) is a linear space, in so(3) the commutator is defined: if a, b ∈ so(3)

then [a, b] also belongs to so(3). A linear space of matrices is called a Lie algebra if

the commutator does not lead out of this space. Commutator of matrices naturally

arises from the commutator in the group:

ABA−1B−1 = (I + εa)(I + εb)(I + εa)−1(I + εb)−1

= (I + εa)(I + εb)(I− εa+ ε2a2 + · · · )(I− εb+ ε2b2 + · · · ) =

= I + ε(a+ b− a− b) + ε2(ab− a2 − ab− ba− b2 + ab+ a2 + b2) + · · · =
= I + ε2[a, b] + · · ·
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The algebra and the Lie group in our example are related as

exp a =
∞∑
n=0

an

n!
= A ∈ SO(3)

Exponential of matrix. The exponent exp a of the matrix a is the sum of the

following series

exp a =
∞∑
m=0

am

m!
.

This series shares the properties of the usual exponential function, in particular it is

convergent for any matrix A. The following obvious properties are

• If matrices X and Y commute then

exp(X + Y ) = exp(X) exp(Y )

• The matrix A = expX is invertible and A−1 = exp(−X).

• exp(X t) = (expX)t .

Definition of a Lie algebra: A linear vector space J (over a field R or C) supplied

with the multiplication operation (this operation is called the commutator) [ξ, η] for

ξ, η ∈ J is called a Lie algebra if the following properties are satisfied

1. The commutator [ξ, η] is a bilinear operation, i.e.

[α1ξ1 +α2ξ2, β1η1 +β2η2] = α1β1[ξ1, η1]+α2β1[ξ2, η1]+α1β2[ξ1, η2]+α2β2[ξ2, η2]

2. The commutator is skew-symmetric: [ξ, η] = −[η, ξ]

3. The Jacobi identity

[[ξ, η], ζ] + [[η, ζ], ξ] + [[ζ, ξ], η] = 0

Let J be a Lie algebra of dimension n. Choose a basis e1, · · · , en ∈ J . We have

[ei, ej] = Ck
ijek

The numbers Ck
ij are called structure constants of the Lie algebra. Upon changing

the basis these structure constants change as the tensor quantity. Let e′i = Ajiei and

[e′i, e
′
j] = C ′kij e

′
k then

C ′kijA
m
k em = AriA

s
j [er, es] = AriA

s
jC

m
rsem
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Thus, the structure constants in the new basis are related to the constants in the

original basis as

C ′kij = AriA
s
jC

m
rs(A

−1)km . (9.2)

Skew-symmetry and the Jacobi identity for the commutator imply that the tensor

Ck
ij defines the Lie algebra if and only if

Ck
ij = −Ck

ij , Cm
p[iC

p
jk] = 0 .

Classify all Lie algebras means in fact to find all solutions of these equations modulo

the equivalence relation (9.2).

Example. The Lie algebra so(3,R) of the Lie group SO(3,R). It consists of 3 × 3

skew-symmetric matrices. We can introduce a basis in the space of these matrices

X1 =

 0 0 0

0 0 −1

0 1 0

 , X2 =

 0 0 1

0 0 0

−1 0 0

 , X3 =

 0 −1 0

1 0 0

0 0 0

 .

In this basis the Lie algebra relations take the form

[X1, X2] = X3 , [X2, X3] = X1 , [X3, X1] = X2 .

These three relation can be encoded into one

[Xi, Xj] = εijkXk .

Example. The Lie algebra su(2) of the Lie group SU(2). It consists of 2 × 2 skew-

symmetric matrices. The basis can be constructed with the help of the so-called

Pauli matrices σi

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
.

These matrices satisfy the relations

[σi, σj] = 2iεijkσk , {σi, σj} = 2δij .

If we introduce Xi = − i
2
σi which are three linearly independent anti-hermitian ma-

trices then the su(2) Lie algebra relations read

[Xi, Xj] = εijkXk

Note that the structure constants are real! Comparing with the previous example

we see that the Lie algebra su(2) is isomorphic to that of so(3,R):

su(2) ≈ so(3,R) .
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With every matrix group we considered above one can associate the correspond-

ing matrix Lie algebra. The vector space of this Lie algebra is the tangent space at

the identity element of the group. For this case the operation “commutator” is the

usual matrix commutator. The tangent space to a Lie group at the identity element

naturally appears in this discussion. To understand why let us return to the case

of the Lie group GL(n,R). Consider a one-parameter curve A(t) ∈ GL(n,R), i.e, a

family of matrices A(t) from GL(n,R) which depend on the parameter t. Let this

curve to pass though the identity at t = 0, i.e., A(0) = I. Then the tangent vector

(the velocity vector!) at t = 0 is the matrix Ȧ(t)|t=0. Other way around, let X be

an arbitrary matrix. Then the curve A(t) = I + tX for t sufficiently closed to zero

lies in GL(n,R). It is clear that

A(0) = I , Ȧ(0) = X .

In this way we demonstrated that the space of vectors which are tangent to the group

GL(n,R) at the identity coincide with the space of all n×n matrices. This example

of GL(n,R) demonstrates a universal connection between Lie group G and its Lie

algebra: The tangent space to G at the identity element is the Lie algebra w.r.t. to

the commutator. This Lie algebra is called the Lie algebra of the group G.

Exercise to do in the class: making infinitesimal expansion of a group element

close to the identity compute the Lie algebras for the classical matrix groups discussed

above. The answer is the following list:

The list of basic matrix Lie algebras

• The general Lie group GL(n,R) or GL(n,C) has the matrix Lie algebra which

is M(n,R) or M(n,C), where M(n) is the space of all real or complex matrices.

