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CHAPTER 1
INTRODUCTION

Before plunging into the many theoretical descriptions
and experimental results in neutrino physics, we give a
brief overview of the history of the neutrino.

1.1 Historical overview

In this section we will provide a brief overview of the discovery of the neutrino, which
is based on the historical summary in [1]. For a more extended account see [2, Ch.
1] and references therein.

Without giving proper credit to Becquerel, Thompson, Rutherford and all those oth-
ers who were involved in the discovery of and early attempts to explain radioactive
phenomena, let us go back to the early 1900’s and the first studies of β radiation. At
the time, it was established that the particles making up the β radiation were actually
the same ones as those coming from cathode ray tubes, namely electrons. The only
other elementary particle was thought to be the proton, all the nuclei of elements
heavier than hydrogen being built up from protons and electrons. The electrons emit-
ted in β radiation were assumed to come from the nucleus. Now in spontaneous
beta decay (that is, without any external stimulus such as light or electricity) some
nucleus A with mass MA turns into a nucleus A′ of mass MA′ while emitting an elec-
tron (and no more than that). Using conservation of momentum and energy, and
the energy-mass equivalence from Einsteins new theory) then obviously the energy
of the emitted electron should be proportional to MA −MA′ . For a while, this re-
sult was supported by both theoretical and experimental evidence. However, both
turned out to have serious problems. In 1914 detection techniques were sufficiently
advanced that Chadwick could provide definite evidence that the energy E of the
outgoing electron is not sharply peaked aroud MA −MA′ but continuously takes val-
ues up to E ' MA −MA′ . It took another 15 years to show that this was in fact a
“real” property, rather than one induced by interactions of the radiation with other
nuclear particles or other radiation. A completely different problem also arose. Under
the assumption of nuclei just containing electrons and protons, 7

14N should consist of
7 + 14 = 21 fermions, although experiments had revealed that nitrogen was in fact a
boson.
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Rather than thinking the atomic model of nuclei built up from electrons and protons
was wrong (which, of course, it is), other explanations were sought. Niels Bohr
around 1930 went as far as to suspect that maybe the energy conservation principle
would have to be abandoned. Clearly this would solve the problem of the “missing”
energy in β decay. Based on the “strange” properties of electrons in nuclei, this idea
was not immediately dismissed; in fact it was considered a very likely explanation.
However, in 1930, Pauli wrote a hesitant letter [3] to the participants of a nuclear
physics conference in Tübingen (Germany). He proposed that another, as yet unseen,
elementary particle might exist which would have to be electrically neutral, very light
and which he suspected to have spin 1

2 . He went on to demonstrate that this would
solve both problems, as this new particle could carry away some energy from beta
decays unseen, and adding an odd number of them to the nitrogen nucleus would
make the number of fermions even. He immediately added that the idea was very
daring and “may not seem very probable a priori”, but “only the one who dares can
win” and “from now on, every possible solution must be considered.”

Some years later, in 1932, Chadwick did in fact discover a neutral nuclear con-
stituent. Unfortunately it did not have the properties predicted by Pauli. In particular
it was much heavier, with mass slightly greater than the proton. Soon after, Heisen-
berg, Majorana and Ivanenko all independently assumed that atomic nuclei were not
built out of protons and electrons, but protons and neutrons. Thus they explained
all the existing data. It was Enrico Fermi who, in a play of words, renamed Pauli’s
neutral particle to “neutrino”, where –ino is an Italian diminuitive suffix (neutrino ∼
“small neutron”). Moreover, he wrote down a beta decay∗

n→ p+ e− + νe, (1.1)

and worked out the quantum mechanical theory. In fact, this also allowed for the
calculation of the cross-section of the inverse reaction,

νe + p→ e+ + n (1.2)

which was confirmed by Reines and Cowan in 1956.
It took until well into the 1950’s before definite direct experimental evidence for the

neutrino with all the postulated properties was provided. We will come back to this
in later sections where we will discuss the experimental “evolution” of the neutrino
in more detail. Out of theoretical need, a second and even third neutrino type were
later postulated. The second type, the muon neutrino νµ was found rather quickly,
but the third one – the tau neutrino ντ – was discovered only much later. In fact,
it was the last particle of the minimal Standard Model of elementary particles to be
observed experimentally.

