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Abstract

Quantizing gravity and unifying it with the other fundamental inter-
actions has been the focus of theoretical physics research in the last cou-
ple of decades. Among different attempts, numerous theories have been
suggested, some representing a more conservative approach, while others
introduce new underlying fundamental theories, which reduce to known
physics in certain limits. Loop Quantum Gravity (LQG) represents the
former approach, being a conservative canonical Dirac quantization of
general relativity. This review will attempt to describe the path that
led to LQG in its current form and will later discuss the applications of
this theory in FLRW background, which goes under the name of Loop
Quantum Cosmology (LQC).
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1 Introduction

Ever since the second decade of the twentieth century, general relativity changed
the way we view gravity and replaced the Newtonian picture with a theory of
geometry of spacetime. This new approach explained a number of problems
with the preexisting theory and made a number of predictions, some of which,
like gravitational radiation, we still need to experimentally verify. Over years,
the confidence in the theory has been strengthened by wealth of experimental
evidence.

The theory, however, also contributed a new fundamental problem, that
of singularity. The Penrose-Hawking singularity theorems state that from an
arbitrary distribution of mass a singularity must exist be it in a future or the
past. Some obvious examples include black holes, or the Big Bang, which for
an expanding universe, initially must have been a point with an infinite mass
density from a classical theory point of view.

The existence of singularities was one of the reasons why physicists set out
to find a quantum theory of gravity, hoping that the singularity problem will be
fixed, alike the Bremsstrahlung caused atom stability problem has been solved
by a quantum theory of the atom. Moreover such a theory could explain some of
the CMB anisotropies that are observed, as well as the need for an introduction
of the inflationary era in the Universe.

This review is divided into seven sections. Following the introduction, the
second section presents the rational behind the necessity for gravity quantiza-
tion. Subsequently the third section provides a framework, in which a quantum
theory of gravity could be written. However, once quantized, this formalism
does not solve the singularity problem. This will call for a reformulation of
the general relativity in terms of the gauge formalism, which will be done is
the fourth section, and the fifth section describes the quantization scheme that
leads to what is now known as Loop Quantum Gravity. The sixth section focuses
on the LQG application to the Friedmann-Lemâıtre-Robertson-Walker metric,
where also the outcome will be compared to the results of a similar application
to the quantum theory from the third section. As always this review will end
with a conclusion.

2 Why do we need to quantize gravity?

Many believe that general relativity could just remain a classical theory and that
there is no need for quantizing it. However there exist a number of problems with
the current theory, that could be resolved if the theory was indeed quantized. In
this section, we will address this issue, focusing on the structure of the Einstein’s
equations, and the interplay between the general relativity singularities with the
QFT divergences.
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2.1 Quantum Field Theory – General Relativity Interplay

On a number of occasions in quantum field theory the one-loop Feynman dia-
grams produce momentum integrals which are divergent. In a number of cases
these infinities can be removed provided that our field theory is renormalis-
able, however if this is not the case, i.e. for nonrenormalisable theories, hen
our theory requires additional counter-terms of order increasing with the order
of the perturbation theory. On the other hand virtual particles “travelling” in
those loops have spatial extend of Compton radius λ = ~

p and mass m ≈ E
c2 . If

their momentum increases, their spatial extent decreases and as it approaches
the Schwarzshield radius, λ → Rs = GnE

c4 , then virtual particle turns into
a decaying black hole. From a phenomenological point of view this is rather
problematic, because the particle might change its physical properties, e.g. an
electroweakly interacting electron can radiate all kinds of particles via Hawking
radiation, which are neither observed nor predicted by the minimal Standard
Model. For this reason proponents of quantum gravity believe that quantized
gravity would provide a hope for a cut-off length scale and fix the QFT diver-
gences as well as keep the black holes from appearing – analogously to a solution
to the atom stability problem, where the ground state energy level is introduced
beyond which an electron cannot fall in the Bohr atomic model. This argument,
however, is incomplete, as it assumes that we have a working quantum theory
of off-shell particles responding to a Plank-scale size black hole.

2.2 Problems with Einstein’s Equations

General Relativity is a theory of the geometrical structure of spacetime described
by a metric tensor gµν . Given a distribution of matter described by the stress-
energy tensor Tµν , and can use Einstein’s equations to find the spacetime’s
geometry. These equations read

Rµν −
1
2
gµνR︸ ︷︷ ︸

Geometry − classical

=
8πGn

c3
Tµν(g),︸ ︷︷ ︸

Matter−Gauge Fields in QFT

(1)

where Rµν is the Ricci tensor and R = Rµ
µ is its trace, also known as the Ricci

scalar. One can argue that the left hand side and the right hand side of the
Einstein equations are not consistent, due to the fact that while the left hand
side is described by a classical theory, while the right hand side is described by
the matter content of the spacetime in consideration. Thus far, quantum gauge
field theories have been extremely successful in describing matter and its (non-
gravitational) interactions, i.e. the three fundamental forces: electromagnetism,
the weak and the strong nuclear force. Since we are only capable to do inter-
acting quantum field theories in perturbation theory, these fields are subject to
quantum fluctuation, which makes the left hand side of (1) distinct from the
right hand side i.e. formally functions of space-time and operators on a Hilbert
space are two different objects. The obvious intuitive solution to this problem
would be then to simply consider the vacuum expectation value of the fields
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enclosed by the stress energy tensor with respect to some arbitrary background
g0, thus changing the form of the above equation to its “quantized” version

Rµν −
1
2
gµνR =

8πGn

c3
〈 Tµν(g0)〉,

where g0 is an arbitrary background metric, which we can initially choose to be
for example Minkowski spacetime ηµν . Obviously in general the notion of the
vacuum depends on the choice of g0. Due to vacuum fluctuations (e.g. particle-
antiparticle pair creation-annihilations), the right hand side is non-vanishing,
yielding a space-time solution g1. One could attempt to iterate this process,
hoping that the result would converge. Flanagan and Wald [1],however, have
argued that generically this approach leads to “run - away” solutions.

Alternatively, we could require that we should promote our geometrical ten-
sors to operators acting on some state:(

R̂µν −
1
2
ĝµνR̂

)
|Ψ〉 =

8πGn

c3
T̂µν(ĝ)|Ψ〉

and this is the path that we will initially try to follow i.e. we will canonically
quantize general relativity. However, before we attempt to do that we will first
take a closer look at to what extent General Relativity and Quantum Mechanics
are compatible with each other.

