
GENERAL RELATIVITY

Tutorial problem set 6, 14.10.2016.

� PROBLEM 16 .

In Euclidean 3-dimensional space, we can define the so-called paraboloidal coordiantes (u, v, φ)
by

x = uv cosφ , y = uv sinφ , z = 1
2(u2 − v2) , (16.1)

where the ranges of coordinates are u ∈ [0,∞〉, v ∈ [0,∞〉, φ ∈ [0, 2π〉.

(a) Find the coordinate transformation matrix between paraboloidal and Cartesian coordi-
nates ∂xα/∂x̃β and the inverse transformation. Are there any singular points in the map?

(b) Find the basis vectors in paraboloidal coordinates in terms of Cartesian basis vectors.

(c) Find the metric and inverse metric in paraboloidal coordinates.

(d) Calculate the Christoffel symbols in paraboloidal coordinates.

(e) Express the divergence ∇µV
µ and Laplacian ∇µ∇µf in paraboloidal coordinates.

� PROBLEM 17 Geodesics in Rindler space-time.

Let (x0, x) denote Minkowski coordinates in an inertial system I, and let (w0, w) denote the
Rindler coordinates of a system of reference R with constant acceleration g relative to I. The
two systems are related by
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[
cosh

(
gw0

c2

)
− 1
]

+ w cosh
(
gw0

c2

)
, (17.1)
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. (17.2)

You have derived in Homework 1, Problem 1, that the invariant element in Rindler coordinates
is

ds2 = dw2 −
(

1 + gw

c2

)2
(dw0)2 (17.3)

(a) Write down the equation of motion for a particle in free fall as a second order differential
equation in w0.

(b) Show that the solution for a particle starting at w = w at time w0 = 0 with velocity zero
is
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 . (17.4)
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(c) Calculate the velocity of particle as a function of w0 (v = cdw/dw0). Find the maximum
velocity of the particle and compare with the velocity of light. What happens for w0 →∞.

(d) Calculate the proper time of the particle as a function of w0 and w.

� PROBLEM 18 Parallel transport on a sphere.

A vector V µ is said to be parallel transported in the direction ν if its covariant derivative along
that direction is zero,

∇νV
µ = ∂νV

µ + ΓµνσV σ = 0 . (18.1)
Consider now a 2-dimensional sphere of unit radius,

ds2 = dθ2 + sin2θ dφ2 . (18.2)

In this space vector V has just two components – V θ and V φ.

(a) Compute the Christoffel symbols and show that the parallel transport equations along
the φ-coordinate (θ =const.) are

∂φV
θ − sin θ cos θ V φ = 0 , (18.3)
∂φV

φ + cot θ V θ = 0 . (18.4)

The two equations above can be seen as a system of two coupled ordinary differential
equation of first order (with constant coefficients, since θ is fixed). We solve them by first
constructing a second-order ordinary differential equation for one of the functions (in this
case it can be done for both). Derive the following equation,

∂2
φV

θ = − cos2θ V θ . (18.5)

After solving this equation for V θ, the solution for V φ can be found from either (18.3) or
(18.4).

(b) Show that the full solution is

V θ = A cos(φ cos θ) +B sin(φ cos θ) , (18.6)

V φ = − A sin(φ cos θ)
sin θ + B cos(φ cos θ)

sin θ , (18.7)

where A and B are real constants (they determine the initial value of the vectors).

Next we want to understand how a vector is parallel transported along a triangle on a
sphere. We are interested in the case where one of the sides of the triangle lies in the equator,
subtending an angle α with the center of the sphere, and the other two sides connect the
north pole to the equator (see Figure 1). The initial vector V at point X1 is pointing in the
φ-direction, namely V φ = 1 and V θ = 0. In the following, consider these three points on a
sphere,

X1 = (1, 0, 0) , X2 = (cosα, sinα, 0) , X3 = (0, 0, 1) . (18.8)

(c) Verify that the vector V remains unchanged under parallel transport from X1 to X2, i.e.
that it remains in the φ direction. Make use of the solutions (18.6) and (18.7) you found.
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Figure 1: Triangle on a sphere

(d) Find how the vector is transported from X2 to X3. In this case you can exploit the
symmetries of the system: you can rotate your frame in such a way that the X2X3
section lies on the equator. In this frame the vector V has just the component V θ.

(e) Finally, using a similar trick, find how the vector changes if it is transported from X3
back to X1. What happens if α = π

2? Verify whether this result is compatible with what
you expect from intuition (see Figure 1.)

For (d) and (e) it is enough to sketch and explain in words how the vector is parallel transported.
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