Topological Defects: Cosmic Strings

Maarten Verdult

January 14th 2009

Introduction

Cosmic string creation: two toy models

Deriving a scaling solution

Cosmic strings as a source of geometric perturbations

Cosmic strings genericity in SUSY GUT

Gravitational effects of cosmic strings

Possible observations of cosmic strings

Conclusion

Introduction

Cosmic string creation: two toy models

Deriving a scaling solution

Cosmic strings as a source of geometric perturbations

Cosmic strings genericity in SUSY GUT

Gravitational effects of cosmic strings

Possible observations of cosmic strings

Conclusion

Cosmic string creation: two toy models

Deriving a scaling solution

Cosmic strings as a source of geometric perturbations

Cosmic strings genericity in SUSY GUT

Gravitational effects of cosmic strings

Possible observations of cosmic strings

Conclusion

Cosmic string creation: two toy models

Deriving a scaling solution

Cosmic strings as a source of geometric perturbations

Cosmic strings genericity in SUSY GUT

Gravitational effects of cosmic strings

Possible observations of cosmic strings

Conclusion

Introduction

Cosmic string creation: two toy models

Deriving a scaling solution

Cosmic strings as a source of geometric perturbations

Cosmic strings genericity in SUSY GUT

Gravitational effects of cosmic strings

Possible observations of cosmic strings

Global strings

• Start with a complex scalar field $\phi(x)$ and

$$\mathcal{L} = \partial_{\mu}\phi^*\partial^{\mu}\phi - V(\phi), \qquad V = \frac{1}{2}\lambda(|\phi|^2 - \frac{1}{2}\eta^2)^2$$

- a global U(1) symmetry with $\phi
 ightarrow \phi {
 m e}^{ilpha}$
- the Euler-Lagrange equations become

$$[\partial^2 + \lambda(|\phi|^2 - \frac{1}{2}\eta^2)]\phi = 0$$

Introduction

Cosmic string creation: two toy models

Deriving a scaling solution

Cosmic strings as a source of geometric perturbations

Cosmic strings genericity in SUSY GUT

Gravitational effects of cosmic strings

Possible observations of cosmic strings

Conclusion

Global strings 2

- Ground state $\phi = (\eta/\sqrt{2})e^{ilpha_0}$ breaks U(1) symmetry
- Mass of scalar particle becomes $m_s^2 = \lambda \eta^2$
- Static solution with non-zero energy density
- Ansatz

$$\phi = \frac{\eta}{\sqrt{2}} f(m_{s}\rho) \mathrm{e}^{in\psi}$$

Introduction

Cosmic string creation: two toy models

Deriving a scaling solution

Cosmic strings as a source of geometric perturbations

Cosmic strings genericity in SUSY GUT

Gravitational effects of cosmic strings

Possible observations of cosmic strings

Conclusion

Global strings 3

► Introduce $\xi \equiv m_s \rho$, then $f'' + \frac{1}{\xi} f' - \frac{n^2}{\xi^2} f - \frac{1}{2} (f^2 - 1) f = 0$ $\xi \to 0 \quad f \to 0 \quad \text{and} \quad \xi \to \infty \quad f \to 1$

• Writing
$$f = 1 - \delta f$$
, $\delta f \sim n^2 / \xi^2$, we find
 $\mathcal{E} = |\dot{\phi}|^2 + |\nabla \phi|^2 + V(\phi)$

Introduction

Cosmic string creation: two toy models

Deriving a scaling solution

Cosmic strings as a source of geometric perturbations

Cosmic strings genericity in SUSY GUT

Gravitational effects of cosmic strings

Possible observations of cosmic strings

Conclusion

$$\mathcal{L} = -rac{1}{4}F_{\mu
u}F^{\mu
u} + |D_{\mu}\phi|^2 - V(\phi)$$

• where
$$D_{\mu} = \partial_{\mu} + ieA_{\mu}$$
 and $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$.