3 Creating a “Quantizable” Structure of Gen-
eral Relativity

3.1 The Problem of Time in Quantum Gravity

Ever since the development of special and later general relativity, our under-
standing of what “time” means has changed forever. The Newtonian notion of
time as an absolute has been replaced with time being just another coordinate
that can be exchanged with space upon coordinate transformations. Quantum
theory, however, still relies on the Newtonian view, where time is understood
as the distinct evolution variable, therefore one of the first problems that one
faces, when trying to merge the two theories together, is that of time. In this
section we will look at this issue in more detail.

In quantum mechanics time plays two fundamental roles. Firstly, it allows
us to determine the choice of canonical positions and momenta, since when
we have an evolution parameter we can define momenta as derivatives with
respect to time derivatives of positions, i.e. p = ∂L

∂q̇ . Without the fixed notion
of what particular time direction we pick we are incapable to define canonical
momenta, and thus we encounter a major obstacle on our way to write down
a quantum theory in operator formalism. Note that this is different to Lorentz
invariance in quantum field theories, as the symmetry group of general relativity
allows for any local coordinate transformations. Secondly, time allows us to
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fix the normalisation of a wave function, which requires some specific point
in time when we do that. Assuming unitary evolution this normalisation will
not change, however we need a fixed point in time, that cannot be altered by
coordinate transformations.

This double role appears to stand in a direct conflict with the role of time
in GR, where time no longer describes the evolution, but is rather one of the
coordinates on a (3 + 1) dimensional manifold in a diffeomorphism invariant
theory. Since there is no preferred choice of what time actually means, the
spacetime metric can be recast in any form up to the researchers convenience.
i.e. in GR jargon this means that “there is no preferred time slicing”. With
this in mind we clearly see that unless we choose some time direction ourselves,
we will not be able to define canonical momenta or fix normalisation of our
wave functions, as under coordinate transformations our time-parameter might
be interchanged with any of the space directions.

Related to time, is the issue of causality. In quantum field theory one re-
quires that any observables operators at points separated by space-like intervals
must commute. However is one allows that the metric itself is subject to quan-
tum fluctuations, then the notion of space-, time- or light-like separations is
no longer clear, and these fluctuations may exchange past and future [2]. For
these reasons, in order for any progress to be made we are forced to choose a
particular time slicing and only then quantize the theory.

3.2 The Arnowitt-Deser-Misner (ADM) Formalism

This problematic issue of the special role of time in quantum mechanics ver-
sus arbitrariness of time in general relativity has been resolved by Arnowitt,
Deser and Misner, in what goes under the name ADM formalism [3]. It states,
that given a manifold M, with the topology R × σ, then, by fixing some time
coordinate function, one can define constant time surfaces t(xi) = const, and
define a normal vector perpendicular to it na = −N∂at, where N is allows us to
normalise the vector. In what follows we will use the Latin alphabet a, b, c . . . as
arbitrary labels, i, j, k, . . . for space coordinates, and µ, ν, σ, ρ, . . . for spacetime
coordinates.

The result is a foliation of a four-dimensional manifold M into a set of
surfaces Σ on which one can write down a consistent quantum theory. Having
picked a time coordinate, we have defined the way our slices look like, whose
geometry can be described by the spatial metric qab given by

qab = gab − nanb,

such that qabn
b = 0 and for a vector field tangent to Σ surface V ana = 0 we

get qabV
a = gabV

a. Now we can give a geometrical interpretation to N , a lapse
function, which is just a measure of the separation between the constant time
slices. With the coordinate transformation on the slice xi +dxi and between the
slices xi−N idt where N i is a shift vector, we can write our invariant spacetime
interval

ds2 = N2dt2 − qij(dxi +N idt)(dxj +N jdt),
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Figure 1: The representation of the ADM formalism and the corresponding line
element in the foliated spacetime. It is straight forward to see that based on
this diagram we obtain the form of the metric (2). Figure taken from [4].

such that we can just read off the form of an arbitrary spacetime metric under
the ADM decomposition

gµν =
(
N2 − qijN

iN j Ni

Nj qij

)
and gµν =

( 1
N2 − Ni

N2

−Nj

N2 −qij + NiNj

N2

)
.

Having the spatial metric qab, we can define a three-dimensional covariant
derivative Da, with the spatial metric compatible connection

DeT
h
fg = qa

e q
b
fq

c
gq

h
d∇aT

d
bc,

and three-dimensional extrinsic curvature Kab

Kab = qc
a∇cnb,

which upon inserting definition of the normal vector nb takes the form

Kij =
1

2N
(∂tqij −DiNj −DjNi) .

We needed to introduce all of these quantities, so that we can write down the
four-dimensional Riemann tensor (4)Rabcd in terms of the extrinsic curvature
Kab and the Riemann tensor defined on the three-dimensional slice Σt denoted
by (3)Rabcd, such that

D[aDb]Vc = qf
aq

d
b q

e
c
(4)Rg

fde +KacK
g
b Vg −KbcK

g
aVg ≡(3) Rg

abcVg (2)

3.3 Action Formulation of General Relativity

In general any action can be written as a spacetime integral of a Lagrangian
density L = L (q, q̇), which can be rewritten in the Hamiltonian formulation
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using the Hamiltonian density H = H (p, q) as

S = k

∫
M
dnxL = k

∫
M
dnx

(
pq̇ −H (p, q) +

∑
i

λiCi (p, q)

)
,

where λi are the Lagrange multipliers, the non-dynamical the variables that
introduce constraints Ci (p, q) into our theory, as a result of equations of motion
for λi. Let us now switch our attention to the Einstein-Hilbert action, given by

SEH =
1
κ

∫
M
d4x

√
g
(4)
R.

Let us now implement the ADM formalism in this action. We can write the
curvature scalar as

(4)R =(3) R−KabK
ab +K2 + 2∇a

(
nb∇bn

a − na∇bn
b
)
,

which makes the Einstein-Hilbert action become

SEH =
1

16πGN

∫
d4xN

√
q
(

(3)R−KabK
ab +K2

)
,

where the derivative terms from (3) in (3) become the boundary terms and
do not contribute to the dynamics of the action. Choosing qab as the canonical
position variable, we can define the canonical momentum in terms of the deriva-
tive of the Lagrangian density with respect to the time derivative of canonical
position

πab =
∂L

∂(∂tqab)
=

1
16πGN

(
qabK −Kab

)
,

where we now automatically obtain the standardized Poisson bracket between
the canonical positions and momenta

{qij(x), πkl(x′)}|t=t′ = δk
(iδ

l
j)δ̃

(3) (x− x′) .

