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Chapter 1

Introduction

The search for gravitational waves is one which has not, up until this
point, given any conclusive results, however it seems likely that the neces-
sary technology will be available within the next 15 years to actually detect
this gravitational radiation. As such, it is one of the most exciting fronts
today of astrophysics and cosmology, as well as being another excellent test
of Einstein’s theory of general relativity.

In 1905, Einstein outlined the theory of special relativity in which he ex-
pounded the new notion that space and time are not absolutes; rather, they
are what are measured with rulers and clocks, respectively. Combining the
theory of special relativity with the gravitational force led to the theory of
general relativity in 1915. However, one of the conditions that gravity must
satisfy in order to be compatible with special relativity is causality. This is
analogous to the case of electrodynamics, where light waves set the standard
of the concept of causality, i.e. two distant observers cannot communicate
faster than the speed of light. Similarly, gravity must have such a causal
structure and thus we expect there to be some type of ”gravitational radia-
tion”.

Realizing this, it was Einstein who first produced work regarding this
new form of radiation. His final result was the famous ”quadrupole formula”
which will be derived later on. Its role in general relativity is comparable
to that of the dipole formula for electromagnetic radiation, in the sense that
gravitational waves are produced by accelerating masses and electromagnetic
waves are produced by accelerating charges.

From the quadrupole formula, it can be observed that gravitational waves
are weak and difficult to produce in any detectable regime. In fact, detection
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6 CHAPTER 1. INTRODUCTION

would require waves which are produced by large masses moving at rela-
tivistic speeds. Such objects cannot be produced in laboratories and limit
us those in the sky, astrophysical sources; hence, the title and focus of this
report.

There is already significant indication that gravitational waves do ex-
ist, based on indirect measurements of orbital decay. The most well-known
example of this is the Hulse-Taylor binary, which decays in very good approx-
imation to the theoretical prediction based on energy lost due to gravitational
radiation.

The discovery of gravitational waves by direct detection would not just
be the unfolding of a new form of radiation (which, in itself, should not
be taken lightly), but it would usher in a new era of detection possibilities:
gravitational waves would allow us to probe deeper into the universe than
has ever been possible. Before all these aspects are discussed however, it is
imperative to first understand how gravitational waves arise from the theory
of general relativity.



Chapter 2

Theory of Gravitational Waves

2.1 Linearized Gravity

Henceforth the signature (−,+,+,+) shall be adopted, such that the
Minkowski metric is given by

ds2 = −dt2 + dx2 + dy2 + dz2. (2.1)

As per standardized notation, Latin indices on objects will represent the
spatial coordinates, while Greek indices will cover spacetime coordinates.
Frequently throughout this report, quantities will be expressed in units where
G = c = 1, whereG is Newton’s constant and c is the speed of light. The most
straightforward way to obtain gravitational waves is to work in the theory
of linearized gravity. Within this framework, it is assumed that spacetime,
described by the metric tensor, is approximately flat. In other words, it is
decomposed into the flat Minkowski metric ηµν and some contribution hµν .

gµν = ηµν + hµν . (2.2)

Since the spacetime is approximately flat, this contribution must be small.
As a result, in calculating physically significant quantities only terms up to
linear order in hµν will be kept

||hµν || << 1. (2.3)

The Christoffel connections in their most general form are
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8 CHAPTER 2. THEORY OF GRAVITATIONAL WAVES

Γρµν =
1

2
gρσ (∂µgσν + ∂νgσµ − ∂σgµν) .

In linearized gravity, these reduce to a remarkably simple form

Γρµν =
1

2
ηρσ (∂µhσν + ∂νhσµ − ∂σhµν) .

The Riemann tensor as a result of this approximation also reduces to a
compact expression

Rρ
σµν = ∂µΓρσν − ∂νΓρσµ + ΓρµλΓ

λ
νσ − ΓρνλΓλµσ

=
1

2

(
∂µ∂σh

ρ
ν + ∂ν∂

ρhσµ − ∂µ∂ρhσν − ∂ν∂σhρµ
)
.

In the above expression, the two terms with products of Christoffel sym-
bols have vanished since they are of order h2

µν . With the Riemann tensor in
hand, the Ricci tensor can be calculated straightforwardly to produce

Rµν = Rρ
µρν =

1

2

(
∂ρ∂νh

ρ
µ + ∂ρ∂µhρν −�hµν − ∂µ∂νh

)
. (2.4)

Finally, by performing the trace over the Ricci tensor, the Ricci scalar is
found

R = Rµ
µ =

(
∂ν∂

µhνµ −�h
)
. (2.5)

Combining these results, an unwieldy expression is found for the Einstein
tensor

Gµν = Rµν −
1

2
ηµνR

=
1

2

(
∂ρ∂νh

ρ
µ + ∂ρ∂µhρν −�hµν − ∂µ∂νh− ηµν∂ρ∂σhρσ + ηµν�h

)
.

This is not a simple expression to work with; it would be suitable to reduce
the Einstein equation to something more useful. One clever way of doing
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this is to cease working with hµν and instead work with an expression that
is known as the trace-reversed metric1. It is defined as

h̄µν ≡ hµν −
1

2
ηµνh, (2.6)

and its name stems from the fact that its trace is the opposite of the original
metric

h̄µµ = −hµµ. (2.7)

Introducing this change into the Einstein equation (2.6), the total number
of terms is reduced from six to four

Gµν =
1

2

(
∂ρ∂ν h̄

ρ
µ + ∂ρ∂µh̄νρ −�h̄µν − ηµν∂ρ∂σh̄ρσ

)
. (2.8)

The resultant expression still seems to be complex to deal with in a straight-
forward manner however. In order to make it even simpler, the gauge degrees
of freedom must be excluded properly (or, in the terminology of general rela-
tivity, an appropriate coordinate system needs to be chosen). In other words,
the gauge needs to be fixed[3]. Consider a general infinitesimal coordinate
transformation

x
′µ = xµ + ξµ. (2.9)

Here ξµ is an arbitrary vector field whose magnitude is sufficiently small
such that terms of second order or higher are negligible. Under such a coor-
dinate transformation, the metric changes

g′µν = ηµν − ∂νξµ − ∂µξν + hµν . (2.10)

