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1 Introduction
The story of Gravitational Waves begins in 1916, very shortly after the for-
mulation of General Relativity. As taught by earlier classical field theories,
such as Electromagnetism, physicists felt the urge to look for radiative solu-
tions of the Einstein equations. This kind of wave-like propagating solutions
would be the gravitational equivalent of the EM waves.

But this was a far from trivial task. The highly non-linear nature of
the 2nd order differential equations required a different and more careful
approach, which also had conceptual implications. However the landscape of
this fascinating field was soon clarified and a consistent theory of GWs was
formulated in a few years time.

In this project we will deal with gravitational waves that emerge from
processes of cosmological scales during the early stages of evolution of the
Universe, according to the modern standard cosmological model. In times
when the matter and energy content of the whole Universe was confined in
a tiny volume and temperatures of 1032K where typical, extremely violent
macroscopic processes occurred providing sources of gravitational radiation
strong enough to comprise relics of this epoch, that could even be detectable
at present time experiments.

However, no gravitational wave detection experiment has been essentially
successful up to today, meaning of course that no gravitational waves have
been detected yet, in spite of the variety of sources predicted by several the-
oretical calculations. These include not only sources of cosmological nature
but also astrophysical, such as binary systems or neutron stars, that can be
found all across our galaxy and the visible Universe in general. The main rea-
son/excuse for this “failure” is the weakness of the gravitational interaction,
translated of course as the smallness of the gravitational Newton’s constant
GN which can be found as a factor in the Einstein’s equation. Thus even a
seemingly strong source will emit a very small amount of gravitational radi-
ation. The extraordinary sensitivity of equipment needed in order to detect
such a tiny ripple of spacetime is a real challenge to the current technology
with the examples of LIGO and LISA as its best representatives.

In section 2 we will review the basic calculations and results of the theory
of gravitational waves, and will introduce the notions and quantities that will
be necessary for understanding how GW’s are produced in the early Universe
and how they evolve from then to now. In section 3 we will specifically deal
with GW’s of cosmological origin and several production mechanisms. We
will give a qualitative estimate of the spectrum of the expected stochastic
background and distinguish between different cosmological scenarios. The
indirect experimental restrictions on the amplitude of the GW spectra will
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be explained in section 4, and finally, the current experimental progress for
GW detection and future expectations will be overviewed in section 5, along
with some facts and figures for the updated LIGO and the well anticipated
LISA detectors.

2 Basic Theory of Gravitational Waves
Reformulating GR in terms of perturbations around exact solutions will lead
us to a linearized version of the Einstein equations

Rµν −
1
2gµνR = 8πGN . (1)

The notion of gravitational waves will be defined by means of these metric
perturbations, as it will be shown that they comprise propagating field modes
that travel at the speed of light.

2.1 Perturbing flat spacetime
The mathematical formulation of General Relativity as a geometrical theory
of gravitation consists of a set of 10 highly non-linear 2nd order differential
equations. Such a dynamical system is usually impossible to solve analyt-
ically in a generic manner. There are certain very special geometries and
matter distributions that provide us with a handful of very interesting, exact
analytical solutions for the Einstein’s equation. However, these configura-
tions usually exhibit an unnaturally high degree of symmetry, which of course
only belongs to the idealized world of mathematics and cannot be found in
nature.

What is actually found in nature can be sometimes extremely close to
these special solutions and their use as good approximations to physical
systems is what makes them so important. For instance, the geometry of
spacetime around a star can be approximated to very good accuracy by the
Schwartzschild metric, even though in reality a star can never be perfectly
spherically symmetric.

For this reason it is useful to study small metric perturbations around such
configurations, which we can consider as background metric configurations
and denote as ḡµν . By the word small it is actually implied that the entries
of the actual tensor components gµν are very close to the unperturbed values
of ḡ.

To make this more mathematically concise, let (M, gµν) be the actual
spacetime that naturally satisfies the Einstein equation. Then we call it
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a perturbation around a background spacetime (M, ḡµν) if we can globally
define a tensor hµν such that

gµν = ḡµν + hµν , |hµν | � 1 (2)
The most common exact solution and the most trivial one that one can

think of is of course the Minkowski metric ηµν which corresponds to an empty
flat spacetime. Of course this is not exactly what we are looking for as a global
solution in a realistic cosmological theory, since it restricts all of spacetime
to be free from any kind of strong matter distribution.

However it is quite instructive to begin our calculations for the specific
simple case of a flat Minkowski background spacetime and then examine the
more generic perturbation theory around an arbitrary background. This way
we can get a first insight on what a gravitational wave really is and how it
locally behaves when propagating in (almost) empty space. So let us begin
with just

gµν = ηµν + hµν , |hµν | � 1 , ηµν = diag(−1, 1, 1, 1), (3)

where we used natural units c = 1 as will be the case in all of our calculations.
This is the so-called weak field approximation.

2.2 Linearizing everything
Now we can rewrite all important quantities of GR in terms of this expansion
and find some nontrivial properties, in contrast to just flat spacetime. Even
better, we can restrict to a linearized version of them, keeping only terms up
to linear order in hµν . The Christoffel connection now reads :

Γλµν = 1
2(ηλρ + hλρ)[∂µhνρ + ∂νhµρ − ∂ρhµν ]

= 1
2η

λρ(∂µhνρ + ∂νhµρ − ∂ρhµν) +O(h2)
(4)

The linearized Riemann and Ricci tensors will be free of the ΓΓ terms
since each Γ is purely 1st order in h. More explicitly :

R(1)
µν = ∂λΓλµν − ∂µΓλλν

= 1
2η

λρ [∂λ∂µhνρ + ∂λ∂νhµρ − ∂λ∂ρhµν − ∂µ∂λhνρ − ∂µ∂νhλρ + ∂µ∂ρhνλ]

= 1
2
[
−�hµν − ∂µ∂νh+ 2∂(µ∂

λhν)λ
]

(5)
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and the Ricci scalar,

R(1) = ηµνR(1)
µν = ∂µ∂λhµλ −�h , (6)

where we denote � = ∂µ∂
µ = ∂2

t − ∇2 as the d’Alembertian, and h is just
the trace hµµ.

So now we can write down the linearized Einstein tensor.

G(1)
µν = R(1)

µν −
1
2ηµνR

(1)

= 1
2(−�hµν − ∂µ∂νh+ 2∂ρ∂(µhν)ρ − ηµν∂ρ∂λhρλ + ηµν�h)

(7)

From the field theoretical point of view, the absence of higher order terms
implies a non-interacting classical field theory for the tensor field of pertur-
bations. So by linearizing the Einstein equation we actually have formulated
a free tensor field theory, or, in terms of representations of the Lorentz group,
a free spin-2 field theory which we will later identify with the graviton.

To simplify the above expression for the Einstein tensor it will prove
convenient to first introduce the trace reversed metric perturbation h̄µν =
hµν − 1

2ηµνh
1 , the name coming obviously from h̄ = h − 1

24h = −h . Re-
expressing Gµν in terms of h̄ will give :

G(1)
µν =1

2

[
−�h̄µν + 1

2ηµν�h̄+ ∂µ∂ν h̄+ 2∂ρ∂(µh̄ν)ρ − ∂µ∂ν h̄− ηµν∂ρ∂λh̄ρλ

+1
2ηµν�h̄− ηµν�h̄

]
=− 1

2�h̄µν + ∂ρ∂(µh̄ν)ρ −
1
2ηµν∂

ρ∂λh̄ρλ

(8)

2.3 Gauge transformations
Now if we remember the gauge freedom of GR which is of course the fun-
damental property of diffeomorphism invariance implied by the equivalence
principle, we can further simplify our calculations. Different metric configu-
rations that correspond to the same class, by means of being equivalent up
to diffeomorphisms, describe the same physical spacetime. This means that
starting from a metric perturbation hµν we can reach any metric h′µν in its

1Another way to get rid of 2 terms which was used in earlier literature, including
[1], would be to contract (1) and find R = −8πGNT , then replacing the source with
Sµν = Tµν − 1

2ηµνT leaving only the 4 terms of Rµν on the LHS.
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equivalence class by performing the appropriate smooth coordinate transfor-
mation : xµ → x′µ̄+ξµ(x) . Let us consider the infinitesimal transformations
which will generate diffeomorphisms by changing the vector field ξµ above
with a weakly varying εµ, where ∂νεµ is of the order of hµν , and see how the
metric perturbation is transformed.

g′
µ̄ν̄ = ∂xµ̄

∂xµ
∂xν̄

∂xν
gµν ,

∂xµ̄

∂xµ
=
(
δµ̄µ + ∂εµ̄

∂xµ

)

g′
µ̄ν̄ =

(
δµ̄µδ

ν̄
ν + δµ̄µ

∂εν̄

∂xν
+ δν̄ν

∂εµ̄

∂xµ

)
gµν +O(∂ε2) (9)