Note that here the subscript (ij) denotes the symmetrisation of the tensors,
which comes about from the qab, and thus πab, being a symmetric tensor. Ad-
ditionally note that here, following the convention in the literature the tilde
sign denotes a densitised delta function, such that

∫
d3x

√
qδ̃(3) (x− x′) = 1,

such that the factor of
√
q appears here, rather than in the definition of the

canonical momentum. The action in the Hamiltonian formalism in terms of the
canonical position and momentum becomes

S =
∫
d4xπab∂tqab −NaHa −NH︸ ︷︷ ︸

constraints

,

where the terms P j
Ni
Ṅj and PN Ṅ are missing, because the Lagrangian in its

initial form did not contain any time derivatives of the shift vector or the lapse
function, which automatically leads to their associated canonical momenta being
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zero. Additionally note that as a result of that Na and N act as Lagrange
multipliers, which introduce two constraints into the action: the momentum
constraint

Ha = −2Dbπ
b
a = 0,

and the Hamiltonian constraint

H =
16πGN√

q

(
πabπab − 1/2π2

)
−

√
q

16πGN

(3)R = 0,

also frequently denoted in literature by H⊥.It is easy to check that these are
first class constraints, i.e. ones that obey

{Ci, Cj} =
∑

k

fi,j,kCk, (3)

where Ci denotes a constraint and fi,j,k are some smooth functions, and where
the equation implies that the constraints Poisson commute on the constrained
subspace. In general in any constrained Hamiltonian system, the first class
constraints generate gauge transformations [4], which can be seen by their action
on the field variables. For example consider a generator of the kind

G [ξi] =
∫
d3xξiHi = −2

∫
d3xξiDjπ

ij =
∫
d3x (Djξi +Diξj)πij , (4)

then it is easy to verify that

{G [ξi] , qjk} = − (Djξk +Dkξj) ≡ −Lξqjk, (5)

where the last step is just a definition of the Lie derivative, which denotes
the change of an object under infinitesimal coordinate transformation. From
which it is easy to see that Ha generates surface deformations of Σt, while in a
similar fashion H generates the time translations Σt → Σt+ξ0 . Together these
constraints generate transformations that mimic the diffeomorphism invariance
of our theory, however due to the split, this algebra is rather convoluted and
goes under the name of surface deformation algebra ([5] and [6]).

3.4 Dirac Quantization of ADM General Relativity

There are numerous ways that one can quantize a theory, depending on the
further working convenience. For instance if one wants to work with manifest
unitarity, one tends to choose canonical quantization, for manifest Lorentz in-
variance one usually picks path integral quantization. Of the two methods we
will consider the former one, but even then one still remain with the issue of
the ordering of constraints versus quantizing. One can choose to constrain and
then quantize the system, which is known as the reduced phase space quantiza-
tion, or vice-versa, known as Dirac quantization. Since the reduced phase space
quantization scheme produces highly non-linear operators, from now on we will
only focus on the Dirac quantization. We begin by defining an auxiliary Hilbert
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Figure 2: Transformations generated by the constraints. The Hamiltonian con-
straint H⊥ generates translation between hypersurfaces and the momentum
constraint Ha generates surface deformations. Figure taken from [7].

space H(aux) consisting of functionals Ψ[q] of positions qij . Let us promote the
Poisson brackets to commutators and thus represent the momenta operators π̂kl

by

π̂kl = −i δ

δqkl
,

which is not different to the standard formulation of quantum mechanics. The
next step is to implement the constraints into the system. Classically we re-
quired that the constraints have to be zero on shell, but now in the operator
formalism of quantum mechanics we turn the constraints into operators acting
on the Hilbert space H(aux). Then the states that are annihilated by the con-
straint operators will be considered to be the physical ones, which will thus span
the new (smaller) physical Hilbert space H(phys).

Following the steps above and choosing the representation for the momentum
operator (6) and requiring that the Hamiltonian constraint (3)in a form of an
operator annihilates all physical states one obtains a Schrödinger-like functional
equation (

16πGNGijkl
δ

δqij

δ

δqkl
+

√
q

16πGn

(3)R+Hmatter

)
Ψ[q] = 0,

known as the Wheeler-deWitt equation, and whereGijkl = 1
2
√

q (qikqjl + qilqjk − qijqkl)
is the so-called deWitt supermetric.

Unfortunately this equation is difficult to solve even for the simplest of the
non-trivial systems, for a couple of reasons. Firstly, the canonical quantization
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formalism suffers from ordering ambiguities. Van Hove’s theorem states that
there exists no unique quantization map, which would consistently reproduce
the Poisson algebra in terms commutator algebra of elements p̂nqm when n +
m ≥ 3. Wheeler-deWitt equation upon quantization obtains an element of
the kind p̂2q2, which cannot be represented in terms of individual position and
momentum variables. Since there exists no unique quantum theory, having
chosen some conventional ordering, does not necessary mean that the theory
we obtain corresponds to the true theory of quantum gravity. Secondly, it is
unclear once the equation is solved, what kind of boundary conditions should be
implemented [4]. Thirdly, the operator contains two functional derivatves with
respect to the slice metric qij at the same point. Their combined action on the
functional of qij will typically leave a factor of δ(3)(0). Consider the functional
in a harmonic approximation:

Ψ[q] ∝ exp
(
−
∫∫

d~x d~y qij(~x)Kijkl (~x− ~y) qkl(~y)
)
, (6)

then

δ

δqab(~u)
δ

δqcd(~u)
Ψ[q] ∝

((∫
d~yKabkl (~u− ~y) qkl(~y)

)2

−Kabcd
(
~0
))

Ψ[q], (7)

for which reason Wheeler-deWitt equation needs to be regularised. Some at-
tempts have been taken to solve this equation, but due the reasons outlined
above this approach has been deemed unsatisfactory and an alternatives were
sought again. The successful attempt came with the idea of reformulation of
general relativity in a form that is closer to well-known and understood gauge
theories, in this way one has a similar kinematics, but different (and more dif-
ficult) dynamic framework.