• Special linear group SL(n,R) or SL(n,C) has the Lie algebra sl(n,R) or

sl(n,C) which coincides with the space of all real or complex matrices with

zero trace.

• Special orthogonal group SO(n,R) or SO(n,C) has the Lie algebra so(n,R) or

so(n,C) which are real or complex matrices satisfying the condition

X t = −X .

• Pseudo-orthogonal group SO(p, q) has the Lie algebra which is the algebra of

matrices X satisfying the condition

Xg + gX t = 0 .
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We see that if we introduce the matrix u = Xg then the relation defining the

Lie algebra reads

u+ ut = 0 .

Thus, the matrix u is skew-symmetric ut + u = 0. This map establishes the

isomorphism between so(p, q) and the space of all skew-symmetric matrices.

• Unitary group U(n) has the Lie algebra which is the space of all anti-hermitian

matrices

X† = −X .

• Special unitary group SU(n) has the Lie algebra which is the space of all anti-

hermitian matrices with zero trace

X† = −X , trX = 0 .

• Pseudo-unitary group U(p, q) has the Lie algebra which is the space of all

matrices obeying the relation

Xg + gX† = 0 .

The space u(p, q) is isomorphic to the space of anti-hermitian matrices. The

isomorphism is established by the formula u = Xg. Finally the Lie algebra of

the special pseudo-unitary group is defined by further requirement of vanishing

trace for X.

• The symplectic group Sp(2n,R) or Sp(2n,C) has the Lie algebra which com-

prises all is the is a group or real or complex matrices satisfying the condition

XJ + JX t = 0

where J is 2n× 2n matrix

J =

(
0 I
−I 0

)
and I is n× n unit matrix.

Linear representations of Lie groups Consider an action of a Lie group a n-

dimensional vector space Rn. This action is called a linear representation of Lie

group G on Rn if for any g ∈ G the map

ρ : g → ρ(g)
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is a linear operator on Rn. In other words, by a linear representation of G on

Rn we call the homomorphism ρ which maps G into GL(n,R), the group of linear

transformations of Rn. The homomorphism means that under this map the group

structure is preserved, i.e.

ρ(g1g2) = ρ(g1)ρ(g2) .

Any Lie group G has a distinguished element – g0 = I and the tangent space T at

this point. Transformation

G→ G : g → hgh−1

is called internal automorphism corresponding to an element h ∈ G. This transfor-

mation leaves unity invariant: hIh−1 = I and it transforms the tangent space T into

itself:

Ad(h) : T → T .

This map has the following properties:

Ad(h−1) = (Adh)−1 , Ad(h1h2) = Adh1Adh2 .

In other words, the map h→ Adh is a linear representation of G:

Ad : G→ GL(n,R) ,

where n is the dimension of the group.

Generally, one-parameter subgroups of a Lie group G are defined as parameterized

curves F (t) ⊂ G such that F (0) = I and F (t1+t2) = F (t1)F (t2) and F (−t) = F (t)−1.

As we have already discussed for matrix groups they have the form

F (t) = exp(At)

where A is an element of the corresponding Lie algebra. In an abstract Lie group G

for a curve F (t) one defines the t-dependent vector

F−1Ḟ ∈ T .

If this curve F (t) is one-parameter subgroup then this vector does not depend on t!

Indeed,

Ḟ =
dF (t+ ε)

dε
|ε=0 = F (t)

(dF (ε)

dε

)
ε=0

,

i.e. Ḟ = F (t)Ḟ (0) and F−1(t)Ḟ (t) = Ḟ (0) = const. Oppositely, for any non-zero

a ∈ T there exists a unique one-parameter subgroup with

F−1Ḟ = a .
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This follows from the theorem about the existence and uniqueness of solutions of

usual differential equations.

It is important to realize that even for the case of matrix Lie groups there are matrices

which are not images of any one-parameter subgroup. The exercise to do in the class:

Consider the following matrix:

g =

(−2 0

0 −3

)
∈ GL+(2,R) ,

where GL+(2,R) is a subgroup of GL(2,R) with positive determinant. Show that

there does not exist any real matrix ξ such that

eξ = g .

The answer: it is impossible because since the matrix ξ is real the eigenvalues λ1,2

of ξ must be either real of complex conjugate. The eigenvalues of eξ are eλ1 and eλ2 .

If λi are real then eλi > 0. If λi are complex conjugate then eλi are also complex

conjugate.

It is also important to realize that different vectors ξ under the exponential map can

be mapped on the one and the same group element. As an example, consider the

matrices of the form

ξ = α

(
1 0

0 1

)
+ β

(
0 1

−1 0

)
,

where α, β ∈ R. Exponent eξ can be computed by noting that(
0 1

−1 0

)2

= −
(

1 0

0 1

)
.

Then we have

eξ = eα
[( 1 0

0 1

)
cos β +

(
0 1

−1 0

)
sin β

]
.

It is clear that

α

(
1 0

0 1

)
+ β

(
0 1

−1 0

)
, α

(
1 0

0 1

)
+ (β + 2πk)

(
0 1

−1 0

)
has the the same image under the exponential map. In the sufficiently small neigh-

bourhood of 0 in M(n,R) the map expA is a diffeomorphism. The inverse map is

constructed by means of series

lnx = (x− I)− 1

2
(x− I)2 +

1

3
(x− I)3 − · · ·

for x sufficiently close to the identity.

– 135 –



Linear representation of a Lie algebra. Adjoint representation. Let J be a

Lie algebra. We say that a map

ρ : J →M(n,R)

defines a representation of the Lie algebra J is the following equality is satisfied

ρ[ζ, η] = [ρ(η), ρ(ζ)]

for any two vectors ζ, η ∈ J .

Let F (t) be a one-parameter subgroup in G. Then g → FgF−1 generates a one-

parameter group of transformations in the Lie algebra

AdF (t) : T → T .

