Large Scale Structure Formation

Mathijs Wintraecken

Institute for Theoretical Physics Utrecht University

7th of Januari 2009

Introduction

Toy model in Minkowski space Toy model in Expanding space

Relativistic Cosmological Perturbation Theory

Numerical work

Outline

Introduction Static Toy Model Non-static Toy Model

Relativistic Perturbations

Numerical work

Introduction

(日)

æ

Introduction

Toy model in Minkowski space Toy model in Expanding space

Relativistic Cosmological Perturbation Theory

Numerical work

Overview

Hierarchial growth

- ► Quantum origin perturbations (Misha) small $\delta \rho / \rho_0 \ll 1$
- Inflation scales perturbations up
- Instability due to gravity (linear growth of structure)

 $\ddot{\delta \rho} \sim G \delta \rho.$

- Contracting cold dark and ordinary matter
- Radiative cooling

Toy model in Minkowski space Toy model in Expanding space

Relativistic Cosmological Perturbation Theory

Toy model in Minkowski space

Hydrodynamical matter

The continuity equation

$$\frac{d\rho}{dt} = \frac{\partial\rho}{\partial t} + (\mathbf{v}_i\partial_i)\rho = -\rho(\partial_i\mathbf{v}_i).$$

The Euler equation

$$\frac{d\mathbf{v}_i}{dt} + \partial_i \phi = \frac{\partial \mathbf{v}_i}{\partial t} + (\mathbf{v}_j \partial_j) \mathbf{v}_i + \partial_i \phi = -\rho^{-1} \partial_i \mathbf{p}.$$

The Poisson equation for Newtonian gravity

$$\nabla^2 \phi = \partial_i \partial_i \phi = 4\pi G \rho.$$

Entropy conservation

$$\frac{dS}{dt}=\frac{\partial S}{\partial t}+(v_i\partial_i)S=0.$$

Universiteit Utrecht

Toy model in Minkowski space

Linear Order Perturbations

Perturb solutions

$$\rho(\mathbf{x}, t) = \rho_0 + \delta \rho(\mathbf{x}, t)$$
$$\mathbf{v}(\mathbf{x}, t) = \delta \mathbf{v}(\mathbf{x}, t)$$
$$p(\mathbf{x}, t) = \rho_0 + \delta p(\mathbf{x}, t)$$
$$\phi(\mathbf{x}, t) = \phi_0 + \delta \phi(\mathbf{x}, t)$$
$$S(\mathbf{x}, t) = S_0 + \delta S(\mathbf{x}, t).$$

Equation of state

$$\delta \boldsymbol{p} = \boldsymbol{c}_{\boldsymbol{s}}^2 \delta \rho + \sigma \delta \boldsymbol{S},$$

with

$$c_s^2 = \left(\frac{\delta p}{\delta \rho}\right)\Big|_{\mathcal{S}} \qquad \sigma = \left(\frac{\delta p}{\delta \mathcal{S}}\right)\Big|_{\rho},$$

where c_s is identified with the speed of sound.

U REAL

Universiteit Utrecht

Introduction

Toy model in Minkowski space Toy model in Expanding space

Relativistic Cosmological Perturbation Theory

Governing equations

Inserting the perturbations in the hydrodynamical equations gives

Continuity equation

$$\frac{\partial \delta \rho}{\partial t} + \rho_0 \partial_i \delta \mathbf{v}_i = \mathbf{0}$$

Euler equation

$$\frac{\partial \delta \mathbf{v}_{i}}{\partial t} + \frac{1}{\rho_{0}} \partial_{i} \delta \mathbf{p} + \partial_{i} \delta \phi = \mathbf{0}$$
$$\implies \frac{\partial}{\partial t} \partial_{i} \delta \mathbf{v}_{i} + \frac{1}{\rho_{0}} \partial_{i} \partial_{i} \delta \mathbf{p} + \partial_{i} \partial_{i} \delta \phi = \mathbf{0}$$

Poisson

$$\partial_i \partial_i \delta \phi = 4\pi G \delta \rho$$

Equation of state

$$\delta \boldsymbol{p} = \boldsymbol{c}_{\boldsymbol{S}}^2 \delta \rho + \sigma \delta \boldsymbol{S}$$

(ロ) (部) (注) (注) (10)

Universiteit Utrecht

Introduction

Toy model in Minkowski space Toy model in Expanding space

Relativistic Cosmological Perturbation Theory

Governing equations (continued)

