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Abstract

This paper will discuss cosmic strings. Two toy models show how cosmic strings
are created and a more topological viewpoint is also presented. A scaling solu-
tion will be derived and their position as possible source of galaxy formation is
discussed. The connections with fundamental string theory and SUSY GUTs
are also presented. We end with a discussion of their gravitational effects and
possible observations.
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1 Introduction

The high point of interest in cosmic strings was in the late eighties and most of
the nineties as people thought they might offer an alternative to inflation as a
means of generating primordial density perturbations from which clusters and
galaxies grew. As I will show GUT-scale strings will give rise to geometric per-
turbations of the right magnitude. However in the late nineties the cosmic mi-
crowave background radiation measurements (COBE, BOOMERanG and later
WMAP) contradicted the predictions made by cosmic string theory and made
them very improbable as the source of primordial density fluctuations. As I will
discuss later on, they might have still contributed a little, but are certainly not
the main source. This, of course, caused a drop in interest in the field and the
number of papers on cosmic strings dropped from 67 in 1997 to a mere 27 in
2001. This is also shown in figure 1[1]. However the interest in cosmic strings

Figure 1: Number of papers with the words cosmic string in the title [1].

then started to rekindle and the number of papers on cosmic strings began to
rise again up to 46 in 2003. For this there are four important reasons, two of
them are theoretical, the others are observational.
The thirst theoretical reason finds its base in fundamental string theory. Origi-
nally people thought that there was no connection between cosmic strings and
fundamental strings. This was mainly because the energy scales were very dif-
ferent, the GUT scale or less for cosmic strings and the Planck scale for fun-
damental strings. But this no longer holds. It turns out that the string scale
may be substantially less and moreover string theory or M-theory predicts, the
existence of macroscopic defects of which cosmic strings are an example [2]. The
second theoretical reason is that supersymmetric GUTs seem to demand cosmic
strings. An important paper on this subject was written in 2004 by Rocher et
al. and I will discuss this later.
The observational reasons on the other side are not, unfortunately, made by
an unambiguous discovery, but there have been tantalizing hints. These lie in
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two observations, whose most natural explanation seemed to be cosmic strings.
The first one constitutes an observation of possible lensing by a straight cos-
mic string in the system SLC-1 made in 2003 by Sazhin et al. Although closer
inspection by the Hubble space telescope in 2006 showed that this was not a
case of lensing, this was partly responsible for the revival of interest in cosmic
strings and therefore I will also discuss this observation in detail. The second
observation is maybe even more tantalizing. This consists of the observation of
anomalous fluctuations in the system Q0957+561 made by Schild et al. in 2004.
They show that the most obvious explanation for this would be a cosmic string
loop but also state that much more work is still needed.
In this paper I will only discuss cosmic strings, other topological defects such
as domain walls or monopoles I will not discuss. In the first section I will de-
scribe how cosmic strings are formed by introducing two toy models. Then I
will derive how they evolve in the universe and show that cosmic strings have a
scaling solution. Next I will talk about why they were thought to generate pri-
mordial density perturbations and which evidence there is against this. Then
I will continue with a discussion of the connection between fundamental and
cosmic strings and how they appear in supersymmetric GUT and then proceed
with a discussion about there gravitational effects mainly focussed on the obser-
vations of cosmic strings. Here I will also mention what observational bounds
have been derived for cosmic strings. I will finish with a discussion about the
possible observations I mentioned above. Lastly it is important to mention that
throughout the entire paper I will work in units where c = 1.

2 Formation of cosmic strings

To see how cosmic strings are formed I will start with introducing two toy
models, the first one leading to global and the second one to local strings and I
will end this section with a topological viewpoint on cosmic strings.

2.1 Global strings

We start with a complex scalar field φ(x) and with the well known Mexican hat
potential given by the formula

L = ∂µφ
∗∂µφ− V (φ), V =

1
2
λ(|φ|2 − 1

2
η2)2, (1)

where λ and η are constants and L denotes the Lagrangian density. We see that
this potential has a global U(1) symmetry under transformations of the form
φ → φeiα. From this potential we can easily derive that the Euler-Lagrange
equations become

[∂2 + λ(|φ|2 − 1
2
η2)]φ = 0. (2)

Solving this equation, we find that a ground state given by φ = (η/
√

2)eiα0

breaks the U(1) symmetry. Note that this ground state is degenerate. As we
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know this will give a mass to the scalar particle equal to m2
s = λη2. Furthermore

there is a massless Nambu-Goldstone boson that is associated with the broken
symmetry. However equation 2 has also a more interesting solution. This is
a static solution with non-zero energy density. To find this solution, called a
vortex, we start with a cylindrical symmetrical ansatz for the field φ

φ =
η√
2
f(msρ)einψ, (3)

where ρ, ψ, z are the usual cylindrical coordinates and n is an integer known as
the winding number. The winding number denotes the total number of times
the field φ goes around the C1-shaped ground state if we take its values along
a closed loop. The winding number is positive for loops clockwise and negative
for counterclockwise and we will see strings if it is non-zero. This will become
more clear when we discuss their formation from a topological viewpoint later
on. The ansatz made in equation 3 is logical to make as we want to see how
this Lagrangian allows for the formation of cosmic strings and we know that
they have the same symmetry. If we insert this into equation 2 we find that this
reduces to a non-linear ordinary differential equation for f

f ′′ +
1
ξ
f ′ − n2

ξ2
f − 1

2
(f2 − 1)f = 0, (4)

where I have introduced ξ = msρ for notational convenience. From this equa-
tions we can derive the behavior of f for small and large ξ. First we see that
continuity of φ requires that f → 0 as ξ → 0. We need continuity (and even
differentiability) of f because we need the same conditions on φ in order for
the Lagrangian density given by equation 1 to be well defined. For large ξ we
see that we need f → 1, so that the field returns to its ground state. This is
necessary as it would otherwise contain excess energy and this would mean the
total energy blows up. Therefore for large ξ it makes sense to write f = 1− δf
and if we insert this into equation 4 we see that δf ∼ n2/ξ2. We know that the
energy density is given by the hamiltonian density and therefore becomes

E = |φ̇|2 + |∇φ|2 + V (φ). (5)

And here we encounter a problem because, although the energy density is well
localized near the origin, we see that it goes as ξ−2 for large ξ as a result of the
second term in equation 5. From this we see that the energy per unit length
becomes infinite which poses a problem and therefore these solutions, known as
global strings or vortices, are usually not considered to be topologically stable.
We call these solutions global strings as they come from the breaking of a global
symmetry. In the next part we will see what happens when the symmetry is
local.