The vector d
dt

AdF (t)|t=0 lies in the Lie algebra. Let a ∈ T and let F (t) = exp(bt)

then
d

dt
AdF (t)|t=0 a =

d

dt

(
exp(bt)a exp(−bt)

)
|t=0 = [b, a]

Thus to any element b ∈ J we associate an operator adb which acts on the Lie

algebra:

adb : J → J , adba = [b, a] .

This action defines a representation of the Lie algebra on itself. This representation

is called adjoint. To see that this is indeed representation we have to show that it

preserves the commutation relations, i.e. that from [x, y] = z it follows that

[adx, ady] = adz .

We compute

[adx, ady]w = adx adyw − ady adxw = [x, [y, w]]− [y, [x,w]] = [x, [y, w]] + [y, [w, x]] =

− [w, [x, y]] = [[x, y], w] = [z, w] = adzw .

Here the Jacobi identity has been used.

Semi-simple and simple Lie algebras. General classification of Lie algebras is

a very complicated problem. To make a progress simplifying assumptions about the

structure of the algebra are needed. The class of the so-called simple and semi-simple

Lie algebras admits a complete classification.

A Lie subalgebra H of a Lie algebra J is a linear subspace H ⊂ J which is closed

w.r.t. to the commutation operation. An ideal H ⊂ J is a subspace in J such that

for any x ∈ J the following relation holds

[x,H] ⊂ H .
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A Lie algebra J which does not have any ideals except the trivial one and the one

coincident with J is called simple. A Lie algebra which have no commutative (i.e.

abelian) ideals is called semi-simple. One can show that any semi-simple Lie algebra

is a sum of simple Lie algebras. Consider for instance the Lie algebra u(n) which is

the algebra of anti-hermitian matrices

u+ u† = 0 .

The Lie algebra su(n) is further distinguished by imposing the condition of vanishing

trace: tru = 0. The difference between u(n) and su(n) constitute all the matrices

which are proportional to the identity matrix iI. Since

[λiI, u] = 0

the matrices proportional to iI form an ideal in u(n) which is abelian. Thus, u(n)

has the abelian ideal and, therefore, u(n) is not semi-simple. In opposite, su(n) has

no non-trivial ideals and therefore it is the simple Lie algebra.

A powerful tool in the Lie theory is the so-called Cartan-Killing from on a Lie algebra.

Consider the adjoint representation of J . The Cartan-Killing form on J is defined

as

(a, b) = −tr(adaadb)

for any two a, b ∈ J . The following central theorem in the Lie algebra theory can

be proven: A Lie algebra is semi-simple if and only if its Cartan-Killing form is

non-degenerate.

For a simple Lie algebra J of a group G the internal automorphisms Adg constitute

the linear irreducible representation (i.e. a representation which does not have in-

variant subspaces) of G in J . Indeed, if Ad(g) has an invariant subspace H ⊂ J ,

i.e. gHg−1 ⊂ H for any g then sending g to the identity we will get

[J ,H] ⊂ H

i.e. H is an ideal which contradicts to the assumption that J is the semi-simple Lie

algebra.

Cartan subalgebra. To demonstrate the construction of the adjoint representation

and introduce the notion of the Cartan subalgebra of the Lie algebra we use the

concrete example of su(3). The Lie algebra su(3) comprises the matrices of the form

iM , where M is traceless 3×3 hermitian matrix. The basis consists of eight matrices
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which we chose to be the Gell-Mann matrices:

λ1 =

 0 1 0

1 0 0

0 0 0

 , λ2 =

 0 −i 0

i 0 0

0 0 0

 , λ3 =

 1 0 0

0 −1 0

0 0 0


λ4 =

 0 0 1

0 0 0

1 0 0

 , λ5 =

 0 0 −i
0 0 0

i 0 0

 , λ6 =

 0 0 0

0 0 1

0 1 0


λ7 =

 0 0 0

0 0 −i
0 0 0

 , λ8 =
1√
3

 1 0 0

0 1 0

0 0 −2

 .

There are two diagonal matrices among these: λ3 and λ8 which we replace by Tz =
1
2
λ3 and Y = 1√

3
λ8. We introduce the following linear combinations of the generators

t± =
1

2
(λ1 ± iλ2) , v± =

1

2
(λ4 ± iλ5) , u± =

1

2
(λ6 ± iλy) .

One can easily compute, e.g.,

[t+, t+] = 0 , [t+, t−] = 2tz, [t+, tz] = −t+ , [t+, u+] = v+ , [t+, u−] = 0 ,

[t+, v+] = 0 , [t+, v−] = −u− , [t+, y] = 0 .

Since the Lie algebra of su(3) is eight-dimensional the adjoint representation is eight-

dimensional too. Picking up (t+, t−, tz, u+, u−, v+, v−, y) as the basis we can realize

the adjoint action by 8× 8 matrices. For instance,

adt+



t+
t−
tz
u+

u−
v+

v−
y


=



0 0 0 0 0 0 0 0

0 0 2 0 0 0 0 0

−1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 0


︸ ︷︷ ︸

matrix realization of t+



t+
t−
tz
u+

u−
v+

v−
y



Note that both adtz and ady are diagonal. Thus, if x = atz + by then adx is also
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diagonal. Explicitly we find

adx =



a 0 0 0 0 0 0 0

0 −a 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 −1
2
a+ b 0 0 0 0

0 0 0 0 1
2
a− b 0 0 0

0 0 0 0 0 1
2
a+ b 0 0

0 0 0 0 0 0 −1
2
a− b 0

0 0 0 0 0 0 0 0


.