Now to linear order in hµν , the reverse metric is gµν = ηµν − hµν :

gµνgνλ = ηµηνλ +
≈hµ

λ
−hµ

λ
=0︷ ︸︸ ︷

ηµνhνλ − hµνηνλ +O(h2) ≈ δµλ

So we have

g′µ̄ν̄ = ηµ̄ν̄ − hµ̄ν̄ + ηµ̄ν∂νε
ν̄ + ηµν̄∂µε

µ̄ +O(h2)
⇒ ηµ̄ν̄ − h′µ̄ν̄ = ηµ̄ν̄ − hµ̄ν̄ + ∂νε

ν̄ηµ̄ν + ηµν̄∂µε
µ̄

⇒ h′µν = hµν − ηµλ∂λεν − ηλν∂µεµ

and finally
h′µν = hµν − ∂µεν − ∂νεµ . (10)

2.4 Fixing the gauge
Now that we know how hµν transforms under gauge transformations we can
use this to cast the Einstein equation in a simpler and more useful form. One
can easily show that every diffeomorphism class of metrics has a metric that
satisfies the de Donder gauge condition ∂µh̄µν = 0 , which can be interpreted
as a condition of transversality. Starting from a generic metric of a non-
vanishing divergence (non-Lorenz) we can find a field εµ such that the new
metric h′µν does satisfy the Lorenz gauge condition. In order to get there we
can see that h′ = h− 2∂µεµ and

h̄′µν = h′µν −
1
2ηµνh

′ = hµν − ∂µεν − ∂νεµ −
1
2ηµνh+ ηµν∂ρε

ρ

= h̄µν − 2∂(µεν) + ηµν∂ρε
ρ

(11)

so if we want h′ to be in the Lorenz gauge, we need ∂µh̄′µν to vanish. On the
other hand

∂µh̄′µν = ∂µh̄µν −�εν − ∂µ∂νεµ + ∂ν∂
ρερ = ∂µh̄µν −�εν (12)

7



so we require a coordinate transformation, where �εν = ∂µhµν . This results
in a first-order differential equation that always has a solution for the field
εµ(x).

Under the choice of gauge described above, we rewrite the simplified
Einstein’s equation which now reads

�h̄µν = −16πGNTµν . (13)

From the nature of the differential equation the wave-like propagation of a
metric perturbation is manifest, as well as the fact that a free gravitational
wave will propagate at the speed of light. If one is only interested in studying
the propagation of gravitational waves in vacuum, then one can eliminate the
source term which gives the homogeneous “box” equation

�h̄µν = 0 . (14)

At this point we can further fix the gauge having the freedom to add terms
corresponding to transformations of �εµ = 0. The trace reversed metric now
transforms as

h̄′µν = h̄µν + ηµν∂
ρερ − ∂µεν − ∂νεµ (15)

to a metric that also satisfies the Lorenz gauge and equation of motion (14).
We can carefully choose this gauge to eliminate 4 more independent com-
ponents of the metric perturbation tensor leaving us with 10 − 4 − 4 = 2
independent physical degrees of freedom that actually correspond to the 2
polarizations of the gravitational wave. The choice is made in such a way
that the trace vanishes h̄ = 0 = h (thus h̄µν = hµν), as well as the longitudi-
nal components h0i = hi0 = 0. This will finally result to the (spatial) metric
perturbation in the transverse traceless gauge hTTij where only two transverse
tensorial modes survive, corresponding to planes normal to the vector of
propagation. If we identify the z-axis as the direction of propagation, then
the metric perturbation will be written in the familiar form

hTTµν =


0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

 f(ωt− z) . (16)

In fact, from now on we will only keep the spatial indices notation hTTij
since in the TT gauge, all 0µ components vanish. We can also define the
projection operator Pij(k̂) = δij−ninj, which, given a unit vector k̂, projects
any given tensor to the plane normal to it. In order to project on the TT
part we also have to eliminate the trace, which will result in

Πij,lm(k̂) = Pil(k̂)Pjm −
1
2Pij(k̂)Plm(k̂) (17)
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Contracting this operator with any given spatial tensor Sij will give the TT
part of it, STTij .

2.5 Adding the sources
The next step would be to put the source term Tµν back in the RHS and try
to solve the wave equation (13) for a generic nonvanishing source. This can
be done via the Green’s function of the d’Alembertian which is well known

�G(x;x′) = δ(4)(x− x′) ⇒ G(x;x′) = −
δ
(
t′ −

[
t− |~x−~x

′|
c

])
4π|~x− ~x′| (18)

and now the general solution of (13) will be

h̄µν(t, ~x) = 4GN

∫
d3~x′

Tµν(t− |~x− ~x′|, ~x′)
|~x− ~x′|

(19)

Now one needs to keep in mind that one cannot go to the TT gauge, since
there is no residual gauge as in the homogeneous case. However it can be
shown that we can still decouple the TT part of the metric, which will be
sourced by the TT part of the stress-energy tensor. The remaining gravita-
tional degrees of freedom do not actually propagate, but only satisfy Poisson-
like equations.

2.6 The quadrupole formula
We now place ourselves as observers far away from the non-vacuum distribu-
tion of mass-energy density, which we suppose that is concentrated within a
small region outside which it vanishes. The main assumption that we make
is that we consider the characteristic size of the source L to be much smaller
than our distance from the distribution r (which is usually the case for as-
trophysical observations). Under the above condition we can approximate
the distance from the integrated region |~x − ~x′| to be in first order equal to
r. More analytically:

|~x− ~x′| =
√
~x2 + ~x′2 − 2xix′i ≈ |~x| = r , (20)

where |~x′| ≤ L� r.
Now the integral (19) becomes

h̄µν = 4GN

r

∫
d3~x′Tµν(t− r, ~x′) (21)
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In the end we are interested in the TT part only, so we consider the spatial
part Tij(t − r, ~x′) which we will focus on, in order to get a nicer expres-
sion for hij. Remember that we are working up to first order around a flat
background, so the Bianchi identities for Tµν yield ∂µTµν = 0 therefore

∂0T0i + ∂jTij = 0⇒ ∂jTij = −∂0T0i (22)

∂0T00 + ∂iT0i = 0⇒
(
∂0
)2
T00∂

i∂0T0i = 0 (23)

⇒
(
∂0
)2
T00 = ∂k∂lTkl (24)

and if we multiply by xixj we will eventually get

∂2

∂t2
(T00x

ixj) = ∂k∂l(T klxixj)− 2∂k
[
xiT kj + xjT ki

]
+ 2T ij (25)

Now replacing T ij in (21) we conclude

h̄ij = 4GN

r

∫
d3~x′

1
2
∂2

∂t2

[
T00(t− r, ~x′)x′ix′j

]
+ b.t.

= 2GN

r

∂2

∂t2

∫
d3~x′

[
ρ(t− r, ~x′)x′ix′j

] (26)

This is the famous quadrupole formula, which identifies the quadrupolar
moment of the energy (or usually mass) distribution of the source as the gen-
erator of metric perturbations, while these propagate according to a 1/r law.
Now it is easy to go to the TT part in order to get the physical propagating
degrees of freedom, leaving us with the final result

hTTij (t, ~x) = 2GN

r
Πij,lm(x̂) ∂

2

∂t2

∫
d3~x′

[
ρ(t− r, ~x′)x′lx′m

]
(27)

2.7 Perturbations around a generic background
Now we can try to extend our calculations to the more interesting general
case of a non-Minkowskian background. Let ḡµν be the background spacetime
metric around which small perturbations are considered and denoted by hµν .
So now the real spacetime metric will be

gµν = ḡµν + hµν . (28)

Usually, and for the purpose of this project ḡµν is just the FLRW spacetime
metric, namely diag[−1, a2, a2, a2], a = a(t). We will also denote all quantities
related to the background spacetime metric by barring over, and use ḡ to raise
and lower indices.
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We again start from the Christoffel symbols:

Γλµν =1
2
[
ḡλρ − hλρ

]
[∂µḡρν + ∂µhρν + ∂ν ḡρµ + ∂νhρν − ∂ρḡµν − ∂ρhµν ]

=1
2 ḡ

λρ (∂µḡρν + ∂ν ḡρµ − ∂ρḡµν) + 1
2 ḡ

λρ (∂µhρν + ∂νhρµ − ∂ρhµν)

− 1
2h

λρ (∂µḡρν + ∂ν ḡρµ − ∂ρḡµν) +O(h2)

=Γ̄λµν − hλκḡκσΓ̄σµν + 1
2 ḡ

λρ (∂µhρν + ∂νhρµ − ∂ρhµν) ,

(29)

where we have used in the last step hλρ = hλσδρσ. We can rewrite this in a
covariant form if we notice from the definition of the covariant derivative on
a (0,2) tensor field:

∂µhρν = ∇̄µhρν + Γ̄λµρhλν + Γ̄λµνhλρ
∂νhρµ = ∇̄νhρµ + Γ̄λνρhλµ + Γ̄λνµhλρ
∂ρhµν = ∇̄ρhµν + Γ̄λρµhλν + Γ̄λρνhλµ

and subtract the 3rd relation from the sum of the other two.