Obviously, this expression is not equivalent to (2.2). Rather, there are now
additional terms which shall be associated with hµν to be the transformed
perturbation field

h′µν = hµν − 2∂(µξν), (2.11)

1We shall use the words metric and metric perturbation interchangeably when it is
clear what quantity is implied.
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where the parenthetical notation implies the usual symmetry of the pair of
indices2. Using this notation, the transformed metric corresponds to a form
which resembles earlier results

g′µν = ηµν + h′µν . (2.12)

However, previously it was shown that working with the trace-reverse
metric has its advantages, and thus it is necessary to know how it acts under
these transformations

h̄′µν = h′µν −
1

2
ηµνh

′

= h̄µν − 2∂(νξµ) + ηµν∂
ρξρ, (2.13)

which is similar but has the introduction of an additional term. The first
step in gauge-fixing comes from introducing the de Donder (or harmonic)
gauge, which is analogous to the Lorenz gauge in electrodynamics

∂µh̄µν = 0. (2.14)

To show that this is always possible, consider acting on the transformed
metric (2.13) with such a derivative

∂µh̄′µν = ∂µh̄µν − ∂µ∂νξµ −�ξν + ∂ν∂
σξσ (2.15)

= ∂µh̄µν −�ξν . (2.16)

From this, it can be seen that any metric perturbation can be put into the
de Donder gauge by a suitable transformation which satisfies

�ξν = ∂µh̄µν . (2.17)

The de Donder gauge fixes some of our gauge degrees of freedom. As a
result, the initially 10 independent components of the symmetric metric per-
turbation hµν have been reduced to six due to the four conditions that this
gauge imposes. The process of gauge fixing is not complete by employing the
Lorenz gauge. Consider that for

2∂(µAν) = 1
2 (∂µAν + ∂νAµ).
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�ξν = ∂µh̄µν , (2.18)

the most general solution is given by

ξν = ξhν +

∫
d4yG(xρ − yρ)∂µh̄µν(yρ), (2.19)

where ξhν is the homogeneous solution satisfying �ξhν = 0. Thus, by fix-
ing the de Donder gauge, we have only fixed the inhomogeneous solution
and still have the freedom to fix the homogeneous components (we can add
an arbitrary amount of homogenous equations to (2.17) and it will remain
unaffected), which correspond to another four degrees of freedom. These
homogenous solutions will be fixed later by a more thorough treatment of
gauge fixing in which it becomes clear that they are indeed gauge artifacts
(see Section 2.3).
Beforehand, the de Donder gauge is applied to the reduced Einstein equation
(2.8). Consequently, the Einstein equation simplifies greatly

Gµν = −1

2
�h̄µν ⇒ �h̄µν = −16πTµν . (2.20)

This important expression will be used throughout much of this report. It
follows from this expression that the conservation of the energy momentum
tensor reduces to ∂µT

µν = 0 in the linearized theory3. Having shown the
form of the necessary general relativistic quantities in the linearized theory,
it is time to proceed to the consideration of solutions in such a theory.

2.2 Vacuum Solutions

A natural starting point would be to consider vacuum solutions, i.e. solu-
tions corresponding to those emitted by a source at some point in time which
has since stopped emitting. As a result, the energy-momentum tensor is zero
and the Einstein equation (2.20) becomes

�h̄µν = 0. (2.21)

3The momentum energy tensor always satisfies conservation under a contracted covari-
ant derivative. However, the Christoffel symbol term drops out since it is second order in
hµν .
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This is nothing more than the homogeneous wave equation! Similar to the
case of electromagnetism, the wave equation admits a class of homogeneous
solutions which are superpositions of plane waves

h̄µν(~x, t) = Re

∫
d3k

(
Aµν(~k)ei(

~k·~x−ωt) +Bµν(~k)ei(
~k·~x+ωt)

)
, (2.22)

where |k| = ω and the complex Fourier coefficients Aµν(~k) and Bµν(~k) de-

pend on the wave vector ~k. From the de Donder gauge condition, they are
imposed with the constraint kµAµν = 0 = Aµνk

ν (and similarly for Bµν),
where kµ is an arbitrary four-dimensional wave vector and the second equal-
ity follows from the symmetry of Aµν . Furthermore, we take the real part of
the solution on the (complex) right hand side of the equation since the metric
on the left hand side is real. The plane waves that have been produced here
are gravitational waves.

2.3 Fixing the Gauge

To find an explicit form for the metric perturbation, the gauge-fixing pro-
cess must be completed, since the de Donder gauge does not remove all un-
physical degrees of freedom from the theory. For this subject, I will closely
follow along the lines of Carroll[1], who gives a clearer and more rigorous
treatment of this process than much of the literature.

One begins by renaming the elements of the original (not trace-reversed)
metric

h00 = −2Φ,

h0i = wi,

hij = 2sij − 2Ψδij. (2.23)

Here, Ψ is the trace of hij and sij is the traceless part

Ψ = −1

6
δijhij,

sij =
1

2

(
hij −

1

3
δklhklδij

)
. (2.24)
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This requires a recalculation of the Christoffel symbols in terms of these new
variables

Γ0
00 = ∂0Φ,

Γi00 = ∂iΦ + ∂0wi,

Γ0
j0 = ∂jΦ,

Γij0 =
1

2
∂jwi −

1

2
∂iwj +

1

2
∂0hij,

Γ0
jk = −1

2
∂jwk −

1

2
∂kwj +

1

2
∂0hjk,

Γijk =
1

2
∂jhki +

1

2
∂khji −

1

2
∂ihjk. (2.25)

Note that we have not yet rewritten hij in terms of Ψ and sij, since they will
differ only later on when we take traces. Next, we find the components of
the Riemann tensor

R0j0l = ∂j∂lΦ +
1

2
∂0∂jwl +

1

2
∂0∂lwj −

1

2
∂0∂0hjl,

R0jkl =
1

2
∂j∂kwl −

1

2
∂j∂lwk −

1

2
∂0∂khlj +

1

2
∂0∂lhkj,

Rijkl =
1

2
∂j∂khli −

1

2
∂j∂lhki −

1

2
∂i∂khlj +

1

2
∂i∂lhkj. (2.26)

The other terms of the Riemann tensor are related to these by the usual
symmetries. Moreover, from these we find the Ricci tensor where hij will be
written in terms of sij and Ψ as described before

R00 = ∇2Φ + ∂0∂kw
k + 3∂2

0Ψ,

R0j = −1

2
∇2wj +

1

2
∂j∂kw

k + 2∂0∂jΨ + ∂0∂ks
k
j ,

Rij = −∂i∂j (Φ−Ψ)− 1

2
∂0∂iwj −

1

2
∂0∂jwi + �Ψδij −�sij + ∂k∂is

k
j + ∂k∂js

k
i .