4 Gauge Theory Formulation of General Rela-
tivity

The existence of gauge symmetries generated by the momentum and the Hamil-
tonian constraints suggested that one should follow the path taken by quanti-
zation of gauge theories. In order to achieve that goal one rewrites the action
in terms of vielbeins eJ

a and their corresponding connection.
A vielbein denotes a set of unit vectors {e1µ, e2µ, · · · eI

µ}, that define a tan-
gent frame at a certain point on the manifold, where from now on we use the
convention that capital Latin letters run over manifold’s dimension (in this case
I = 0, 1, 2, 3, µ’s are still the spacetime indices, and a term “vielbein” will be
replaced with “tetrad” or “vierbein”). Additionally this set eI

µ(x) obeys the
following relationship

eI
µe

J
ν ηIJ = gµν ,

11



where ηIJ is used to raise and lower indices. Similarly to the metric formulation,
we can introduce a dual tetrad eµ

I (x), such that

eI
µe

µ
I (x) = gµ

µ = Tr[gµν ].

Clearly when parallel transported, both individual vector components mak-
ing up the frame as well as its orientation would change, The former ones are
changed by the Christoffel connection Γσ

µν , while for the later one needs to in-
troduce a spin connection ωI

µJ that would define the way the frame’s orientation
changes. In general for V I denoting an arbitrary element with a vielbein index
and an arbitrary number of spacetime indices, then when parallel transported
we require that

∇µV
I = ∂µV

I + ωI
µJV

J ,

where the Christoffel symbol part has been omitted for presentation purposes.
Requiring that ωI

µJ is the tetrad compatible spin connection, then from

∇µe
I
ν = ∂µe

I
ν − Γρ

νµe
I
ρ + ωI

Jµe
J
ν = 0, (8)

we can obtain its form, by making symmetrising this equation and making use
of the symmetry property of the Christoffel connection, we can write ∇µe

I
ν −

∇νe
I
µ = 0 in the form

∂µe
I
ν − ∂νe

I
µ + ωI

Jµe
J
ν − ωI

Jνe
J
µ = 0. (9)

In this formulation now the Einstein-Hilbert action becomes

S =
1

16πGN

∫
d4x|e|eµIeνJRµνIJ ,

where it is not difficult to see where these terms came from. Firstly, from (8)
we can see that

√
g is simply reduced by the determinant of the tetrad, |e|, and

secondly, using the fact that we can always trade a tetrad index for a spacetime
index and vice-verse, we can write RµνIJ = Rµνρσe

ρ
Ie

σ
J , which when we make

sure that everything is properly contracted, we recover the spacetime integral
of the Ricci scalar.

We can now fix our time direction and limit ourselves to the description of a
particular time slice Σ. This is equivalent to introducing the gauge e0

Ĩ
= 0, where

now Ĩ = 1, 2, 3. Note that upon imposition of this gauge, our gauge symmetry
group has been reduced from SO(3, 1) to SO(3). To make that explicit let us
introduce an SO(3) 1 connection ΓĨ

i , such that

ΓĨ
i =

i

2
ε0ĨJ̃K̃ωiJ̃K̃ .

Additionally it is not difficult to check that ω0Ĩ
i = K Ĩ

i = ejĨKij , where Kij

is the extrinsic curvature defined previously. Historically the next step would
1Note that the so(3) and the su(2) Lie algebras have the same commutation relations, so

frequently instead of an SO(3) Lie group, its double cover, SU(2), is chosen instead
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involve a number of different linear combinations of the two connections above,
however we will skip this discussion and jump to the more general definition of
the field

AĨ
i (γ) = ΓĨ

i + γK Ĩ
i , ,

where γ ∈ C/{0} is the so-called Immirzi parameter introduced by Immirzi
[8] and Barbero [9]. Historically this parameter was being chosen complex or
real for different purposes. Now-a-days, however, there is a growing consensus
to work with γ ∈ R, and this is the choice that we will follow from now on.
Additionally, not only the nature (complex or real), but also the actual value of
this parameter will be consequential to the physical results later. In the classical
theory is a bit mysterious, however in the quantum theory we will see it act as
the scaling factor of the spectrum of our geometrical operators.

The second field that will be relevant to us is the densitised triad field trans-
forming under the vector representation of SU(2) and defined as

Ei
Ĩ

=
√
qei

Ĩ
.

Having introduced these fields we can rewrite the action as

S =
1

16πGN

∫
dt

∫
d3x

(
1
γ
AĨ

i

∂

∂t
Ei

Ĩ
− iA0ĨG

Ĩ + iN iVi +
N

2
√
q
H + h.c.

)
,

where h.c. denotes the Hermitian conjugate terms, and where the last three
terms introduce the Gauss, vector and Hamiltonian constraints with their re-
spective Lagrange multipliers A0Ĩ , the shift vector N i and the lapse function
N . Their mathematical form reads

H = εĨJ̃K̃Ei
Ĩ
Ej

J̃
FijK̃ − 2

1 + γ2

γ2
Ei

[J̃
Ej

Ĩ]

(
AĨ

i (γ)− ΓĨ
i

)(
AJ̃

j (γ)− ΓJ̃
j

)
,(10)

GĨ = ∂jE
jĨ + εĨ

J̃K̃
AJ̃

j E
jK̃ ≡ DjE

jĨ ,

Vi = Ej

Ĩ
F Ĩ

ij ,

where
F Ĩ

ij = ∂iA
Ĩ
j − ∂jA

Ĩ
i + εĨJ̃K̃AiJ̃AjK̃

is a field strength tensor for an SO(3) (or SU(2)) field. Alike the previous re-
sult, the vector and the Hamiltonian constraint will mimic the diffeomorphism
invariance of the theory, such that the vector constraint generates the surface
deformations of the time slice, and the Hamiltonian constraint is a generator of
time translations between the time slices. The awaited virtue of this method
is the appearance of the Gauss constraint which generates the SO(3) gauge
transformation, and the fact that when it requires that the densitised triad EiJ̃

does not change under parallel transport using the SO(3) connection will be of
great importance to us later on. One can also check whether this approach is
equivalent to the ADM GR from the third section.
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Theorem
For a phase space coordinatized by

(
AJ

a , E
b
K

)
with the Poisson structure

{Ea
J̃
(x), Eb

K̃
(y)} = 0 (11)

{AJ̃
a (x), AK̃

b (y)} = 0 (12)
and {Ea

J̃
(x), Ab

K̃
(y)} = 8πGNγδ

abδJ̃K̃δ(x− y) (13)

and the above constraints, upon solution of the Gauss constraint and determin-
ing the Dirac observables with respect to it, one again obtains the ADM phase
space (qij(x), πkl(y)) with the constraints H and Hi.

