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Overview

Hierarchial growth
I Quantum origin perturbations (Misha)

small δρ/ρ0 � 1
I Inflation scales perturbations up
I Instability due to gravity (linear growth of structure)

δ̈ρ ∼ Gδρ.

I Contracting cold dark and ordinary matter
I Radiative cooling
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Toy model in Minkowski space
Hydrodynamical matter

I The continuity equation

dρ
dt

=
∂ρ

∂t
+ (vi∂i)ρ = −ρ(∂ivi).

I The Euler equation

dvi

dt
+ ∂iφ =

∂vi

∂t
+ (vj∂j)vi + ∂iφ = −ρ−1∂ip.

I The Poisson equation for Newtonian gravity

∇2φ = ∂i∂iφ = 4πGρ.

I Entropy conservation

dS
dt

=
∂S
∂t

+ (vi∂i)S = 0.
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Linear Order Perturbations
Perturb solutions

ρ(x, t) = ρ0 + δρ(x, t)
v(x, t) = δv(x, t)
p(x, t) = p0 + δp(x, t)
φ(x, t) = φ0 + δφ(x, t)
S(x, t) = S0 + δS(x, t).

Equation of state

δp = c2
s δρ+ σδS,

with

c2
s =

(δp
δρ

)∣∣∣∣
S

σ =
( δp
δS

)∣∣∣∣
ρ

,

where cs is identified with the speed of sound.
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Governing equations
Inserting the perturbations in the hydrodynamical equations
gives

I Continuity equation

∂δρ

∂t
+ ρ0∂iδvi = 0

I Euler equation

∂δvi

∂t
+

1
ρ0
∂iδp + ∂iδφ = 0

=⇒ ∂

∂t
∂iδvi +

1
ρ0
∂i∂iδp + ∂i∂iδφ = 0

I Poisson

∂i∂iδφ = 4πGδρ

I Equation of state

δp = c2
Sδρ+ σδS
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Governing equations (continued)

So the hydrodynamical equations yield

δ̈ρ− c2
s∂i∂iδρ− 4πGρ0δρ = σ∂i∂iδS.

Furthermore one also has

dS
dt

= 0.
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Generalization to multicomponent fluid, where each
component is distinguished by a index A

δ̈ρA − c2
sA∇2δρA −

∑
A

4πGρ0δρA = σ∇2δSA.

Two types of perturbations are of particular interest
I So called adiabatic fluctuation, where the entropy

fluctuations are set to zero. In a ‘realistic’ model
multicomponent model, number of photons much
greater then number of baryons, density perturbations
of all baryons are determined by temperature
fluctuations.

I Entropy fluctuations, where δ̇ρ = 0, but δS 6= 0.
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Jeans Length

We consider only adiabatic perturbations for the moment.
Fourier decomposition

δρ(x, t) =

∫
eik·xδρk (t)dk

yields

¨δρk (t) + c2
s k2δρk − 4πGρ0δρk = 0.

Jeans wavelength

kJ =

(
4πGρ0

c2
s

)1/2

.
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Interpretation:

{timescale for pressure readjustment} <
{timescale for gravitational collapse}
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Perturbations in expanding space
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Background reads

gµν = diag(1,−a2(t),−a2(t),−a2(t)).

Perturbation

ρ(x, t) = ρ0(t)(1 + δε(x, t))

v(x, t) = v0(x, t) + δv(x, t) = H(t)x + δv(x, t)
p(x, t) = p0(t) + δp(x, t)

Inserting in the hydrodynamical equations
From the zeroth order equation we get

ρ0 ∝ a−3,

consistent with Newtonian limit.
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Again perturbing to first order
I Continuity equation

dt∂iδvi + 2H∂iδvi + ∂i∂iδφ+ ρ−1
0 ∂i∂iδp = 0

I Euler equation

dtδε + ∂iδvi = 0

I Poisson

∂i∂iδφ = 4πGρ0δε

I Equation of state

δp = c2
Sδρ+ σδS

From the first order equations

d2
t δε + 2Hdtδε − c2

s∇2δε − 4πGρ0δε =
σ

ρ0
∇2δS,

with

dt = ∂t + Hxj∂j = ∂t + vj∂j .