2.2 Local strings

In principal the idea for local strings is the same as for global strings, but now
we only change the U(1) symmetry from a global to a local symmetry. We know

4



that the Lagrangian density then becomes

L = −1
4
FµνF

µν + |Dµφ|2 − V (φ), (6)

where Dµ = ∂µ + ieAµ and Fµν = ∂µAν − ∂νAµ. Again we start by looking at
the field equations and now they become

[D2 + λ(|φ|2 − 1
2
η2)]φ = 0, (7)

∂νF
µν + ie(φ∗Dµφ−Dµφ∗φ) = 0. (8)

We see that we still have a ground state with φ = (η/
√

2)eiα0 which brakes the
symmetry. Therefore we still have the Higgs with mass ms =

√
λη, but this time

the Nambu-Goldstone boson is incorporated into the vector field which gains a
mass mv = eη. We can now again try to derive the vortex solution. To do this
we work in the radial gauge which means that Aρ = 0 and make a cylindrical
symmetrical ansatz for the fields as

φ =
η√
2
f(msρ)einψ, Ai =

n

eρ
ψ̂ia(mvρ), (9)

where all symbols are the same as before. If we insert this in equations 7 and 8
we find a system of coupled ODEs which do not have a known solution. However
we can again look at there behavior for large ξ and we find that

f ∼ 1− f1ξ−1/2exp(−βξ) a ∼ 1− a1ξ
1/2exp(−ξ), (10)

where β = ms/mv. We see directly that δf decreases much faster than before
for large ξ. Therefore we see that the energy per unit length now stays finite
and becomes

µ =
∫
ρdρdφE(ρ) = πη2ε(β), (11)

where ε(β) is an unknown function but it has been shown analytically that
ε(1) = 1 [5]. As these vortices have a finite energy per unit length, they are
more interesting from a cosmological point of view and are called local cosmic
strings. From now on, when I talk about cosmic strings I will implicitly assume
them to be local. There are also cases when the broken symmetry is a mixture
of a local and a global symmetry but I will not go into this here.

2.3 Cosmic strings from a topological point of view

In the previous subsection we have seen how cosmic strings are formed when a
U(1) symmetry is broken. However cosmic strings can also appear when other,
more complicated symmetries are broken. Assume that we have a Lagrangian
invariant under some Lie group G. We know denote the vacuum manifold (in
the U(1) example this was just the circle, S1) by M. We define H as the little
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group of any element φ0 ∈ M. The little group is a Lie group that consists of
those elements h ∈ G for which hφ0 = φ0, so we see that this corresponds to
the sub-symmetry of G that is still conserved on the vacuum manifold and we
know from group theory that this is independent of the choice of φ0. We know
that we now get that

M = G/H. (12)

It turns out that cosmic strings are formed if and only if π1(M) is non-trivial.
From group theory and equation 12 we see that this corresponds to π0(H) being
non-trivial. Here π0 is the zeroth homotopy group and this is non-trivial when
the manifold H is not path connected. Similarly π1 is the first homotopy group
and this is non-trivial when there are closed paths on the manifold that can
not be continuously deformed into a point. The easiest example of a manifold
with non-trivial π1 is S1, the circle. For this manifold I will first derive the
homotopy group and then give a topological argument why cosmic strings have
to be formed whenM = S1. It is easy to see that a path on the circle can only
be continuously deformed into another path on the circle with the same winding
number n. Here the winding number is the total number of times the path goes
around the circle. Usually one direction is identified with the positive values of
n and the other direction with the negative values. We see that n can therefore
assume all values in the integers and we find π1(S1) = Z. To see why this
would lead to cosmic string formation, first assume we are in only two spacial
dimensions. During the phase transition that breaks the symmetry, every point
in the universe has to select a point on the vacuum manifold M = S1 and as
this happens simultaneously throughout the universe it is logical to assume that
all values ofM appear. Now assume we have a closed path such that along this
path φ assumes all those values. We now look at the values of φ inside this path
and we try to fill the entire region by continuously deforming φ. However when
we do this, we see that there is at least one point inside the path where the
value of φ will have to leave the vacuum manifold in order to contain continuity.
It is not hard to see that the value of φ will have to go to 0 in this point. This
point therefore represents trapped energy as its field value is not minimal and
corresponds to the vortex solution of the previous subsection. If we know look in
3 dimensions we see that this point becomes a string of points, a cosmic string.
From the topology it is also apparent that cosmic strings cannot just end, as
this would create similar topological problems. Therefore cosmic strings either
form loops or go on forever. There are some theories in which cosmic strings
can end in magnetic monopoles but I will not consider those here.

3 Deriving a scaling solution

As all topological defects, if they were ever created, were created in the early
universe, we have to examine how they evolve in our expanding universe. For
this we will mainly look at the energy density ratio ΩTD of the topological defect,
which is defined as the total energy contained in cosmic strings divided by the
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total energy of the universe. Obviously this can either increase, decrease or
stay constant over time. If ΩTD increases it would have dominated the energy
density at this time and the defect would already have been observed. If it
however decreases over time all the topological defects would have been spread
out so far that we can neither hope to observe them any time in the near future
nor can they be used in any theory. Therefore we need topological defects that
have a constant energy density over time. We call this a scaling solution. In
this section I will derive a scaling solution for cosmic strings.
The important thing with cosmic strings is that they can interact when they
meet. The way of this interaction is very complicated and depends on the exact
form of the vacuum manifold. The case for π1(M) = Z is very well studied and
it turns out that the strings almost always inter-commute. This means that the
two strings exchange partners as is shown in figure 2[6]. We see that the two
strings form two new strings, one consisting of the top parts of both strings and
one consisting of the bottom parts of both strings. During this inter-commuting

Figure 2: The process of intercommuting for strings with π1(M) = Z [6].

a kink is formed on both strings, but this is gradually smoothed out when the
universe expands. If π1(M) 6= Z, especially if it is not Abelian, the situation can
be much more complicated and for instance a third string connecting the other
two can be formed. This is shown in figure 3 [6]. However in order to derive the

Figure 3: The process of intercommuting for strings with π1(M) 6= Z [6].

scaling solution I will only look at the simplest case, so π1(M) = Z. The process
of intercommuting is very important as it is the main energy loss mechanism
of the cosmic strings, because if a string intercommutes with itself a small loop
will be created, and unless this loop reconnects with a string (which is unlikely

7



for a small loop), it will disappear by sending out gravitational radiation.
We see that the string tension and the mass per unit length of the string are
equal because of Lorentz invariance under boosts along the direction of the string
as shown in [3]. This tension µ is of order µ ∼ η2 as we have seen before. Now
we can follow the calculation by Durrer [6]. First of all a number of numerical
simulations ([7], [8] and [9]) has shown that about 90% of the string network
consists of infinite strings, the rest are loops which decay. Therefore we focus
on infinite strings. We take v(t) to be the typical number of segments of infinite
string inside one horizon volume at time t. Note that this volume is then equal
to t3 and that from here on I assume that H ∼ 1/t. This then leads to the
energy density of infinite strings

ρ∞ ∼
v(t)µt
t3

. (13)

As strings move at relativistic speeds they experience an average v − 1 inter-
sections per time t. The total number of intersections per time t per volume t3

then becomes ∼ v(v − 1)/t4. From this we can calculate the number of loops
chopped off per time t and per volume t3 and this becomes

dn

dt
∼ pv(v − 1)/t4, (14)

where p denotes the probability of loop creation per crossing. We estimate that
the chopped off loop is of order t. This we can use to calculate the energy loss
from the system per unit time

d

dt
(ρ∞a3) = −µtdn

dt
a3 ∼ a3µpv(v − 1)/t3. (15)