The proof to this theorem is very laborious and tedious, since it can be found
in [10], it will be omitted in this review. It is important to note however that
some authors like to define the densitized triad field E divided by the Barbero-
Immirzi constant, thus making it drop out of the Poisson bracket relations.

5 Loop Quantum Gravity

5.1 Quantizing the Connection Formulation, Holonomies
and Wilson Loops

Having introduced the fields above we are at a doorstep to Loop Quantum
Gravity. Working in the connection A bases, we will define a space of functionals
Ψ[A], and promote the Poisson bracket to a commutator,

{Ea
J(x), Ab

K(y)} = 8πGnγδ
abδJKδ

(3)(x− y)

→
[
Êa

J(x), Âb
K(y)

]
= 8i~πGNγδ

abδJKδ
(3)(x− y), (14)

then we can choose the following representation of the Ei
I field

Ei
I = −8πiγGN

δ

δAI
i

(15)

Now instead of defining a complete Hilbert space, we will immediately try to
reduce it to the physically relevant one. Since the Dirac scheme of canonical
quantization of constrained theories requires that physical states vanish under
the action of a constraint operator, then in this case, from the presence of the
Gauss constraint, we require that physically relevant quantum states need to
be invariant under SO(3) or SU(2) gauge transformations, depending on the
initial gauge group choice. These are simply the states that vanish under the
action of the gauge covariant derivative Dµ = ∂µ+Aµ. Let us define the parallel
transport equation on the gauge group manifold for a curve α : [0, 1] → Σ as

dxµ

ds
DµVν =

dVν

ds
+
dxµ

ds
Aµ︸ ︷︷ ︸

≡A(s)

Vν = 0,
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where we have defined the field components along the path by dxµ

ds Aµ ≡ A (s).
This is simply a first order ordinary differential equation, which has a general
solution Vν (s) = U (s, 0)Vν (0) such that

Vµ (s) = Vµ(0)−
s∫

0

ds1A (s1)Vµ (s1). (16)

Substituting this into the equation (16) again we get

Vµ (s) = Vµ(0)−
s∫

0

ds1A (s1)

Vµ(0)−
s1∫
0

ds2A (s2)Vµ (s2)

.
We can iterate this process to write the closed solution to the parallel trans-

port equation. To make the notation more compact let us define the path
ordering operator

P (α (s1)β (s2)) =
{
α (s1)β (s2) s1 > s2
β (s2)α (s1) s1 < s2

.

Using this we can write the iterating series as

U (s, 0) =
∑

n

(−1)n

n!
P

 s∫
0

ds1A (s)

 = P

(
e
−

s∫
0

ds′A(s′)
)

which gives us the solution to the parallel transport equation (16).
Under the gauge group the matrix transforms as

U(s, s′) → g(s)U(s, s′)g−1(s′),

where g(s) ∈ SO(3) or g(s) ∈ SU(2). Let us consider a path α : [0, 1] → Σ with
closed ends i.e. α (0) = α (1). Then Uα(0, 1) transforms as

Uα(0, 1) → g(0)Uα(0, 1)g−1(1) = g(0)Uα(0, 1)g−1(0).

Note now that by taking a trace of the above, we can use the cyclicity of the trace
to show that it is invariant under the gauge transformations. Thus Tr[Uα(0, 1)],
a.k.a. holonomy, or the Wilson loop, being a gauge invariant function of the
field Aµ, is an element that we can use to construct our quantum states. The
appearance of the Wilson loops is the reason why this theory goes under the
name of Loop Quantum Gravity.

We have now established the scope of our physical Hilbert space. These will
include all of the objects composed of Wilson loops and their linear combinations
with the SU(2) generators, and densitised tetrads invariant under the action of
the gauge group.
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Figure 3: An example of a spin network, the oriented intersection number eigenstate.
Note that for trivalent vertices, the intertwiners are simply given by the Clebsh-Gordon
coefficients. Figure taken from [4].

5.2 Spin Networks

It was quickly realised that Wilson loops are just the simplest gauge invariant
structures that one could use. These have been generalised to graphs, so-called
spin networks, such that each spin network determines a gauge invariant func-
tional Ψ[A] of the connection. We can build a number of these spin networks
using the following steps

• draw an arbitrary set of points and connect the points with an arbitrary
number of lines/edges

• label each line with a half-integer spin s1 labelling an irreducible repre-
sentation of SU(2)

• to each edge labelled s1 assign a holonomy of A in representation s1

• to each vertex at which particular spins meet, assign an intertwiner, that
is an invariant tensor in the tensor product of the representations of the
spins in question. For example, for a trivalent diagrams (see Figure 3),
the intertwiners will be the corresponding Clebsh-Gordon coefficients.

Ever since the 1910s, gravity has been considered as a theory of geometry
of spacetime, our operators should be measuring geometrical quantities such as
lengths, areas and volumes. Similarly to the states, the operators need to be

16



gauge invariant objects and in general these will be given by

T [α] = −Tr[Uα(0, 1)],
T i[α](s) = −Tr[Uα(s, s)Ei(s)],

· · ·
T i1...in [α](s1, . . . , sn) = −Tr[Uα(s1, sn)Ein(sn) . . . Uα(s2, s1)Ei1(s1)],

(17)

whose geometrical interpretation will be the focus of the remainder of this sec-
tion. The first operator is just a holonomy and in line with the representation
of E based on the commutation relation, the first operator of our interest will
be T i[α]. Let us choose a direction perpendicular to a little patch of surface
parametrized by σ1 and σ2, such that

E3
Ĩ

= εijk
∂xi

∂σ1

∂xj

∂σ2
Ek

Ĩ
,

then, we can write

EĨ =
∫
S

dσ1dσ2εijk
∂xi

∂σ1

∂xj

∂σ2
Ek

I ,

EĨ = −8πγGN

∫
S

dσ1dσ2εijk
∂xi

∂σ1

∂xj

∂σ2

δ

δAĨ
k

,

where S denotes a small surface around Ek
I . Let us focus on the last piece; i.e.