Here ∇2 = δij∂i∂j is the usual flat, 3D space Laplacian. With the neces-
sary quantities in hand, the Einstein tensors can be found from the Einstein
equation
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G00 = 2∇2Ψ + ∂k∂ls
kl,

G0j = −1

2
∇2wj +

1

2
∂j∂kw

k + 2∂0∂jΨ + ∂0∂ks
k
j ,

Gij =
(
δij∇2 − ∂i∂j

)
(Φ−Ψ) + δij∂0∂kw

k − 1

2
∂0∂iwj −

1

2
∂0∂jwi

+ 2δij∂
2
0Ψ−�sij + ∂k∂is

k
j + ∂k∂js

k
i − δij∂k∂lskl. (2.27)

By working with the relation between the Einstein tensor and the energy-
momentum tensor Gµν = 8πGTµν , we can decipher which degrees of freedom
are actual physical degrees of freedom and which ones are not. Starting with
the first component G00 we find

∇2Ψ = 4πGT00 −
1

2
∂k∂ls

kl. (2.28)

There are no derivatives with respect to time in this equation. In other
words, if we know T00 and sij at any moment in time, then we know what
Ψ is. As a result, Ψ is not a real propagating degree of freedom, as it is
determined by the other two quantities. Having eliminated one variable, let
us move on to the next Einstein tensor component G0j which produces the
relation (

δjk∇2 − ∂j∂k
)
wk = −16πGT0j + 4∂0∂jΨ + 2∂0∂ks

k
j . (2.29)

Here, from the reasoning given above, it is clear that wk is also not a prop-
agating degree of freedom, as it can be determined from sij and Tµν , which
also determine Ψ in this equation. Moving along, the last equation is given
by

(
δij∇2 − ∂i∂j

)
Φ = 8πGTij +

(
δij∇2 − ∂i∂j − 2δij∂

2
0

)
Ψ− δij∂0∂kw

k

+
1

2
∂0∂iwj +

1

2
∂0∂jwi + �sij − ∂k∂iskj − ∂k∂jski − δij∂k∂lsjl.

Once again, we observe that there are no time derivatives acting on Φ, and
hence it can also be determined from the other fields. The only degree of
freedom we are left with then is sij. In a bit, we shall see that this part
describes gravitational waves. In any case, all the other functions in hµν can
be determined from sij and the energy-momentum tensor.
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Previously, when we derived the de Donder gauge, we had derived the
transformation of the metric perturbation under an infinitesimal coordinate
transformation

hµν → hµν − ∂µξν − ∂νξµ. (2.30)

Having decomposed our metric perturbations into different fields, we now
find the change that such a transformation produces on them

Φ → Φ− ∂0ξ
0,

wi → wi − ∂0ξ
i + ∂iξ

0,

Ψ → Ψ +
1

3
∂iξ

i,

sij → sij −
1

2
∂iξj −

1

2
∂jξi +

1

3
∂kξ

kδij. (2.31)

From here, we can begin the gauge-fixing process. We shall choose the
transversal gauge which is closely related to the Coulomb gauge (∂iA

i) you
may be familiar with from electromagnetism. In this gauge, we fix sij to be
transverse

∂isij = 0. (2.32)

This institutes the following requirement on our coordinate transformation

∇2ξj +
1

3
∂j∂iξ

i = −2∂is
ij. (2.33)

At this point, the component ξ0 is still arbitrary and we can use it to make
the vector perturbation transverse

∂iw
i = 0, (2.34)

in which ξ0 then satisfies

∇2ξ0 = ∂iw
i + ∂0∂iξ

i. (2.35)

These conditions specify the transverse gauge and the Einstein tensor’s
components are reduced in this gauge
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G00 = 2∇2Ψ,

G0j = −1

2
∇2wj + 2∂0∂jΨ,

Gij =
(
δij∇2 − ∂i∂j

)
(Φ−Ψ)− 1

2
∂0∂iwj −

1

2
∂0∂jwi + 2δij∂

2
0Ψ−�sij.

(2.36)

Coming back to our earlier discussion of the metric perturbation in vacuum
space, for the G00 equation we obtain

∇2Ψ = 0. (2.37)

If we assume that the boundaries are well-behaved, then the solution to this
differential equation is given by4 Ψ = c + f(t), where c is a constant and
f(t) is some arbitrary function dependent on time. This constant can be set
to zero, since it is simply a reference point to which we perform all other
measurements (this is similar to how all energies in quantum field theory are
measured with respect to an infinite vacuum energy).
The time-dependent function we can also set to zero, since we are interested
in a mass source in a finite volume; hence, the field emitted by the source
must vanish asymptotically, such that there can be no contribution from a
purely time-dependent field (since this does not vanish far from the source)
and thus f(t) = 0. Using this value for Ψ, the G0j equation in the vacuum
simplifies

∇2wi = 0. (2.38)

Given the previous arguments, the solution to this equation can be set to
wi = 0. Finally, if we look at the trace Gi

i of the Gij equation, and thus
separate the Φ and sij fields

∇2Φ = 0. (2.39)

4The most general solution for the spatially dependent part is in fact Ψ(x) = ax + c,
in which a and c are constants. However, in order for the function not to diverge at
the boundaries, the linear term must be zero. A source which is not finite at infinite
boundaries must be infinite itself, and we do not expect there to be infinite mass sources
according to observational evidence.



