
Classical field theory 2012 (NS-364B) – Feynman propagator

1. Introduction

States in quantum mechanics in Schrödinger picture evolve as

|Ψt〉 = Û(t, t0)|Ψt0〉 , Û(t, t0) = T exp

(

− ı

~

∫ t

t0

dt′Ĥ(t′)

)

, (1)

where Û(t, t0) denotes the evolution operator,

Û(t, t0) = 1− ı

~

∫ t

t0

Ĥ(t′)dt′ +
(

− ı

~

)2
∫ t

t0

dt′
∫ t′

t0

dt′′Ĥ(t′)Ĥ(t′′) + · · · (2)

Ĥ(t′) is the Hamiltonian operator and T stands for time ordering (since t′ > t′′ the Hamiltonian
operator Ĥ(t′) in (2) at a later time t′ is always to the left of the hamiltonial operator Ĥ(t′′))
at an earlier time t′′). The time ordered expression (2) is known as the Dyson series. As the
Hamiltonian depends on the fields, when expectation value is taken, the Feyman propagator
naturally occurs when one is interested in a quantum mechanical evolution. The Feynman
(or time ordered) propagator is not causal, which also means that the resulting states are
not causal. But that is not a problem, since states in quantum mechanics are not directly
observable. As argued in Homework 8, the quantume mechanical evolution of observable
quantities, such as expectation values of hermitean operators, are always expressible in terms
of causal Green functions, such as the Pauli-Jordan function, or the spectral function. (Bra

states evolve according to an anti-time ordered exponential of the Hamiltonian, which are
then expressible in terms of the anti-Feynman (or anti-time ordered) propagator.)

In these notes, we shall show how to construct the Feynman propagator for a real massless
scalar field φ, whose action is given by 1,

S[φ] =

∫

d4x
(1

2
(∂µφ)(∂νφ)ηµν

)

. (3)

The Feynman (or time ordered) propagator ∆F ≡ ∆++ for this free (i.e. non-interacting)
theory is defined in terms of two point functions as

∆F (x; x′) = θ(t− t′)∆+(x; x′) + θ(t′ − t)∆−(x; x′) (4)

where ∆+(x; x′) ≡ ∆−+(x; x′) and ∆−(x; x′) ≡ ∆+−(x; x′) are the positive and negative
frequency Wightman functions, respectively, defined by

ı∆−+(x; x′) = 〈φ̂(x)φ̂(x′)〉 , ı∆+−(x; x′) = 〈φ̂(x′)φ̂(x)〉 , (5)

where, for an operator Ô(t), 〈Ô(t)〉 = Tr[ρ̂(t)Ô(t)], where ρ̂(t) denotes the density operator.
When one is dealing with a pure state |Ψ〉, then ρ̂(t) = |Ψ〉〈Ψ|, and the averaging simplifies
to 〈Ô(t)〉 → 〈Ψ|Ô(t)|Ψ〉.

1In these notes we use c = 1)
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Here I have used a more common notation, according to which the Green functions G’s for a
scalar field are denoted by ∆’s. The field operators in (5) obey a Klein-Gordon equation,

− ∂2φ̂(x) = 0 , ∂2 = ηµν∂µ∂ν , (6)

and a canonical quantization reads,

[φ̂(~x, t), π̂(~x′, t)] = ı~δ3(~x− ~x ′) , (7)

where the canonical momentum of φ is π ≡ ∂L/∂φ̇ = ∂tφ.

2. Mode decomposition

The field φ̂ can be decomposed into modes by making use of a Fourier transform,

φ̂(x) =

∫

d3k

(2π)3

(

eı~k·~xφ(k, t)â~k + e−ı~k·~xφ∗(k, t)â†

~k

)

(8)

where â†

~k
and â~k are the usual creation and annihilation operators (for each ~k there is precisely

one pair), you are familiar with from quantum mechanics, and which obey the following
commutation relations,

[â~k, â
†

~k′
] = (2π)3δ3(~k − ~k′) , [â~k, â~k′ ] = 0 = [â†

~k
, â†

~k′
] . (9)

The annihilation operators annihilate the vacuum state |0〉 of the theory,

â~k|0〉 = 0 (10)

while the creation operator â†

~k
creates a particle of momentum ~k according to,

â†

~k
|0〉 = |1~k〉 . (11)

Of course, the mode functions φ(k, t) and φ∗(k, t) obey (c = 1),

d2

dt2
φ(k, t) + k2φ(k, t) = 0 ,

d2

dt2
φ∗(k, t) + k2φ∗(k, t) = 0 .

