GENERAL RELATIVITY

Homework problem set 5, due at 25.11.2016.

■ PROBLEM 9 Redshift. (5 points)

Consider the expanding universe metric,

$$ds^{2} = -c^{2}dt^{2} + a^{2}(t)\delta_{ij}dx^{i}dx^{j}. {9.1}$$

It describes the homogeneous, isotropic universe in the Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmological model.

- (a) (2 points) Find the geodesic equations for a particle in this space-time. (Either by explicitly constructing the Christoffel symbols, or by varying the particle action.)
- (b) (3 points) Using the geodesic equations and the expression for ds^2 , show that for a photon moving along the x-axis, the coordinate time as a function of the parameter λ , which parametrizes the path, is given by

$$\frac{dt}{d\lambda} = \frac{\omega_0}{a(t)},\tag{9.2}$$

where ω_0 is a constant.

For a photon-like particle, we define $p^{\mu} = dx^{\mu}/d\lambda$. The energy of the photon is defined as $E = -p_{\mu}u^{\mu}$, where u^{μ} is the velocity of a comoving observer (here $u^{\mu} = (1,0,0,0)$). It turns out that the energy of the photon-like particle for a comoving observer is $E = \omega_0/a(t)$. The energy decreses as a (the scale factor) increases. This is known as the cosmological redshift.

PROBLEM 10 Energy-momentum tensor for electromagnetic field. (6 points)

The action for electromagnetism in curved space-time is

$$S_{EM} = \int d^4x \sqrt{-g} \left(-\frac{1}{4} g^{\mu\rho} g^{\nu\sigma} F_{\mu\nu} F_{\rho\sigma} - g^{\mu\nu} A_{\mu} J_{\nu} \right) , \qquad (10.1)$$

where J^{μ} is the conserved charge current.

- (a) (2 points) Derive the energy-momentum tensor by functional differentiation with respect to the metric.
- (b) (4 points) Consider adding a new term to the action,

$$S' = \int d^4x \sqrt{-g} \,\beta R^{\mu\nu} g^{\rho\sigma} F_{\mu\rho} F_{\nu\sigma} . \qquad (10.2)$$

How are Maxwell's equations altered in the presence of this term? How about Einstein's equations? Is the current J^{μ} still conserved?