The one extra term 2Hdtδε identified with damping
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Relativistic Cosmological
Perturbation Theory
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Scalar perturbations

Background flat Friedmann-Lemaître-Robertson-Walker
(FLRW) universe (first order perturbation theory).
We may decompose the perturbations of the metric

gµν = g(0)
µν + δgµν = g(0)

µν + δgS
µν + δgV

µν + δgT
µν

(relies on the way the fields transform under the spacial
coordinate transformations on a 3D surface of constant time)

δgS
µν = a2


2φ −∂1B −∂2B −∂3B
−∂1B 2(ψ − ∂1∂1E) −2∂1∂2E −2∂1∂3E
−∂2B −2∂2∂1E 2(ψ − ∂2∂2E) −2∂2∂3E
−∂3B −2∂3∂1E −2∂3∂2E 2(ψ − ∂3∂3E)


with φ, ψ, B and E scalar fields.
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Vector perturbations

δgV
µν = a2


0 −S1 −S2 −S3
−S1 2∂1F1 ∂1F2 + ∂2F1 ∂1F3 + ∂3F1
−S2 ∂1F2 + ∂2F1 2∂2F2 ∂2F3 + ∂3F2
−S3 ∂1F3 + ∂3F1 ∂2F3 + ∂3F2 2∂3F3


where Si and Fi are two three dimensional vectors, which
also satisfy

∂Si

∂x i =
∂Fi

∂x i = 0.

From the equations of motions one can derive that these
decay as a−2.
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Tensor perturbations

δgT
µν = a2


0 0 0 0
0 h11 h12 h13
0 h12 h22 h23
0 h13 h23 h33


where we have

hii = 0 and
∂hij

∂x i = 0.

The equations of motions yield that these perturbations
decouple completely.
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Active view

What about the gauge? We have chosen coordinates on the

background or rather normal or conformal time.

LetM be our manifold andM0 the background and A ∈ A a

chart in the atlas

M0

A
��

φ //M

Aind||zz
zz

zz
zz

R4

Fixing a diffeomorphism φ induces a coordinate chart onM.
In the following we will take time to be conformal.
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Gauge issues

Since we work in linearized gravity we may assume that εµ is
very small

xµ → x̃µ = xµ + εµ(x)

δgµν(x)→ δgµν(x) + ∆gµν(x).

Note that ∆gµν is not independent of the background metric

∆gµν(x) = g̃µν(x)− gµν(x)

' (g(0)
ρσ (x) + δgρσ(x))(δρµ − ∂µερ(x))(δσν − ∂νεσ(x))

−(∂λg̃µν)ελ − g(0)
µν (xλ)− δgµν(xλ)

' −g(0)
λµ (x)∂νε

λ(x)− g(0)
λν (x)∂µε

λ(x)

−(∂λg(0)
µν )(x)ελ(x),
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If we now rewrite

εi = ∂iε
S + εVi ,

with

∂iε
V
i = 0,

which allows to separate the vector and scalar perturbations.
(Tensor perturbations don’t transform)
The scalar fluctuations transform as

φ̃ = φ− a′

a
ε0 − (ε0)′

B̃ = B + ε0 − (εS)′

Ẽ = E − εS

ψ̃ = ψ +
a′

a
ε0

prime indicates the derivative with respect to
conformal time η.
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Solving gauge problems

1. Fix gauge
• Longitudinal or Conformal Newtonian Gauge

B = E = 0

• Synchronous Gauge

φ = B = 0

2. Introduce Gauge Invariant Variables

Φ = φ+
1
a

[(B − E ′)a]′

Ψ = ψ − a′

a
(B − E ′).

in the newtonian limit φ is identified with the Newtonian
potential.
In the longitudinal gauge Φ = φ and Ψ = ψ.