In other words, the basis elements (t+, t−, tz, u+, u−, v+, v−, y) are all eigenvectors

of adx with eigenvalues a,−a, 0,−1
2
a + b, 1

2
a − b,−1

2
a − b and 0 respectively. The

procedure we followed in crucial for analysis of other (larger) Lie algebras. We found

a two-dimensional subalgebra generated by tz and y which is abelian. Further, we

have chosen a basis for the rest of the Lie algebra such that each element of the basis

is an eigenvector of adx if x is from this abelian subalgebra. This abelian subalgebra

is called the Cartan subalgebra.

In general the Cartan subalgebra H is determined in the following way. An

element h ∈ H is called regular if adh has as simple as possible number of zero eigen-

values (i.e. multiplicity of zero eigenvalue is minimal). For instance, for su(3) the

element adtz has two zero eigenvalues, while ady has for zero eigenvalues. Thus, the

element adtz is regular, while ady is not. A Cartan subalgebra is a maximal commu-

tative subalgebra which contains a regular element. In our example the subalgebra

generated by tz and y is commutative and its maximal since there is no other element

we can add to it which would not destroy the commutativity.

Roots. It is very important fact proved in the theory of Lie algebras that any simple

Lie algebra has a Cartan subalgebra and it admits a basis where each basis vector

is an eigenstate of all Cartan generators; the corresponding eigenvalues depend of

course on a Cartan generator. In our example of su(3) for an element x = atz + by
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we have

adxt+ = at+

adxt− = at−

adxtz = 0tz

adxu+ = (−1

2
a+ b)u+

adxu− = (
1

2
a− b)u−

adxv+ = (
1

2
a+ b)v+

adxv− = (−1

2
a− b)v−

adxy = 0y .

We see that all eigenvalues are linear functions of the Cartan element x, in other

words, if we denote by eα the six elements t±, v±, u± and by hi the two Cartan

elements tz, y we can write all the relations above as

[hi, hj] = 0

[hi, eα] = α(hi)eα ,

where α(hi) is a linear function of hi. The generators eα, which are eigenstates of the

Cartan subalgebra, are called root vectors, while the corresponding linear functions

α(h) are called roots. To every root vector eα we associate the root α which is a

linear function on the Cartan sualgebra H. Linear functions on H, by definition,

form the dual space H∗ to the Cartan subalgebra H.

The Cartan-Weyl basis. Now we can also investigate what is the commutator of

the root vectors. By using the Jacobi identity we find

[h, [eα, eβ]] = −[eα, [eβ, h]]− [eβ, [h, eα]] = (α(h) + β(h))[eα, eβ] .

This clearly means that there are three distinct possibilities

• [eα, eβ] is zero

• [eα, eβ] is a root vector with the root α + β

• α + β = 0 in which case [eα, eβ] commutes with every h ∈ H and, therefore, is

an element of the Cartan subalgebra.

Thus,

[eα, eβ] = Nαβeα+β
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if α + β is a root,

[eα, e−α] ∼ hα

and [eα, eβ] = 0 if α + β is not a root. The numbers Nαβ depend on the

normalization of the root vectors. The basis (hi, eα) of a Lie algebra with the

properties described above is called the Cartan-Weyl basis.

10. Problem Set

The problems in the problem set are ordered in accord with the sections of the lecture

material.

10.1 Problems to section 1

Problem 1. Shortest distance between two points. By using the action principle,

determine the shortest distance between two points on a two-dimensional plane.

Problem 2. Minimal surface of revolution. Consider a surface obtained by rotation

around y-axis of some curve passing through two given points (x1, y1) and (x2, y2).

Find the equation for the curve for which the area of this surface is minimal.

Problem 3. Poisson brackets. Check that the Poisson bracket

{F,G}(x) =
n∑
j=1

(∂F
∂pj

∂G

∂qj
− ∂F

∂qj
∂G

∂pj

)
.

satisfies the following conditions

{F,G} = −{G,F} ,
{F, {G,H}}+ {G, {H,F}}+ {H, {F,G}} = 0

for arbitrary functions F,G,H.

Problem 4. Consider a point particle moving in the potential U of the form depicted

in figure 1.

q

U

Fig. 1. Potential energy of a particle
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Draw the phase curve of this particle. Hint: consult the case of the harmonic oscil-

lator.

Problem 5. Consider a point particle moving in the potential U of the forms

depicted in figure 2.

U

q

b)

U

q

a)

Fig. 2. Potential energies of a particle

Draw the corresponding phase curves.

Problem 6. Consider a point particle of unit mass m which moves in one dimension

(the coordinate q and the momentum p) in the potential U(q), where

• case 1:

U(q) =
g2

q2
, E > 0

and g2 is a (coupling) constant.

• case 2:

U(q) =
g2

sinh2 q
, E > 0

• case 3:

U(q) = − g2

cosh2 q
, − g2 < E < 0

• case 4:

U(q) = − g2

cosh2 q
, E > 0

Solve equations of motion for each of these potentials. In which case the motion if

finite?

Problem 7. Harmonic oscillator. The Lagrangian for the harmonic oscillator is

L =
1

2
mq̇2 − 1

2
mω2q2 .
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Derive the corresponding equation of motion and write down its solution satisfying

q(t1) = q1 and q(t2) = q2. Compute the value of the corresponding action on this

solution.

Problem 8. Find the Hamiltonian and Hamilton’s equations of motion for a system

with two degrees of freedom with the following Lagrangian

L =
m1

2
ẋ2

1 +
m2

2
ẋ2

2 +B12ẋ1x2 +B21x1ẋ2 − U(x1, x2) .