Here a is the scale factor and for the rest of the calculation I will assume we
are in radiation era, so a ∝ t1/2. However the calculation goes similarly in
matter era and the final result only differs in a factor. The factor a3 is added
in equation 15 to keep the calculation as clear as possible. If we now insert
equation 13 into equation 15, we get for the left hand side

d

dt
(ρ∞a3) =

d

dt

(
v(t)µa3

t2

)
=
µa3

t2

(
v̇ +

3
2t
v − 2

t
v

)
, (16)

and if we insert this back in 15 we get

v̇ − 1
2t
v = −p

t
v(v − 1). (17)

We can further rewrite this into

v̇ =
v

2
(1/2− p(v − 1)). (18)

We see that we now have a differential equation for v. It has a two equilibria
v = 0 and v = 1 + 1/(2p). To see how strings behave we have to determine

8



Figure 4: Solutions to the differential equation 18 made in the program CON-
TENT. As this is a general inquiry into the behavior of the solutions, note that
we do not have units on the axis and this is not needed either, as the behavior
is independent of the units or the scale.

which of these two equilibria is stable and which is unstable. We first look at
the case for p = 0.3. The situation is shown in figure 4 and we see that the top
equilibrium, v = 1 + 1/(2p), is the stable one. From bifurcation theory we know
that the stability of the equilibria of this kind of equations can only change
when the two equilibria meet. We see that this will only happen at p = −1/2
and therefore for p between 0 and 1 we see that the top equilibrium is stable.
So we see that v will always move towards v = 1 + 1/(2p) and therefore the
energy density in cosmic strings will move towards

Ω∞ =
ρ∞
ρ

=
8πG
3H2

ρ∞ ∼ Gµ, (19)

where we have used that 1/H ∼ t. From this we see that strings constitute a
constant faction of the energy distribution in the universe, although the numer-
ical coefficient in the final formula does change when we pass from radiation to
matter era. Therefore ones strings are formed they do not die out nor come to
dominate the universe. So they could be created at the end of inflation and still
be observable today.

4 Cosmic strings as source of geometric pertur-
bations

As said in the introduction, cosmic strings were once considered to be a possible
source of geometric perturbations from which eventually galaxies and clusters
formed. First I will explain why they were considered and next I will discuss
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the evidence against this point of view.
As strings represent a lot of trapped energy it is not hard to see that cosmic
strings moving around in the early universe would perturb the matter distribu-
tion. From the previous calculations we can see that the size of these perturba-
tions are

δρ

ρ
∼ Ω∞ ∼ Gµ, (20)

where ρ is the matter density in the early universe. If we assume the cos-
mic strings were created around the GUT scale then these perturbations are
of order 10−6 or 10−7 and this is just in the right order of magnitude to seed
galaxy formation. This is the reason they were once considered to be able to
seed galaxy formation and cosmic strings were so popular during the nineties.
During this period accurate predictions were made, using a lot of numerical
work, predicting the large-scale density perturbations explored by galactic dis-
tribution surveys and the temperature inhomogeneities in the cosmic microwave
background. However, although the predictions were in the right ballpark, it
turned out to be very difficult to get them to fit precisely, especially to both
the large scale structure and the CMB simultaneously. The particular problem
lay in explaining the anisotropies in the CMB observed first by COBE and later
by WMAP. The cosmic string scenario turned out to have no explanation for
the peaks in the angular power spectrum, the so-called acoustic peaks, as can
be clearly seen from the numerical simulations in figure 5. On the other hand
the inflation theory, which rivalled with cosmic strings to explain the density
perturbations and in which the origin of the perturbations can be traced back to
quantum fluctuations during an inflationary period, managed to predict these
peaks exactly. However this does not mean that cosmic strings do not exist. It
only means that they do not play an important role in seeding the creation of
galaxies. But as we can see in figure 5 [10] cosmic strings can be fitted to the
CMB data as long as they do not contribute more than approximately 10% of
the density perturbations. As a result many people lost there interest in the
the theory and the number of papers on the topic dropped as we saw in figure 1
and a lot of people thought that the theory was doomed. However it has made
a remarkable comeback and now I will discuss why this has happend.

5 Connection with fundamental string theory

5.1 Fundamental superstring theory

As I said in the introduction, the revival of the interest in cosmic strings was
partly due to a theoretical advance in the field of fundamental string theory. I
will briefly describe how cosmic strings fit in superstring theory or its modern
incarnation M-theory. For this I will mainly use the review of Davis and Kibble
[4].
As we know one of the reasons for developing fundamental string theory came

10



Figure 5: Angular power spectrum of CMB from WMAP. We take B to be the
fraction of the power due to cosmic strings. Then the solid red line corresponds
to B = 0, the dotted black line to B = 0.05, the short-dash green line to B = 0.1,
the long-dash light blue line B = 0.15 and the dot-dash dark blue line to B = 1
[10].

from an attempt to unify gravity with the other interactions. Although this has
long been considered to be the holy grail of theoretical physics, it turned out
that major obstacles were formed by the appearance of infinities. In contra-
diction with other quantum field theories, in this case the infinities can not be
renormalized and because of this we can not extract finite answers to physical
questions. It turned out that no quantum version of the theory of general rela-
tivity is renormalizable. The cause of these infinities lies in the fact that we are
dealing with point particles. Even in classical electromagnetic theory the self-
energy of a charged particle contains infinities: the potential energy stored in a
spherical distribution of charge approaches infinity as the radius tends to zero.
This then led to the proposal of string theory: the particles of our theory should
not be viewed as point particles, but as extended objects. The idea was that
all elementary particles, like electrons, quarks, photons, etc., could be regarded
as different oscillation states of a fundamental string. However we were still
not able to eliminate all infinities, for this we would need to add some special
features to the theory. The first of these is supersymmetry (SUSY). This re-
markable feature relates bosons to fermions and in a perfect SUSY world every
boson would have a fermion partner of equal mass and vice versa. However as
these supersymmetric partners have never been observed, the idea is that also
this symmetry must be broken. The question is then how does adding super-
symmetry to our string theory help us get rid of the infinities. This is because in
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a lot of cases bosons and fermions make equal but opposite contributions. This
then means that if they have exact partners they would cancel and eliminate
some of the infinities we are dealing with. However we were not quite there yet.
We were now able to construct some superstring theories that were free of the
infinities that plagued us before, but this would only happen in 10 dimensions.
This led to the idea that our universe consists of 10 dimensions (9 space and 1
time), but 6 of those are curled up very small. On a macroscopic scale it would
then look like our usual four-dimensional space.
Originally people did not see any connections between fundamental and cosmic
strings and they were considered to be very different for multiple reasons. The
first and major reason for this was the difference in energy scales, to which I
already referred in the introduction. Gravity would become as strong as the
other interactions around the Planck scale of around 1019GeV, which is much
larger than the commonly used GUT scale of 1015−1016GeV. In the units I used
before this would mean that for a fundamental string Gµ ∼ 1. A second reason
why people thought they very different was the length scale, it was thought
that, if you would expand a fundamental string to the same size as a cosmic
string, it would break into several smaller pieces.
However there have been important changes in the theory over the last years.
This is mainly due to the introduction of the brane-world idea. This encom-
passes a method of reducing the dimension from 10 to 4 in which strings are not
the only localized objects, but there also exist p-dimensional objects, known as
p-branes. In this theory a 0-brane would be a particle, a 1-brane would be a
string and so on. This then led to D-branes where the D denotes that we are
working with Dirichlet boundary conditions and this in essence means that in
addition to the closed loops that were already used in fundamental string theory,
there may also be open strings whose ends are tied to D-branes. This should
then be interpreted in the following way: the closed string loops still give rise to
gravity, but the open strings give rise to the matter fields. It then follows that
matter can be trapped on a D-brane whereas gravity can feel all the extra di-
mensions. In a more general way of speaking this means that matter is confined
to a hypersurface (called a brane) which is embedded in a higher-dimensional
space (called the bulk). This would then lead to weaker constraints on the extra
dimensions, as the known particles only propagate in the usual three space di-
mensions and the other dimensions are only used by gravity and possibly some
exotic particles, which have not yet been observed. From brain theory also the
notion of cosmic superstring has arisen, which would be a comparable object to
regular cosmic string. In the next part I will describe how they arise in brane
theory.