⇒ Γλµν = Γ̄λµν + δΓλµν , (30)

where we define the connection perturbation

δΓλµν = 1
2 ḡ

λρ (∇µhρν +∇νhρµ −∇ρhµν) (31)

We can now continue with the Riemann curvature and Ricci tensor up to 1st
order in h and thus in δΓ

Rρ
σµν = ∂µΓ̄ρσν − ∂νΓ̄ρσµ + ∂µδΓρσν − ∂νδΓρσµ

= R̄ρ
σµν + δRρ

σµν

(32)

where again a covariant form can be obtained for the curvature perturbation,
which will hold for all coordinate systems:

δRρ
σµν = ∇̄µδΓρσν − ∇̄νδΓρσµ (33)

The Ricci tensor reads
δRσν =δRρ

σρν = ∇̄ρδΓρσν − ∇̄νδΓρσρ

=1
2
[
∇̄ρ∇̄σh

ρ
ν + ∇̄ρ∇̄νh

ρ
σ − �̄hσν − ∇̄ν∇̄σh− ∇̄ν∇̄ρh

ρ
σ + ∇̄ν∇̄ρh

ρ
σ

]
=− 1

2�̄hσν −
1
2∇̄ν∇̄σh+ ∇̄ρ∇̄(σh

ρ
ν) ,

(34)
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where the barred d’Alambertian stands for �̄ = ḡµν∇̄µ∇̄ν .
The Einstein equation will be too long to keep track of so we go back

to the trace-reversed metric h̄µν as defined before (8) (the bar here having
nothing to do of course with the background). The Ricci scalar perturbation
will simply be

δR = ḡµνδRµν − hµνR̄µν (35)

and finally putting everything together in the trace reversed description we
get the Einstein tensor perturbations

δGµν = 0 = δRµν +Rρνµσh
ρσ

= −1
2�̄h̄µν + 1

4 ḡµν�̄h̄+ ∇̄ρ∇̄(σh̄
ρ
ν) + 1

2∇̄[ν∇̄σ]h̄+Rρνµσh
ρσ

(36)

We can further simplify the above expression by choosing an appropriate
gauge transformation by means of a vector field whose box is equal to ∇̄µh̄µν
so that we end up with a divergence-free metric perturbation h̄′µν . To keep
a long story short, following the same arguments as in the flat background
case, and carefully using arguments of general covariance, we conclude with
the linearized Einstein equation in the TT gauge (we will drop the TT index
notation)

δGµν = −1
2�̄hµν + R̄ρνµσh

ρσ . (37)

Gravitational waves (GWs) can still be well defined in such a spacetime
in the sense of the so called geometric optics regime [2], where the wavelength
of the perturbation is much smaller than the characteristic scale in which the
average metric changes significantly. GWs can also be considered as rapidly
varying perturbations over a relatively static background.

2.8 Effective GW energy
The last missing piece, which we will need for the following sections comes
from the extension of the former discussion to second order perturbations.
Roughly speaking, consider a stress energy tensor which is constructed so
that the Einstein equation is satisfied exactly if one puts the background
Einstein tensor on the LHS. This can be viewed as the Einstein equation
in zeroth order of perturbation. If we subtract this tensor from the actual
stress-energy tensor, then what is left is defined as the effective stress-energy
tensor of the gravitational wave. It turns out that the first order terms vanish
by virtue of the linearized Einstein equation and only 2nd order perturbative
terms survive.
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I will only summarize the results for the effective stress-energy tensor in
the covariantly transverse traceless gauge, which is given by the rather simple
expression

tgwµν = 1
32πGN

∇̄µhλρ∇̄νh
λρ. (38)

In principle we will only need the 00 component of it, namely the effective
energy density of the gravitational wave.

3 Cosmological Stochastic Backgrounds
During the last few decades, a great deal of research has been made towards
the study of Astrophysical and Cosmological sources of gravity waves. The
above distinction is referring to the origin of the radiation and the scale of its
production process. The most important types of astrophysical sources are
(i) coalescing binary star systems composed of neutron stars and/or black
holes, (ii) pulsars and (iii) certain kinds of supernovae.

Because of the large scale of the Planck mass MPl ∼ 1019GeV , which
defines the gravitational coupling constant (GN = ~c/M2

Pl), gravitons decou-
pled very early in the evolution of the Universe and freely streamed up to
the present day, totally undisturbed by even the most dense matter distri-
butions that we know of today. We are expecting a background of “cosmic”
gravitational radiation to emerge from the early stages of the Universe, when
a series of large scale phenomena is believed to have taken place, leading to
intense gravitational wave production. This type of background is character-
ized as stochastic, since it consists of a great number of unresolved sources
randomly distributed throughout the entire Universe. Under the assumption
that the Universe is homogeneous and isotropic on relatively large scales, this
background is expected to be rather isotropic as well. However a stochastic
background of gravitational waves sourced by a large number of astrophysical
unresolved sources is also predicted. These sources for example may corre-
spond to the abundance of binary star systems, plenty of which populate our
own Milky Way, and, given the angular resolutions of the close future GW
detectors, they cannot be distinguished from one-another. As a consequence
of the small scale anisotropy, the astrophysical stochastic background will
not be isotropic, being more intense for angles that correspond to the plane
of our galactic disc.

From now on we are only interested in Cosmological GW’s, coming from
the primordial Universe. The recent progress made towards a successful
cosmological model and the variety of inflationary scenarios that emerged
from this effort provide us with a number of mechanisms for gravity wave
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production during the early stages of the Universe. The most important of
these processes (some of which will be discussed here) are

• fluctuation amplification during inflation

• preheating and inflaton decay

• cosmic strings

• 1st order phase transitions

• pre-big-bang scenarios

• branes, quintessence, magnetic fields, turbulence etc.

The spectrum of each mechanisms covers a wide range of frequencies and
scales quite uniquely. The lowest possible frequency will correspond to the
largest wavelength of oscillation, which is of course bounded by the (causal)
scale of the Universe, so of the order of Hubble length. This amounts to
λ ≤ H−1

0 giving a lowest frequency today of f ≥ 10−18Hz. On the other
hand, the highest frequency waves correspond to the highest temperature of
the primordial Universe, which is taken to be the Planck scale T ≈ 1032K,
since gravitons do not freely stream above this temperature and quantum
gravity effects become important. This highest end of the frequency band
today is of the order of 1012Hz, taking into account the redshift in an FLRW
Universe.

For the moment, present day and near future detectors cover the range
of 7 orders of magnitude, between 0.1mHz (LISA) and kHz (ground based
interferometers). Given the sensitivity that is predicted to be reached, most
of the spectra of the above processes are not likely to be strong enough for
detection.

3.1 Preliminaries
The Cosmological stochastic background can be viewed as a (usually isotropic
and unpolarized) superposition of gravity waves of all frequencies coming
from all angles which is expressed by the expansion

hij(t, ~x) =
∑

P=+,×

∫ +∞

−∞
df
∫
dk̂hP (f, k̂)e−2πiftεPij(k̂)ei

~k·~x + c.c. (39)

so all the important information are held in hP (f, k̂) or equivalently, in the
unpolarized and isotropic case, just hk (in terms of the wavenumber k = 2πf),
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defined by

hij(t, ~x) =
∫ d3~k

(2π)3/2hk(t)e
i~k~x
∑
P

εPij(k̂) + c.c. , (40)

which will provide us with the spectrum of the gravitational background.
Here k̂ denotes the incoming unit vector of propagation, dk̂ = dφd cos θ, and
εPij(k̂) is just the polarization tensor for plus or cross polarization normal to
k̂

It would be useful if we could express the results for a certain spectrum
in terms of a familiar quantity in cosmology, the gravitational wave energy
density spectrum Ωgw

2 defined as the differential density of effective energy
over logarithmic frequency bins measured in units of critical density:

Ωgw(f) = 1
ρc

dρgw
d log f = 1

ρc
f
dρgw
df

(41)

Now we just need to relate ρgw to the Fourier transformed hk, which is
done using the effective GW energy formula (38)

ρgw = t00 = 1
32πGN

〈
ḣijḣ

ij
〉

(42)

when the averaging takes place over several wavelengths. However, in a
stochastic background, this is equivalent with taking the ensemble average.

The bottom line is that today’s Universe abundance in gravitons of any
given energy can be directly calculated and translated in terms of Ωgw, if we
can somehow track down the evolution of the metric perturbations hk back
to their sources, even when we can only describe them as random (stochastic)
configurations. This can be studied for each scenario individually.