The solution that is consistent with relativistic invariance and with the commutation rela-
tions (7) and (9) is of the form (can you show it?),

φ(k, t) =

√

~

2k
e−ıkt , φ∗(k, t) =

√

~

2k
eıkt . (12)

These functions obey a canonical Wronskian, defined by,

W [φ, φ∗] ≡ φφ̇∗ − φ̇φ∗ = ı , (13)

and represent the vacuum solutions for the problem at hand. While φ(k, t) corresponds to the
positive frequency mode function, φ∗(k, t) is the negative frequency mode function. Note that
their amplitude is not independent. Indeed, they are related by complex conjugation. This
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relation is a consequence of reality of the scalar field, which implies φ̂†(x) = φ̂(x). One can
quite easily construct more general (non-vacuum solutions), but we will not go into it here.
Let us now show how to evaluate the positive and negative frequency Wightman functions in
the vacuum state |0〉 (in which the mode functions are given by (12)). Observe first that

〈0|â~kâ~k′|0〉 = 0 , 〈0|â†

~k
â†

~k′
|0〉 = 0

〈0|â†

~k
â~k′|0〉 = 0 , 〈0|â~kâ

†

~k′
|0〉 = 〈0|{[â~k, â

†

~k′
] + â†

~k
â~k′}|0〉 = (2π)3δ3(~k − ~k′) , (14)

where we made use of (9) and (10). We are now ready to evaluate the Wightman functions (5),
where the expectation value will be taken with respect to the vacuum state |0〉. Inserting the
mode decomposition (8), and making use of (14), the Wightman functions become,

ı∆−+(x; x′) =

∫

d3k

(2π)3
eı~k·(~x−~x′)φ(k, t)φ∗(k, t′)

ı∆+−(x; x′) =

∫

d3k

(2π)3
e−ı~k·(~x−~x′)φ∗(k, t)φ(k, t′) . (15)

The sign of the exponential in the Wigner transform (which is defined as a Fourier transform
with respect to the relative coordinate ~x−~x′) in the above expression tells us that ∆−+ ≡ ∆+

picks the positive frequency (positive pole) contribution, while ∆+− ≡ ∆− picks the negative
frequency (negative pole) contribution. We shall perform the momentum integration in (15)

in spherical coordinates for ~k : (k, θ, φ). In order to perform the angular integrations in (15),
it is convenient to choose ~x − ~x′ = ‖~x − ~x′‖(0, 0, 1) to point in the ẑ-direction, such that
~k · (~x− ~x′) = kr cos(θ), where r = ‖~x− ~x′‖. The result is,

ı∆−+(x; x′) =
~

2π2

∫ ∞

0

dkk2 sin(kr)

kr

1

2k
e−ık(t−t′) =

~

4π2

1

r

∫ ∞

0

dk sin(kr)e−ık(t−t′)

ı∆+−(x; x′) =
~

4π2

1

r

∫ ∞

0

dk sin(kr)eık(t−t′) , (16)

where we made use of the vacuum mode functions (12). Both of these integrals contain
integrands which are complex oscillatory functions whose amplitude does not decrease as k
increases, and hence the integrals are not convergent. A way to evaluate the integrals is to
promote t− t′ to a complex number (this procedure is called analytic continuation). It suffices
to add a small imaginary part to t− t′ according to

ı∆−+(x; x′) =
~

4π2

1

r

∫ ∞

0

dk
eıkr − e−ıkr

2ı
e−ık(t−t′−ıǫ)

ı∆+−(x; x′) =
~

4π2

1

r

∫ ∞

0

dk
eıkr − e−ıkr

2ı
eık(t−t′+ıǫ) , (17)

where ǫ > 0 is an infinitesimal positive real number. The new integrals are convergent. The
physical Wightman functions are obtained by analytic continuation after integration, which
amounts to sending ǫ → 0. It is, however, customary to keep ǫ in the expressions for the
resulting Green functions, in order to serve as a reminder from what analytic continuation
they originated.
The first integral in (17) yields the following positive frequecy Wightman function,

ı∆−+(x; x′) =
~

4π2

1

2rı

( −1

ı[r − (t− t′ − ıǫ)]
− −1

−ı[r + (t− t′ − ıǫ)]

)