2.3. FIXING THE GAUGE 17

At this point, the solution to the above equation should be obvious. The
leftover piece of the Gij equation in the vacuum becomes a wave equation
for the traceless tensor

�sij = 0. (2.40)

A fortunate byproduct of these equations is that our decomposition shows
the metric perturbation is now also traceless. In fact, it can be represented
in matrix form by

hTTµν =


0 0 0 0
0
0 2sij
0

 , (2.41)

where hTTµν is the metric perturbation in the transverse traceless gauge. The
equation of motion is a familiar one

�hTTµν = 0, (2.42)

and you may recognize this result from earlier, when we obtained the same
result for the trace-reversed metric perturbation. As one can easily verify, in
the traceless transverse gauge

hTTµν = h̄TTµν . (2.43)

Thus we have arrived at the same result as before, however now we have
much more to work with: an explicit form of the matrix. There are several
components that are zero, which will make the steps from here on out much
simpler. In most of the literature, the imposition of the transverse traceless
gauge follows quickly after the de Donder gauge (note: this is actually a
strange way to proceed, since the transverse traceless gauge automatically
imposes the de Donder gauge) in an effort to obtain (2.41) by claiming they
are still allowed to impose additional constraints on ξµ without justifying
rigorously why so. In any case, the decomposition above should make this
clear. In summary, we present the properties of the traceless transverse gauge
one more time
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hTT0ν = 0,

ηµνhTTµν = 0,

∂µh
µν
TT = 0. (2.44)

(2.45)

2.4 Vacuum Solutions Revisited

One of the solutions to the equation of motion (2.42) is that of a plane
wave

hTTµν = Cµν exp(ikσx
σ), (2.46)

where Cµν is a constant, symmetric tensor which, in line with the above
properties, is traceless, transverse, and purely spatial

C0ν = 0,

ηµνCµν = 0

kµCµν = kνCµν = 0.

Plugging the plane wave solution into the differential equation (2.42) will
give the usual condition k2 = 0 for nontrivial metric perturbations. In other
words, gravitational waves propagate at the speed of light. In the plane wave
equation (2.46), the left hand side hTTµν is real, while the right side is complex.
Thus, we keep in mind that at the end of our calculations we should take the
real part of the plane wave.

Moreover, from the transversality condition of the metric perturbation,
one can easily verify (by taking a derivative on both sides) that kµC

µν = 0,
which shows that the waves are transversal. Finally, the plane wave solution
given is obviously not the most general solution, which actually consists of a
superposition of such plane waves. This general solution was given previously
in (2.22), where Aµν(~k) is the generalization of the Cµν matrix to all possible

values of ~k.
For purposes of illustration, we shall restrict ourselves to a single plane

wave, in particular one which is propagating in the z-direction, such that its
wave vector is given by
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kµ = (ω, 0, 0, k3) = (ω, 0, 0, ω). (2.47)

Here the second equality follows from the fact that kµ is a null vector. For
this scenario, the transversality condition kµCµν = ωC0ν + ωC3ν = 0, along
with C0ν , ensures

C3ν = 0. (2.48)

Combining this with the properties that this constant matrix must be trace-
less and symmetric, the most general form is given by

Cµν =


0 0 0 0
0 C11 C12 0
0 C12 −C11 0
0 0 0 0

 . (2.49)

2.5 The Effect of Gravitational Waves

The plane wave is then completely described by its frequency ω and the
two independent components of this matrix. Let us now acquire an intuition
for how such a wave affects matter. We begin by considering the most simple
example: a non-relativistic, freely falling particle. Since it is moving non-
relativistically, the velocity components can be neglected5 and plugging this
into the geodesic equation, one readily finds using our previously derived
Christoffel symbols (2.25)

d2xi

dτ 2
= −

(
Γiρσ

dxρ

dτ

dxσ

dτ

)
= −

(
Γi00

dx0

dτ

dx0

dτ

)
⇒ d2xi

dt2
= 0. (2.50)

So it seems naively that our particle remains stationary! However, this
is not the case, since all the geodesic equation tells us is that the coordinate

5In the relativistic case, the velocity components cannot be neglected and the last three
Christoffel symbols in (2.25) will play a role. As a result, there will be dependence on
∂0hij in this setting and the particle will not remain stationary.
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location of the slowly moving body is left unaffected in the transverse trace-
less gauge and any hardened practitioner of general relativity knows that one
should look at coordinate invariant observables. An example would be the
proper distance between two freely falling particles. Let us consider two such
particles at z = 0 separated on the x-axis by the coordinate distance Lc.
Their proper distance L is

L =

∫ Lc

0

dx
√
gxx =

∫ Lc

0

dx
√

1 + hTTxx (t, z = 0), (2.51)

where hTTxx (t, z = 0) is the xx (or 11) component of the traceless transverse
metric. Since this metric is small, we can use a Taylor expansion to first order
for the square root and then simply integrate since we have no x-dependence6

L ≈
∫ Lc

0

dx

(
1 +

1

2
hTTxx (t, z = 0)

)
= Lc

(
1 +

1

2
hTTxx (t, z = 0)

)
. (2.52)

At this point, it is useful to introduce some name changes for reasons
which will become clear shortly. We will refer to the components C11 and
C22 = −C11 as h+ and −h+ respectively. Moreover, we also introduce C12 =
C21 = h×. Taking the real part of the plane wave solution, such that our
exponential becomes a cosine function, the full metric becomes

ds2 = −c2dt2 + dz2 + dy2
[
1− h+ cos

[
ω
(
t− z

c

)]]
+ dx2

[
1 + h+ cos

[
ω
(
t− z

c

)]]
+ 2dxdyh× cos

[
ω
(
t− z

c

)]
,

and the previous calculation for two particles at z = 0 becomes more explicit

L =

∫ Lc

0

dx

√
1 + h+ cos

[
ω
(
t− z

c

)]
≈ Lc

(
1 +

h+

2
cos [ωt]

)
.