Problem 9. The transformations below are not canonical. Find a simple way to

modify them so that they become canonical

1. P = p+ q , Q = 3q(e(p+q)5 + 1) + p(2e(p+q)5 − 1) .

2. P = pq , Q = ln(p2009q2008)

Problem 10. We know that the change of the Lagrangian by a total derivative of

some function f(q, t)

L′(q, q̇, t) = L(q, q̇, t) +
d

dt
f(q, t)

does not change the Euler-Lagrange equations. Find the corresponding change in

the momentum and the Hamiltonian. Show that it corresponds to performing a

canonical transformation.

Problem 11. Use Noether’s theorem to find conserved charges corresponding to the

rotational symmetry of the Lagrangian of a particle moving in a n-dimensional flat

space

L =
1

2
mv2

i − κe−αr , r =
√
x2
i .

How many independent charges are there?

Problem 12. Conserved charges corresponding to the rotational symmetry of the

Lagrangian from the previous problem:

Jij = pixj − pjxi .

Compute the Poisson brackets of the charges with the momenta pk, coordinates xk
and themselves, i.e.

{Jij, pk} , {Jij, xk} , {Jij, Jkl} .

Problem 13. Consider a one-dimensional harmonic oscillator with the frequency ω

and compute the area surrounded by the phase curve corresponding to the energy

E. Show that the period of motion along this phase curve is given by T = dS
dE

.
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Problem 14. Let E0 be the value of the potential at a minimum point ξ. Find the

period T0 = limE→E0 T (E) of small oscillations in a neighborhood of the point ξ.

Problem 15. In the Kepler problem of planetary motion the three components Ji
of the angular momentum have the following Poisson brackets

{Ji, Jj} = −εijkJk

Show that there are three conserved quantities which commute between themselves

with respect to the Poisson bracket (i.e. they are in involution)

H, J3, J2 = J2
1 + J2

2 + J2
3

Here H is Kepler’s Hamiltonian.

Problem 16. Introduce the polar coordinates for the Kepler problem

x1 = r sin θ cosφ, x2 = r sin θ sinφ, x3 = r cos θ

Construct the canonical Hamiltonian H for the Kepler problem in the polar coordi-

nates. Obtain the expressions for

J3, J2 = J2
1 + J2

2 + J2
3

in terms of the polar coordinates and the corresponding conjugate momenta.

Problem 17. The Euclidean space R3 can be endowed with the structure of a Pois-

son manifold, in local coordinates xi, i = 1, 2, 3 the corresponding Poisson bracket is

of the form

{xi, xj} = εijkxk .

Show that

• the bracket is indeed Poisson;

• the bracket is degenerate and the function (xi)2 is in its center;

• reduce the Poisson bracket on the constant level manifold (xi)2 = r2 = const

(a two-sphere); use for this spherical coordinates.

• write the corresponding symplectic form in spherical coordinate system.

Problem 18. Consider a string which perform small transverse oscillations in the

(x, y)-plane around its equilibrium position coinciding with the x-axis. Denote by

y(x, t) the transversal displacement of the string from its equilibrium at the point x

– 144 –



at the moment of time t. Assuming that oscillations are small, derive the equation

of motion for y(x, t).

Problem 19. Consider the Lagrangian density of a real relativistic scalar field

L =
1

2
ηµν∂µφ∂νφ−

1

2
m2φ2 .

Here ηµ = ηµν = diag(+1,−1,−1,−1) is the Minkowski metric.

• Derive the corresponding Euler-Lagrange equations (the Klein-Gordon equa-

tion).

• Construct the corresponding Hamiltonian.

• By using Noether’s theorem, derive the stress-energy tensor.

Problem 20. Consider the Lagrangian density of a complex relativistic scalar field

L =
1

2
ηµν∂µφ

∗∂νφ−
1

2
m2φ∗φ ,

where ∗ means complex conjugation. Verify that the Lagrangian is invariant under

the transformation φ → eiαφ, where α is a real constant parameter. By using

Noether’s theorem, construct the corresponding conserved current and conserved

charge.

Problem 21. Consider a theory which involves N scalar fields φa, all of them have

the same mass, and has the following Lagrangian density

L =
1

2

N∑
a=1

∂µφa∂
µφa −

m2

2

N∑
a=1

φ2
a − g

( N∑
a=1

φ2
a

)2

.

Here the last term described non-linear interactions with the strength g (the coupling

constant). Show that this Lagrangian density is invariant under the non-abelian

symmetry group G = O(N) (the group of orthogonal matrices).

Problem 22. Sine-Gordon Lagrangian. Consider the Sine-Gordon model with the

Lagrangian density

L =
1

2
∂µφ∂

µφ+
m2

β2
(1− cos βφ)

over two-dimensional Minkowski space-time. Using the canonical formalism con-

struct the Hamiltonian (the generator of time translations) of the model. Using the

Noether theorem construct the momentum P (the generator of space translations)

and the generator K of Lorentz rotations.

– 145 –



Problem 23. A Hamiltonian structure of the Korteweg-de-Vries equation . Let u(x)

be a real-valued function on R. Consider the following evolution equation

ut = 6uux − uxxx .

This is the so-called Korteweg-de-Vries equation (KdV). Consider the following Pois-

son bracket

{u(x), u(y)} = (u(x) + u(y))δ′(x− y) + cδ′′′(x− y)

where c is a constant. Find the Hamiltonian which produces the KdV equation with

respect this Poisson bracket.

Problem 24. Prove that if a second rank tensor Tµν is anti-symmetric in one

coordinate system, then it remains anti-symmetric in any other coordinate system.

Verify the same property for the symmetric tensor.

Problem 25. Counting tensor components.

• How many independent components has a tensor Tαβ... of rank r, which has no

symmetry properties, in an n-dimensional space?

• How many components has a tensor which is anti-symmetric in s indices?

• How many components has a tensor which is symmetric in s indices?