5.2 Cosmic superstrings

One of the ideas in the brane-world scenario was the introduction of ”warped”
space-time. This would mean that the usual metric as we know it from general
relativity ds2 = dt2−dx2 no longer holds, but in stead this space-time is warped
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to encompass the extra dimensions. It then becomes

ds2 = e−A(y)(dt2 − dx2)− dy2, (21)

where y denotes the coordinates in the extra dimensions and A(y) is called the
warp factor and should be a known, positive function. In essence this encom-
passes a red-shift in the compact dimensions. This then allows the creation
of a hierarchy of scales in some brane theories, such that gravity, which also
propagates in the bulk, can be on the Planck scale, whilst the physics that is
confined to the brane can have a much lower energy scale. Now a lot depends
on the behavior of the warp factor. There are some theories in which the com-
pact dimensions form a simple space like a sphere or a torus and which have an
(almost) constant warp factor. However there are also solutions in which the
warp factor can vary strongly when we move through the compact dimensions,
possibly with special regions known as throats where its value decreases rapidly.
This is shown in figure 6 [4]. In the central region the warp factor would be

Figure 6: Space with a throat. In the middle we have compactified space with
the throat on the left, where the brane, anti-brane pair lies [4].

around 1, but in the throat it would be much less than 1. There is another
effect of the warped space and this is that for a four-dimensional observer like
us the fundamental string mass per unit length would appear to be much less:

µ = e−A(y)µ0, (22)

where µ0 is the ten-dimensional scale. So fundamental strings might not even
have such high energies as we originally expected, even if µ0 is at the Planck
scale. So from this we see that the main objection against the similarity of
cosmic and fundamental string theory no longer holds, as the difference in energy
scales is much smaller than was originally thought.
As we have seen before the idea of inflation has been widely accepted. As
string theory is meant to be a theory of everything, it should also describe
the early universe and therefore inflation. This has then recently led to the
development of brane inflation. This goes as follows: the universe contains

13



an extra brane and anti-brane pair (with opposite charge), which attract each
other in the same way as normal charged particles. This pair is separated in
the compact dimensions and the distance between them plays the role of the
inflaton. Inflation is then driven by the potential energy stored in the pair.
Once they meet, the pair annihilates into lower dimensional branes and it is
shown that D-strings are generically formed [4]. Multiple models of this exist,
but the most fully developed consists of a D3-brane, anti-brane pair placed at
the bottom of the throat. These branes wrap the usual 3 dimensional space so
they appear as points in the throat of the extra dimensions as shown in figure
6. The whole process of inflation and subsequent annihilation followed by the
creation of lower dimensional D-branes takes place in the throat. It is proven
that D1-branes (or D-strings) are formed. However in addition also fundamental
strings, called F-strings can be formed. Note that although they are created in
the same process D- and F-strings are very different. D-strings are similar to the
cosmic strings discussed before, but F-strings are quantum mechanical objects.
As both these strings are created in the throat and we know that the space
there is heavily warped the energy scale of these strings can be much less than
the Planck scale. The estimates for this depend on the details of the theory but
vary between 10−11 < Gµ < 10−6. Both the D- and F-strings discussed here
are known as cosmic superstrings. This idea is not new (it was first proposed
in 1985 by E. Witten) but they were always dismissed because they were at a
too high energy scale and unstable. However as we have seen the problem of
the energy scale is solved by introducing a warped space and furthermore the
throat might provide a stabilizing potential. Therefore it is now believed that
cosmic superstrings might be the best way of observing actual string theory.

5.3 Cosmology of D- and F-strings

D- and F-strings behave differently from the strings described before. Espe-
cially the intercommuting is very different. When two D- or F-strings meet the
probability of intercommuting is not 1 as by normal cosmic strings but is a lot
less. For D-strings this is because they can miss each other in the compact
dimension and F-strings are quantum mechanical so their scattering should be
calculated quantum mechanically. It has been estimated that the probability
for intercommuting lies between 10−3 < P < 1 for F-strings and 10−1 < P < 1
for D-strings. This would obviously also effect the chance of self-intersecting
and therefore the string network might look quite differently. It is suggested
that such a network would be denser and slower and it is likely that this would
lead to an increase in the number of string loops. Furthermore normal cosmic
strings can only emit the standard particles, but D- and F-strings can also emit
exotic particles as a result of the underlying superstring theory.
There might be another problem arising. As D- and F-strings are different
strings, they might not be able to intercommute but instead form a three-string
junction with a composite DF-string, as shown in figure 7 [4]. This might be
a very serious problem as this would hinder loops to form effectively. As we
have seen loops play an important role in the derivation of the scaling solution
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Figure 7: Possibility of intercommuting for D- and F-strings [4].

and the absence of them might therefore pose serious difficulties. There is an
other possibility, namely it might be possible to have bound states of p F-strings
and q D-strings. Such a network would evolve very differently and might stay
frozen in time, which means that it just stretches with the expansion of the
universe. As we see there are many interesting possibilities and therefore much
more research is needed in this area.