Introduction
Toy model in Minkowski
space

Toy model in Expanding
space

Relativistic
Cosmological
Perturbation
Theory

Numerical work

23

Generalizing

δGν
µ = 8πG δT ν

µ .

Again write in a gauge invariant manner

δG0(gi)
0 ≡ δG0

0 + ((0)G
′0
0 )(B − E ′)

δG0(gi)
i ≡ δG0

i +
(

(0)G0
i −

1
3

(0)Gk
k

)
∂i(B − E ′)

δGi(gi)
j ≡ δGi

j + ((0)G
′i
j )(B − E ′)

and

δT 0(gi)
0 ≡ δT 0

0 + ((0)T 0
′0)(B − E ′)

δT 0(gi)
i ≡ δT 0

i +
(

(0)T 0
i −

1
3

(0)T k
k

)
∂i(B − E ′)

δT i(gi)
j ≡ δT i

j + ( (0)T
′i
j )(B − E ′),
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The linearized Einstein equations yield

−3H(HΦ + Ψ′) +∇2Ψ = 4πGa2T 0(gi)
0

∂i(HΦ + Ψ′) = 4πGa2δT 0(gi)
i

[(2H ′ + H2)Φ + HΦ′ + Ψ′′ + 2HΨ′]δi
j

+
1
2
∇2Dδi

j −
1
2
γ ik∂i∂kD = −4πGa2δT i(gi)

j ,

where γ ij denotes the spacial part of the background metric,
H = a′/a is the hubble parameter and

D ≡ Φ−Ψ.
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Perfect fluid content
Energy momentum tensor

T ν
µ = (ρ+ p)uνuµ − pδνµ,

Equation of state

δp = c2
s δρ+ σδS.

The perturbation of T ν
µ is given by

δT 0
0 = δρ δT 0

i =
1
a

(ρ0 + p0)δui δT i
j = −δp δi

j .

One may derive that

∇2Φ− 3HΦ′ − 3H2Φ = 4πGa2δρ.

This generalizes the Poisson equation, Φ is referred to as
the relativistic (Newtonian) potential.
The governing equation now reads

Φ′′ + 3H(1 + c2
s )Φ′ − c2

s∇2Φ + [2H ′ + (1 + 3c2
s )H2]Φ

= 4πGa2σδS.
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To quantum perturbations
Matter content described by scalar field. We start with action

St = SEH + Sm

Sm =

∫
d4x
√
−g
[1

2
∂µϕ∂

µϕ− V (ϕ)
]
,

In the longitudinal gauge

ϕ(x, η) = ϕ0(η) + δϕ(x, η).

∇2φ− 3Hφ′ − (H ′ + 2H2)φ = 4πG
(
ϕ′0δϕ

′ +
dV
dϕ

a2δϕ
)

Hφ+ φ′ = 4πGϕ′0δϕ

φ′′ + 3Hφ′ + (H ′ + 2H2)φ = 4πG
(
ϕ′0δϕ

′ − dV
dϕ

a2δϕ
)
.

Combing yields

φ′′ + 2
(

H −
ϕ′′0
ϕ′0

)
φ′ −∇2φ+ 2

(
H ′ − H

ϕ′′0
ϕ′0

)
φ = 0.
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Numerical work
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Overview

Hierarchial growth
I Quantum origin perturbations (Misha)

small δρ/ρ0 � 1
I Inflation scales perturbations up
I Instability due to gravity (linear growth of structure)

δ̈ρ ∼ Gδρ.

I Contracting cold dark and ordinary matter
I Radiative cooling
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Millennium Simulation
Spectrum of perturbations: nearly-scale invariant Gaussian
random field (Harrison-Zel’dovich spectrum)

I Numerical work on non-linear collapse of matter.
I N-body Simulation with N = 21603 ' 1010.
I From redshift z = 127 to present
I We see the present ‘universe’
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National center for Supercomputer Simulations

I From z = 30 to z = 0
I Size is only 43 Mpsc
I Time evolution is exhibited
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Questions?
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