It is also useful to come up with some general rules that dictate how the
spectrum has evolved within the FLRW Universe, from a given time, when
we suppose that the sources vanish, until the present day. The important
quantity here is the scale factor a, whose scaling with time depends on the
equation of state w = p

ρ
according to a ∝ t2/(3+3w). For a radiation dominated

Universe w = 1/3. The amplitude scales as Ωgw ∝ a−4 as shown in (59)

2However, the quantity ρc = 3H2
0

8πGN is by definition determined by the value of the Hub-
ble parameter today and thus carries with it a certain error, expressed as an uncertainty of
H0’s measurement, h defined by H0 = 100h km/s/Mpc. Today’s evaluation for the value
of h is h0 = 0.72± 0.02 and it changes as new observations are considered (e.g. WMAP).
For this reason all theoretical predictions and experimental results are expressed in terms
of the error-independent h2

0Ωgw.
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below. The temperature on the other hand does not have a direct scaling
rule for the scale factor a but a rather more complicated dependence, which
involves a few statistical assumptions. However, supposing that chemical
equilibrium was always satisfied for a specific time interval in the history of
the Universe, then the entropy per unit volume is conserved and the scaling
goes like

g∗sT
3
∗ a

3
∗ = g0sT

3
0 a

3
0 (43)

where gs is the number of effective relativistic degrees of freedom for the
entropy and for the processes of interest in the very early Universe, g∗s =
106.75 at least. This implies that at temperature scales as high as T >
100GeV , all Standard Model particles are relativistic.

As a naive result, which is based on the false assumption that equilibrium
was preserved since the gravitons decoupled, todays black body temperature
for the relic graviton bath, can be estimated to be ∼ 0.9K given the current
temperature of the photon fluid 2.73K. This follows from

Tgr =
[
g0s

g∗S

]1/3

T0, (44)

which is a consequence of (43)

3.2 Amplification of Quantum Fluctuations
A general mechanism that is activated during the inflationary epoch is the
amplification of initial quantum fluctuations of fields and was first discovered
and studied by Grishchuk and Starobinsky in the mid 70’s. The basic concept
behind this process is that, assuming a quantum gravity epoch above the
Planck scale, the very early Universe inherited quantum fluctuations, and
fields would deviate from absolute homogeneity. As the Universe expanded
dramatically during inflation, some of these fluctuations were amplified as
shown below. After the end of inflation, the amplified tensor perturbations
continued as propagating gravity waves, undergoing the usual cosmological
redshift as ~kphys(t) = ~k a(0)

a(t) , where a(t) is the scale factor.
We will now consider a standard FLRW cosmological model(even though

this requires large scale homogeneity), where the metric will have the form
ḡµν = diag[−1, a2(t), a2(t), a2(t)] and continue with an explicit calculation
for equation (37). It can be shown [3] that it simplifies to the homogeneous
scalar d’Alembertian equation :

�̄Shi
j(t, ~x) = 1√

−ḡ
∂µ
√
−ḡḡµν∂νhij = 0 (45)
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Here, √−g = a3(t), thus

1
a3

[
−∂t

(
a3∂t

)
+ a3

a2∇
2
]
hi
j(t, ~x) =

[
−∂2

t − 3 ȧ
a
∂t +

1
a2∇

2
]
hi
j(t, ~x) = 0

(46)
and if we Fourier decompose to the modes hk(t) as in (40), assuming isotropy
for now, [

−∂2
t − 3 ȧ

a
∂t +

1
a2 (−k2)

]
hk(t) = 0. (47)

It is useful though, to work in conformal time η defined as dt = adη. Now
the metric is gµν = a2(η)ηµν and (47) becomes

h′′k(η) + 2a
′

a
h′k(η) + k2hk(η) = 0 (48)

where h′ = dh
dη

= aḣ. The equation is easily solvable under the change of
variable to

ψk(η) = a(η)hk(η)
ψ′k = a′hk + ah′k
ψ′′k = a′′hk + 2a′h′k + ah′′k

which eventually gives

ψ′′k +
[
k2 − a′′

a

]
ψk = 0 (49)

We can recognize the above equation as a parametric oscillator, i.e. an
oscillator whose eigen-frequency varies with time. Let us denote the time
dependent part of the coefficients with U(η) = a′′(η)

a(η) , which, as a function of
conformal time, depends on the dominant equation of state.

A crude qualitative analysis comes from distinguishing between sub-Hubble
(k2 � U(η)) and super-Hubble modes (k2 � U(η)). The name sub-Hubble
implies that the mode’s wavelength is much shorter than the Hubble radius,
which, in a simple de Sitter paradigm is obvious, since a = −1

HIη
and U(η) =

2/η2 so that sub-Hubble now means kphys = k/a � HI , or a/k � RH . The
sub-Hubble modes evolve as

ψk ∝
1√
2k
e±ikη (50)

whereas for the super-Hubble modes

ψk ∝ a

[
Dk + Ck

∫ dη

a2

]
(51)
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Figure 1: The way tensor modes of different wavelengths exit and re-enter the
Hubble radius in a de Sitter inflationary paradigm. (Source : en.wikipedia.org)

There is a significant difference between the two which is clear when going
back to hk = ψ/a:

hk ∝
1√
2ka

e±ikη , k2 � U(η) (52)

hk ∝ Ck +Dk

∫ dη

a2 , k2 � U(η) , (53)

where the second relation can be derived directly from (48), if the last term
is neglected, leading to h′(η) = Ca−2(η). The two solutions need to match
at intermediate scales, i.e. k/a ≈ H but the problem can also be treated
exactly as we shall see in section 3.2.1.

Here we can see that the sub-Hubble modes are suppressed as the Universe
expands by the factor 1/a, while the super-Hubble mode amplitude behaves
asymptotically as constant. This means that we effectively have a relative
amplification of the modes that remain outside the Hubble radius during
inflation with respect to the sub-Hubble wave modes and all physical lengths.
After inflation and during radiation era these amplified modes may re-enter
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the Hubble radius, as shown in figure 1, since now the equation of state gives
a ∝ η and U = 0, thus turning into propagating gravitational waves.

ψk(η) = Ak sin kη +Bk cos kη or ψk(η) = αke
−ikη + βke

ikη (54)

Energy density

We can now find the energy density by averaging over ḣḣ as mentioned in
section 3.1, with ḣ = ψ′

a2 − ψ
a2
a′

a
, so

〈
ḣijḣij

〉
= 1
a4

〈
ψ′ijψ

′
ij − 2Hψijψ′ij +H2ψijψij

〉
≈ 1
a4

〈
ψ′ijψ

′
ij

〉
(55)

for k/a� H, so in terms of sub-Hubble Fourier modes,

〈
ψ′ij(x)ψ′ij(x)

〉
V

= 4
V

∫
d3x

d3~kd3~k′

(2π)3 ψ′kψ
′
k′e
−i(~k+~k′)~x

= 4
V

∫ d3~kd3~k′

(2π)3 (2π)3δ(~k + ~k′)ψ′kψ′k′

= 16π
V

∫ +∞

0
dkk2ψ′kψ

′∗
k

(56)

where we have used the polarization tensors to contract the indices εPijε
ij
P = 4

and
∫
dk̂ = 4π. So for free waves of the form (54) the expected value of ρgw

averaged over a period of oscillation will give

〈ψ′kψ′∗k 〉T = k2

2
(
|αk|2 + |βk|2

)
(57)

⇒ ρgw = 1
4GNa4V

∫
dkk4

(
|αk|2 + |βk|2

)
(58)

Ωgw = 1
ρc

dρgw

d ln f ∝ k3 〈ψ′kψ′∗k 〉 (59)

It remains to be seen what coefficients of gravitational waves αk and βk
are derived after the end of the inflationary epoch. This calculation is very
sensitive to the scenario specifics and as a first example we will derive for de
Sitter inflation, however unrealistic it may be.

3.2.1 de Sitter inflation

In the de Sitter case, the scale factor conformal time dependence during
inflation is a = − 1

HIη
for −∞ < η < ηI , where ηI denotes the end of inflation
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and the beginning of radiation era. The parametric oscillator ((49)) for
a′′

a
= 2

η2 = 2H2
I a

2 (HI is constant) will give the 2nd order differential equation

ψ′′k +
[
k2 − 2

η2

]
= 0 (60)

which can be solved exactly by means of Hankel functions giving

ψk(η) ∝
[
1− i

kη

]
e−ikη , η < ηI (61)

This is an exact solution for equation (60) which can be derived as follows.
First we rewrite (60) making the ansatz

ψk(η) =
√
−ηy(−kη) , (62)

which yields :

ψ′k(η) = − 1
2√−ηy(−kη)−

√
−ηky′(−kη)

ψ′′k(η) = −1
4(−η)−3/2y(−kη) + k√

−η
y′(−kη) +

√
−ηk2y′′(−kη) .

(63)

Now (60) becomes

√
−ηk2y′′(−kη) + k√

−η
y′(−kη)− 1

4(−η)−3/2y(−kη)

+ k2√−ηy(−kη)− 2(−η)−3/2y(−kη) = 0

⇒ (−kη)2y′′(−kη) + (−kη)y(−kη) +
[
(−kη)2 − 9

4

]
y(−kη) = 0

(64)

which turns out to be a Bessel function of the form:

x2y′′(x) + xy′(x) +
[
x2 − α2

]
y(x) = 0 , (65)

with α = 3
2 . Solutions of half-integer (n-1/2)-Bessel equations are given in

an analytic form as the first and second Hankel functions :

H
(1),(2)
n−1/2(x) =

√
2
πx
i∓ne±ix

n−1∑
k=0

(n+ k − 1)!
k!(n− k − 1)!

