
GENERAL RELATIVITY

Tutorial problem set 15, 23.12.2016.

� PROBLEM 37 Tolman-Oppenheimer-Volkoff equation.

In this problem you will examine more closely the general relativistic models of spherical massive
objects (such as stars). Namely, you will study spherically symmetric static solutions of the
inhomogeneous Einstein equation.

If a star has a radius larger than its Schwarzschild radius, the space-time outside of it will
be described by Schwarzschild metric (Birkhoff’s theorem). In order to say something about
the space-time inside the star we have to solve the Einstein equation for the particular source,

Gµν = Rµν − 1
2gµνR = 8πGNTµν , (37.1)

meaning we have to know someting about the composition of the star.
Since we are looking for a spherically symmetric and static solution, we assume the following

line element
ds2 = −e2α(r)dt2 + e2β(r)dr2 + r2dΩ2 . (37.2)

(The relevant geometric quantities for this metric are given at the end of this problem, just
specialize to time-independent α and β.)

(a) Calculate the Ricci scalar, and the non-vanishing components of the Einstein tensor.

The star will be modeled by a perfect fluid, whose energy-momentum tensor is

Tµν = (ρ+ p)uµuν + pgµν , (37.3)

where we assume to be in the rest frame of the fluid, uµ = (−eα, 0, 0, 0), and because of the
assumed spherical symmetry, ρ = ρ(r) and p = p(r).

(b) Calculate all the non-vanishing components of the fluid’s energy-momentum tensor.

(c) Write down all the independent components of the Einstein equation (there are three of
them).

(d) Notice that the (tt) equation involves only β and ρ. Show that it can be rewritten as

∂r

(
r − re−2β

)
= 8πGNr2ρ . (37.4)

Introduce a new function
m(r) = 1

2GN

(
r − re−2β

)
, (37.5)
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and show that the line element can then be written as

ds2 = −e2αdt2 +
(

1 − 2GNm(r)
r

)−1

dr2 + r2dΩ2 . (37.6)

We have substituted function β(r) for function m(r) in a way so grr would look like a
Schwarzschild one, but with a ’radially dependent mass’. Because of Birkhoff’s theorem,
we know that outside of the star the solution must be a Schwarzschild one, and therefore
m(R∗) = M must correspond to the total mass of the star (as seen by the distant ob-
server), where R∗ is the radius of the star. Find the expression for m(r) in terms of ρ(r),
assuming m(0) = 0.

(e) Show that the (rr) equation can be written as

dα

dr
= GNm(r) + 4πGNr3p

r(r − 2GNm(r)) . (37.7)

(f) Combine the equation from (e) together with the ϑϑ equation to get

dp

dr
= −(ρ+ p)[GNm(r) + 4πGr3p]

r[r − 2GNm(r)] . (37.8)

This is the Tolman-Oppenheimer-Volkoff equation for hydrostatic equilibrium. (An easier
way of obtaining this equation is to consider the conservation equation for the energy-
momentum tensor instead of the ϑϑ equation).

(g) In order to get a closed system of equations, we need one more apart from the Tolman-
Oppenheimer-Volkoff equation, and that is the equation of state for the fluid, p = p(ρ)
(or some equivalent one). Then, in principle (37.8) represents an equation for p(r).
One can get a quite simple and semi-realistic model of a star by assuming it is made
out of an incompressible ideal fluid. It means that its energy density ρ(r) is constant
throughout,

ρ(r) =
{
ρ∗ , r < R∗
0 , r > R∗

(37.9)

where R∗ is the radius of the star. This assumption serves instead of the equation of
state. Solve the Tolman-Oppenheimer-Volkoff equation to find the pressure inside the
star. What is the boudary condition for pressure you are going to assume? Express the
final answer in the form p(r) = ρ∗P (r), where P should be expressed in terms of GN , M ,
R∗ and r.

(h) By considering the pressure at the center of the star show that the maximum mass a star
of the type considered here of a given radius R∗ can be

Mmax = 4R∗

9GN
, (37.10)

i.e. that there are no static solutions for a mass larger than this. This is a special case of
the Buchdahl’s theorem (but the result holds more generally). Can you give a physical
interpretation of this result?
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The non-vanishing components of the Ricci tensor for metric (37.2) are

Rtt = e2(α−β)
[
∂2
rα + (∂rα)2 − ∂rα∂rβ + 2

r
∂rα
]
, (37.11)

Rrr = −
[
∂2
rα + (∂rα)2 − ∂rα∂rβ − 2

r
∂rβ
]
, (37.12)

Rϑϑ = e−2β
[
r(∂rβ − ∂rα) − 1

]
+ 1 , Rϕϕ = Rϑϑ sin2 ϑ . (37.13)
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