10.2 Problems to section 2

Problem 1. Prove the following formulae of vector analysis:

• For any vector ~A:

div rot ~A = 0.

• For any function f :

rot grad f = 0.

• For any two vectors ~A and ~B:

grad ( ~A~B) = ( ~A∇) ~B + ( ~B∇) ~A+ ~B × rot ~A+ ~A× rot ~B .

• For any function f and a vector ~A:

rot f ~A = frot ~A+∇f × ~A .
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Problem 2. A conducter is a material inside of which electric charges can freely

move under an electric field. In the electrostatic equilibrium a charged conducter

has its charge distributed on the surface. By using the Gauss theorem together with∫
~E · d~̀= 0

show that

• the electric field on the surface of a conducter is always normal to this surface;

• the value of the electric field on the surface is E = 4πσ, where σ is the surface

charged densisty.

Problem 3. The simplest capacitor is made of two isolated conductors A and B

placed close to each other. If we put on these conductors equal but sign opposite

charges q and −q then they will acquire certain potentials ϕA and ϕB. The ratio of

the charge to the difference of the potentials is called a capacitance

C =
q

ϕA − ϕB
.

By using the Gauss theorem find the capacitance of

• two big plates of surface area S put on a distance d from each other;

• two concentric spheres with radii R1 and R2 (R2 > R1);

• two concentric cylinders of length L and radii R1 and R2 (R2 > R1).

Problem 4. Find the value α ≡ α(d) for which a function

ϕ ∼ 1

|x− x′|α(d)

is harmonic in d dimensions (i.e. it is a solution of the Laplace equation ∇2ϕ = 0

outside x = x′).

Problem 4. Write the Laplace operator in spherical coordinates.

Problem 5. By using the Rodrigues formula, compute the norm of a Legendre

polynomial ∫ 1

−1

dxPl(x)2 =?
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Problem 6. Consider the following function f(x) on −1 ≤ x ≤ 1:

f(x) = 1 for x > 0

f(x) = −1 for x < 0 .

Expand this function into the series over Legendre polynomials.

Problem 7. Prove that for any single-valued function φ(x):

δ(ϕ(x)) =
∑
i

1

|ϕ′(xi)|
δ(x− xi) ,

where δ(x) is the Dirac delta-function and xi are the roots of the equation ϕ(x) = 0.

Problem 8. Consider two static electric charges of the values q and −q separated

by a small distance d. Find the scalar potential and the electric field on the distances

much large than d.

Problem 9. An infinite plate of width a is charged homogeneously with the charge

density ρ. Find the scalar potential and the corresponding electric field.

Problem 10. Electric charge is distributed in space with the following density ρ =

ρ0 cos(αx) cos(βy) cos(γz) making an infinite periodic lattice. Find the corresponding

scalar potential.

Problem 11. Find the scalar potential potential and the electric field of a homoge-

neously charged ball. The radius of the ball is R and its charge is q.

Problem 12. Suppose it is known that all charges are contained in a volume of a

size 1m3. We want to know the potential on a distance 100m with accuracy up to

1/100 %, that is up to 10−4. How many terms in the multipole expansion are suffice

to keep?

Problem 13. Find an equation describing equipotential lines of a system of two

point charges: charge +q sitting at z = a and charge ±q, sitting at z = −a; draw

these lines. Hint: Use the cylindrical coordinate system.

10.3 Problems to section 3

Problem 1. The vector potential produced by a magnetic dipole moment ~M is

~A(x) =
~M × ~R

|~R|3
,

where ~R = ~x−~x0, where ~x0 is a location of the magnetic moment and ~x is a point at

which the vector potential is measured. Show that the corresponding magnetic field
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is given by

~H(x) =
3~n(~n ~M)− ~M

|~R|3
.

Problem 2. Consider an infinite long wire with the stationary current I. Find

the value of the magnetic field in the surrounding space produced by this current

distribution.

Problem 3. Determine the ratio of the magnetic and angular momenta for a system

of two charged particles with the charges e1 and e2 and masses m1 and m2 assuming

that their velocities are much less than the speed of light.

10.4 Problems to section 4

Problem 1. Verify that the unitary 2× 2-matrices g†g = 1 form a group.

Problem 2. Prove that for any matrix A the following identity is valid

det(expA) = exp(trA) ,

or, equivalently,

exp(tr lnA) = detA .

Remark. This is very important identity which enters into the proofs of many for-

mulas from various branches of mathematics and theoretical physics. It must always

stay with you. Learn it by heart by repeating the magic words ”exponent trace of

log is determinant”.

Problem 3.

Let

A =

 0 −c3 c2

c3 0 −c1

−c2 c1 0

 .

Show that the matrices

O(c1, c2, c3) = (I + A)(I− A)−1

belong to the group SO(3). Show that the multiplication operation in SO(3) written

in coordinates (c1, c2, c3) takes the form

O(c)O(c′) = O(c′′)
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where

c′′ = (c+ c′ + c× c′)/(1− (c, c′)) .

Here c = (c1, c2, c3) is viewed as three-dimensional vector.

Problem 4. Use the Lorentz transformation

dx =
dx′ + vdt′√

1− v2

c2

, dy = dy′ , dz = dz′ , dt =
dt′ + v

c2
dx′√

1− v2

c2

,

to derive the formulae for the Lorentz transformation of the velocity vector.

Problem 5. An inertial system M ′ moves with the velocity ~v with respect to a

system M . In the system M ′ a bullet is shooted with the velocity ~υ′ under the angle

θ′. Find the value of this angle in the system M . What happens if this bullet is a

photon?

Problem 6. Let εµνρλ is a totally anti-symmetric tensor in Minkowski space. Com-

pute

• εµνρλεµνρλ =?

• εµνρλεµνρσ =?

• εµνρλεµντσ =?