6Since there is no local dependence on x, we see that we in fact obtain a global descrip-
tion of the change in proper distance.
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Thus we observe that, while the coordinate distance remains unchanged
between the two particles, the proper distance oscillates with time around
the initial state due to the small varying piece containing the cosine. So
it seems that our gravitational wave does produce some type of effect after
all! To get the full picture, it is necessary to look at four particles. Let us
consider four freely falling particles in a ring which are displaced from each
other on the x and y axes but all at z = 0. For convenience, we switch to the
use of sine functions, which amounts to nothing more than shifting our time
variable by a phase factor. Let us first investigate the case in which h× = 0.
The small varying pieces are then given by

δx(t) =
h+

2
x0 sin [ωt] , δy(t) = −h+

2
y0 sin [ωt] ,

where x0 and y0 are the original locations of the particles. Consequently, if
you have two of the particles purely displaced on the x-axis (y = 0) and the
other two purely along the y-axis, then first those on the x-axis will stretch
(while the y-axis particles contract) in proper distance from each other, and
then vice versa. In other words, they form a kind of a pulsating plus sign
(Figure 2.1), and hence the notation h+ and the accompanying name plus
polarization.

Figure 2.1: The plus polarization’s effect on a ring of freely falling particles.[2]

Now we set h+ to zero to see the effect that h× induces. The variations
are given by

δx(t) =
h×
2
y0 sin [ωt] , δy(t) =

h×
2
x0 sin [ωt] . (2.53)

If we again consider the same ring of particles (though it may be useful to ro-
tate this ring by 45 degrees), then it is now a pulsating cross and thus we have
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found the cross polarization (Figure 2.2) whose strength is determined by h×.

Figure 2.2: The cross polarization’s effect is similar to that of the plus po-
larization, yet rotated by 45 degrees.[2]

So, to conclude, we have found the gravitational waves cause an oscilla-
tory behavior in the proper distance of freely falling particles and that these
waves are composed of two polarizations which differ by 45 degrees in orien-
tation. At this point, we have a pretty good idea of how gravitational waves
act in the vacuum, which behooves us to move on to the specifics of their
generation.



Chapter 3

Measuring Gravitational
Radiation

3.1 Generation of Gravitational Waves

Working in the vacuum, we found the traceless transverse gauge to be very
useful, and in this gauge the trace-reversed and normal metric perturbations
were equal to each other (since the trace was zero). However, when we have
some matter in our spacetime then this is no longer as straightforward. As
explained before, it is then simpler to work with the trace-reversed met-
ric perturbation, such that our Einstein equation (2.20) becomes relatively
simple. Furthermore, we can still impose the de Donder gauge and energy
momentum conservation which were derived before1

�h̄µν = −16πG

c4
Tµν , ∂µh̄

µν = 0, ∂µT
µν = 0. (3.1)

The Einstein equation above can readily be solved with the use of method
of Green’s functions. As a starting point, the retarded Green’s function is
introduced[5,7]

G(x− x′) = − 1

4π

1

|~x− ~x′|
δ

(
t− |~x− ~x

′|
c

− t′
)
, (3.2)

which of course satisfies the defining relation for a Green’s function, namely

1Factors of c are now reintroduced for the purpose of expressing the orders of magnitude
of physically relevant quantities later in this chapter.

23
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�xG(x − x′) = δ(4)(x − x′). Putting it to use, the solution for the trace-
reversed metric perturbation can be written as

h̄µν(x) = −16πG

c4

∫
d4x′ G(x− x′)Tµν(x′). (3.3)

We still wish to work in the TT gauge, and this is possible if we introduce
some projection operators. First we introduce the P (~n) operator, which
removes any components parallel to ~n in a tensor

Pij(~n) = δij − ninj. (3.4)

Next, we combine the P operators such that they also form a traceless oper-
ator that we shall call the Λ operator

Λij,kl(~n) = PikPjl −
1

2
PijPkl. (3.5)

Thus, by acting with Λ on the metric perturbation, we transform it into a
traceless transverse metric perturbation for any arbitrary propagation direc-
tion ~n of the waves

hTTij = Λij,klhkl. (3.6)

Continuing along with the general expression for the metric perturba-
tion, we now transform it into the traceless transverse gauge using the above
operators.

h̄TTij (t, ~x) = Λij,kl(~n)
4G

c4

∫
d3x′

1

|~x− ~x′|
Tkl

(
t− |~x− ~x

′|
c

; ~x′
)
. (3.7)

We want to examine the region far from the source, such that the distance
to the source r is much larger than the characteristic source size d. This allows
us to make the following first order approximation

|~x− ~x′| = r − ~x′ · ~n+O(d2/r), r = ||~x||. (3.8)

By inserting this identity into our expression, we can pull the inverse length
dependence out of the integral, while the argument of the energy-momentum
tensor changes accordingly (note that the integral’s bounds are still over all
of the source’s points)
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h̄TTij (t, ~x) =
4G

c4
1

r
Λij,kl(~n)

∫
|x′|<d

d3x′ Tkl

(
t− r

c
+
~x′ · ~n
c

; ~x′
)
. (3.9)

At this point, we assume that the typical velocities inside the source are
much smaller than the speed of light∣∣∣∣~x′ · ~nc

∣∣∣∣ ∂tR << 1, (3.10)

where we have introduced the retarded time tR = t − r
c
. In making this

approximation, we can perform a Taylor expansion of the stress-energy tensor
around

∣∣~x′·~n
c

∣∣
h̄TTij (t, ~x) ≈ 1

r

4G

c4
Λij,kl(~n)

[ ∫
d3xT kl(tR, ~x)

+
1

c
nm

d

dtR

∫
d3xT kl(tR, ~x)xm

+
1

2c2
nmnp

d2

dt2R

∫
d3xT kl(tR, ~x)xmxp + · · ·

]∣∣∣∣
tR=t−r/c

,(3.11)

where every consecutive term becomes increasingly smaller due to the slow
motion of the source. To clean up this long equation and gain a physical
perspective on it, one now introduces the momenta of mass density

M =
1

c2

∫
d3x T 00(t, ~x),

M i =
1

c2

∫
d3x T 00(t, ~x)xi,

M ij =
1

c2

∫
d3x T 00(t, ~x)xixj.

From the conservation law of linearized gravity ∂µT
µν = 0 and setting

ν = 0, we can find from the resultant equation, ∂0T
00 + ∂iT

i0 = 0, upon
integrating over a volume which fully contains the source, the conservation
of mass Ṁ = 0. By integrating over such a volume, we can employ the
divergence (or Stokes’) theorem to set

∫
d3x ∂iT

i0 = 0. Using analogous
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arguments, one can also prove the conservation of momentum M̈ i = 0. Thus,
the zeroth and first momenta of mass density represent conserved quantities
in our system, and as such we do not expect them to contribute to our metric.