Now the field equations become

$$[D^2 + \lambda(|\phi|^2 - \frac{1}{2}\eta^2)]\phi = 0,$$

$$\partial_{\nu}F^{\mu\nu} + ie(\phi^*D^{\mu}\phi - D^{\mu}\phi^*\phi) = 0$$

Introduction

Cosmic string creation: two toy models

Deriving a scaling solution

Cosmic strings as a source of geometric perturbations

Cosmic strings genericity in SUSY GUT

Gravitational effects of cosmic strings

Possible observations of cosmic strings

Conclusion

- Still scalar particle with mass $m_s = \sqrt{\lambda}\eta$
- Nambu-Goldstone boson incorporated into vector field, gains mass m_v = eη
- Choose radial gauge $A_{
 ho} = 0$

$$\phi = \frac{\eta}{\sqrt{2}} f(m_{s}\rho) e^{in\psi}, \qquad A^{i} = \frac{n}{e\rho} \hat{\psi}^{i} a(m_{v}\rho)$$

Introduction

Cosmic string creation: two toy models

Deriving a scaling solution

Cosmic strings as a source of geometric perturbations

Cosmic strings genericity in SUSY GUT

Gravitational effects of cosmic strings

Possible observations of cosmic strings

Conclusion

For large
$$\xi = m_s \rho$$
 we now get
 $f \sim 1 - f_1 \xi^{-1/2} \exp(-\beta \xi)$ $a \sim 1 - a_1 \xi^{1/2} \exp(-\xi)$

• with
$$\beta = m_s/m_v$$
.

 Note that now the energy is finite and we find for the energy per unit length

$$\mu = \int \rho \mathrm{d}\rho \mathrm{d}\phi \mathcal{E}(\rho) = \pi \eta^2 \epsilon(\beta)$$

Introduction

Cosmic string creation: two toy models

Deriving a scaling solution

Cosmic strings as a source of geometric perturbations

Cosmic strings genericity in SUSY GUT

Gravitational effects of cosmic strings

Possible observations of cosmic strings

Conclusio

- Similar calculation for more complicated Lie group G
- ▶ Denote vacuum manifold by \mathcal{M} and little group of a $\phi_0 \in \mathcal{M}$ by H then

$$\mathcal{M} = G/H$$

- Vortices are formed if $\pi_1(\mathcal{M})$ non-trivial
- This is equivalent to $\pi_0(H)$ is non-trivial

Introduction

Cosmic string creation: two toy models

Deriving a scaling solution

Cosmic strings as a source of geometric perturbations

Cosmic strings genericity in SUSY GUT

Gravitational effects of cosmic strings

Possible observations of cosmic strings

Conclusion

Strings from a topological viewpoint

- For simplicity assume $\mathcal{M} = S^1$ and look in 2 dimensions
- Assume after phase-transition you have a closed path on which \u03c6 assumes all values of \u03c6 once
- \blacktriangleright Then there is a point where ϕ has to leave ${\cal M}$
- In 3 dimensions this point becomes a string and represents trapped energy.
- Strings can not end, either form loops or go on for ever

Introduction

Cosmic string creation: two toy models

Deriving a scaling solution

Cosmic strings as a source of geometric perturbations

Cosmic strings genericity in SUSY GUT

Gravitational effects of cosmic strings

Possible observations of cosmic strings

Conclusion

Cosmic string creation: two toy models

Deriving a scaling solution

Cosmic strings as a source of geometric perturbations

Cosmic strings genericity in SUSY GUT

Gravitational effects of cosmic strings

Possible observations of cosmic strings

Conclusion

Introduction

Cosmic string creation: two toy models

Deriving a scaling solution

Cosmic strings as a source of geometric perturbations

Cosmic strings genericity in SUSY GUT

Gravitational effects of cosmic strings

Possible observations of cosmic strings

Intercommuting strings

Ruth Durrer, "Topological defects in Cosmology", New Astronomy Reviews 43 (1999) 111-156

Introduction

Cosmic string creation: two toy models

Deriving a scaling solution

Cosmic strings as a source of geometric perturbations

Cosmic strings genericity in SUSY GUT

Gravitational effects of cosmic strings

Possible observations of cosmic strings

Energy loss in loops

take v(t) the number of infinite strings inside a horizon of size t, then

$$ho_{\infty} \sim rac{v(t)\mu t}{t^3}$$

• Number of intersections $\sim v(v-1)/t^4$

$$rac{dn}{dt}\sim p v (v-1)/t^4$$

$$rac{d}{dt}(
ho_{\infty}a^3)=-\mu trac{dn}{dt}a^3\sim a^3\mu pv(v-1)/t^3$$

ntroduction

Cosmic string creation: two toy models

Deriving a scaling solution

Cosmic strings as a source of geometric perturbations

Cosmic strings genericity in SUSY GUT

Gravitational effects of cosmic strings

Possible observations of cosmic strings

Conclusion

Finding the scaling solution

Assuming we are in radiation era, we derive

$$\dot{v} = rac{v}{2}(1/2 - p(v-1))$$

- Has two equilibria v = 0 and v = 1 + 1/(2p)
- From bifurcation theory it follows that v = 1 + 1/(2p) is a stable static solution for p > 0.