So the hydrodynamical equations yield

$$\ddot{\delta\rho} - c_{\rm s}^2 \partial_i \partial_i \delta\rho - 4\pi G \rho_0 \delta\rho = \sigma \partial_i \partial_i \delta S.$$

Furthermore one also has

$$\frac{dS}{dt}=0.$$

Toy model in Minkowski space Toy model in Expanding space

Relativistic Cosmological Perturbation Theory

Numerical work

Generalization to multicomponent fluid, where each component is distinguished by a index *A*

$$\ddot{\delta\rho}_{A} - c_{SA}^{2} \nabla^{2} \delta\rho_{A} - \sum_{A} 4\pi G \rho_{0} \delta\rho_{A} = \sigma \nabla^{2} \delta S_{A}.$$

Two types of perturbations are of particular interest

- So called adiabatic fluctuation, where the entropy fluctuations are set to zero. In a 'realistic' model multicomponent model, number of photons much greater then number of baryons, density perturbations of all baryons are determined by temperature fluctuations.
- Entropy fluctuations, where $\dot{\delta \rho} = 0$, but $\delta S \neq 0$.

Introduction

Toy model in Minkowski space Toy model in Expanding space

Relativistic Cosmological Perturbation Theory

Jeans Length

We consider only adiabatic perturbations for the moment. Fourier decomposition

$$\delta
ho(\mathbf{x},t) = \int e^{i\mathbf{k}\cdot\mathbf{x}} \delta
ho_k(t) \mathrm{d}\mathbf{k}$$

yields

$$\ddot{\delta\rho_k}(t) + c_s^2 k^2 \delta\rho_k - 4\pi G \rho_0 \delta\rho_k = 0.$$

Jeans wavelength

$$k_J = \left(\frac{4\pi G\rho_0}{c_s^2}\right)^{1/2}.$$

Introduction

Toy model in Minkowski space Toy model in Expanding space

Relativistic Cosmological Perturbation Theory

Interpretation:

{timescale for pressure readjustment} < {timescale for gravitational collapse}

11/2

Universiteit Utrecht

Toy model in Minkowski space

Perturbations in expanding space

Introduction Toy model in Minkowski space Toy model in Expanding space

Relativistic Cosmological Perturbation Theory

Numerical work

Background reads

$$g_{\mu\nu} = \text{diag}(1, -a^2(t), -a^2(t), -a^2(t)).$$

Perturbation

$$\begin{aligned} \rho(\mathbf{x}, t) &= \rho_0(t)(1 + \delta_{\epsilon}(\mathbf{x}, t)) \\ \mathbf{v}(\mathbf{x}, t) &= \mathbf{v}_0(\mathbf{x}, t) + \delta \mathbf{v}(\mathbf{x}, t) = H(t)\mathbf{x} + \delta \mathbf{v}(\mathbf{x}, t) \\ \rho(\mathbf{x}, t) &= \rho_0(t) + \delta \rho(\mathbf{x}, t) \end{aligned}$$

Inserting in the hydrodynamical equations From the zeroth order equation we get

$$ho_0 \propto a^{-3},$$

consistent with Newtonian limit.

Toy model in Expanding space

Again perturbing to first order

Continuity equation

$$d_t \partial_i \delta v_i + 2H \partial_i \delta v_i + \partial_i \partial_i \delta \phi + \rho_0^{-1} \partial_i \partial_i \delta \rho = 0$$

Euler equation

$$d_t \delta_\epsilon + \partial_i \delta v_i = 0$$

Poisson

$$\partial_i \partial_i \delta \phi = 4\pi G \rho_0 \delta_\epsilon$$

Equation of state

$$\delta \boldsymbol{p} = \boldsymbol{c}_{\boldsymbol{S}}^2 \delta \rho + \sigma \delta \boldsymbol{S}$$

From the first order equations

$$d_t^2 \delta_{\epsilon} + 2H d_t \delta_{\epsilon} - c_s^2 \nabla^2 \delta_{\epsilon} - 4\pi G \rho_0 \delta_{\epsilon} = \frac{\sigma}{\rho_0} \nabla^2 \delta S,$$

with

$$\boldsymbol{d}_t = \partial_t + \boldsymbol{H} \boldsymbol{x}_j \partial_j = \partial_t + \boldsymbol{v}_j \partial_j.$$