act on a holonomy with a functional derivative δ

δAĨ
k

δ

δAĨ
k

exp

− s2∫
s1

dsAJ̃
i

dxi

ds
JJ̃

 =

s2∫
s1

ds U (s1, s)
dxk

ds
JĨU (s1, s2) δ(x− x(s)) (18)

thus is x does not lie on the curve x(s) then the operator returns zero, otherwise
it returns the angular momentum eigenvalue associated with a particular edge.
Thus we can write

EĨUα (s1, s2) = −8πγGN

∫
dσ1dσ2dsεijk

∂xi

∂σ1

∂xj

∂σ2

dxk

ds︸ ︷︷ ︸
d3~x

δ(x− x(s))U (s1, s) JĨU (s1, s2)

= ∓8πγGN

∫
d3~xδ(x− x(s))U (s1, s) JĨU (s1, s2), (19)

where the ∓ sign comes from the orientation of the (x1, x2, x3) relative to
(σ1, σ2, s) coordinate system, and for that reason expression (19) is called ori-
ented intersection number.
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Having done all that, we are ready to answer what could an area operator
look like, and what are its eigenvalues. Analogously to the ADM decomposition
of our manifold M, we can slice our volumes into surfaces with a metric hîĵ and

“space lapses” Ñ ĵ

(M, gµν)−−−−−→ADM (M′, qij) →
(
M′′, hîĵ

)
, (20)

where î, ĵ = 1, 2. Then our metric qij becomes

qij =

(
hîĵ hîĵÑ

î

hîĵÑ
ĵ Ñ2 + hîĵÑ

îÑ ĵ

)
and qij

(
hîĵ + Ñ îÑ ĵ

Ñ2 − Ñ î

Ñ2

− Ñ ĵ

Ñ2
1

Ñ2

)
, (21)

such that
√

det q = Ñ
√

deth, 1
Ñ

=
√
q33 and deth = q11q22 − q212. Note the

difference in signs compared to the ADM decomposition, as here we are slicing
M′, which is a Euclidean manifold. In general area observable of a small surface
S denoted by AS can be written as the following integral

AS =
∫

S

dx1dx2
√

dethîĵ

=
∫

S

dx1dx2 1
Ñ

√
q =

∫
S

dx1dx2√q33
√
q

=
∫

S

dx1dx2
√√

qe3
Î

√
qe3Î =

∫
S

dx1dx2
√
E3

IE
3I , (22)

where E3
I denotes the set of components of the densitised triad perpendicular to

the measured surface. Thus when we quantize it we require that in its operator
form it becomes

ÂS =
∫
dx1dx2

√
Ê3

Ĩ
Ê3Ĩ =

∫
dx1dx2

√
T 3

Ĩ
[α](s)T 3Ĩ [α](s). (23)

Using the result (19) we get that the eigenvalue of ÂS is given by 8πγGN

√
j(j + 1),

where we get the values of j from the measurements of the spin assigned to a
particular holonomy line that intersects the little patch of surface S(σ1, σ2).
Clearly the spin networks are thus eigenfunctions of the area operator, and area
is quantized as a result of this treatment! Additionally note that the Immirzi pa-
rameter enters as a scaling factor of the quantum area spectrum, which indicates
that one obtains different theories of quantum gravity with different choices of
γ. One could try to find the precise value of the Barbero-Immirzi parameter
γ, and so far the predictions based on the black hole entropy calculations state
that γ = ln 2√

3π
or γ = ln 3√

8π
, depending on the gauge group choice used in LQG

[11].
Similar analysis can be done for the volume operator, but the calculations are

much more elaborate and these will be later considered in a simplified spacetime
models. It is important to note, that there is no direct operator for quantized
lengths, but instead one can measure a quantum of volume of a cylinder and
divide it by a quantum of its cross-sectional surface area, to find a way of
obtaining a quantum of length.
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6 Quantum Cosmology

Einstein’s equations can only be solved for a limited number of cases, let alone
their quantized version. That is why it is always a good idea to test the pre-
dictions on a model with numerous symmetries and simplifications. The FLRW
metric, describing an isotropic and homogenous universe seems to be a perfect
candidate as, not only it depends only on a single time dependent variable a(t).
Moreover, it also allows one to generate the results which would be profound to
our cosmological interpretations at small scales, i.e. at times very close to Big
Bang, some of which one may hope to be able to verity one day. In the ADM
formalism we can write our line element as

ds2 = −N (t)2 dt2 + a (t)2 dΩ2
3,

where the lapse function N(t) measures the change of time coordinate with
proper time. Setting N(t)=1, we recover Friedmann time.We can also now
write down the action for this simple spacetime

S = Sgrav+Smatter =
3V0

κ

∫
dtN

(
−aȧ

2

N2
+ ka− Λa3

3

)
+
V0

2

∫
dtNa3

(
φ̇2

N2
− 2V (φ)

)
(24)

where κ = 8πGN , Λ is the cosmological constant, and where we have assumed
the simplest matter content of the Universe given by a scalar field.

6.1 Dirac Quantization of the FLRW Spacetime — the
Wheeler-DeWitt equation of the Universe

Based on this action we can easily write down the canonical momenta

πa =
∂L
∂ȧ

= − 6aȧ
κ2N

, πφ =
∂L
∂φ̇

=
a3φ̇

N
, πN =

∂L
∂Ṅ

= 0 (25)

and write down the Hamiltonian density,

H = πaȧ+ πφφ̇+ πN Ṅ − L = (26)

= − κ2

12a
π2

a +
1
2
π2

φ

a3
+ a3 Λ

κ2
+ a3V − 3ka

κ2
, (27)

just like we did previously. It is easy to check that upon the vanishing of the
Hamiltonian constraint we recover the Friedmann equation(

ȧ

a

)2

≡ H2 =
κ2

3

(
φ̇2

2
+ V (φ)

)
+

Λ
3
− k

a2
, (28)

therefore, not surprisingly, in the classical theory we recover the equations of
motion. Once we quantize the theory in the Wheeler-DeWitt sense we end up
with the following quantum constraint equation

3
2

(
−1

9
l4pa

−1 ∂

∂a
a−1 ∂

∂a

)
[aψ (a, φ)] = 8πGN Ĥφ (a)

1
a

[aψ (a, φ)] . (29)
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Recall however that, this is only one of the many possible forms of the Wheeler-
deWitt equation, since previously we have seen that, this equation was plagued
by ordering ambiguities in the kinetic term. On the right hand side, Ĥφ (a)
denotes the scalar Hamiltonian of the matter content only. Overall this equation
is something that one could call the Schrödinger equation for the scale factor
of the Universe. Note that the order of the differential operator is different as
well as the fact that the derivatives are not with respect to time, therefore one
could argue that it may not describe the quantum evolution of the Universe.
This however is not an issue as a can be understood as a time parameter in
disguise, assuming that a(t) is a bijective function of time. Additionally note,
that from the form of this equation, as a → 0, i.e. as we move closer to the
“beginning” of the Universe, then the energy densities, all with a factor of a−1

in front, remain unbounded, and the Wheeler-deWitt equation cannot tell us
what takes place on the other side of the a = 0 singularity. DeWitt attempted
to resolve this problem with taking ψ (a = 0, φ) = 0, however it is not clear
whether this interpretation, borrowed directly from quantum mechanics, makes
any sense in the cosmological context.Moreover,we would also need appropriate
fall-off conditions as we approach a = 0, and what are they is not clear either.
and the problems at singularity persists.