6 Genericity of cosmic strings in SUSY GUT

In the previous section we saw the advances in fundamental string theory which
let to a rekindle of interest in cosmic string theory. As I said in the introduction
there was another theoretical reason for the renewed interest. This is found
in advances made in the field of Supersymmetric Grand Unification Theories
(SUSY GUTs). As we know this theory consists of a larger symmetry group
which is broken down to the symmetry group of the standard model (GSM )
either directly or in multiple steps somewhere around the GUT scale of about
1016GeV. I will not go to much into detail about all possible GUTs that exist,
but here I mainly want to discuss an interesting paper by Rocher et al. from
2004 [11]. In this paper they made a number of assumptions on the way Grand
Unification works and then examined all the possible groups. The first assump-
tion they made was that there were no monopoles formed after inflation, which
seems to be a good assumption as this prevents monopoles from overclosing the
universe (the monopole problem). The second assumption they made however
is a lot weaker and could very well be wrong. They assume that the inflaton
field, that drives inflation, is included in the model as a pair of Higgs fields.
However there are a lot of other possibilities for how inflation happens, for in-
stance the brane inflation model we have seen before. Their third assumption is
that baryogenesis occurs through leptogenesis, which means that the U(1)B−L
symmetry has to be broken at the end of inflation. Although this is one of
the leading theories to explain baryogenesis, there are others and therefore this
assumption has to be treated carefully as well. There final assumption is that
the R-parity is either contained in U(1)B−L or the standard model group gets
expanded to GSM × Z2. As this assumption is again quite standard, it should
be okay as it covers the two most promising possibilities. Next they considered
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all groups with ranks between 4 and 8 (4 being the rank of GSM ) and looked
at all possible symmetry breaking schemes. The considered groups included
the groups SU(5), SO(10) and E6, which are often mentioned as a possible
Grand Unification group. The number of possible schemes considered was very
large (E6 all ready had over 1200 different schemes), but what they found was
very interesting. It turned out that every symmetry breaking scheme satisfying
their 4 assumptions will create cosmic strings at the end of inflation. Therefore
this could be a very good indication that cosmic strings might exist, although
this, as said before, will come down to the correctness of especially the second
and the third assumption. Therefore more work in this field is needed to see
if the assumptions made are correct. On the other hand, if we could increase
the observational bounds, that I will give later, to rule out that cosmic strings
are created at the GUT scale this might tell us something about how either
baryogenesis or inflation works.

7 Gravitational effects of cosmic strings

In the previous section we have seen two theoretical reasons for the revival of
interest in cosmic strings. In this section I will describe the gravitational effects
of cosmic strings and from this we can deduce methods of detecting them. Then
in the next section I will discuss recent claims of observations of cosmic strings
based on these methods, which are the observational reasons for the revival of
interest.
We will first look at the space-time around the string. Here we will use that the
energy per unit length and the string tension are equal as follows from Lorentz
invariance along the string. As a result the ordinary gravitational attraction
towards the string will vanish as we will see shortly. I will do the derivation in
Minkowski space as this is the only space in which we can find the solution. We
start with a straight string along the z-axis and find for the string stress tensor

Tµν = µdiag(1, 0, 0,−1)δ(x)δ(y). (23)

If we introduce hµν = gµν − ηµν we find that the Linearized Einstein equations
become

∂2hµν = −16πG(Tµν −
1
2
ηµνT ) (24)

and we see that this has the solution

hµν = 8Gµ ln(ρ/ρ0)diag(0, 1, 1, 0), (25)

where ρ =
√
x2 + y2 and ρ0 is an arbitrary radial length scale. We see that this

solution blows up for large ρ so it cannot be a viable solution. However if we
introduce the coordinate

[1− 8πGµ ln(ρ/ρ0)]ρ2 = (1− 4Gµ)2R2, (26)
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we see that solution transforms into a solution of the Einstein equations (which
can be easily verified by plugging it in). This leads to the metric

ds2 = dt2 − dz2 − dR2 − (1− 4Gµ)2R2dψ2 (27)

where we have assumed that Gµ � 1 and worked up to second order in Gµ,
which seems a reasonable assumption based on the bounds I will give later. We
can show that this space is locally flat, but globally curved by doing a coordinate
transformation to a new angle coordinate ψ̄ = (1 − 4Gµ)ψ. In this coordinate
the metric becomes

ds2 = dt2 − dz2 − dR2 −R2dψ̄2 (28)

again assuming that Gµ� 1, but now only working to first order in (Gµ). We
see that this looks like normal flat space, but note that the angle ψ̄ does not
run from 0 to 2π but from 0 to (2π − δ) where the defect angle δ is given by

δ = 8πGµ ≈ 5.2”
(
Gµ

10−6

)
, (29)

so for a string created in a phase transition around the GUT scale this angle is
a few arc seconds. What we see here is called a cone-shaped metric.
From this we see that a straight gravitational string acts as a cylindrical gravi-
tational lens with a very characteristic pattern of lensed images. We expect to
see two images of a source behind the string separated by an angle of order δ.
We can calculate this angle more precisely and this becomes (see also figure 8
[4])

Figure 8: Lensing by a cosmic string [4].

α =
Dls

Ds
δ sin θ, (30)

where Ds is the angular diameter distance from the source to us, Dls is that
of the source to the lens and θ is the angle between the line of sight and the
tangent to the string.
However this picture is complicated by two things. First of all, in the discussion
above we have assumed that the string was standing still, which is not a correct
assumption. In general, strings are moving and often with quite large velocities.
In particular the velocity component perpendicular to the line of sight is im-
portant. Assume now that the string is moving with transverse velocity v, then
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this will cause the two images to have slightly different red-shifts: the image
behind the string will be blue-shifted relative to that ahead of it by a frequency
difference δω of order

δω

ω
∼ vδ. (31)

The same thing also applies to the CMB. If a string moves transversely this
would induce a discontinuity in the temperature of the CMB and would be a
unique signal of a cosmic string if it were observed. The size of this discontinuity
for a string moving with transverse velocity v is of the magnitude

δT/T = 8πGµγv⊥, (32)

where γ = (1 − v2)−1/2 (recall that we use units in which c=1, so this makes
sense) and v⊥ is the component of the string velocity normal to the plane con-
taining the string and the line of sight. Using this we can derive an upper limit
on the value of the parameter Gµ from the WMAP observations. Pogosian et
al [10] quote a limit

Gµ ≤ 1.3× 10−6

√
Bλ

0.1
, (33)

where λ is the probability of strings inter-commuting when two strings meet
(usually assumed to be 1) and B is the fraction of the CMB power spectrum
attributable to cosmic strings, which satisfies B < 0.1 as we saw before. Another
recent study by Jeong and Smoot [2], where they searched for evidence of a
cosmic string in the WMAP data, yielded the tighter bound

Gµ ≤ 3.3× 10−7. (34)

This result is however somewhat dependent on assumptions about string evolu-
tion.
A second consequence of a moving string is a change in the observed deficit
angle α from its form in 30. However I will first discuss the second reason, why
the calculation above is not completely correct, before giving the correct version
of 30.
This reason is that strings can intercommute as discussed before and that as
a result strings can become rather kinky. Therefore if we view a string on a
larger scale, the effective energy per unit length U and the string tension T are
no longer equal. If we would as an example consider a string which is a zigzag
of straight elements each making an angle ψ with a median line then it can be
derived [2] that

U = µ secψ, (35)
T = µ cosψ, (36)

where secψ = 1/ cosψ denotes the secant. Furthermore we note that

U > µ > T (37)
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and that

UT = µ2. (38)

In fact it can be proven that these last two results also hold for a more general
kinky string [2]. As a result of 37 the ordinary gravitational attraction towards
the string no longer vanishes. It is given by

g =
2G(U − T )

r
, (39)

where r denotes the distance to the string [2]. As this changes the metric it also
changes the defect angle and we see that this becomes

δ = 4πG(U + T ). (40)

We can now again calculate the observed deficit angle α and we now also include
the effects of the movement of the string. If we assume that the string is moving
with velocity v perpendicular to its direction, then we find