In fact, we must look to the second momentum of mass density to find
the leading order contribution[4]. By using the conservation relation and
integrating by parts, once again over a volume containing the entire source,
we can make the following rewriting

cṀ ij =

∫
V

d3x xixj∂0T
00 = −

∫
V

d3x xixj∂kT
0k

=

∫
V

d3x
(
xjT 0i + xiT 0j

)
.

By taking another derivative with respect to time, the equation takes a simple
form

M̈ ij = 2

∫
V

d3x T ij, (3.12)

which is, up to a constant, just the original, leading order integral in the
Taylor expanded equation (3.11) for the metric! In summary, the general
expression for the metric perturbation (in the transverse traceless gauge) in
a space-time with a slowly moving and distant source is given by

hTTij (t, ~x) =
1

r

2G

c4
Λij,kl(~n)M̈kl(t− r

c
). (3.13)

For sources with relativistic velocities, the higher order terms in (3.11) would
have to be considered, corresponding to octopole, hexadecapole, and higher
order moments.

3.2 Measurable quantities

With an expression for the metric at our disposal, we would like to divert
our attention to experimentally measurable quantities. A very useful one
would be the power radiated from a source (which is also of historical signif-
icance for the Hulse-Taylor binary). A full derivation of this would be quite
lengthy, but let us at least get an idea of how this works. Naturally, since
we are considering a space-time with a source massive enough to generate
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appreciable gravitational waves, a Minkowski background metric is no longer
justified. Thus we must first have a formulation of linearized gravity around
a generic curved background[4,5]. This can be done roughly as follows by first
defining the total metric to be the background plus some small perturbation

gµν = ḡµν + hµν . (3.14)

Next one reproduces the same steps that were done before, keeping terms
only first order in the perturbation. The conditions that keep the perturba-
tion small can be described as follows: 1) the typical wavelength of a wave is
much smaller than the typical scale of the background, and thus the wave can
be treated as a small ripple, or 2) the background only contains frequencies
up to some fB which is much smaller than the frequencies of the waves and
thus the background can be treated as static. This will lead to an Einstein’s
equation that looks as follows

R̄µν −
1

2
ḡµνR̄ =

8πG

c4
(
T̄µν + tµν

)
, (3.15)

where the barred quantities refer to those which belong to the background
and the tensor tµν is the effective stress energy (pseudo)tensor of the gravi-
tational waves

tµν = − c4

8πG

(
T̄µν −

1

2
ḡµνT̄

)
. (3.16)

The treatment is fairly straightforward so long one is careful to keep the
background and perturbative contributions separate. An explicit calculation
of this tensor far from the source produces the result

tµν =
c4

32πG
∂µh

TT
αβ ∂νh

TT
αβ . (3.17)

In the literature, you will often find averaging brackets 〈〉 on the product of
metrics which indicate an average over several wavelengths. This procedure
is a consequence of the fact that tµν is not invariant under gauge trans-
formations (we have circumvented this problem by going into the traceless
transverse gauge, for which case it is invariant). By averaging over several
wavelengths, they attempt to circumvent this problem, capturing enough
curvature in a small region of space-time to describe a gauge-invariant mea-
sure. However, by performing such an average they break the covariance of
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the theory. Thus it is best to avoid this approach.
For a plane wave, the corresponding effective energy component of the waves
is then

t00 =
c2

32πG
ḣTTij ḣ

TT
ij =

c2

16πG

(
ḣ2

+ + ḣ2
×

)
, (3.18)

and thus the gravitational wave flux per unit area is given by a relatively
simple result

dE

dtdA
=

c3

16πG

(
ḣ2

+ + ḣ2
×

)
. (3.19)

For purposes of measurement with a detector on Earth, and assuming
the source emits spherically symmetric, it is more useful to convert this
quantity into units of power over solid angle by using Ω = kA

r2
where k is

a proportionality constant that we take to be equal to one such that we work
in the SI units of steradians

dP

dΩ
=

r2c3

32πG

(
ḣTTij ḣ

TT
ij

)
=

G

8πc5
Λkl,mp(~n)

[
d

dt

(
Q̈kl

) d

dt

(
Q̈mp

)]
. (3.20)

The right-most equation follows from plugging in the solution we found for
hTTµν before in terms of the Mij and consequently tidying up the result with
the introduction of Qij, the traceless quadrupole tensor, which is just the
second momentum of mass density with its trace removed

Qij = Mij −
1

3
δijMkk. (3.21)

We can perform the integration over the solid angle with the help of a
couple of relations

∫
dΩ

4π
ninj =

1

3
δij,∫

dΩ

4π
ninjnknl =

1

15
(δijδkl + δikδjl + δilδjk) . (3.22)

Performing the integration, we then find the total power radiated by a source
in the form of gravitational waves
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P =
G

5c5

[
d

dt

(
Q̈ij

) d

dt

(
Q̈ij

)]
. (3.23)

In the literature, you will often see this expression refered to as the Ein-
stein quadrupole formula. On a side note, the fact that energy is carried away
from the source would imply that linear momentum and angular momentum
are not conserved either. At leading order, the angular momentum radiated
away is

dLi

dt
=

2G

5c5
εijk
[
Q̈jl

d

dt
Q̈lk

]
, (3.24)

while the amount of linear momentum radiated is given by

dP i

dt
= − G

8πc5

∫
dω

(
d

dt
Q̈TT
jk

)(
∂iQ̈TT

jk

)
. (3.25)

This covers the quantities we would like to measure. It is now time to start
with a very basic example and then move on to some real calculations!

3.3 Application to a Simple Binary System

A very simple calculation would involve a binary system of two masses
m1 and m2 which are both in a circular orbit. The total mass is given by
M = m1 + m2 and the reduced mass by µ = m1m2

M
[7]. In the center-of-mass

frame, their relative coordinates are then given by

X(t) = R cos (ωt), Y (t) = R sin (ωt), Z(t) = 0,

where R is the relative distance between the two bodies. The second mo-
mentum of mass tensor in this case is M ij = µX iXj of which the non-zero
components are

M11 =
1

2
µR2(1 + cos (2ωt)),

M22 =
1

2
µR2(1− cos (2ωt)),

M12 =
1

2
µR2 sin (2ωt).