Yet again, the naive, simplified formulation of quantum general relativity
has been unsuccessful. However as we will see in the following subsection, Loop
Quantum Gravity in the FLRW background will provide an alternative descrip-
tion, where the Big Bang singularity is no longer as problematic.

6.2 Loop Quantum Cosmology Predictions

Working in the FLRW background, isotropy and homogeneity of the spacetime
are assumed. For this reason our operators can be written in the following
simple form

AĨ
adx

a = cωĨ , and Ei
Ĩ

∂

∂xi
= pXĨ , (30)

where for spatially flat configurations ωĨ = dxĨ and XĨ = ∂
∂xĨ

; these are more
complicated for curved FLRW spacetimes. Additionally c and p are functions
of time only and can be recast in terms of previously encountered variables as

c =
1
2

(k − γȧ) , and |p| = a2, (31)

which follows from the definition of the spin connection, the intrinsic curvature
and the densitised triad. We can see that based on this we have the desired
Poisson structure {c, p} = κ2

3 . It is important to note that p can have a negative
as well as a positive sign. Additionally in classical theory we are required to
choose one sign over the other, since p = 0 represents a degenerate triad, hence
disconnecting the positive and the negative p domains. It is important to note
however that this situation will be different once we quantize the theory.
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Upon the above simplification, temporarily choosing a sign for p, our holon-
omy obtains a very simple form

U (s1, s2; c) = exp (cτĨ) = cos
( c

2

)
+ 2τĨ sin

( c
2

)
. (32)

We can now construct the states of our interest by acting with the holonomy
matrix (being the creation operator) on the ground state 1, hence all of these
states will be functions of variable c only. Due to the spacetime symmetry allows,
we do not have to worry about the complications resulting from spin networks
with arbitrary number of curves, and we can introduce an orthonormal basis in
the connection representation [11], such that

〈 c|n 〉 =
exp (inc/2)√

2 sin (c/2)
, (33)

where n ∈ Z. Let us define a state |n 〉, which is an eigenstate of the oriented
intersection number operator T i, in our simplified space-time. Then based on
the previous analysis of the area operator and the definition of p, which when
turned into an operator p̂, we obtain

p̂|n 〉 =
1
6
γl2pn|n 〉 (34)

We can see that the spectrum is discrete, and that it is very different to the one
found from the Wheeler-DeWitt quantization scheme. Recall that previously,
the action of the operator was purely multiplicative and that the operator had
a continuous spectrum; there was no direct information on what boundary con-
ditions should be implemented, so the Schrödinger-like equation could not yield
a discrete spectrum. Additionally note that in LQC, the classical singularity is
annihilated by p̂. This is because the n = 0 state has zero eigenvalue.

Following Bojowald [12], and [13] we can obtain the following expression for
the volume spectrum

V(|n|−1)/2 =
(

1
6
γl2p

) 3
2 √

(|n| − 1) |n| (|n|+ 1). (35)

Note that for n = 0, 1 volume is degenerately zero, however for n ≥ 2, it is
non-zero, being minimum at exactly n = 2.

We have previously noticed that the inverse scale factor appeared as a quan-
tum operator in the Wheeler-DeWitt formulation of quantum cosmology. There
â−1 was an unbounded operator. The situation is similar in LQC, however here
a = 0 is the admissible value at a single point, since now the scale factor has a
discrete spectrum. The difference, however, is that now â−1 can have an admis-
sible quantization, when they have the correct classical limit and are densely
defined operators.

The expression is different for different choices of representation of the SU(2)
gauge group and it is simplest for j = 1

2 , where it takes the form

â−1|n 〉 =
16
γ2l4p

(√
V |n|

2
−
√
V |n|

2 −1

)2

|n 〉 (36)
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Figure 4: Eigenvalues of inverse scale factor operators for j = 5 and j = 10
compared to the classical behaviour (dashed). Figure taken from [11]

Note now that the maximum of the inverse scale factor is (a−1)max ∝ 1
lp

at
the n = 2 peak. The exact value of this maximum obviously depends on the
representation, and the Immirzi parameter choice. If we manage to restrict our
spectrum to n ≥ 2, then the singularity is wiped out. This can also be seen from
the Figure 4, produced by Bojowald and Morales-Técotl [11], that neither the
representation choice nor the Immirzi parameter value change the qualitative
aspect of the theory. Moreover they argue that it is the choice of the sign of p
that we had to make is responsible for making the eigenvalue of â−1 be zero at
n = 0.

What do these results mean from a qualitative point of view. Firstly we
notice that the scale factor as well as the volume have a discrete spectrum.
When we look closely at the plot of the inverse scale factor against the oriented
intersection number and compare it to the classical predictions for a, we notice
that, as expected, the two differ only in the small volumes domain, thus our
quantization has a correct classical limit. We have also noticed that the singu-
larity problem is not removed yet, as at n = 0 the scale factor is still divergent,
however there is a small detail that we have overlooked, namely, that in our
Poisson structure it was not p that appeared but rather |p|. It is the issue of
the appearance of absolute values that will later play an important role.

It appears that we can rewrite the classical expressions in a number of ways,
depending on the representation chosen, and then the quantizations will not
necessarily be equivalent. The quantitative features may change under these
ambiguities, however the aforementioned qualitative features will not.

The results above hint at the fact that the quantum behaviour is less singular
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than the classical one. However, we can only be certain of the correctness of the
theorem if it would be possible to extend the evolution through the singularity,
at which point we will learn what lies beyond it and will eliminate all the worries
about its presence.