α =
8πGU

γ(1− vr)
Dls

Ds
sin θ, (41)

where vr is the radial component of v [4].
So far we have seen two ways of observing cosmic strings, either by lensing or by
a discontinuity in the CMB temperature. Another way of observing them would
be through the gravitational radiation they emit. As the gravitational radiation
is created from friction when the string moves through space the highest emission
will take place on those points of the string where it is moving extremely fast. We
know that loops of string undergo periodic oscillations with a period related to
the size of the loop. From their dynamics it follows that during each oscillation
there will be a few points at which the string instantaneously forms a cusp. In
the neighborhood of these cusps the string velocity then approaches the speed
of light [4]. This would generate an intense pulse of gravitational radiation and
would be beamed into the direction of motion of the cusp. If strings were formed
at a GUT phase transition, these pulses should be detected among the most
prominent signals seen by the gravitational-wave detectors now in operation or
planned, especially LIGO and LISA. From this very same effect a limit, although
indirect, on Gµ has already been derived. This is done by looking at the timing
of millisecond pulsars. We know that gravitational waves traveling between us
and the pulsar would distort space-time and therefore cause random fluctuations
in the pulsar timing. However as these have not been observed (in fact pulsar
timing is extremely regular), this then puts an upper limit on the amount of
gravitational radiation and therefor on Gµ. The upper limit on the fraction of
the critical density in gravitational waves with periods of up to 10 years becomes
[2]

Ggw ≤ 4× 10−9. (42)
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From this we can retrieve an upper bound on Gµ by making an estimate of the
gravitational radiation emitted by strings. This suggests a bound

Gµ ≤ 10−7, (43)

however we should be cautious here as this estimate is subject to considerable
uncertainties, because it depends on assumptions about the evolution of small-
scale structure.

8 Possible observations of cosmic strings

In the previous section, I discussed three ways of observing cosmic strings. In
this section I will illustrate two of these ways with a possible observation. First
I will discuss possible lensing through a cosmic string, for which I will look at
the system CSL-1. Although research by the Hubble telescope in 2006 showed
that this is not a case of lensing by a cosmic string, I still want to discuss it,
cause it shows how lensing by a cosmic string should look and what we need to
watch out for in the future. In the second part of this section I will discuss a
cosmic string loop as a source of strange oscillations observed in the data from
the well known system Q0957+561. The claim that these oscillations are caused
by a cosmic string loop dates back to 2004, but since then this has neither been
confirmed nor falsified.

8.1 Observation of cosmic string lensing

In 2003 in an Italian-Russian collaboration Sazhin et al. report the observation
of a cosmic string lensing candidate, named CSL-1 (Capodimonte-Sternberg
Lens Candidate no. 1)[4]. This candidate constitutes a pair of galaxy images
found in the OACDF survey (Osservatorio Astronomico di Capodimonte - Deep
Field). The reasons that the two galaxy images are considered to be possibly a
sign of cosmic string lensing, are that they are close together (separated by 2”,
or approximately 20 kpc), they have identical red-shift of z = 0.46± 0.008 and
their magnitudes in three different frequency bands are equal within errors[4]:

B V R
mA 22.73± 0.15 20.95± 0.13 19.67± 0.20
mB 22.57± 0.15 21.05± 0.13 19.66± 0.20

Here mA denotes the results for image A (the left image in figure 10) and mB

denotes the results for image B. There are multiple explanations for these
observations to be considered. First of all this might be an image of a single
large galaxy from which the central part of the image is obscured by a dust lane.
However it would be a remarkable coincidence that the two remaining visible
parts of the galaxy are so similar. Furthermore this is ruled out by examining
the spectral profile.
A second possibility which is harder to rule out is that what we see are two
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different, almost identical galaxies who just happen to be seen close together.
However this also would be quite remarkable.
Furthermore the lensing might be due to a more conventional object. However
in that case it is unlikely to get two similar images and if it is lensing by a galaxy
it would have to be very heavy and near to us, so it should be easy to detect.
But no such galaxy is seen. Therefore Sazhin et al conclude that the most likely
explanation is lensing by a cosmic string. If so we can estimate how large GU
has to be in order to get the separation that is observed. This limit becomes

GU ≥ 4× 10−7, (44)

where we have assumed that the other factors in (41) are of the order of unity.
If they are much smaller GU has to be even larger. We see that if this is not
to be in conflict with the limits given in (34) and (43) U has to be considerably
larger than µ, so the string has to be quite kinky.
If what we see is really lensing by a cosmic string then there should be more
lensed objects in the neighborhood. Therefore they looked at images of galaxies
in a 4000 x 4000-pixel section of the field (16’ x 16’) centered on CSL-1 to
see if they could find more. From other surveys they estimated that there
were approximately 2200 galaxies within a magnitude range of 20 to 24 in the
R band. The question is how many of these should be lensed by the cosmic
string. Roughly speaking you can say that all galaxies within a strip of width 2δ
centered on the string should produce double images. The amount then depends
on the length of the string, which of course depends on the amount of kinks on
the string. However it is estimated that the number of lensed pairs should lie
between 9 (for a straight string) and around 200 (for a random walk). This is
in strong contrast with an expectation of no more then two lensed pairs due
to conventional lensing objects. In the survey they found 11 likely candidates,
so this adds extra weight to the cosmic string lensing scenario. Furthermore
as the number of lensing candidates lies close to the number expected for a
straight string, we expect the lensed pairs to lie around a straight line. In figure
9 [4] we see the location of the six brightest pairs. They do not show a sharp
concentration around a line but neither do they seem to be placed randomly.
We see that the pairs 2,3,5 and 6 could be very well fitted to a smooth line and
the others might be added with a limited number of kinks.
It is obvious that this observation created much excitement in the community
when these results came out in 2003. They were partially responsible for the
revived interest in cosmic strings. However a lot of research has been done on
this system since then and this ruled out lensing by a cosmic string. The death
blow came by a 2006 survey by the Hubble telescope. Here I will present this
evidence against the cosmic string scenario.
For this I use a paper by Agol et al from April 2006[12]. They imaged CSL-1 with
the Wide-Field Channel (WFC) on the Advanced Camera for Surveys (ACS) on
the Hubble Space Telescope (HST). This data presented strong evidence against
the cosmic string lensing scenario. In figure 10 [12] we see a direct examination
of the image pair and it shows that, although they are similar elliptical galaxies,
there principal axes are significantly misaligned. This effect can not be explained
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Figure 9: Position of the lensing candidates [4].

by any kind of gravitational lensing. As we already saw that the two galaxies
have similar red-shifts this suggests that they are in the early stages of merging.
Agol et al have done more tests to show beyond any doubt that the cosmic
string scenario is wrong, but I will not quote these results here.
We have seen what cosmic string lensing candidates should look like in the
example of CSL-1. Although under closer examination this system turned out
to be something else we know have a good idea what to look for. Furthermore
by Sazhin et al three other cosmic string lensing candidates (CSL-2 to CSl-4)
have been identified but still need to be analyzed. Possibly there could be a
better candidate between those.