( ±i
2ix

)k
, (66)
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which in our case, for n = 2 will be

H
(1)
3/2(−kη) = −

√
2
−kηπ

e−ikη
1∑

k=0

(1 + k)!
k!(1− k)!

ik

(−2kη)k

= −
√

2
−kηπ

e−ikη
[
1− i

kη

] (67)

and H
(2)
3 /2 its complex conjugate. These are the solutions for y(−kη) and

returning to ψk(η) via (62) we get the equivalent of plane wave solutions

ψ
(1)
k (η) = −

√
2
kπ
e−ik(η−ηI)

[
1− i

kη

]

ψ
(2)
k (η) = −

√
2
kπ
eik(η−ηI)

[
1 + i

kη

]
.

(68)

The general solution will be a linear combination of the two, i.e. ψk =
c1ψ

(1)
k + c2ψ

(2)
k and meets the condition that at very small scales we get a

wave-like behavior, however the normalization imposed by the Wronskian [4]
constraints the coefficients to |c1|2 − |c2|2 = 1. Towards the end of inflation,
the perturbations also need to restrict to positive frequency waves, thus set-
ting the coefficient of the second solution to zero. This stems from the fact
that the vacuum “selects” this particular solution as that of lowest energy,
namely the Bunch-Davies vacuum.

Of course we will ultimately have to match the above solution for the
inflationary era, along with its derivative, to the solutions (54) for radiation
dominated era (RD) at some time η = ηI that denotes the end of inflation.

ψk(η) = αke
−ik(η−ηI) + βke

ik(η−ηI) (69)

There will be the two following matching conditions that will define the RD
coefficients :

ψk(ηI) = αk + βk = 1√
2k

(
1− i

kηI

)
(70)

and

ψ′k(ηI) = −ikαk + ikβk =
[
−ik√

2k

(
1− i

kηI

)
+ i

k
√

2k
1
η2
I

]

⇒ βk − αk =
[

1√
2k

(
i

kηI
− 1

)
+ 1
k2
√

2kη2
I

] (71)
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adding (70) and (71) will give the amplitude coefficients

βk = 1
2
√

2k5/2η2
I

αk = 1√
2k

[
1− i

kηI
− 1

2k2η2
I

]
,

(72)

which, according to (58) will lead to a coincidentally k-independent “flat”
spectrum, that today (redshifted) looks like 3

h2
0Ωgw ≈ 4× 10−14

(
HI

6× 10−5MPl

)2
. (73)

It is worth noting the particle interpretation of the amplification process.
If we consider the linearized gravity as a free field theory of the graviton
spin-2 field, we can say that when the transition from Inflation to RD takes
place, we have to match states in different Fock spaces, built on the different
vacua of the two epochs, which we can denote |0〉I and |0〉II . Each epoch is
filled with a number of gravitons to which we can assign bosonic creation and
annihilation operators bI,IIP (~k), bI,IIP

†(~k) , which act on their vacua respectively
as usual.

bI,IIP (~k)|0〉I,II = 0 (74)

Now we can express the graviton field as a superposition of particles in
the canonical bosonic form

hEij =
√

16πGN

∑
P

∫ d3~k

(2π)3
1√
2k

[
bEP (~k)hEk (η)εPij(k̂)ei

~k~x + h.c.
]
, (75)

where E = I, II. In order to make this matching between hI and hII we
have to perform a Bogoliubov transformation which will give the coefficients
of Fock space I as a combination of Fock space II and vice versa. This is
actually what is done semi-classically with α and β above. If one carries out
the calculation [5] one can find a relation between the expectation values of
the two number operators, NE

k = bE†P (~k)bEP (~k) which shows how the graviton
field is amplified by a factor of

N II
k = N I

k

[
1 + 2|βk|2

]
+ |βk|2. (76)

3In fact the exact approach would involve a recent MD era resulting to a f−2 scaling
at the low frequency end of the spectrum. This reflects the fact that modes in this band
entered the Hubble radius during MD, when H scales differently.
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3.2.2 Slow-roll inflation

A less simple yet more realistic inflationary paradigm which also solves the
“graceful exit” problem of de Sitter inflation, is slow-roll inflation. In this
case, inflation is driven by a scalar field φ that, under a potential V (φ),
satisfies a special set of slow-roll conditions : φ̇� V (φ) and |φ̈| � |3Hφ̇|.

The significant difference in terms of GW wave spectra comparing to
the de Sitter case comes from the fact that in slow-roll the Hubble radius
is not constant during inflation but slowly decreases as φ rolls down the
potential towards the minimum. This means that the solution obtained by
the matching conditions will not be scale invariant, thus resulting to a k-
dependent spectrum. This happens in the same way as the different scaling
of ultra-low frequencies in de Sitter inflation caused by a change in H(t)
when going to matter era. Ultimately the spectrum acquires a small tilt of
nT = −M2

Pl

(8π)

(
V̄ ′

V̄

)2
which also does not raise our hopes for detection. On

the contrary the tilt is found to be negative which makes it even worse. The
quantity V̄ ′ that appears above is the value of the inflaton potential derivative
at the time when today’s Hubble scale crossed the inflation’s Hubble radius.

3.3 Inflaton Decay and Preheating
The above calculations can be extended to a more general case of strong
time dependent field inhomogeneities that source gravitational waves after
inflation. Such a process, called preheating, involves a set of scalar fields {φa}
with a stress-energy tensor

Tµν = ∂µφa∂νφa − gµν
(1

2g
ρσ∂ρφa∂σφa + V (φa, . . .)

)
(77)

Some of the fields are coupled to the inflaton and are significantly amplified
inhomogeneously as it decays. We only consider sub-Hubble modes to be
strong enough. The TT part of the above stress-energy tensor will be the one
to source the gravity waves and only the first term will contribute significantly
at sub-Hubble scales. So the perturbations will be sourced as

ψ′′ij~k(η) + k2ψij~k(η) = 16πGNaT
TT
ij (η,~k) (78)

where we Fourier transformed to Tij(~k):

T TTij (~k) = Πij,lm(k̂)
∫ d3~p

(2π)3/2plpmφa(~p)φa(~k − ~p) (79)

Starting from a time ηi when no gravity waves are present in sub-Hubble
scales, and thus including the initial conditions hij(ηi) = h′ij(ηi) = 0, the
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Green’s function solution with the above source will yield

ψ~k(η) = 16πGN

k

∫ η

ηi
dη′ sin [k(η − η′)] a(η′)T TT~k (η′) (80)

and the conformal time derivative
ψ′~k(η) = 16πGN

∫ η

ηi
dη′ cos [k(η − η′)] a(η′)T TT~k (η′) (81)

where we have hidden the spatial indices i, j in the polarization tensors since
we only deal with TT parts.

After preheating, when the sources eventually vanish at some time ηf , the
Universe is believed to enter radiation era, so we return to the free streaming
solutions of (54), so for η ≥ ηf the solution is

ψ~k(η) = A~k sin [k(η − ηf )] +B~k cos [k(η − ηf )] (82)
and

ψ′~k(η) = A~kk cos [k(η − ηf )]−B~kk sin [k(η − ηf )] . (83)
What is left now to be done is to match the solutions at the time of

transition from sourced to free field η = ηf . This will give the coefficients:

A~k = 16πGN

k

∫ ηf

ηi
dη′ cos [k(ηf − η′)] a(η′)T TT~k (η′)

B~k = 16πGN

k

∫ ηf

ηi
dη′ sin [k(ηf − η′)] a(η′)T TT~k (η′)

(84)

when matching h′(ηf ) and h(ηf ) respectively (or in this case, ψ′(ηf ) and
ψ(ηf )).

As discussed in the previous section, the resulting energy density (59) will
be given by

ρgw = 1
16πGNV a4

∫
dk̂dkk4

(∣∣∣A~k∣∣∣2 +
∣∣∣B~k∣∣∣2)

= (16πGN)2

16πGNV a4

∫
dk̂dkk2

{∣∣∣∣∫ ηf

ηi
dη′ cos [k(ηf − η′)] a(η′)T TT~k (η′)

∣∣∣∣2
+
∣∣∣∣∫ ηf

ηi
dη′ sin [k(ηf − η′)] a(η′)T TT~k (η′)

∣∣∣∣2
} (85)

and we conclude by noting that

Ωgw(k) ∝ dρgw
d ln k = k

dρgw
dk

= 16πGN

V a4 k3
∫
dk̂×{∣∣∣∣∫ ηf

ηi
dη′ cos [k(ηf − η′)] a(η′)T TT~k (η′)

∣∣∣∣2 +
∣∣∣∣∫ ηf

ηi
dη′ sin [k(ηf − η′)] a(η′)T TT~k (η′)

∣∣∣∣2
}
.

(86)
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Figure 2: During a 1st order phase transition, the second well forms in the effective
potential as the temperature drops (T̄ ). In a second-order transition or a smooth
crossover there symmetry is broken with no bubble nucleation since the old vacuum
is now a local maximum (T̃ ).