30 CHAPTER 3. MEASURING GRAVITATIONAL RADIATION

Plugging these in to the Einstein quadrupole formula we have just derived,
the power radiated is

P =
32

5

Gµ2R4ω6

c5
, (3.26)

and the power radiated per solid angle is

dP

dΩ
=

G

8πc5

[
dQ̈ij

dt

dQ̈ij

dt
− 2

dQ̈j
i

dt

dQ̈ik

dt
njnk +

1

2

dQ̈ij

dt

dQ̈kl

dt
ninjnknl

]
, (3.27)

where

dQ̈ij

dt
= 3µR2ω3

 sin(2ωt) − cos(2ωt) 0
− cos(2ωt) − sin(2ωt) 0

0 0 0

 . (3.28)

For purposes of illustration, the two components of the metric perturbation
tensor are as follows

h+(t) =
1

r

4G

c4
µR2ω2 (1 + cos2 θ)

2
cos(2ωt),

h×(t) =
1

r

4G

c4
µR2ω2 cos θ sin(2ωt). (3.29)

A quick calculation of the orders of magnitude should convince you that
these quantities are in fact small. This is the reason gravitational waves are
so difficult to detect directly at the distance Earth is from any strongly gener-
ating sources. Another way of understanding this is to see how much power is
radiated. A useful, close-to-home example would be the Sun-Jupiter binary
system. Their masses, distance from each other, and rotational frequency of
Jupiter around the Sun are

mJ = 2× 1027 kg, mS = 2× 1030 kg,

R = 7.8× 1013 cm, ω = 1.68× 10−7 Hz.

Upon plugging these values into our equation for the total power, we find
an almost insignificant amount
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Pgw = 5× 103 W. (3.30)

In fact, this is the same order of magnitude as the amount of electromagnetic
radiation the Earth receives per square meter from the Sun. Indeed, compare
the above number to the total power put out by the Sun in the form of
electromagnetic radiation

Pem = 3.9× 1026 W. (3.31)

They differ by 23 orders of magnitude! It is safe to say that gravitational
radiation is not a viable solution to the energy crisis in any case. A more
interesting, and historically relevant, example of a binary system would be
one with an eccentricity e. The relation for power radiation then differs by
an eccentricity-dependent constant

P =
32

5

G4µ2M2

a5c5
1

(1− e2)7/2

(
1 +

73

24
e2 +

37

96
e4
)
. (3.32)

In 1974, Russell A. Hulse and Joseph H. Taylor Jr. found a binary system
in which one of the stars was a pulsar and thus served as a reliable measure
of rotational velocity of the system. Using the eccentricity, along with the
values of the masses and semi-major axis

a = 1.95× 1011 cm, m1 = 1.441Msun,

m2 = 1.383Msun, e = 0.617,

they computed the power radiated as predicted by the theory of linearized
gravity through measurements of the orbital frequency decay. The result is
astonishingly accurate, at least accurate enough to have merited them the
1993 Nobel Prize in Physics. Their binary system stands as the best (indirect)
evidence of the theory of gravitational radiation. Since then, several other
binaries have been found which also fit the theory to high precision. The
indirect evidence supporting the theory is convincing, still we have yet to
detect gravitational waves directly. The next and final section will discuss
the efforts that are ongoing in this search.
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3.4 Experimental Hopes for the Future

Even for a binary system with large masses like the Hulse-Taylor system,
the power radiated is still meager

PH−T = 7.35× 1024 W, (3.33)

which is only about two percent of the EM radiation from the Sun; just
another harsh reminder of how little of this weakly interacting gravitational
radiation there is to detect. The weakness of the interaction has the advan-
tage that it can come from very deep in space, but the disadvantage that it
is highly difficult to detect as soon as it gets to Earth. Gravitational waves
are produced by the bulk motion of large massive objects, hence we will not
be able to find such radiation from an ordinary star in the foreseeable future.

Rather, possible sources include binary systems (preferably of neutron
stars or black holes) and non-axially symmetric collapsing stars. In order to
distinguish between the sources in a more systematic way, it is useful to clas-
sify four different bandgaps in which we might find gravitational waves[8].
The first band is known as the high frequency band and it covers the frequency
range

1 Hz ≤ f ≤ 104 Hz. (3.34)

This is the frequency range in which all our current detectors operate.
These detectors include LIGO, Virgo, GEO600, TAMA300, and ACIGA
which are diffused all over the world2. The principle backbone of each of
these is laser interferometry[9,10]. The detectors wish to detect the waves
directly by observing a change in the proper distance between two test parti-
cles (which we have addressed previously). However, this change in distance
would be too small to measure with any conventional apparatus.

Instead, one constructs two long arms which are vacuumed and contain a
mirror at their far ends. Where the two arms meet there is a beam splitter,
which takes laser light from a (much shorter) third arm and splits the beam
such that each arm has one beam travelling through it. On their way back,
the lasers enter a photodetector in a small fourth arm. If a wave would come
through this detector, it would cause the mirrors to oscillate and, unless the

2A gravitational radiation antenna, the miniGRAIL, has also been constructed in the
Netherlands at Leiden University. For more information on this nearby development, see
http://www.minigrail.nl/.
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incoming wave was at a very specific angle, they would be displaced by a
different amount.

In the unperturbed mode, the two lasers are set such that when they
meet again they completely destructively interfere. In other words, the pho-
todetector does not detect anything. However, the influence of a wave would
change the phase of the lasers (usually differently) such that photons would
in fact be measured.

Since the interaction of the gravitational waves is so weak, additional
partially reflective mirrors have been put in each arm so that any light trav-
elling back from the mirror bounces back and forth on average 100 times.
Thus, the phase change would get amplified by an effective two orders of
magnitude, which makes a clear measurement more probable. So far, some
claims of detection have been made, but none have been verified. With so
many detectors around the globe, verification is quite straightforward and
also allows for the reconstruction of the wave’s propagation direction.