8.2 Observation of cosmic string loop

8.2.1 Observation of anomalous fluctuations in the system Q0957+561

Here I will discuss a claim by Schild et al. that anomalous fluctuations in the ob-
servations of the brightness of the two quasar images in the system Q0957+561
are caused by a oscillating cosmic string loop. In 2004 Schild et al. found
anomalous fluctuations of the brightness of the two quasars in this system[13].
This system is a known gravitational lens system and consists of two quasar im-
ages separated by approximately 6”. It is known that both images are from the
same quasar. It was originally discovered in 1979 by Walsh et al. and it was di-
rectly understood that it was very important for astrophysics. This was because
measurements of the time delay between fluctuations in the two images would
allow determination of the Hubble constant from a simple theory, independent
of uncertainties that were present in other measurements. So from this time on
measurements of the time delay were conducted by amongst others Schild and
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Figure 10: Data from the Hubble Space Telescope on the system CSL-1 [12].

Cholfin (1986). It was then quickly recognized that there were still differences
between the time delay corrected brightness curves, but a clear pattern still
emerged. The differences were then attributed to microlensing by individual
massive objects in the lens galaxy. As this microlensing might allow the detec-
tion of any missing baryonic mass in the galaxy, this then justified extensive
monitoring campaigns and in the 24 years since its discovery the system has
been observed on more than 1500 nights. From this monitoring two principal
components of fluctuations in the quasar’s brightness have been revealed. There
is a component due to intrinsic quasar brightness fluctuations, first seen in im-
age A and then seen 417.1 days later in image B, and a microlensing component
arising in only one image component due to individual stars along the line of
sight. Schild et al. then produced evidence for a possible third component of
quasar brightness fluctuations, seen in the combination of figures 11 and 12[13].

These figures plot the measured brightness of the quasar images as obtained
from measurements between 1994 and 1996. In the first figure no corrections
have been made for time delay and the plotted symbols are about the size of the
error bars previously established (0.006 and 0.007 mag for the images of A nd
B respectively). We see here the unexpected result that for approximately 400
days an oscillation of 4% amplitude and a periodicity of approximately 100 days
was observed. We see that the amplitude of these fluctuations is well above the
error in the measurements. However we see that the correlation between the
two images for 0 lag is not perfect, as there are multiple processes simultane-
ously causing brightness fluctuations. It is known that microlensing can impose
a randem pattern of fluctuations with durations ranging from 1 day to decades.
However it is unlikely that microlensing could explain the observed fluctuations
entirely, especially as it would be unexpected for them to be apparently in phase.
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Figure 11: Brightness of the two quasar images displayed with no time delay.
The upper picture shows the brightness of image A fitted to a sign curve, the
bottom picture shows the brightness of image B. The axis show the magnitude
at AT 6500 on the vertical axis and the Julian Date on the horizontal axis. [13].

However there is not yet a statistical test for the significance of this simultane-
ity. If on the other hand the fluctuations would be intrinsic to the quasar, they
would also have to appear in the observations of image B 417 days earlier (left
part of figure 12) and of image A 417 day later (right part of figure 12). However
in these figures we see that the observed pattern is probably not present there,
so it is not probable that the oscillations are intrinsic to the quasar.
The important point of these observations is that they appear simultaneously.
If they were either caused by fluctuations in the quasar’s intrinsic brightness or
were produced in the proximity of the lens galaxy, they should be seen with a
large time delay. Only if they are caused locally (i.e. between the lens galaxy
and the observer, but close to the observer), then can these fluctuations be ob-
served simultaneously. Next I will discuss two possibilities of objects that could
cause these fluctuations. First I will discuss a cosmic string and secondly I will
discuss the possibility of the fluctuations being caused by orbiting of binary
stars. However this will turn out to be unlikely because this would require very
large masses for the stars.

8.2.2 Explanation by a string loop

I start by looking at some characteristics of cosmic strings and especially of
the string loops. If a loop is created at time t, the typical loop length will be
l ∼ αt, i.e. about α of the horizon size t. Usually we assume that during string
evolution loops constitute a fixed part of the total string network; which results
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Figure 12: Brightness of the two quasar images displayed with time delay. In
the left image the bottom picture shows the brightness of image B 417 days
later. In the right image the top picture shows the brightness of image A 417
days earlier. The axis show the Magnitude At 6500 on the vertical axis and the
Julian Date on the horizontal axis. [13].

in the loop number density

nl(t) ∼ α−1t−3. (45)

We can determine α by the gravitational back reaction and find α ∼ kgGµ,
where kg ∼ 50 is a numerical constant. For a GUT string this leads to αGUT ∼
10−4. We know that the loops oscillate and lose their energy and this is emitted
for the largest part through gravitational radiation. Furthermore it has been
determined [13] that for a loop of length l the oscillation period is Tl = l/2 and
the lifetime is given by τl ∼ l/(kgGµ). Now we can derive what parameters
have to hold for a cosmic string loop to create the oscillations we saw. De
Laix and Vachaspati showed in 1996 that in the simplest case of a circular
loop with oscillations reduced to variations in the radius, this does not effect
the image brightness of a point source if the loop does not overlap the source
[13]. Therefore Schild et al take an asymmetric loop to explain the observed
oscillations. They consider a maximally asymmetrical string configuration in
the form of a rotating double line segment of length 2R transverse to the line
of sight. They choose the representation

x1 = R cos (t/R) sinσ
x2 = R sin (t/R) sinσ (46)
x3 = 0

which forms a particular solution from the family of known solutions to the
string equations. In here x1 and x2 are the coordinates in the lens plane, x3
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is directed towards the observer and σ is the position on the string varying
between 0 and 2π. Now we can obtain the lens equations from a general result
of de Laix and Vachaspati and after some calculations Schild et al. derive for
the solution given in 46

Dl

Ds
ỹ1 = x̃1 − qsR2sgn(x̃1)×

×

√√
(R2 + x̃2

1 + x̃2
2)2 − 4R2x̃2

1 −R2 − x̃2
2 + x̃2

1

2((R2 + x̃2
1 + x̃2

2)2 − 4R2x̃2
1)

, (47)

Dl

Ds
ỹ2 = x̃2 − qsR2sgn(x̃2)×

×

√√
(R2 + x̃2

1 + x̃2
2)2 − 4R2x̃2

1 +R2 + x̃2
2 − x̃2

1

2((R2 + x̃2
1 + x̃2

2)2 − 4R2x̃2
1)

, (48)

where qs = 8πgµDlsDl

DsR
, Ds, Dl and Dls denote the distances from us to the

source plane, to the lens plane and from the source to the lens plane re-
spectively, x̃1 = x1 cos(t/R) + x2 sin(t/R), x̃2 = x2 cos(t/R) − x1 sin(t/R),
ỹ1 = y1 cos(t/R) + y2 sin(t/R), 2̃2 = y2 cos(t/R) − y1 sin(t/R) and y1, y2 are
the coordinates in the source plane [13]. As it can be shown that all the terms
under the root signs are non-negative I will not elaborate on this and go on. It
is known [13] that the magnification of a point-like source by such a string is

m = |1− q2sR4(x2
1 + x2

2)/((R2 + x2
1 + x2

2)2 − 4R2(x1 cos(
t

R
) + x2 sin(

t

R
))2)3/2|−1. (49)