The one extra term $2Hd_t\delta_{\epsilon}$ identified with damping

Universiteit Utrecht

Toy model in Expanding

space

Relativistic Cosmological Perturbation Theory

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト

3

Introduction

Toy model in Minkowski space Toy model in Expanding space

Relativistic Cosmological Perturbation Theory

Numerical work

Scalar perturbations

Background flat Friedmann-Lemaître-Robertson-Walker (FLRW) universe (first order perturbation theory). We may decompose the perturbations of the metric

$$g_{\mu
u} = g^{(0)}_{\mu
u} + \delta g_{\mu
u} = g^{(0)}_{\mu
u} + \delta g^{S}_{\mu
u} + \delta g^{V}_{\mu
u} + \delta g^{T}_{\mu
u}$$

(relies on the way the fields transform under the spacial coordinate transformations on a 3D surface of constant time)

$$\delta g^{S}_{\mu\nu} = a^{2} \begin{pmatrix} 2\phi & -\partial_{1}B & -\partial_{2}B & -\partial_{3}B \\ -\partial_{1}B & 2(\psi - \partial_{1}\partial_{1}E) & -2\partial_{1}\partial_{2}E & -2\partial_{1}\partial_{3}E \\ -\partial_{2}B & -2\partial_{2}\partial_{1}E & 2(\psi - \partial_{2}\partial_{2}E) & -2\partial_{2}\partial_{3}E \\ -\partial_{3}B & -2\partial_{3}\partial_{1}E & -2\partial_{3}\partial_{2}E & 2(\psi - \partial_{3}\partial_{3}E) \end{pmatrix}$$

with ϕ , ψ , *B* and *E* scalar fields.

Introduction

Toy model in Minkowski space Toy model in Expanding space

Relativistic Cosmological Perturbation Theory

Numerical work

Vector perturbations

$$\delta g^{V}_{\mu\nu} = a^{2} \begin{pmatrix} 0 & -S_{1} & -S_{2} & -S_{3} \\ -S_{1} & 2\partial_{1}F_{1} & \partial_{1}F_{2} + \partial_{2}F_{1} & \partial_{1}F_{3} + \partial_{3}F_{1} \\ -S_{2} & \partial_{1}F_{2} + \partial_{2}F_{1} & 2\partial_{2}F_{2} & \partial_{2}F_{3} + \partial_{3}F_{2} \\ -S_{3} & \partial_{1}F_{3} + \partial_{3}F_{1} & \partial_{2}F_{3} + \partial_{3}F_{2} & 2\partial_{3}F_{3} \end{pmatrix}$$

where S_i and F_i are two three dimensional vectors, which also satisfy

$$\frac{\partial S_i}{\partial x^i} = \frac{\partial F_i}{\partial x^i} = 0.$$

From the equations of motions one can derive that these decay as a^{-2} .

ntroduction Toy model in Minkowski space Toy model in Expanding space

Relativistic Cosmological Perturbation Theory

Numerical work

Tensor perturbations

$$\delta g_{\mu\nu}^{T} = a^{2} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & h_{11} & h_{12} & h_{13} \\ 0 & h_{12} & h_{22} & h_{23} \\ 0 & h_{13} & h_{23} & h_{33} \end{pmatrix}$$

where we have

$$h_{ii} = 0$$
 and $\frac{\partial h_{ij}}{\partial x^i} = 0$.

The equations of motions yield that these perturbations decouple completely.

Introduction

Toy model in Minkowski space Toy model in Expanding space

Relativistic Cosmological Perturbation Theory

Numerical work

Active view

What about the gauge? We have chosen coordinates on the background or rather normal or conformal time. Let \mathcal{M} be our manifold and \mathcal{M}_0 the background and $A \in \mathcal{A}$ a chart in the atlas

 $\begin{array}{c} \mathcal{M}_{0} \xrightarrow{\phi} \mathcal{M} \\ \downarrow^{A} \xrightarrow{A_{\text{ind}}} \\ \mathbb{R}^{4} \end{array}$

Fixing a diffeomorphism ϕ induces a coordinate chart on \mathcal{M} . In the following we will take time to be conformal.