The high end of this frequency range is set by our calculations of what
the largest massive bodies we know of would radiate. The low end, however,
is set by experimental problems with mechanical coupling of the detector to
ground vibrations at low frequencies and interference from human activity
and atmospheric motions. Some of the sources we expect to radiate in this
range are coalescing compact binaries, aymmetric stellar core collapses, and
periodic emitters such as rotating neutron stars. Furthermore, it may be
possible to detect a stochastic background which is produced by the culmi-
nation of emitters around us.

The other frequency band which is relevant for astrophysicists is the low
frequency band which covers the frequency range

10−5 Hz ≤ f ≤ 1 Hz. (3.35)

The upper limit on this range was discussed before, and thus there is
no possibility of scanning this range with ground-based detectors. Instead,
the solution is to use a detector which is in space far from Earth-related
disturbances. No such detector has been launched yet, but there is steady
development in getting LISA (the Laser Interferometer Space Antenna) up
and running[6,9]. Currently, they are in the process of getting the funding
to deploy such an ambitious project as well as launching LISA Pathfinder
(circa 2010) which will test, on a smaller and cheaper scale, the technologies
needed to construct LISA. If all goes according to schedule, LISA should be
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in space by 2020.
LISA works off of the same principle of laser interferometry as the ground-

based detectors such as LIGO, however it possesses three arms (and thus six
lasers) instead of two. This will not only allow it to detect gravitational
waves, but also to triangulate them. Also, LISA is a much larger detector.
Each of its arm’s lengths is an approximate 5 × 106 km. They are set up
in a triangle which is inclined 60 degrees with respect to Earth’s plane of
rotation while having a 20 degree lag with Earth itself. Thus it performs one
revolution per year.

In theory, LISA will sit in one of the Lagrangian points: one of the
five points in which the Earth and Sun’s gravitational fields effectively can-
cel each other. Due to the other bodies in the Solar System, there will be
microNewton thrusters on board to account for perturbations. Since these
perturbations occur over a long scale of several weeks or months, they can be
easily distinguished from the perturbations induced by a gravitational wave,
while these are in fact much smaller.

The lower end of the range is determined by experimental bounds, such as
the problem of diffraction of laser light in such long armlengths (on one pas-
sage through, the laser diffracts to over a distance of 20 km width). Nonethe-
less, there are many interesting sources to be found in this range. The most
important one is certainly periodic emitters. While in the high frequency
band the largest contributer to this group are isolated neutron stars, in the
low frequency band we expect to observe primarily close proximity white
dwarf binaries.

From optical observations, we know where some are and how much radi-
ation they should be emitting (which is in this range), so LISA has to detect
them otherwise something is terribly wrong. In fact, it is expected that these
will act as calibrators for the detector.

Some other sources which are expected in this range are coalescing bi-
nary systems which contain black holes (which we will be able to detect
to essentially the edge of the observable Universe), and LISA will aid the
ground-based detectors in their search for stochastic backgrounds. More-
over, LISA may be able to detect some cosmological gravitational waves.
For example, if the electroweak phase transition occured at some tempera-
ture T ∼ 100 − 1000 GeV, then this would have generated waves in LISA’s
band. This follows from the fact that the peak frequency of gravitational
waves produced at a phase transition is given by
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fpeak ∼ 100Hz

(
T

105TeV

)
. (3.36)

The above equation has been derived under the assumption of a first-order
phase transition with the collision of bubbles3.

The other two bands, known as the very low frequency and ultra low
frequency bands, are given by

10−9 Hz ≤ f ≤ 10−7 Hz, (3.37)

10−18 Hz ≤ f ≤ 10−13 Hz. (3.38)

Currently, there are no plans for detecting such waves4, and their peri-
odicity is of the order of months to decades or longer which makes detection
difficult in any case. There is a possiblity to use millipulsars to detect waves
in the very low frequency range, however not much progress has been made
in this direction yet (due to the necessary length of detection). Moreover,
the sources in the ultra low frequency band, as well as some in the very low
frequency band, will correspond to cosmological sources to be addressed in
another report and hence will be suppressed here.

3For a complete description of the calculation, consult The stochastic gravity-wave
background: sources and detection by B. Allen, gr-qc/9604033.

4Although we do know indirectly from the Cosmic Microwave Background, specifically
the BB polarization, that the lower limit of the ultra low band is set to 10−18 Hz. Moreover,
since gravitational waves induce gradient as well as curl type polarization as opposed to
scalar perturbations which only influence gradient type polarization, the detection of curl
type polarization would confirm GW production by inflation.
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Chapter 4

Conclusion

A linearized form of Einstein’s theory of general relativity expects us to
find gravitational radiation. So far, such radiation has not been detected
directly, but indirect evidence as characterized by Hulse and Taylor’s results
seem insurmountable. Moreover, as efforts increase towards direct detection,
the launch of LISA should be able to verify whether it is actually there with
the use of our knowledge of close binary white dwarf systems. In fact, by
LISA’s launch we may have already found proof with ground-based detectors
which are also constantly updating their technology and setup.

The real question though, is how this discovery will change things for us.
Most obviously, we will have found a new form of radiation which not only
unfolds another aspect of Nature, but also gives us a new tool at our dis-
posal. The advantages of gravitational waves are numerous. For one, since
it is weakly interacting, it can also travel from longer distances to us. Thus,
if we get detections fully functioning, we can probe deeper into the Universe
than ever before.

And while electromagnetic astronomy requires to focus on a small patch
of sky to obtain a good image, GW astronomy is a nearly all-sky study. Then
there is also the phase-coherence of waves from a source, as compared to the
largely phase-incoherent EM radiation; this makes detection simpler once
you have calibrated the detector correctly. Furthermore, above we have seen
that the two polarizations scale in magnitude as 1

r
. This is different from

the quantities we measure in EM radiation, such as the electric field, which
typically scales as 1

r2
. This implies that if you increase the sensitivity of a

GW detector by a factor of two, you effectively increase its detection volume
eightfold.
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38 CHAPTER 4. CONCLUSION

On a final note though, for a theoretical physicist perhaps the most valu-
able of all additions brought forth by this new form of radiation is that,
yet again, Einstein’s theory of general relativity has successfully predicted
another phenomenon. This brings us one step closer to truly saying we un-
derstand Nature at large scales.
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