Introduction

Cosmic string creation: two toy models

Deriving a scaling solution

Cosmic strings as a source of geometric perturbations

Cosmic strings genericity in SUSY GUT

Gravitational effects of cosmic strings

Possible observations of cosmic strings

Conclusion

Finding the scaling solution

Energy density in strings becomes

$$\Omega_{\infty} = \frac{\rho_{\infty}}{\rho} = \frac{8\pi G}{3H^2} \rho_{\infty} \sim G\mu$$

Introduction

Cosmic string creation: two toy models

Deriving a scaling solution

Cosmic strings as a source of geometric perturbations

Cosmic strings genericity in SUSY GUT

Gravitational effects of cosmic strings

Possible observations of cosmic strings

Cosmic string creation: two toy models

Deriving a scaling solution

Cosmic strings as a source of geometric perturbations

Cosmic strings genericity in SUSY GUT

Gravitational effects of cosmic strings

Possible observations of cosmic strings

Conclusion

Introduction

Cosmic string creation: two toy models

Deriving a scaling solution

Cosmic strings as a source of geometric perturbations

Cosmic strings genericity in SUSY GUT

Gravitational effects of cosmic strings

Possible observations of cosmic strings

Source of geometric perturbations

Cosmic strings create perturbations of the order

$$\Omega_{\infty} = rac{
ho_{\infty}}{
ho} = rac{8\pi G}{3H^2}
ho_{\infty} \sim G\mu$$

- ▶ For GUT scale strings this of the order 10⁻⁶
- However unable to fit to both CMB and large scale structure formation
- Strings do not contribute for more than 10% to large scale structure formation

Introduction

Cosmic string creation: two toy models

Deriving a scaling solution

Cosmic strings as a source of geometric perturbations

Cosmic strings genericity in SUSY GUT

Gravitational effects of cosmic strings

Possible observations of cosmic strings

Conclusion

WMAP CMB Data

I. Pogosian, S. Tye, I. Wasserman and M. Wyman, Observationl constraints on cosmic string production during brane inflation, Phys. Rev. D68 (2003)

Cosmic strings as a source of geometric perturbations

Cosmic string creation: two toy models

Deriving a scaling solution

Cosmic strings as a source of geometric perturbations

Cosmic strings genericity in SUSY GUT

Gravitational effects of cosmic strings

Possible observations of cosmic strings

Conclusion

ntroduction

Cosmic string creation: two toy models

Deriving a scaling solution

Cosmic strings as a source of geometric perturbations

Cosmic strings genericity in SUSY GUT

Gravitational effects of cosmic strings

Possible observations of cosmic strings

Research by Rocher and Jeannerot

Assuming

- No monopoles formed after inflation (monopole problem)
- Inflaton field is included in model as pair of Higgs fields
- Baryogenesis occurs via leptogenesis so U(1)_{B-L} symmetry broken at end inflation
- ► R-parity either contained in U(1)_{B-L} or group breaks down to G_{SM} × Z₂
- ▶ Rank between 4 and 8 including SU(5), SO(10) and E_6

All symmetry breaking patterns that satisfy this, create cosmic strings at the end of inflation

Introduction

Cosmic string creation: two toy models

Deriving a scaling solution

Cosmic strings as a source of geometric perturbations

Cosmic strings genericity in SUSY GUT

Gravitational effects of cosmic strings

Possible observations of cosmic strings

Cosmic string creation: two toy models

Deriving a scaling solution

Cosmic strings as a source of geometric perturbations

Cosmic strings genericity in SUSY GUT

Gravitational effects of cosmic strings

Possible observations of cosmic strings

Conclusion

Cosmic string creation: two toy models

Deriving a scaling solution

Cosmic strings as a source of geometric perturbations

Cosmic strings genericity in SUSY GUT

Gravitational effects of cosmic strings

Possible observations of cosmic strings

Deriving string metric

- Work in Minkowski space
- String tension is equal to mass density from Lorentz invariance along the string
- The string stress tensor becomes