Universiteit Utrecht

Relativistic Cosmological

Perturbation Theory

Gauge issues

Since we work in linearized gravity we may assume that ϵ^μ is very small

$$x^{\mu}
ightarrow \tilde{x}^{\mu} = x^{\mu} + \epsilon^{\mu}(x)$$

$$\delta g_{\mu
u}(x)
ightarrow \delta g_{\mu
u}(x) + \Delta g_{\mu
u}(x)$$

Note that $\Delta g_{\mu\nu}$ is not independent of the background metric

$$egin{aligned} \Delta g_{\mu
u}(x) &= & ilde{g}_{\mu
u}(x) - g_{\mu
u}(x) \ &\simeq & (g^{(0)}_{
ho\sigma}(x) + \delta g_{
ho\sigma}(x)) (\delta^{
ho}_{\mu} - \partial_{\mu}\epsilon^{
ho}(x)) (\delta^{\sigma}_{
u} - \partial_{
u}\epsilon^{\sigma}(x)) \ &- & (\partial_{\lambda} ilde{g}_{\mu
u})\epsilon^{\lambda} - g^{(0)}_{\mu
u}(x^{\lambda}) - & \delta g_{\mu
u}(x^{\lambda}) \ &\simeq & - g^{(0)}_{\lambda\mu}(x)\partial_{
u}\epsilon^{\lambda}(x) - g^{(0)}_{\lambda
u}(x)\partial_{\mu}\epsilon^{\lambda}(x) \ &- & (\partial_{\lambda}g^{(0)}_{\mu
u})(x)\epsilon^{\lambda}(x), \end{aligned}$$

Introduction

space Toy model in Expanding space

Relativistic Cosmological Perturbation Theory

If we now rewrite

$$\epsilon_i = \partial_i \epsilon^{\mathcal{S}} + \epsilon_i^{\mathcal{V}},$$

with

$$\partial_i \epsilon_i^V = \mathbf{0},$$

which allows to separate the vector and scalar perturbations. (Tensor perturbations don't transform) The scalar fluctuations transform as

$$egin{aligned} & ilde{\phi} = \phi - rac{a'}{a}\epsilon^0 - (\epsilon^0)' \ & ilde{B} = B + \epsilon^0 - (\epsilon^S)' \ & ilde{E} = E - \epsilon^S \ & ilde{\psi} = \psi + rac{a'}{a}\epsilon^0 \end{aligned}$$

prime indicates the derivative with respect to conformal time $\eta_{\text{constraint}}$

Universiteit Utrecht

Toy model in Minkowski space Toy model in Expanding space

Relativistic Cosmological Perturbation Theory

Solving gauge problems

1. Fix gauge

· Longitudinal or Conformal Newtonian Gauge

$$B = E = 0$$

Synchronous Gauge

$$\phi = B = 0$$

2. Introduce Gauge Invariant Variables

$$\Phi = \phi + rac{1}{a}[(B - E')a]'$$
 $\Psi = \psi - rac{a'}{a}(B - E').$

in the newtonian limit ϕ is identified with the Newtonian potential.

In the longitudinal gauge $\Phi = \phi$ and $\Psi = \psi$.

- 20

Universiteit Utrecht

Troduction Toy model in Minkowski space Toy model in Expanding

Relativistic Cosmological Perturbation Theory

Generalizing

$$\delta G^{\nu}_{\mu} = 8\pi G \, \delta T^{\nu}_{\mu}.$$

Again write in a gauge invariant manner

$$\begin{split} \delta G_0^{0(\text{gi})} &\equiv \delta G_0^0 + ({}^{(0)}G_0'{}^0)(B - E') \\ \delta G_i^{0(\text{gi})} &\equiv \delta G_i^0 + \left({}^{(0)}G_i^0 - \frac{1}{3}{}^{(0)}G_k^k \right) \partial_i(B - E') \\ \delta G_j^{i(\text{gi})} &\equiv \delta G_j^i + ({}^{(0)}G_j'{}^i)(B - E') \end{split}$$

and

$$\begin{split} \delta T_0^{0(\text{gi})} &\equiv \delta T_0^0 + ({}^{(0)}T_{\prime 0}^0)(B-E') \\ \delta T_i^{0(\text{gi})} &\equiv \delta T_i^0 + \left({}^{(0)}T_i^0 - \frac{1}{3}{}^{(0)}T_k^k\right) \partial_i(B-E') \\ \delta T_j^{i(\text{gi})} &\equiv \delta T_j^i + ({}^{(0)}T_j^{\prime i})(B-E'), \end{split}$$

Universiteit Utrecht

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

Torocuction Foy model in Minkowski space Foy model in Expanding

Relativistic Cosmological Perturbation Theory The linearized Einstein equations yield

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト

3

$$\begin{split} -3H(H\Phi+\Psi')+\nabla^2\Psi&=4\pi Ga^2T_0^{0(\mathrm{gi})}\\ \partial_i(H\Phi+\Psi')&=4\pi Ga^2\delta T_i^{0(\mathrm{gi})}\\ [(2H'+H^2)\Phi+H\Phi'+\Psi''+2H\Psi']\delta_j^i\\ &+\frac{1}{2}\nabla^2 D\delta_j^i-\frac{1}{2}\gamma^{ik}\partial_i\partial_k D=-4\pi Ga^2\delta T_j^{i(\mathrm{gi})}, \end{split}$$

where γ^{ij} denotes the spacial part of the background metric, H = a'/a is the hubble parameter and

$$D \equiv \Phi - \Psi$$
.