One may consider the regime of sufficiently small frequencies, where the k-
dependence comes only from the factor k3 and the sinusodials and sources
vary too slowly to give any scaling contribution, so Ωgw ∝ k3. In another
intermediate regime (where source’s k-independence still holds) the cos and
sin integrals give a 1/k factor, thus resulting to a spectrum of Ωgw ∝ k.

Further computations involve taking the ensemble average for the stochas-
tic source T TT~k as defined in (79) and tracking the spectral evolution up to
the present time, and are carried out in [6].

3.4 Phase Transitions
As the Universe expanded and cooled down a sequence of phase transitions
occurred at times when the temperature dropped below some characteristic
critical value (usually some mass scale like the Higgs for the electroweak (EW)
case). First order phase transitions may consist a source of gravitational
radiation.

Let us consider such a transition driven by an effective potential V (φ, T ) of
a field φ. In high temperatures, the universe is in a metastable “symmetric”
vacuum phase. As the temperature drops, a new potential well is formed
which eventually becomes lower and more favorable then the initial minimum.
In a 1st order phase transition a new “true” vacuum emerges in the effective
field potential, separated from the old “false vacuum” by a potential barrier,
that prevents the universe from making the transition instantaneously and
leaves it trapped in the false vacuum state. But the transition will eventually
take place, sooner or later depending on the height of the barrier, and this
will happen only via quantum tunneling.
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In the beginning small areas randomly distributed throughout the whole
space will enter the new vacuum state and small bubbles of true vacuum will
be nucleated. The latent heat left over after the transition, which amounts to
the energy difference between false and true vacuum, will be transformed into
bubble walls as kinetic energy, resulting in their expansion, and also reheat
the primordial plasma. There are two ways in which gravitational waves can
be produced from the above process. The first kind of source comes from
the collisions of the expanded bubbles. When the walls of different bubbles
meet each other they collide in relativistic speeds and an enormous amount
of energy is released. The creation and expansion of bubbles in random sites
intrinsically breaks the homogeneity and isotropy of the Universe during
the transition from one vacuum state to another. In a strong first-order
transition, the surfaces of collision, as shown in figure 3, anisotropic as it
is, may have enough quadrupole moment to comprise a strong source of
gravitational waves. A convenient form for the stress-energy tensor of the
bubbles will be given by the following Fourier transformed

Tij(~k) = 1
2π

∫ ∞
0

dteikt
[
N∑
n=1

e−i
~k~xn

∫
Sn
dΩ

∫ R

0
drr2e−i

~k~xTij(r, t)
]

(87)

where we summed over the bubble surfaces, Sn and more specifically, the
portion of each surface that remains uncollided at the time. Detonating
bubble surfaces [7] expand at supersonic speeds, so collision regions do not
affect the expansion of the uncollided walls. The radial integral for a single
bubble of radius R will give∫ R

0
drr2Tij(r, t) = 1

3R
3κ(α)εx̂ix̂j , (88)

where κ(α) is the fraction of the vacuum energy ε that goes to collective
bubble motion (kinetic energy of the walls e.g. κ = 1 for vacuum bubbles).
The production of GWs is related to the quadrupole part of the source via
the TT projection and the radiated energy in GWs will be

dE

dkdΩ = 2GNk
2Πij,lm(k̂)T ∗ij(~k)Tlm(~k) . (89)

The second kind of source comes from the reheated primordial plasma,
in which turbulent eddies may appear, emitting gravitational radiation that
can be as intense as the one coming from the wall collisions (or even more).

The spectrum coming from such a first-order phase transition has been
first calculated numerically by Kosowsky, Kamionkowski and Turner in the
early 90’s, and is characterized by a peak frequency, which mainly depends on
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Figure 3: Bubble nucleation, bubble expansion and collisions. (Source :
http://www.damtp.cam.ac.uk/user/gr/public/cs_home.html)

the temperature when the transition takes place. More specifically, a rough
approximation for the peak frequency from bubble collision is given by the
formula:

fmax ≈ 5.2× 10−8
[
β

H∗

] [
kT∗

1GeV

] [
g∗
100

]1/6
Hz (90)

which will give a peak at 4× 10−3Hz (within the LISA band) for the case of
a transition at a scale of the order kT∗ ≈ 102GeV as in the Standard Model
EW transition.

The latest numerical calculations [8] show that the spectrum rises as
f 3 for low frequencies and decreases as f−1. According to these results, a
GW spectrum strong enough to be detected within the sensitivity of future
detectors (BBO) is still a possibility, as shown in figure 4 in contradiction to
the original approach. Recently progress has been also made in an analytical
approach to GW’s from bubble collisions [9] which however is still under
dispute. Two are the important parameters which determine the generated
GW background. The parameter α gives a measure of the difference in the
energy density between the two vacua, while the parameter β characterizes
the bubble nucleation rate per unit volume.

α = Ef.v.
aT 4
∗

, Γ = Γ0e
βt (91)

The bubble nucleation will not result in a Universe in true vacuum until the
expansion rate of the bubbles is of the order of the Hubble rate of expansion.
If the Universe kept expanding faster than the true vacuum bubbles then it
would be trapped in the false vacuum forever.

Naturally β also gives a rough estimate of the peak frequency β ≈ 2πfmax
and also the duration of the phase transition β−1 = Γ/Γ̇ = τ . Of course the
whole spectrum underwent a certain redshift as discussed before. I will only
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Figure 4: Comparison of several GW spectra for different values of α. In the
second model a less steep fall-off slope is apparent. Adapted from [8].

present here the result of the calculations made by Kosowsky, Turner and
Watkins [10], that derived the amplitude of the spectrum at the peak

Ωgw(fmax)h2
0 ≈ 1.1× 10−6κ2

(
H∗
β

)2 (
α

1 + α

)2
(

v3
b

0.24 + v3
b

)(
g∗
100

)−1/3
,

(92)
where vb is the bubble wall velocity in units of c. A strongly first-order
transition needed requires α→∞ and β →∞.

Nevertheless, all the above calculations are made in the context of rather
speculative scenarios, none of which is proven to have actually happened.
There are at least two well known phase transitions that is believed to have
occurred during the thermal history of the Universe, namely the QCD phase
transition and the EW phase transition. The QCD transition corresponds to
the time when baryonic matter went from the quark-gluon plasma state to
the confined state that we more or less observe today. However it has been
shown that the QCD transition was not first order, but rather a smooth
crossover, as predicted by today’s experimental values.

In the Standard Model, the EW phase transition is also a crossover,
according to the experimental restrictions for the Higgs mass to be above
114GeV (larger than the W mass). Even so, we can still expect other mod-
els in particle physics to give us a first-order EW transition, like for example
SUSY. The Minimal Supersymmetric Standard Model, or MSSM provided
that it comes with a sufficiently light stop (105 − 165GeV ) does give first-
order, but theoretical calculations of thermal corrections are not so much in
favor of this scenario, since the mstop is not allowed to be low enough to give
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a strong GW spectrum [11]. We then resort to the Next to Minimal Super-
symmetric Standard Model (nMSSM) which is also quite appealing for other
reasons, like providing a mechanism for baryogenesis. In the SUSY case, if a
background is detected, we could in principle discriminate among variations
of the model with different Higgs sectors. On the other hand we can also
look for phase transitions at the GUT scale, which will give us a spectrum
detectable by the Advanced LIGO detectors.

3.5 Cosmic Strings

A stochastic GW background can also be produced by a network of cos-
mic strings. Cosmic strings are topological defects generated via the Kibble
mechanism during a phase transition when a spontaneous symmetry breaking
occurs. If the broken vacuum manifold M has a nontrivial n = 1 homotopy
group π1(M) 6= 1 cosmic strings will form. These are one-dimensional mas-
sive objects (hence the name “string”) of extraordinary linear mass densities.
The characteristic quantity is the mass-per-unit-length denoted by µ and
can reach typical values as high as 1022gr/cm if the formation takes place at
GUT scales ∼ 1016GeV .

In an extended network cosmic strings may cross either each other or
themselves, forming kinks and small loops, the latter being detached from
the main body of the string, while the former change the topology of the
network. The string tension is remarkably strong, equal to its mass per unit
length, and so it is expected that cosmic strings will vibrate at relativistic
speeds and decay by emitting gravitational radiation. In fact small loops will
decay much faster, nearly as fast as the time needed for light to travel across
its diameter.

A very interesting statistical property of cosmic string networks, discov-
ered by Vilenkin in the early 90’s, says that at any given time, a Hubble sized
volume contains a constant number of strings passing through it and a large
number of small strings that are constantly decaying and replaced by newly
formed ones. Loops are formed in a variety of sizes and will radiate in vary-
ing frequencies as they shrink. Further study of string evolution by Vilenkin,
Shellard, Caldwell and Allen has predicted a spectrum relatively flat with
a small bump at low frequencies, as shown in figure 6. However, most cos-
mic strings scenarios are disfavored or even ruled out by recent evidence,
including the msec pulsar bound discussed below.
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Figure 5: A decaying relativistically vibrating loop emits gravitational radiation.
Source : http://www.damtp.cam.ac.uk/user/gr/public/cs_home.html

3.6 Other stochastic backgrounds
Apart from the causal mechanisms discussed above, cosmologists have come
up with a rich variety of scenarios, most of which originate from superstring
cosmologies. We previously saw that the standard inflationary models fail
to give an ascending spectrum and a detectable signature. But this is not
always the case. I will quickly mention some of the interesting cosmological
models that leave us a hope for detection.