• εµνρλεµγτσ =?

Problem 7. Prove that for any tensor Aνµ:

εαβγδA
α
µA

β
νA

γ
ρA

δ
λ = εµνρλdet||Aβα|| .

Problem 8. Find four linearly independent null vectors in Minkowski space. Is it

possible to find four null vectors which are orthogonal?

Problem 9. Let system S ′ moves with respect to the system S with velocity v along

the axis x. A clock resting in S ′ in a point (x′0, y
′
0, z
′
0) in a moment t′0 passes through

a point (x0, y0, z0) in the system S where the corresponding clock shows the time t0.

Write the Lorentz transformations witch relate two systems to each other.

Problem 10. (How velocities add in the relativistic case?) Prove the following

formula √
1− ~v2

c2
=

√
1− ~v′2

c2

√
1− ~V 2

c2

1 + (~v′·~V )
c2

,

– 150 –



where ~v and ~v′ are velocities of a particle in a systems S and S ′, respectively, and ~V

is a velocity of S ′ with respect to S.

Problem 11. Prove that

|~v| =

√
(~v′ + ~V )2 − (~v′×~V )2

c2

1 + (~v′·~V )
c2

,

where ~v and ~v′ are velocities of a particle in a systems S and S ′, respectively, and ~V

is a velocity of S ′ with respect to S.

Problem 12. Derive the addition formula for velocities assuming that the velocity
~V of S ′ with respect to S has an arbitrary direction. Represent the corresponding

formula in vector notation.

Problem 13. Two beams of electrons collide with velocities v = 0.9c measured

with respect to the laboratory coordinate system. What is the relative velocity of

electrons

• from the point of view of a laboratory observer?

• from the point of view of an observer moving with one of the beams?

Problem 14. (The Doppler effect). Find how the frequency ω and the wave

vector ~k of a plane monochromatic wave transform form one inertial frame to another.

The direction of the relative velocity ~V between two inertial frames is arbitrary.

Problem 15. Construct the Hamiltonian of a relativistic particle in a static gauge

t = τ , where τ is a world-line parameter.

Problem 16. Calculate the work which should be applied in order to accelerate an

electron up to velocity 106 m/c. Treat an electron as a ball of the radius 2.8× 10−15

meter, whose charge is homogeneously distributed over its surface.

Problem 17. Consider the motion of a charged (with charge e) relativistic massive

particle (with mass m) in the Coulomb field with a potential φ = e′/r. Solve the

corresponding equations of motion.

Problem 18. Express momentum p of a relativistic particle via its kinetic energy.

Problem 19. Express the velocity v of a relativistic particle via its momentum p.

Problem 20. A relativistic particle with mass m1 and velocity v1 collides with a

standing particle of mass m2 so that both particles form now a single particle (a

bound state). Find the mass M and the velocity V of this composite particle.
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10.5 Problems to section 5

Problem 1. Consider a four-vector Aµ(x) ≡ Aµ(t, ~x) in a four-dimensional space

with the Minkowski metric. Construct the following Lagrangian density

L = −1

4
FµνF

µν , Fµν = ∂µAν − ∂νAµ .

• Derive the corresponding Euler-Lagrange equations (there are Maxwell’s equa-

tions in a vacuum)

• Verify that the action remains invariant under constant shifts:

xµ → xµ + εµ ,

and derive the stress-energy tensor of the electromagnetic field. This tensor

obtained directly from Noether’s method will not be symmetric T µν 6= T νµ.

Show that one can add a total derivative term T µν → T µν + ∂ρχ
µνρ which will

make it symmetric.

• Verify that the action remains invariant under the following (Lorentz) trans-

formations

δxµ → Λµνxν , Λµν = −Λνµ , x2 = ηµνxµxν .

Derive the corresponding Noether current.

• Verify that the action remains invariant under rescalings (dilatation):

xµ → λxµ ,

where λ is a constant. Derive the Noether current corresponding to this sym-

metry.

• Consider special conformal transformations of the Minkowski space-time gen-

erated by the vector field

Kµ = − i
2

(x2∂µ − 2xµx
ν∂ν), δxµ = ερKρ · xµ .

Verify the invariance of the action under special conformal transformations and

construct the corresponding Noether current.

Problem 2. Write the Lorentz invariants

FµνF
µν

εµνρλFµνFρλ
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via the electric and magnetic fields ~E and ~B. How adding the second invariant to

the action of the electromagnetic field will influence the corresponding equations of

motion?

Problem 3. Write the stress-energy tensor T µν of the electromagnetic fields via elec-

tric and magnetic fields ~E and ~B. Show that this tensor is conserved as a consequence

of the Maxwell equations. Explain the physical meaning of various components of

the stress-energy tensor.

Problem 4. Consider a charged particle which moves in a time-independent homo-

geneous electric field ~E. Find the solution of the corresponding equations of motion.

Problem 5. Consider a charged particle which moves in a time-independent ho-

mogeneous magnetic field ~H. Find the solution of the corresponding equations of

motion.

Problem 6. Let the coordinate system S ′ moves with respect to the coordinate

system S with velocity v along the axis x. Suppose in the system S there is a

electromagnetic field described by the four-potential Aµ ≡ (A0, A1, A2, A3). Find the

components of the four-potential A′µ in the coordinate system S ′.

Problem 7. Let the coordinate system S ′ moves with respect to the coordinate

system S with velocity v along the axis x. Suppose in the system S there is a

electromagnetic field ( ~E, ~H). Find the electromagnetic field ( ~E ′, ~H ′) in the coordinate

system S ′.

Problem 8. Let the coordinate system S ′ moves with respect to the coordinate

system S with velocity v along the axis x. In the framework of the previous problem,

assume that v << c. Find the transformation law between ( ~E, ~H) and ( ~E ′, ~H ′) up

to terms of order v
c
.