= − ~

4π2

1

(t− t′ − ıǫ)2 − r2
≡ − ~

4π2

1

∆x2
−+

, (18)
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while the second integral yields the following positive frequency Wightman function,

ı∆+−(x; x′) = − ~

4π2

1

(t− t′ + ıǫ)2 − r2
≡ − 1

4π2

~

∆x2
+−

, (19)

where we defined complex ‘distance’ functions,

∆x2
+− = (t− t′ + ıǫ)2 − ‖~x− ~x′‖2 , ∆x2

−+ = (t− t′ − ıǫ)2 − ‖~x− ~x′‖2 . (20)

One can get rid off the ǫ parameters in (18–19) completely if one uses the Dirac identity for
distributions, which states that the following two distributions are identical,

1

x + ıǫ
= P 1

x
− ıπδ(x) . (21)

where P means a principal value, i.e. when 1/x acts on a function of x the integral has
to be evaluated such that the pole at x = 0 is approached uniformly (equally fast) from
negative and positive x’s. Eqs. (18–19) can be brought into the form (21) by noting that
∆x2

±∓ = ∆x2±sign(t−t′)ıǫ, where ∆x2 = (t−t′)2−‖~x−~x′‖2 and sign(t−t′) = θ(t−t′)−θ(t′−t).
Thus we have,

ı∆+−(x; x′) = −P ~

4π2

1

∆x2
+ ı

~

4π
δ(∆x2) , ı∆−+(x; x′) = −P ~

4π2

1

∆x2
− ı

~

4π
δ(∆x2) , (22)

which indeed contain no more dependence on ǫ.
When (18–19) are inserted into the definition of the Feynman propagator (4) one immediately
obtains the Feynman propagator for a real massless scalar field,

ı∆F (x; x′) = − ~

4π2

1

(|t− t′| − ıǫ)2 − r2
≡ − 1

4π2

~

∆x2
++

. (23)

Analogously, one can define the anti-time order (or anti-Feynman) propagator as,

∆F̄ (x; x′) ≡ ∆−−(x; x′) = θ(t− t′)∆−(x; x′) + θ(t′ − t)∆+(x; x′) . (24)

Above considerations immediately tell us that, for a massless real scalar field, ∆F̄ evaluates
to,

ı∆F̄ (x; x′) = − ~

4π2

1

(|t− t′|+ ıǫ)2 − r2
≡ − 1

4π2

~

∆x2
−−

. (25)

where we introduced a notation,

∆x2
++ = (|t− t′| − ıǫ)2 − ‖~x− ~x′‖2 , ∆x2

−− = (|t− t′|+ ıǫ)2 − ‖~x− ~x′‖2 . (26)

One more important remark follows. From the definition of the Feynman propagator (4–5),
the canonical commutator (7) and the Klein-Gordon equation (6) one can quite easily show
that the Feynman propagator obeys the following equations,

− ∂2ı∆F (x; x′) = −∂′2ı∆F (x; x′) = ı~δ4(x− x′) , (27)

where ∂′2 = ηµν(∂/∂x′µ)(∂/∂x′ν).
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3. Contour integration

Now, these expressions for the vacuum Green functions of a massless real scalar field can be
also obtained without referring to mode functions, but instead working from the momentum
space propagator, and performing appropriate contour integrations. Including only the pole
contributions results in vacuum propagators of free theory (not including interactions). We
shall now show how it works in some detail.
The propagator equation (27) together with translational symmetry of the vacuum imply that
the Feynman propagator ∆F (x; x′) = ∆F (x − x′) is a function of coordinate difference only.
This allows one to perform a Wigner transform, defined by,

∆F (x− x′) =

∫

d4k

(2π)4
e−ık·(x−x′)∆̃F (kµ) , ∆̃F (kµ) =

∫

d4k

(2π)4
e+ık·(x−x′)∆F (x− x′) , (28)

where k · (x− x′) = ηµνk
µ(xν − x′ν). The propagator equation (27) in Wigner space becomes

simple, kµkµ∆̃F (kα) = ~, and it is solved by

G̃F (kµ) =
~

kµkµ

=
~

2k

(

1

k0 − k
− 1

k0 + k

)

, (29)

where k ≡ ‖~k‖, such that in direct (physical space) the propagator becomes,

∆F (x− x′)
?
= ~

∫

d3k

(2π)3
eı~k·(~x−~x′)

∫

dk0

2π
e−ık0(t−t′) 1

2k

(

1

k0 − k
− 1

k0 + k

)