$$T^{\mu\nu} = \mu \text{diag}(1,0,0,-1)\delta(x)\delta(y)$$

ntroduction

Cosmic string creation: two toy models

Deriving a scaling solution

Cosmic strings as a source of geometric perturbations

Cosmic strings genericity in SUSY GUT

Gravitational effects of cosmic strings

Possible observations of cosmic strings

Conclusion

Linearized Einstein equations

• Introduce
$$h_{\mu\nu} = g_{\mu\nu} - \eta_{\mu\nu}$$

Linearized Einstein equations become

$$\partial^2 h_{\mu\nu} = -16\pi G (T_{\mu\nu} - \frac{1}{2}\eta_{\mu\nu}T)$$

This has the solution

$$h_{\mu\nu} = 8G\mu \ln(
ho/
ho_0) \mathrm{diag}(0,1,1,0)$$

 Can be matched to exact solution by coordinate transformation

$$[1 - 8\pi G\mu \ln(
ho/
ho_0)]
ho^2 = (1 - 4G\mu)^2 R^2$$

Introduction

Cosmic string creation: two toy models

Deriving a scaling solution

Cosmic strings as a source of geometric perturbations

Cosmic strings genericity in SUSY GUT

Gravitational effects of cosmic strings

Possible observations of cosmic strings

Conclusion

Deriving the metric

► To order
$$G^2 \mu^2$$

 $ds^2 = dt^2 - dz^2 - dR^2 - (1 - 4G\mu)^2 R^2 d\psi^2$

► Introduce new angular coordinate $\bar{\psi} = (1 - 4G\mu)\psi$ $ds^2 = dt^2 - dz^2 - dR^2 - R^2 d\bar{\psi}^2$

• However $\bar{\psi}$ runs from 0 to $2\pi - \delta$ with $\delta = 8\pi G\mu$

Introduction

Cosmic string creation: two toy models

Deriving a scaling solution

Cosmic strings as a source of geometric perturbations

Cosmic strings genericity in SUSY GUT

Gravitational effects of cosmic strings

Possible observations of cosmic strings

Conclusion

Cone-shaped metric

$$\alpha = \frac{D_{ls}}{D_s}\delta\sin\theta$$

Introduction

Cosmic string creation: two toy models

Deriving a scaling solution

Cosmic strings as a source of geometric perturbations

Cosmic strings genericity in SUSY GUT

Gravitational effects of cosmic strings

Possible observations of cosmic strings

Conclusion

CMB Signature

 A string moving with transverse velocity v creates the discontinuity

$$\delta T/T = 8\pi G \mu \gamma v_{\perp}$$

• From this two bounds on $G\mu$ can be derived

$$egin{aligned} & \mathcal{G}\mu \leq 1.3 imes 10^{-6} \sqrt{rac{B\lambda}{0.1}} \ & \mathcal{G}\mu \leq 3.3 imes 10^{-7} \end{aligned}$$

ntroduction

Cosmic string creation: two toy models

Deriving a scaling solution

Cosmic strings as a source of geometric perturbations

Cosmic strings genericity in SUSY GUT

Gravitational effects of cosmic strings

Possible observations of cosmic strings

Conclusion

Gravitational radiation

- String loops form cusps which emit strong pulses of gravitational radiation
- Pulses should be observable by LIGO or LISA
- Indirect observations through pulsar timing, put a bound on the density of gravitational radiation.
- From this a bound on $G\mu$ can be derived

$$G\mu \leq 10^{-7}$$

Introduction

Cosmic string creation: two toy models

Deriving a scaling solution

Cosmic strings as a source of geometric perturbations

Cosmic strings genericity in SUSY GUT

Gravitational effects of cosmic strings

Possible observations of cosmic strings

Cosmic string creation: two toy models

Deriving a scaling solution

Cosmic strings as a source of geometric perturbations

Cosmic strings genericity in SUSY GUT

Gravitational effects of cosmic strings

Possible observations of cosmic strings

Conclusion

Introduction

Cosmic string creation: two toy models

Deriving a scaling solution

Cosmic strings as a source of geometric perturbations

Cosmic strings genericity in SUSY GUT

Gravitational effects of cosmic strings

Possible observations of cosmic strings

Conclusion

Observation of cosmic string lensing

- In 2003 discovery of CSL-1 by Sazhin et al.
- Two systems equal in mass, red-shift and radiation

• Would require a $G\mu$ in the order $G\mu \ge 4 imes 10^{-7}$

Introduction

Cosmic string creation: two toy models

Deriving a scaling solution

Cosmic strings as a source of geometric perturbations

Cosmic strings genericity in SUSY GUT

Gravitational effects of cosmic strings

Possible observations of cosmic strings

Conclusion

2006 HUBBLE data rules out lensing

Eric Agol, Craig J. Hogan and Richard M. Plotkin, "Hubble imaging excludes cosmic string lens", e-Print: arXiv:astro-ph/0603838v3

