
GENERAL RELATIVITY

Homework problem set 7, due at 13.01.2017.

� PROBLEM 14 Reissner-Nordström black hole. (20 points)

In this problem you will derive the solution of the Einstein equation and the Maxwell equation
for a spherically symmetric electrically charged black hole, called the Reissner-Nordström black
hole. Note that even though we assume that the charge and mass are located at the center
of the black hole, we must solve the Einstein equation with a source. The electric charge is a
source for the electric field, this field carries energy, and is therefore a source for the Einstein
equation,

Gµν = Rµν −
1
2gµνR = 8πGNTµν . (14.1)

In addition, the Maxwell equation for the electromagnetic field also has to be satisfied,

∇µF
µν = 0 . (14.2)

We start by simplifying the Einstein equation.

(a) (2 points) The energy-momentum tensor of the electromagnetic field is given by

Tµν = FµρFν
ρ − 1

4gµνFρσF
ρσ . (14.3)

Show that it is traceless, and calculate the Ricci scalar using that property. One again
we need not calculate the Ricci scalar explicitly.

Next we make the ansatz for the solution. As before, we assume a spherically symmetric line
element,

ds2 = −e2α(r,t)dt2 + e2β(r,t)dr2 + r2dΩ2 . (14.4)
(The relevant geometric quantities for this metric are given at the end of this problem.) The
electric and magnetic field also have to respect spherical symmetry. That limits them to have
just the radial component,

Er = Er(t, r) , Br = Br(t, r) = 0 , (14.5)

where we have assumed a particular case of zero magnetic field.

(b) (2 points) Recall that the electric field is given as Ei = F0i in terms of the EM field strength
tensor. Therefore, the only non-vanishing component is Ftr = f(t, r). Determine all the
components of the EM energy-momentum tensor in terms of functions f , α, β.
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Now we examine the components of the Einstein equation to further constrain functions α and
β, and to fnd their connection with f .

(c) (2 points) Show that the (tr) component of the Einstein equation implies that β is time
independent, β(t, r) = β(r).

(d) (2 points) By making an apropriate linear combination of (tt) and (rr) components of
the Einstein equation show that

α(t, r) = −β(r) + γ(t) , (14.6)

and show that we can freely set γ(t) = 0, since we can absorb it in the definition of the
time coordinate.

(e) (2 points) Write down the remaining Einstein equation relating β and f .

Finally, we have to examine the Maxwell equation.

(f) (2 points) Even though it could have been argued in (e) that f is independent of time,
show that it follows from the r component of the Maxwell equation (14.2).

(g) (2 points) Show that the only remaining non-trivial component of the Maxwell equation
is the t component.

(h) (2 points) Solve the equation obtained in (g) to find

f = C

r2 , (14.7)

where C is an integration constant. We set it to C = Q/
√

4π, where Q has the interpre-
tation of the total charge of the black hole.

(i) (2 points) Go back to the equation obtained in (e) and solve it to obtain

e−2β = 1− RS

r
+ GNQ

2

r2 . (14.8)

Obviously, when Q = 0 (no electric field) this solution must reduce to the Schwarzschild
one, and we must have RS = 2MGN .

(j) (2 points) In these coordinates the condition for the horizon(s) is

0 = 1− RS

r
+ GNQ

2

r2 . (14.9)

Discuss the existence of horizons depending on the ranges of M and Q of the black hole.
Do the parameter choices for which there are no horizons represent physically viable
solutions?

For a discussion on the different rgions of the Reissner-Nordström black hole read section 6.5
from Carroll’s book.
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The non-vanishing components of the Ricci tensor for metric (14.4) are

Rtt =
[
∂2
t β + (∂tβ)2 − ∂tα∂tβ

]
+ e2(α−β)

[
∂2
rα + (∂rα)2 − ∂rα∂rβ + 2

r
∂rα
]
, (14.10)

Rrr = −
[
∂2
rα + (∂rα)2 − ∂rα∂rβ −

2
r
∂rβ
]

+ e2(β−α)
[
∂2
t β + (∂tβ)2 − ∂tα∂tβ

]
, (14.11)

Rtr = Rrt = 2
r
∂tβ , Rϑϑ = e−2β

[
r(∂rβ − ∂rα)− 1

]
+ 1 , Rϕϕ = Rϑϑ sin2 ϑ , (14.12)

and the non-vanishing Christoffel symbols for that metric are

Γttt = ∂tα , Γttr = Γtrt = ∂rα , Γtrr = e2(β−α)∂tβ , (14.13)
Γrtt = e2(α−β)∂rα , Γrtr = Γrrt = ∂tβ , Γrrr = ∂rβ , (14.14)

Γϑrϑ = Γϑϑr = 1
r
, Γrϑϑ = −re−2β , Γϕrϕ = Γϕϕr = 1

r
, (14.15)

Γrϕϕ = −re−2β sin2 ϑ , Γϑϕϕ = − sinϑ cosϑ , Γϕϑϕ = Γϕϕϑ = cotϑ . (14.16)

� PROBLEM 15 Friedmann-Lemaître-Robertson-Walker space-time. (11 points)

The most general line element which respects the assumptions of homogeneity and isotropy of
the spatial part (but is not static) is

ds2 = −dt2 + a2(t)
[

dr2

1− κr2 + r2dΩ2
]
. (15.1)

This is the FLRW line element. Here κ is a constant which can be larger than zero, smaller
than zero, or zero, which corresponds to the constant time slices being closed, open, or flat,
respectively. The time-dependent function a(t) is called the scale factor, and it can be thought
of as the time-dependence of physical length between two comoving observers (observers at
fixed spatial coordinates).

Plugging this line element into the Einstein equation with some sort of ideal fluid as a source
(with energy density ρ and pressure p, and assuming the fluid rest frame), and assuming Λ > 0,
gives the Friedmann equations,

H2 ≡
(
ȧ

a

)2

= 8πGN

3 ρ− κ

a2 + Λ
3 , (15.2)

Ḣ +H2 = ä

a
= −4πGN

3 (ρ+ 3p) + Λ
3 , (15.3)

where H(t) is the Hubble parameter.

(a) (2 points) Consider these equations in the case when Λ = 0 and κ = 0, and the ideal fluid
satisfies the linear equation of state p = wρ, where w = const. Find the scale factor as a
function of time, with initial conditions a(t0) = a0, ρ(t0) = ρ0. Show that the quantity

ε ≡ − Ḣ

H2 , (15.4)

is a constant in the case of ideal fluids satisfying the assumed equation of state.
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(b) (3 points) Solve the Friedmann equations assuming: (i) ρ = p = 0, κ = 0 and Λ > 0; (ii)
ρ = p = 0, Λ = 0 and κ > 0, (iii) ρ = p = 0, Λ = 0 and κ < 0.

(c) (2 points) We define the conformal time η via dt = a dη, where a is the scale factor.
Show that in the case κ = 0, the metric written in conformal time is conformal to the
Minkowski one, i.e.

ds2 = a2(η)
[
− dη2 + dr2 + r2dΩ2

]
, dΩ2 = dθ2 + sin2(θ)dφ2 . (15.5)

Find what the solution of (a) is in conformal time.

(d) (4 points) Use the approach as for Minkowski metric to define the needed transformations
and draw the conformal diagram for the FLRW space-time (15.5) for ε = const. Treat
separately the cases ε > 1 and 0 < ε < 1.
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