. (30)

The k0 integral is not well defined, unless one gives a prescription for how to evaluate it around
the poles on the real axis at k0 = k (the positive frequency pole) and k0 = −k (the negative
frequency pole). An inspection (basically trial and error!) shows that the pole prescription
corresponding to the Feynman propagator is the one depicted on figure 1a. From Figure 1b
we see that the integral does not change if one shifts the poles by an infinitezimal amount ±ıǫ
(ǫ > 0 is an infinitezimal parameter),

∆F (x− x′) = ~

∫

d3k

(2π)3
eı~k·(~x−~x′)

∫ ∞

−∞

dk0

2π
e−ık0(t−t′) 1

2k

(

1

k0 − k + ıǫ
− 1

k0 + k − ıǫ

)

. (31)

This is now a well defined expression. We shall now show how to perform the k0 integral
by contour integration. Since the Feynman propagator is defined for all times (both for t′

in the past of t as well as for t′ in the future of t), it is convenient to evaluate the integral
separately when t′ − t > 0 (this part is proportional to θ(t′ − t)), and when t′ − t < 0 (this
part is proportional to θ(t − t′)). The appropriate contours are shown in Figure 1c. The
contours are chosen such that the semi-circular parts of the contours or radius R do not
contribute in the limit when R → ∞ (for a finite R the semi-circular contours give answers
that are exponentially suppressed as ∼ e−R). Next, we use the Cauchy integral theorem
(see e.g. chapters 6-7 of George Arfken, Mathematical Methods for Physicists) to evaluate
the k0 integrals. According to the Cauchy theorem, the k0 integral along the real axis from
k0 = −∞ to k0 = +∞ equals to the closed contour integral (if the semi-circular contour does
not contribute). The two relevant contours are shown in figure 3c. The left contour gives a
contribution equals to (2πı) (since the sense of integration is positive) times the residue of the
integrand at the pole k0 = −k + ıǫ, while the right contour on Figure 3c gives (−2πı) (since
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the sense of integration is negative) times the residue of the integrand at the pole k0 = k− ıǫ.
The result is,

∆F (x− x′) = ~

∫

d3k

(2π)3
eı~k·(~x−~x′)

(

θ(t′ − t)
2πı

2π
(−1)

eık(t−t′)

2k
+ θ(t− t′)

−2πı

2π

e−ık(t−t′)

2k

)

. (32)

When this is rewritten as,

ı∆F (x− x′) = ~

∫

d3k

(2π)3
eı~k·(~x−~x′)

(

θ(t′ − t)
eık(t−t′)

2k
+ θ(t− t′)

e−ık(t−t′)

2k

)

, (33)

a comparison with Eqs. (4) and (15–16) reveals that the expressions multiplying θ(t′− t) and
θ(t − t′) in (33) are precisely the negative and positive frequency Wightman functions ı∆+−

and ı∆−+, respectively. In figure 1d the two contours from figure 1c have been deformed
without crossing any poles. This means that the contour integration around the poles as
shown in figure 1d gives the same answer as the ones in figure 1c. The contours in figure 1d
represent the integration contours you should use in your homework 8 when constructing the
Wightman functions.
The remaining ~k integrals in (33) are performed exactly the same way as it is done in Eqs. (16–
23), resulting in the Feynman propagator (23).
In these notes we have shown how to evaluate the vacuum contribution to the free Feynman
propagator for a massless real scalar field. The Feynman propagator in more complicated
situtations such as thermal equilibrium has, in addition to the vacuum contribution originating
from the quasiparticle poles k0 = ±k we calculated in these notes, other contributions which
satisfy a homogeneous wave equation (and have possibly additional poles at complex k0).
The propagator for a massive scalar field has an additional term in the Lagrangian density
∆L = −m2φ2/2. This term changes the k0 poles to k0 ≡ ±ω = ±

√
k2 + m2, which is the

Einstein dispersion relation for massive particles. The procedure of constructing the massive
Feynman propagator is in principle the same as outlined in these notes, except that now the
poles are shifted, which will change the integrals. In particular, the ~k integrals will be now
more complicated.
The quantum mechanical Green functions can be immediately obtained from the field theoretic
result, when one realises that the Feynman propagator for a quantum particle in a harmonic
potential can be thought of as just one harmonic oscillator with a frequency ω ← k. Hence,
the quantum mechanical Green functions can be read off from our intermediate results (before

the ~k integrals are performed).
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