Introduction

Cosmic string creation: two toy models

Deriving a scaling solution

Cosmic strings as a source of geometric perturbations

Cosmic strings genericity in SUSY GUT

Gravitational effects of cosmic strings

Possible observations of cosmic strings

Possible observation of cosmic string loop

- Anomalous fluctuations observed in quasar brightness in two images in the system Q0957+561 in 1995
- Usually a fluctuation intrinsic to the quasar first appears in image A and 417.1 days later in image B.
- Further fluctuations are caused for both images differently by individual stars in lensing galaxy.
- These can not explain the simultaneous fluctuations that were observed

Introduction

Cosmic string creation: two toy models

Deriving a scaling solution

Cosmic strings as a source of geometric perturbations

Cosmic strings genericity in SUSY GUT

Gravitational effects of cosmic strings

Possible observations of cosmic strings

Conclusion

Possible observation of cosmic string loop 2

R. Schild, I.S. Masnyak, B.I. Hnatyk and V.I. Zhdanov, "Anomalous fluctuations in observations of Q0957+561 A,B: smoking gun of a cosmic string?", e-Print: arXiv:astro-ph/0406434v1 (2004)

Possible

observations of cosmic strings

Explanation by string loop

 Oscillating cosmic string loops create brightness fluctuations

$$\Delta m \approx 5.6 \left(\frac{\theta_I}{3''}\right)^{-6} \left(\frac{\theta_R}{1.5''}\right)^4 \left(\frac{\mu}{10^{22} \text{g/cm}}\right)^2 (1+v_3)^{-2}$$

- Observed Δm is approximately 4%
- Depending on values of parameters $3 \times 10^{-8} < G\mu < 6 \times 10^{-7}$
- Numerical simulations can reproduce experimental data

Introduction

Cosmic string creation: two toy models

Deriving a scaling solution

Cosmic strings as a source of geometric perturbations

Cosmic strings genericity in SUSY GUT

Gravitational effects of cosmic strings

Possible observations of cosmic strings

Explanation by string loop

R. Schild, I.S. Masnyak, B.I. Hnatyk and V.I. Zhdanov, "Anomalous fluctuations in observations of Q0957+561 A,B: smoking gun of a cosmic string?", e-Print: arXiv:astro-ph/0406434v1 (2004)

Introduction

Cosmic string creation: two toy models

Deriving a scaling solution

Cosmic strings as a source of geometric perturbations

Cosmic strings genericity in SUSY GUT

Gravitational effects of cosmic strings

Possible observations of cosmic strings

Explanation by binary system

A binary system creates brightness fluctuations

$$\Delta m \approx 0.04 \left(\frac{T}{100 \text{days}}\right)^{-4} \left(\frac{\theta_r}{1.5''}\right)^8 \left(\frac{\theta_l}{3''}\right)^{-6} \left(\frac{D_l}{1.2 \text{pc}}\right)^4$$

- To explain observed data the mass of both elements of the binary system has to be 78 solar masses at minimal distance of 1.2 pc
- It is very unlikely that such a large system so close is not yet observed
- System could be further away, but would then also have to be heavier

MA.

Universiteit Utrecht

Cosmic string creation: two toy models

Deriving a scaling solution

Cosmic strings as a source of geometric perturbations

Cosmic strings genericity in SUSY GUT

Gravitational effects of cosmic strings

observations of cosmic strings

Possible

Cosmic string creation: two toy models

Deriving a scaling solution

Cosmic strings as a source of geometric perturbations

Cosmic strings genericity in SUSY GUT

Gravitational effects of cosmic strings

Possible observations of cosmic strings

Conclusion

introduction

Cosmic string creation: two toy models

Deriving a scaling solution

Cosmic strings as a source of geometric perturbations

Cosmic strings genericity in SUSY GUT

Gravitational effects of cosmic strings

Possible observations of cosmic strings

Conclusion

- Cosmic strings are formed as defects by phase transitions in the early universe
- Strings do not die out or overpopulate the universe
- CMB data ruled them out as source of prime-ordial density perturbations
- SUSY GUT seems to demand cosmic strings
- One possible observation of a string loop still open

Introduction

Cosmic string creation: two toy models

Deriving a scaling solution

Cosmic strings as a source of geometric perturbations

Cosmic strings genericity in SUSY GUT

Gravitational effects of cosmic strings

Possible observations of cosmic strings

Conclusion

