
GENERAL RELATIVITY

Problem set 1, on 09.09.2016.

� PROBLEM 1 Problem 1.2 from [1]

Imagine that space (not spacetime) is actually a finite box, or in more sophisticated terms, a
three-torus, of size L. By this, we mean that there is a coordinate system xµ = (t, x, y, z)
such that every point with coordinates (t, x, y, z) is identified with every point with coordinates
(t, x + L, y, z), (t, x, y + L, z) and (t, x, y, z + L). Note that the time coordinate is the same.
Now consider two observers; observer A is at rest in this coordinate system (constant spatial
coordinates), while observer B moves in the x-direction with constant velocity v. A and B
begin at the same event, and while A remains still, B moves once around the universe and
comes back to intersect the worldline of A without ever having to accelerate (since the universe
is periodic). What are the relative proper times experienced in this interval by A and B? Is
this consistent with your understanding of Lorentz invariance?

� PROBLEM 2 Problem 1.4 from [1]

Projection effects can trick you into thinking that an astrophysical object is moving "superlumi-
nally". Consider a quasar that ejects gas with speed v at an angle θ with respect to the line-of
sight with angular speed vapp

D
, where D is the distance to the quasar and vapp is the apparent

speed. Derive an expression for vapp in terms of v and θ. Show that, for appropriate values of
v and θ, vapp can be greater than 1.

� PROBLEM 3 Problem 1.5 from [1]

Particle physicists are so used to setting c = 1 that they measure mass in units of energy. In
particular, they tend to use electron volts (1 eV = 1.6 × 10−12 erg = 1.8 × 10−33 g), or, more
commonly, keV, MeV, and GeV (103 eV, 106 eV and 109 eV, respectively). The muon has been
measured to have a mass of 0.106 GeV and a rest frame lifetime of 2.19×10−6 seconds. Imagine
that such a muon is moving in the circular storage ring of a particle accelerator, 1 kilometer
in diameter, such that the muon’s total energy is 1000 GeV. How long would it appear to live
from the experimenter’s point of view? How many radians would it travel around the ring?

� PROBLEM 4 Lorentz covariant formulation of electromagnetism.

The Maxwell action for electromagnetism is

S =
∫
d4x

[
−1

4FµνF
µν − 4π

c
jµAµ

]
, (4.1)
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where Fµν = ∂µAν−∂νAµ is the electromagnetic field strength tensor, Aµ is the vector potential,
and jµ = (cρ,~j) is the electromagnetic (charge) current. Furthermore,

F µν = ηµαηνβFαβ =


0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0

 , (4.2)

where ηαβ = ηαβ = diag(−1, 1, 1, 1) is the Minkowski metric tensor, and ~E = (E1, E2, E3) and
~B = (B1, B2, B3) are the electric and magnetic fields, respectively.

(a) By making use of the variational principle, δS/δAµ(x) = 0, show that the implied equation
of motion is

∂νF
νµ = 4π

c
jµ . (4.3)

Show further that (4.3) implies the usual inhomogeneous Maxwell’s equations,

∇ · ~E = 4πρ , −1
c

∂

∂t
~E +∇× ~B = 4π

c
~j . (4.4)

(b) Show that the dual field tensor,

∗F µν = 1
2ε

µναβFαβ =


0 −B1 −B2 −B3

B1 0 E3 −E2

B2 −E3 0 E1

B3 E2 −E1 0

 , (4.5)

obeys a homogeneous equation,
∂ν
∗F νµ = 0 . (4.6)

Here εµναβ is the so-called Levi-Civita tensor, which is defined to be

εµναβ =


1 if (µναβ) = any even permutation of (0123) ,
−1 if (µναβ) = any odd permutation of (0123) ,
0 otherwise.

(4.7)

Show further that these equations imply the homogeneous Maxwell’s equations,

∇ · ~B = 0 , 1
c

∂

∂t
~B +∇× ~E = 0 . (4.8)

(c) Recall that under Lorentz transformation F µν transforms as

F µν → F ′µν = Λµ
αΛν

βF
αβ . (4.9)

Consider first an ordinary rotation around the z-axis. Show that the magnetic and electric
fields transform as ordinary vectors under such a rotation. Consider next a boost along the
x-axis with velocity v. Show that we have the following transformation, mixing electric
and magnetic fields (γ = 1/

√
1− β2, β = v/c),

B′1 = B1 , B′2 = γ(B2 + βE3) , B′3 = γ(B3 − βE2) ,
E ′1 = E1 , E ′2 = γ(E2 − βB3) , E ′3 = γ(E3 + βB2) . (4.10)

Recall that a Lorentz boost along the x-axis is given by the transformation

x′ = γ(x− βx0) , y′ = y , z′ = z , x′0 = γ(x0 − βx) . (4.11)
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(d) Consider now an inertial system I and the Lorentz boosted system I’ (where I’ is not
rotated relative to I), moving with velocity ~v relative to I. The formula generalizing
formula (4.10) above is

~B = γ ~B′ + ~v

v2 (~v · ~B′)(1− γ) + γ
~v

c
× ~E ′ , (4.12)

~E = γ ~E ′ + ~v

v2 (~v · ~E ′)(1− γ)− γ~v
c
× ~B′ . (4.13)

Assume that ~E ′ and ~B′ are constant and different from zero. Find the condition that
~E ′ and ~B′ have to satisfy in order that there exists a ~v such that ~E = 0, and find the
corresponding ~v expressed in terms of ~E ′ and ~B′. (Remark: by considering charged
particles in this special Lorentz frame one easily finds how they will move.)

(e) Show that the two quantities ~E · ~B and | ~E|2 − | ~B|2 are lorentz invariant, i.e. they are
Lorentz scalars.

Hint: You might find the following identities useful,

~A · ( ~B × ~C) = ~B · (~C × ~A) = ~C · ( ~A× ~B) , (4.14)
~A× ( ~B × ~C) = ( ~A · ~C) ~B − ( ~A · ~B)~C , (4.15)
( ~A× ~B) · (~C × ~D) = ( ~A · ~C)( ~B · ~D)− ( ~B · ~C)( ~A · ~D) . (4.16)

Try to prove these identites by using the antisymmetric symbol, εijk. Recall that ( ~A × ~B)i =
εijkAjBk.
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