
GENERAL RELATIVITY TUTORIAL

Problem set 3, 23.09.2016.

� PROBLEM 7 Surfaces and manifolds.

Consider the following surfaces imbeded in 3-dimensional Euclidean space: (i) a sphere, (ii) a
torus, (iii) surface of a cone, shown in Figure 2.

Figure 1: From left to right: a sphere, a torus, a cone.

(a) Construct a set of charts (atlas) for each of these surfaces, i.e. construct coordinate
systems on these surfaces by expressing them in terms of 3-dimensional Cartesian coor-
dinates. What can you say about the tip of the cone (in the context of differentiable
manifolds)?

(b) Find what an infinitesimal line element is on these surfaces (in one particular chart).
Hint: Remember that for 3-dimensional Euclidean space the line element in Cartesian
coordinates is just dl2 = dx2 + dy2 + dz2.

� PROBLEM 8 Coordinate transformations.

(a) How would the product of a covariant and a contravariant vector, AµBµ, transform under
general coordinate transformations?

(b) What about the quantity gµνgνρ = δµ
ρ?

(c) Can you show that the derivative of a covariant vector, ∂µAν , does not transform as a
tensor? Show that for linear coordinate transformations (i.e. Lorentz transformations)
∂µAν is indeed a tensor.

(d) Check that the transformation rules (4.10) and (4.13) in the lecture notes
(http://www.staff.science.uu.nl/∼hooft101/lectures/genrel_2010.pdf) form a group, i.e.
the transformation x→ u yields the same tensor as the sequence x→ v → u. Make use
of the fact that partial differentiation obeys

∂xµ

∂uν
= ∂xµ

∂vα
∂vα

∂uν
. (8.1)
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� PROBLEM 9 (Anti)-symmetrizing tensors.

For any 2-tensor Tµν (in four dimensions) we define the tensors

T(µν) = 1
2(Tµν + Tνµ) , T[µν] = 1

2(Tµν − Tνµ) . (9.1)

These are, respectively, called symmetric and antisymmetric part of the tensor Tµν .

(a) Is it true that for any tensor Aµν = A(µν) + A[µν]? How many components do A(µν) and
A[µν] have?

(b) If Bµν = Bνµ and Cµν = −Cνµ, prove that (A is a generic tensor)

AµνB
µν = A(µν)B

µν , AµνC
µν = A[µν]C

µν . (9.2)

For higher rank tensors, this concept can be generalized to obtain totally symmetric and
anti-symmetric tensors by definitions

T(µ1µ2...µk) = 1
k!

∑
σ∈Sk

Tσ(µ1)σ(µ2)...σ(µk) , (9.3)

T[µ1µ2...µk] = 1
k!

∑
σ∈Sk

(−1)π(σ)Tσ(µ1)σ(µ2)...σ(µk) , (9.4)

respectively, where T is an arbitrary covariant tensor of rank k. In (9.3) and (9.4), Sk denotes
the group of k objects, and π the so-called parity of the permutation, with π(σ) = 0 if σ is an
even permutation, and π(σ) = 1 if it is an odd permutation.

(c) Consider the case of an arbitrary 3-tensor Tµνρ. How many components does it have?
Write explicitly the form of T(µνρ) and T[µνρ].

(d) For an arbitrary 3-tensor Tµνρ is it true that Tµνρ = T(µνρ) + T[µνρ]? Prove your result.
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