Problem 9. In the lecture notes the retarded Green function for the wave equation

has been determined. Find the advanced Green function and the Pauli-Green func-

tion which is given by the difference of the advanced and retarded Green functions:

GPauli = Gadv −Gret .

Show that the latter function obeys the homogeneous wave equation.

Problem 10. By using Cauchy’s theorem calculate the following integrals

1. ∫ 2π

0

dt

(a+ b cos t)2
, (a > b > 0);
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2. ∫ 2π

0

(1 + 2 cos t)n cosnt

1− a− 2a cos t
dt , − 1 < a <

1

3
;

3. (Laplace) ∫ ∞
0

cosxdx

x2 + a2
;

4. (Euler) ∫ ∞
0

sinx

x
dx .

Problem 11. Consider the stress-energy tensor of electromagnetic field:

Tµν =
1

4π

(
− FµρF ρ

ν +
1

4
ηµνFρλF

ρλ
)
.

The following problems are in order

• Verify that T µ
µ = 0

• Using Maxwell’s equations with sources find the divergence

∂Tµν
∂xν

=?

Problem 12. An electric dipole with the moment ~p moves with velocity ~v with

respect to a rest coordinate system. Find electromagnetic field created by this dipole:

ϕ, ~A and ~E, ~H.

Problem 13. Electromagnetic wave for which the electromagnetic field depends

on one coordinate x (and on time) only, is called flat (plane). Assuming the gauge

div ~A = 0, solve the Maxwell equations for flat (plane) electromagnetic waves.

Problem 14. Find the force acting on a wall which reflects (with the reflection

coefficient R) a flat electromagnetic wave.

Problem 15. Suppose electromagnetic potential Aµ would a massive vector field

with the action

S = −1

4

[ ∫
d4xFµνF

µν +m2AµA
µ
]
.

Show that

• This action is not invariant under gauge transformations

• Derive an analogue of the Coulomb law implied by this massive vector field (in

other words, find the electric field produced by a point-like static source).
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Problem 16. Consider free (without charges) electomagnetic field in a finite volume

of space, being a parallelepiped with sites equal to a,b and c.

• Write a Fourier decomposition of the vector potential

• Write the condition div ~A = 0 in the Fourier space

• Show that the Fourier coefficients of ~A satisfy the equations of motion of the

harmonic oscillator

• Write the expressions for ~E and ~H via the Fourier coefficients of ~A

• Find the Hamiltonian of free electomagnetic field in the Fourier space

10.6 Problems to section 6

Problem 1. Determine the Poynting vector for the fields produced by a charge e

which moves with constant velocity ~v. Show by explicit calculation that no energy

is emitted by the charge during its motion.

Problem 2. Complete the derivation of the Lienart-Wiechert electric and magnetic

fields

~H =
1

R
[~R, ~E] ,

~E = e

(
1− v2

c2

)(
~R− ~v

c
R
)

(
R− ~R·~v

c

)3 + e
[~R, [~R− ~v

c
R, ~̇v]]

c2
(
R− ~R·~v

c

)3

starting from the corresponding vector and scalar potential derived in the lecture

notes.

Problem 3. Calculate the Poynting vector and the energy flux produced by an

arbitrary moving charge by using the expressions for the Lienard-Wiechert fields.

Problem 4. An electric dipole with constant electric dipole moment magnitude is

located at a point in the xy-plane and rotates with constant angular frequency.

• Determine the time-dependent electromagnetic fields at large distances from

the dipole.

• Determine the radiated average power angular distribution and the total radi-

ated power.

Problem 5. Let a positive charge +e is concentrated at the origin of a coordi-

nate system and negative charge −e performs harmonic oscillations along the z-axis
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around the positive charge. Find the radiation field of the corresponding system of

charges. Compute the average radiated power.

Problem 6. Estimate the time of falling down of electron on the kernel in a hydrogen

atom because of radiation of electromagnetic waves. Assume that electron moves on

a circular orbit.

Problem 7. Determine the intensivity of dipole radiation of two charged particles

(with charges e1 and e2 and masses m1 and m2) interacting by means of Coulomb

potential.

Problem 8. Determine the average intensivity of dipole radiation of electron which

moves over an elliptic orbit with respect to proton in a hydrogen atom.

Problem 9. Consider the following idealized situation with an infinitely long, thin,

conducting wire along the z axis. For t < 0, it is current free, but at time t = 0

a constant current J is applied simultaneously over the entire length of the wire.

Consequently, the wire carries the current

j(z) =

{
0, t < 0

J, t ≥ 0

It is assumed that the conductor is kept uncharged, i.e. ρ = 0. Determine ~E, ~H and

the Poynting vector ~S in the whole space.

10.7 Problems to section 7

Problem 1. Consider XXX Heisenberg model. For the chain of length L = 3

find the matrix form of the Hamiltonian as well as its eigenvalues. Construct the

corresponding matrix representation of the global su(2) generators. How many su(2)

multiplets the Hilbert space of the L = 3 model contains?

Problem 2. Carry out an explicit construction of the Bethe wave-function a(n1, n2)

for two-magnon states of the Heisenberg model. Derive the corresponding Bethe

equations.

Problem 3. Show that L two-magnon states of the Heisenberg model with p1 = 0

and p2 = 2πm
L

with m = 0, 1, . . . , L − 1 are su(2)-descendants of the one-magnon

states.

Problem 4. Show that on the rapidity plane λ = 1
2

cot p
2

the S-matrix of the

Heisenberg model takes the form

S(λ1, λ2) =
λ1 − λ2 + i

λ1 − λ2 − i
.

Hence, it depends only on the difference of rapidities of scattering particles.
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