3.6.1 Pre-Big-Bang scenario

This is one of the String Cosmology scenarios that involve the dynamics of
a dilaton field ϕ, the kinetic energy of which drives the inflation. The scale
factor in (49) is now replaced by ã = e−ϕ/2a. The big bang singularity is
replaced overridden and replaced with a “would be big bang singularity” stage
which is still not fully understood. Before this stage, a phase of accelerated
expansion (or contraction) at negative times took place, which extends to
t → −∞. The main characteristic of this superinflation is a non-constant
expansion rate Ḣ > 0, which again results to a non-flat spectrum, this time
ascending as

Ωgw = g2
0

(
H∗
H0

)2 (a∗
a0

)4
(
f

f∗

)3

, (93)

where g0 is the string coupling today, f∗ ∼ 1010Hz and ∗ denotes the end
of superinflation. This gives an strongly positive slope nT = 3, but the
characteristic values are expected to give a peak at the GHz region (which
has to be under the BBN bound) and the spectrum overshoots the sensitive
regions of our detectors. Also, for the ultra-low frequencies of the CMBR
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Figure 6: Spectra coming from several early Universe production mechanisms
in comparison with bounds and detector sensitivities. a) Standard inflation (de
Sitter, slow-roll), b) String Cosmologies, c) Cosmic Strings, d) first-order EW
Phase Transition. Adapted from [12]

measurements, this scenario gives rather negligible contributions, so if tenso-
rial contribution is detected by the successors of COBE, this idea will have
to be ruled out. However the details of the calculations are far from being
complete at least until we have some theoretical calculations for the Planck
scale.

3.6.2 Brane World scenarios

This is another interesting String Theory originated scenario influenced by
brane-world ideas. Our Universe comprises one of the two branes of the
model the other of which is “hidden” and the dilaton field ϕ can be inter-
preted as the distance between the two branes. Here the big bang singularity
is also eliminated and the Universe pre-exists, undergoing an accelerated con-
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traction. The phases that the Universe undergoes close to η = 0 is initially
a phase with a ∼ (−η)ε, where ε is small (slow contraction), followed by a
superinflationary phase as in the previous section with the power jumping
from ε to 1/2 The end result will be a spectrum of perturbations which will
have a slope nT = 2 + 2ε for modes that became super-Hubble during the
first phase and nT = 3 for the ones that became super-Hubble during super-
inflation. Again this scenario can be ruled out by CMBR measurements as
in the PBB case.

3.6.3 Quintessence

This scenario includes an epoch dominated by a new type of source stiffer
than radiation, but with a non-standard equation of state, which is named
“quintessence”. After inflation, when the field φ has rolled down the poten-
tial to φ ∼ −MPl, it drives a phase of expansion by means of its kinetic
energy, with a ∼ √η. The final result will be a linearly scaling spectrum,
i.e. slope nT = 1 as a correction for the frequency band that includes modes
that became super-Hubble during quintessential inflation and re-entered the
Hubble radius during this kinetic phase. This spectrum is quite promising
for detection since in some versions of its parameters, the ascending part may
fall within the sensitivity range of the advanced LIGO detectors.

4 Bounds
This is the part of the story when experimental evidence restrict our ambi-
tious GW stochastic background calculations, even if these evidence to not
come directly from gravitational wave detectors. In this sense, one can distin-
guish between two types of experimental bounds, namely direct and indirect
and we are unlucky enough to have both, the latter being the most difficult
to overcome.

Our direct bounds come from all GW detectors that ever operated up to
today, since none of them ever had the sensitivity to detect a single gravita-
tional wave, not to mention a stochastic background. However, the relatively
narrow frequency band of ground based interferometers and, even worse, res-
onant bar detectors, makes it difficult for us to derive conclusions about the
stochastic background spectrum as a whole.

The indirect bounds on the other hand cover a totally different range of
frequencies as shown below. The most important indirect bounds come from
the Big Bang Nucleosynthesis calculations, millisecond pulsars and CMBR
measurements carried out first by COBE and later on by WMAP. In this
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Figure 7: The three basic bounds BBN, msec Pulsars and COBE, and the current
and future (dotted) detection experiments. Adapted from [12].

section we will overview each of them separately. In figure 7 we include all
the important bounds available today, both direct and indirect, along with
the expected sensitivities of the future detectors LISA and Advanced LIGO.

4.1 The BBN bound
The Big Bang Nucleosynthesis calculations provide us with a very successful
prediction for the abundances of light elements in the Universe. The bulk
of todays Deuterium, Helium isotopes 3He and 4He, as well as 7Li are com-
ing from the primordial nucleosynthesis, the outcome of which is extremely
sensitive to the coupling constants of all fundamental interactions and the
expansion rate of the Universe H. A change in H would result to a change
of the freeze-out temperature when nucleosynthesis takes place and would in
turn change the ratio of proton and neutron production and, consequently,
the light element abundances, thus spoiling our so precious results.

It is now easy to make the connection between the BBN results and the
GW spectrum. GW’s were not taken into account in the original calcula-
tions. Since H is directly related to the energy densities via the Friedmann
equations, if the total energy density of gravitational waves Ωgw at the time
of nucleosynthesis was too high, then H and Tfreezeout would also become too
high etc. This restriction on the total energy density is expressed to good
approximation by the final result for the total GW energy density today:∫ f=∞

f=0
d(log f)h2

0Ωgw(f) ≤ 5.65× 10−6∆Nν (94)
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This is a result in terms of the “effective number of neutrino species” defined
as Nν = (ρrel − ργ)/ρν,th at the time of nucleosynthesis, where ρrel accounts
for photons, three species of neutrinos and other relativistic contribution,
including GWs. This extra contribution is denoted by ∆Nν and is a number
smaller than 1, with 95% confidence [13, 14]. Two such bounds are shown in
figure 7. Unless the spectrum of the stochastic background shows a strong
peak in a narrow band and is much smaller in the rest of the spectrum,
which is highly unlikely, the BBN bound imposes a restriction across the
whole range of frequencies of roughly

h2
0Ωgw ≤ 5× 10−6. (95)

It is also important to point out that this bound does not apply to a stochastic
background of Astrophysical origin and GWs coming from post-BBN times
in general.

4.2 Millisecond Pulsars
Another constraint on today’s Universe abundance in gravitational waves
comes from the very accurate timing of msec pulsars, the first of which, PSR
B1937+21, was discovered in 1937. These are objects that emit a signal of
remarkably high precision and were observed carefully for almost a decade,
giving a pulse period as precise as 16 digits long.

This property provides us with a natural gravitational wave detector,
since passing GWs would cause a very small variation in the measured period
of the pulse, proportional to the GW amplitude. This can be understood as
a pulse coming from the pulsar being successively redshifted and blueshifted
as a GW passes between us and the source. The duration of observation de-
fines the maximum period of the measurable variation, and thus a minimum
frequency for the GW bound of ∼ 10−8Hz. The bound extends naturally to
the frequency of the msec pulse (∼ 103Hz), above which the “detector” is
rather insensitive. Ultimately, the extremely small size of the timing errors
∆t/t ≤ 10−16 at a maximum sensitivity frequency of f∗ = 4.4 × 10−9 gives
an amplitude bound of

h2
0Ωgw(f∗) < 4.8× 10−9 (96)

at a confidence level of 90%

4.3 COBE and the Sachs-Wolfe effect
Finally, a very important bound is the one coming from detailed measure-
ments of the anisotropies of the Cosmic Microwave Background Radiation.
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The COsmic Background Explorer (COBE) satellite measured the black body
temperature fluctuations for the whole 4π solid angle and found a maximum
value of fluctuations of the order ∆T/T ≤ 10−5. The anisotropy was also
measured, in terms of the multipole coefficients and the smallness of this
anisotropy suggests a bound on Ωgw at ultra-low frequencies 10−18−10−16Hz.

The above connection has been made by virtue of the Sachs-Wolfe effect.
The general concept is the following; the CMBR spectrum comes from the
photons’ last scattering surface which corresponds to a redshift of zLSS ∼ 103

(about 350.000 years after the big bang). Super-Hubble modes of metric ten-
sor perturbations at that time would comprise gravitational potential wells
and hills resulting to a certain redshift or blueshift of the photons as they
enter these regions. As modes re-enter the Hubble radius and continue as
GWs in later times of RD or MD, this frequency shift will be observable to us
today as an anisotropy in the CMBR black body temperature. The explicit
calculation predicts a bound for the amplitude today

h2
0Ωgw(f) < 7 × 10−11

(
H0

f

)
, 3× 10−18Hz < f < 10−16Hz (97)

Scalar perturbations can also source anisotropies but, depending on the in-
flationary model, are considered to be subdominant.