Schild et al. now assume qs ∼ 1 and Ry = RDs/Dl � ρ = (y2
1 + y2

2)1/2

and then approximate the solution of the lens equations (47,48) to obtain the
magnification

m = 1 +
q2sR

4
y

ρ4
−

4q3sR
6
y

ρ6
+

3q2sR
6
y

ρ8
((y2

1 − y2
2) cos(

2t
R

) + 2y1y2 sin(
2t
R

)), (50)

and from this they derive the amplitude of source brightness fluctuations to be

∆m ≈
6q2sR

6
y

ρ6
≈ 384π2G2µ2θ4R

θ6I
, (51)

where θI = ρ/Ds is the angular impact distance of the line-of-sight with respect
to the center of the loop and θR = R/Dl is half of the visible angular size of the
loop. As only a few oscillations were observed it is logical to assume that the
loop is moving, however the number of oscillations also restricts the transverse
velocity. Therefore Schild et al. restrict the transverse velocity of the loop to the
values v1, v2 ≤ 0.1, but leave a considerable freedom for the velocity component
v3 along the line of sight. However the only change this brings to the result
above is a change in the parameter qs by q∗s = qs(1 + v3)−1.
Next we need to see what parameter values we need to reproduce the observed
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data. We know that T ≈ 100 days and that this is related to the string length
l = 2πR by R = Tl/π. If we take the relativistic motion of the string into
account we get Tl = T (1− v2

3)1/2. Using all this we can rewrite equation 51 as

∆m ≈ 5.6
(
θI
3”

)−6(
θR

1.5”

)4(
µ

1022g/cm

)2

(1 + v3)−2. (52)

As we have seen that the amplitude of the oscillations in both images is almost
equal this suggests that the loop should fly close to the mid-point and therefore
we should have θI ≈ 3”. Furthermore Schild et al. put estimates on the different
velocities involved. They take v ≈ 0.7, v1 ≈ 0.03 and v2 ≈ 0.11. Next they
state that in order to have quasi-sinusoidal variations, θR must be considerably
smaller that the angular distance between the two images because otherwise
sharp spikes and/or discontinuities will form in the dependence of the brightness
upon time. Furthermore they do not want θR to be to small either to avoid the
string mass having to become to large to be able to obtain the correct brightness
fluctuation from equation 52. Therefore they take θR ≈ 1.5” and then find that
for ∆m ≈ 0.04 the value for µ to be µ ≈ 4×1020g/cm. In the units I used before
this would become Gµ ≈ 3× 10−8 and this seems rather small for GUT strings.
However Schild et al. claim that with more accurate parameter values obtained
by numerical solutions from the equations 47-49 and without the assumption√
y2
1 + y2

2 � Ry one finds the value µ ≈ 8×1021g/cm or equally Gµ ≈ 6×10−7.
This seems to be more in the range of GUT strings but there is still a large
error in this figure. Schild et al. also made a plot of the predicted value of the
brightness of the quasar of there model against the observed data and this is
given in figure 13[13]. We see there is a quite good agreement.

8.2.3 Explanation by a binary system

Besides an explanation by a cosmic string loop, Schild et al. also consider the
possibility of lensing by a binary system. I will here again follow their discussion.
They consider a binary system of two equal point masses M orbiting their center
of mass with period T . If we define r to be half of the distance between the
masses and ω = π/T we then get that the magnification of a point-like source
becomes

m =
∣∣∣∣1− q2br4((x2

1 + x2
2 + r2)2 − 4r2(x1 sin(ωt)− x2 cos(ωt))2)

((x2
1 + x2

2 + r2)2 − 4r2(x1 cos(ωt) + x2 sin(ωt))2)2

∣∣∣∣−1

(53)

where qb = 8GM DlsDl

Dsr2
[13] and the others are as in the previous part. Now we

can proceed in a similar way as before to obtain an approximate formula for the
magnification

m = 1 +
q2br

4
y

ρ4
−

4q3br
6
y

ρ6
+

6q2br
6
y

ρ8
((y2

1 − y2
2) cos(2ωt) + 2y1y2 sin(2ωt)) (54)

where ry = rDs/Dl. If we now define θr = r/Dl and use GM = 4π2r3/T 2 we
can approximate the amplitude of fluctuations if we assume a circular motion
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Figure 13: Brightness of the two quasar images displayed with no time delay
and fitted two the expected data for lensing by a cosmic string loop (line). The
upper picture shows the brightness of image A moved up by 5%, the bottom
picture shows the brightness of image B moved down by 5%. The axis show the
relative brightness on the vertical axis and the time on the horizontal axis. [13].

in the binary system to be

∆m ≈
12q2br

6
y

ρ6
≈ 1.2× 106θ8rD

4
lD

2
ls

T 4θ6ID
2
s

. (55)

We can now proceed from this and find in a similar way as before

∆m ≈ 0.04
(

T

100days

)−4(
θr

1.5”

)8(
θI
3”

)−6(
Dl

1.2pc

)4

. (56)

Now again assumptions on the parameters are necessary. Schild et al. take
again θI ≈ 3” and decide that the orbital radius should be θrDl ≈ 1.8a.u. If we
want fluctuations of the order of 4% the we find a mass M ≈ 78 solar masses.
However at such distances, note that Dl ≈ 1.8a.u.

θr
, a system this large should

be easily observable. Schild et al. state that the distance to the binary system
could be larger but this would also require an increase in the mass so this is not
a solution to this problem.
Therefore Schild et al. conclude that the most likely explanation for the observed
pattern is a cosmic string loop as it would not be logical that such a heavy binary
system would not have yet been detected. However they state that much more
research is necessary especially because a lot of parameters are still unknown
and also because more similar events should be observed before a statistical
analysis can be done on the predicted string loop size, which is much smaller
then would be expected.
Furthermore I want to express caution about another point in there argument.
They claim that it is unlikely for the observed fluctuations to be caused by
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microlensing because they are similar and in phase. However as there is not
yet a test for how unlikely this is, this is a very weak assumption. Given the
amount of time of observations of this system, maybe we have just noted a
slightly unlikely event, just as we saw in the first part of this section were it was
assumed unlikely that we had two different galaxies which were very similar
and very close, but this did turn out to be the case. Therefore unless this
phenomenon is observed more often or a statistical test can be devised on the
likelihood of its creation by microlensing, this claim is still very uncertain.

9 Conclusion

We have seen that cosmic strings can be formed as relics of early phase tran-
sitions in the universe and could therefore tell us something about the early
universe. We saw that once they were created, they do not die out nor come
to overpopulate the universe. Therefore if they were created at the GUT scale
phase transitions, we should still be able to observe them today. We then found
that the major reason for interest in cosmic strings in the eighties and nineties,
cosmic strings as a source of geometric perturbations that seeded structure for-
mation, has been ruled out by observations of the CMB. However we have seen
good reasons for the rekindle of interest. The link with fundamental strings has
tightened and cosmic superstrings could be our only way of observing string
theory. Furthermore there are good indications that cosmic strings appear in
supersymmetric grand unification theories as we have seen from the research by
Rocher et al. On the observational side we have seen that the current bounds do
not yet rule out GUT-scale cosmic strings and one possible direct observation of
a cosmic string is still open. Therefore the field of cosmic strings has regained
its position as a field of interest and much more work is still needed.
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