6.3 Evolution in LQC

In the Wheeler-DeWitt of quantum cosmology we have noticed that the equation
we obtain was very difficult to work with, besides the fact that did not remove
the singularity. In order to make progress in the Loop Quantum Cosmology
formulation we have to transform the connection representation into the triad
representation, by a simple change of basis, where a state can be expanded in
the triad eigenstates |n〉, such that |ψ 〉 =

∑
n ψ(ξ)|n〉, where ξ denotes all of the

possible degrees of freedom. Since n are p̂ eigenvalues (recall that it was directly
related to the scalar factor a), they will now play a role of an internal time, and
being discrete, unlike in the Wheeler-DeWitt quantization, the internal time will
be discrete too. This is going to introduce a major change, as now differential
equations will become just simple difference equations. Now we have

〈 c | U(c) |n 〉 = 〈 c | cos
( c

2

)
+ 2τi sin

( c
2

)
|n 〉;

=
1
2

(〈 c|n+ 1 〉+ 〈 c|n− 1 〉)− 1/2
τ i

(〈 c|n+ 1 〉 − 〈 c|n− 1 〉) .

(37)

Thus in triad representation holonomies change n by ±1, since(
cos
( c

2

)
ψ
)

n
=

1
2

∑
n

ψn (|n+ 1 〉+ |n− 1 〉) =
1
2

∑
n

ψn (ψn+1 + ψn−1) |n 〉; (38)

(
sin
( c

2

)
ψ
)

n
= − i

2

∑
n

ψn (|n+ 1 〉 − |n− 1 〉) =
i

2

∑
n

ψn (ψn+1 − ψn−1) |n 〉. (39)

The constraint operators can now be rewritten in the following convenient form
(for technical reasons it can only be derived for flat and positively curved space-
times, i.e. k = 0, 1)(
V|n+4|/2 − V(|n+4|/2)−1

)
eikψn+4 (ξ)− 2

(
2 + γ2k2

) (
V|n|/2 − V(|n|/2)−1

)
ψn (ξ) (40)

+
(
V|n−4|/2 − V(|n−4|/2)−1

)
e−ikψn−4 (ξ) = −8π

3
GNγ

3l2P Ĥmatter (n)ψn (ξ) , (41)

where we can see that the right hand side remained the right hand side of the
Wheeler-DeWitt equation, however the scale factor dependent content inside the
matter Hamiltonian now has changed its character due to the discrete spectrum
of â. The discreteness of this spectrum is also the reason why the evolution
equation is no longer a differential, but rather a difference equation.
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An interesting aspect of this equation is that in the large volume limit, i.e.
far away from the singularity, at n � 1, and where ψn (ξ) does not display
rapid oscillations. We can then interpolate the discrete wave functions to a
continuous one ψ̃ (p, ξ), where the e±ik factors have been absorbed into ψ’s and
redefined as ψ̃. Upon insertion into the difference equation and performing
the Taylor expansion of ψ̃n± = ψ̃

(
p(n)± 2

3γl
2
P

)
in terms of p

γl2P
we obtain the

Wheeler-DeWitt equation in some ordering convention upon the identification
a =

√
|p|,

1
2

(
4
9
l2P

∂2

∂p2
− k

)
ψ̃ (p, ξ) = −8π

3
GNγ

3l2P Ĥmatter (n) ψ̃n (ξ) . (42)

Thus the difference equation has the expected large volume behaviour, which
reproduces the equation that still suffers from the classical singularity. Addi-
tionally we notice that the Wheeler-DeWitt equation, however not fundamental,
reliably describes the dynamics far away from the singularity, which can be used
to study semi-classical approximations.

6.4 Evolution through the singularity

Looking back at the difference equation we can now study how the FLRW
spacetime evolves through the singularity at the quantum scales. For large n
the evolution is to a good extend described by the classical equations. We can
then evolve backwards by the recurrence relation for ψn−4. This process can
be carried out as long as

(
V|n−4|/2 − V(|n−4|/2)−1

)
is non-zero, however this is

possible when n = 4. At this point we are about to find the wave function
at n = 0 (given ψ8), however we are never capable to finding it and we can
evolve without any problems through the singularity. This is because for ψ−1

we need ψ3 and ψ7, and similarly for ψ−2 and ψ−3. For ψ−4 however, we would
need to know ψ0 and ψ4, however at this value ψ0 drops out of the equation
completely. Thus the value of ψ−4 is determined by ψ4 only and the issue of ψ0

does not cause any problems again. Therefore we see that the system evolves
through the singularity; there exists a spacetime before the Big Bang and the
Universe appears to be decreasing in size, up to a volume of the order of l3P
and expand into the Universe that we see today. Note that this prediction only
holds for k = 0, 1, and could be taking place multiple times for the positively
curved Universe, where the sequence of Big Bang and Big Crunch singularities
is described by the process described above. Thus we see that the simplicity of
the FLRW metric allowed us to develop the theory far enough to change our
understanding of the Universe we live in.

One of the problems with this approach is that it might be difficult to verify
experimentally. A number of authors argue that within a couple of decades
we should be able to develop the technology that will measure Loop Quantum
Gravitational corrections to various energy spectra we observe currently. The
appearance, detectability of this correction, and their order of magnitude are
still heavily debated.
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7 Conclusion

In this concise review we have seen that Loop Quantum Gravity is a back-
ground independent, non perturbative treatment of gravity. Once the problem
of time was solved by the Arnowitt-Deser-Misner formalism, we notice that the
brute force Dirac quantization of the resulting theory still was far from finding
a consistent theory, which would introduce a bounded from below geometrical
spectrum of spacetime. Since this was one of the initial motivations behind
introducing a quantum theory of gravity we needed to rewrite our general rela-
tivity in a connection formulation. When we attempt to quantize the resulting
theory, we find that we require intrinsically SU(2) gauge invariant structures.
This were initially known as the Wilson loops, but were subsequently gener-
alised to the so-called spin networks. These represented eigenfunctionals of the
densitised triad field E Ĩ

i , and were eigenstates of the quantum area operator,
which had a discrete spectrum bounded from below.

Lastly we have noticed that by putting this formalism to a test on a highly
symmetric FLRW spacetime, we have noticed that as a result time became
quantized as well, and that even though the classical singularity persisted in
the geometrical spectrum, at quantum level the system was capable of evolving
through it, completely removing the need for Big Bang or Big Crunch.
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