Relativistic Cosmological Perturbation Theory

Numerical work

24

Perfect fluid content

Energy momentum tensor

$$T^{\nu}_{\mu} = (\rho + \rho) u^{\nu} u_{\mu} - \rho \delta^{\nu}_{\mu},$$

Equation of state

$$\delta \boldsymbol{p} = \boldsymbol{c}_{\boldsymbol{s}}^2 \delta \rho + \sigma \delta \boldsymbol{S}.$$

The perturbation of T^{ν}_{μ} is given by

$$\delta T_0^0 = \delta \rho \qquad \delta T_i^0 = \frac{1}{a} (\rho_0 + \rho_0) \delta u_i \qquad \delta T_j^i = -\delta \rho \, \delta_j^i.$$

One may derive that

$$\nabla^2 \Phi - 3H\Phi' - 3H^2 \Phi = 4\pi G a^2 \delta \rho.$$

This generalizes the Poisson equation, Φ is referred to as the relativistic (Newtonian) potential. The governing equation now reads

$$\Phi'' + 3H(1 + c_s^2)\Phi' - c_s^2 \nabla^2 \Phi + [2H' + (1 + 3c_s^2)H^2]\Phi = 4\pi G a^2 \sigma \delta S.$$

Relativistic Cosmological Perturbation Theory

To quantum perturbations

Matter content described by scalar field. We start with action

$$\begin{array}{lll} S_t &=& S_{EH} + S_m \\ S_m &=& \int d^4 x \sqrt{-g} \Big[\frac{1}{2} \partial_\mu \varphi \partial^\mu \varphi - V(\varphi) \Big], \end{array}$$

In the longitudinal gauge

$$\varphi(\mathbf{x},\eta) = \varphi_0(\eta) + \delta \varphi(\mathbf{x},\eta).$$

$$\nabla^{2}\phi - 3H\phi' - (H' + 2H^{2})\phi = 4\pi G \Big(\varphi_{0}'\delta\varphi' + \frac{dV}{d\varphi}a^{2}\delta\varphi\Big)$$
$$H\phi + \phi' = 4\pi G\varphi_{0}'\delta\varphi$$
$$\phi'' + 3H\phi' + (H' + 2H^{2})\phi = 4\pi G \Big(\varphi_{0}'\delta\varphi' - \frac{dV}{d\varphi}a^{2}\delta\varphi\Big)$$

Combing yields

$$\phi'' + 2\left(H - \frac{\varphi_0''}{\varphi_0'}\right)\phi' - \nabla^2\phi + 2\left(H' - H\frac{\varphi_0''}{\varphi_0'}\right)\phi = 0.$$

Introduction

Toy model in Minkowski space Toy model in Expanding space

Relativistic Cosmological Perturbation Theory

Numerical work

Numerical work

Introduction

Toy model in Minkowski space Toy model in Expanding space

Relativistic Cosmological Perturbation Theory

Numerical work

Overview

Hierarchial growth

- ► Quantum origin perturbations (Misha) small $\delta \rho / \rho_0 \ll 1$
- Inflation scales perturbations up
- Instability due to gravity (linear growth of structure)

 $\ddot{\delta \rho} \sim G \delta \rho.$

- Contracting cold dark and ordinary matter
- Radiative cooling

Toy model in Minkowski space Toy model in Expanding space

Relativistic Cosmological Perturbation Theory

Millennium Simulation

Spectrum of perturbations: nearly-scale invariant Gaussian random field (Harrison-Zel'dovich spectrum)

- Numerical work on non-linear collapse of matter.
- N-body Simulation with $N = 2160^3 \simeq 10^{10}$.
- From redshift z = 127 to present
- We see the present 'universe'

Introduction

Toy model in Minkowski space Toy model in Expanding space

Relativistic Cosmological Perturbation Theory

Numerical work

National center for Supercomputer Simulations

- ▶ From *z* = 30 to *z* = 0
- Size is only 43 Mpsc
- Time evolution is exhibited

Introduction

Toy model in Minkowski space Toy model in Expanding space

Relativistic Cosmological Perturbation Theory

Numerical work

Questions?

Toy model in Minkowski space Toy model in Expanding space

Relativistic Cosmological Perturbation Theory

Numerical work