At the upper edge of its range COBE imposes the strongest bound so
far: 7 × 10−14 @ f ∼ 10−16Hz , which has great impact on the whole range
of almost scale invariant spectra, predicted by many inflationary scenarios.
If the spectrum is almost flat, then a strong bound at any frequency would
imply almost as strong bounds at all frequencies.

5 Detection and Experiments
One would not describe the history of Gravitational Wave Detection as a suc-
cess story, but rather a story of discomfort and great unease of experimental
physicists. The first experimentalist to claim to have detected a gravita-
tional wave was the pioneer in the field of GW detectors, J. Weber. The first
resonant bar detector was designed by him in the early 60s and became oper-
ational in 1965. During the first months of its operation a strong signal was
detected which could not be interpreted as noise in any way. In a series of
other more advanced experiments that took place during the following years,
Weber saw a few more such unlikely events, however he was the only one to
do so. Thus up to today no direct detection of GWs has been confirmed and
the only convincing evidence that we have supporting their existence are in-
direct evidence coming from the measurements of binaries’ power loss which
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perfectly matches the theoretical predictions. The new interferometric type
of GW detectors are much more promising than the old resonant bars, they
have a few orders of magnitude higher sensitivity and cover a much wider
range of (lower) frequencies. The sensitivity is further enhanced when the
detectors work correlated.

5.1 Correlated detectors
The signal from a GW stochastic background is expected to be far from
strong. However, it seems that by correlating the signal measured by two or
more detectors, which work simultaneously in remote locations and have an
uncorrelated noise, we can dig out a very tiny signal buried under a relatively
strong noise. This technique was first studied by Michelson in the late 1980s
and further developed by Flanagan and Christensen in the ’90s. Correlated
detectors can give a combined sensitivity that may reach several orders of
magnitude higher than the one obtained by each detector separately.

Suppose that the signal Si seen by each detector can be split in two parts;
a pure gravitational wave signal si and a background noise ni, where i labels
the detector, so

Si(t) = si(t) + ni(t), (98)

and suppose that the signal-to-noise ratio (SNR)2
i = 〈s2

i (t)〉
〈n2
i (t)〉

is quite low
(� 1). In principle we cannot separate the signal from the background noise
as it is. However, we can use the fact that the GW signal is correlated in the
two detectors (both detectors measure the same passing GW with a small
time delay depending to their distance) 4, while the noise signal is totally
random and uncorrelated. Let us define the very simplified version of the
correlation signal

S = 〈S1, S2〉 ≡
∫ T/2

−T/2
S1(t)S2(t)dt, (99)

where T is the time interval of correlated operation and for a weak signal

S = 〈s1, s2〉+ 〈s1, n2〉+ 〈n1, s2〉+ 〈n1, n2〉
≈ 〈s1, s2〉+ 〈n1, n2〉 ,

(100)

since the cross terms are uncorrelated and much smaller than the uncorre-
lated noise-noise term.

4Here for simplicity we have made the additional assumption that the distance between
the detectors is very small compared to the wavelength of the GW to be measured, so that
the detectors are oscillating in phase. A typical value of this for ground based detectors
gives f < 100Hz
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A consequence of the above is that if we turn both detectors on and wait
for a long period of time T , then the signal correlation will linearly grow,
while the noise correlation will behave as a 1-dim random walker:

〈s1, s2〉 ∝ |s(f)|2∆fT

〈n1, n2〉 ∝ |n(f)|2
√

∆fT
(101)

from which we conclude that the minimum detectable amplitude of energy
density Ωgw(f) ∝ |s(f)|2, will drop as

Ωgw,det ∝
|n(f)|2√

∆fT
. (102)

So in principle if one waits long enough, one can find a signal no matter
how small it is compared to the noise. The actual convoluted signal uses an
“optimal filter” Q(t− t′) which is determined by more advanced calculations
and also takes into account the relative orientation of the interferometers’
arms, which stand on different planes.

5.2 Ground based interferometers
The construction of the first generation of large scale interferometers took
place in the early 2000s with the two LIGO detectors in the US (Louisiana
and Washington) the VIRGO in Pisa, Italy, and the smaller GEO600 in
Hannover, Germany and TAMA300 in Mitaka, Japan.

They all basically operate under the same principles. A laser beam is
emitted and split in two, each of which travels along a different arm of the
interferometer and back. The interference pattern shows in extraordinary
precision variations in the relative armlengths hopefully enough to indicate
a passing of a GW. The precision needed in order to detect GWs in an order
of km long interferometer is a real challenge to current technology, since it
may reach scales as small as the size of a proton. Therefore a very important
task is noise reduction. Noise can be either seismic, in the form of ground
vibrations, or even thermal, coming from the microscopic random motion of
the several parts of the detector (e.g. the mirrors’ surface molecules) which
for this reason are cooled to ultra-low temperatures. In order to deal with
ground noise, the mirrors are hanged from wires that are connected via a
series of seismic filters to a very well stabilized platform.

Single interferometers operate in the range between 1Hz and a few kHz
and can measure a spectrum of minimum amplitude h2

0Ωgw ∼ 10−2 which is
rather high. However, pairs of combined detectors, like LIGO-LIGO, LIGO-
VIRGO etc., correlated as discussed in the previous section can reach after a
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year of integration a minimum amplitude sensitivity of ∼ 5× 10−6. However
this is still not enough for detection.

The second generation of enhanced sensitivity interferometers is expected
to improve the current sensitivity by at least a factor of 10. This includes
the advanced LIGO detectors, usually referred to as LIGO 2 which should
be operational by 2014. It is believed that LIGO 2 will detect GWs, maybe
even on a daily basis.

5.3 LISA
The Laser Interferometer Space Antenna is the first GW interferometer that
will be sent to outer space. It consists of three identical spacecrafts which will
form a huge triangle the sides of which will be the arms of the interferometer,
of length ∼ 5× 106km (as long as 100 times the Earth’s perimeter). This is
a joint project of NASA and ESA and it has been planned for more than a
decade. The current estimated time of launch is between 2018 and 2020 in
the most optimistic scenario.

LISA’s resonant frequency band ranges from 10−5Hz to 1Hz and can-
not be covered by any other earth-bound detector due to ground noise. Each
spacecraft will carry the same equipment including a 1 Watt laser and a 30cm
telescope, and will operate both as a mirror and as a detector/transmitter
thus producing 3 independent signals and transforming LISA to effectively
more than one detectors. The equipment may not be capable of measure-
ments as precise as the ones made by the ground-based detectors but the final
sensitivity of the experiment is a few orders of magnitude higher than the
LIGOs’. This happens not only due to reduced noise, but also because the
stochastic wave strain falls of as f−3/2 which actually means that detectors
working in a lower frequency band require much less precision for the same
outcome in sensitivity.

The orbit that LISA is planned to follow is that of the Earth’s revolution
around the Sun, following our planet in a 20 deg lag. The triangle will have
a relative tilt of 60 deg with respect to the ecliptic plane and will perform
a rolling motion along its orbit. The GW detection will be looked for as a
variation in LISA’s armlengths, all distances being measured in a precision of
picometers, with respect to the spacecrafts’ proof masses. The proof mass is
a small test mass placed inside a perfectly isolated cavity, so that it performs
an undisturbed free fall in the Sun’s potential, free from noise like cosmic ra-
diation, solar wind etc. During LISA’s lifetime, the armlengths will undergo
a small precession as it orbits around the Sun. However the timescale of
these length variations will be long enough to be recognizable and calibrated
out.
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LISA’s sensitivity in stochastic GW radiation is expected to reach h2
0Ω ∼

10−12 and it is almost certain that a large population of Astrophysical sources
will directly be detected. Unfortunately LISA will not be able to correlate to
any ground base detector, but only to itself, mainly because of the different
frequency band of operation. LISA’s quest is scheduled to last 2-3 years and
a test project, LISA-pathfinder will be launched beforehand (scheduled in
2010) in order to check the details of the orbit, but also the feasibility of
the project. A successor of LISA is already being scheduled, under the name
“Big Bang Observer” (BBO) and will consist of 4 LISA-like triangles a pair
of which will form an hexagram.

6 Conclusions
Even though Gravitational Waves have quite stubbornly insisted to remain
undetected for almost 50 years of scientific effort, theory has made progress
on its own both in the field of Astrophysics and that of Cosmology. Various
Cosmological models predict different forms of stochastic spectra some of
which are possibly detectable by the forthcoming experiments of advanced
sensitivity. The mechanisms in question occurred in the early Universe either
as varieties of inflationary scenarios, or effects of phase transitions. However,
as optimistic as we can be about future detectors, it will still remain a chal-
lenge to separate a stochastic spectrum of Cosmological origin from the over-
whelming Astrophysical stochastic background coming from the abundance
of binaries in our vicinity.
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