∗in contemporary notation, with bars denoting anti-particles and being aware of the existence of two
other neutrino flavours
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CHAPTER 2
THE STANDARD MODEL

In this chapter, we briefly review some important con-
cepts from the minimal Standard Model of physics (SM).
We recall the different particles and fields, the extremely
important concept of gauging and we sketch how the Higgs
mechanism works, which gives the particles their masses.
We also consider the status of the neutrino in the SM and
the shortcomings of this theory.

One can safely say, that the Standard Model of particle physics (SM) is one of the
greatest successes of theoretical physics of the past decades. This theory incorpo-
rates all known elementary particles into a single framework, and it describes the
electroweak and strong interactions. So far, any prediction that has been made by
the Standard Model has been tested experimentally up to great accuracy. Though
the Standard Model does not include the gravitational force it is a very useful the-
ory. In fact there is not much physics which is not described by the SM. One of those
exceptions are neutrinos, which are the topic of this paper. In particular the 1960’s
version of the Standard Model fails to accurately describe neutrino oscillations. Let
us now first recapitulate how the (minimal) SM works by briefly summing up some
of its building blocks.

2.1 Fermions

The basic ingredients of the SM are fermionic fields of spin 1
2 , divided into three

generations∗. Each generation consists of two quarks, a lepton and a neutrino, as
indicated in table 2.1. Each of these fermions f also has an anti-particle f . The
two spin degrees of freedom of any (anti-)fermion are described in a Weyl spinor: a
2-component (complex) vector

χ =
(
χ↑
χ↓

)
. (2.1)

∗This section is based on [4], with the conventions from [5]



CHAPTER 2. THE STANDARD MODEL

First generation Second generation Third generation
Quarks Up (u) Charm (c) Top (t)

Down (d) Strange (s) Bottom (b)
Lepton Electron (e) Muon (µ) Tau (τ)

Neutrino νe νµ ντ

Table 2.1: Fermions in the Standard Model

The constituents of the fermionic part of the Standard Model are then spin fields

ψα(x) =


ψ1(x)
ψ2(x)
ψ3(x)
ψ4(x)

 =
(
φ(x)
χ(x)

)
, (2.2)

where φ and χ are Weyl spinors and α = 1, 2, 3, 4 is a spin label (it does not necessarily
take d values in d dimensions, in general it runs through 2bd/2c values). We can
consider φ as describing the fermion and χ the anti-fermion. In general, φ and χ may
be independent, in which case we call ψ a Dirac spinor. If they are related by

χ = −σ2φ
∗, (2.3)

where σ2 is a Pauli matrix and the star denotes complex conjugation, ψ is called a
Majorana spinor.

The fermion fields satisfy the Dirac equation

(i/∂ −m)ψ = 0, (2.4)

where m denotes the mass of the fermion. We have employed Feynman slash nota-
tion, /∂ def= γµ∂µ with ∂µ = ∂/∂xµ, where γµ (µ = 0, 1, 2, 3) denote the Dirac matrices
which satisfy

{γµ, γν} def= γµγν + γνγµ = 2ηµν . (2.5)

Whenever an explicit form is needed for the Minkowski metric ηµν , we will choose
ηµν = diag(1,−1,−1,−1) (in accordance with [5]).

Defining the Dirac conjugate spinor by ψ def= ψ†γ0 with ψ† the Hermitian conjugate,
the Dirac equation follows from the Euler-Lagrange formalism applied to

L = ψ(i/∂ −m)ψ; (2.6)

for example, it can be obtained immediately from the Euler-Lagrange equation ∂L/∂ψ =
0.

Using the Dirac matrices, we can define

PR = 1
2 (1 + γ5), PL = 1

2 (1− γ5), where γ5 = iγ0γ1γ2γ3. (2.7)

Using that (γ5)2 is the identity matrix, up to a sign (with our explicit choice of ηµν =
diag(1,−1,−1,−1) it is even precisely the identity), it can be easily shown that these
are orthogonal projection operators. The projection of the fermionic fields

ψL,R = PL,Rψ (2.8)
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defines two chiralities, left-handed and right-handed respectively. We can decompose
the Dirac Lagrangian (2.6) accordingly [4, § 6.9]:

L = ψ(i/∂ −m)ψ

= ψ(PR + PL)(i/∂ −m)(PR + PL)ψ

= iψPR /∂PLψ + iψPL /∂PRψ −mψPLPLψ −mψPRPRψ

= iPLψ/∂(PLψ) + iPRψ/∂(PRψ)−mPRψ(PLψ)−mPLψ(PRψ)

= iψL /∂ψL + iψR /∂ψR −mψLψR −mψRψL,

(2.9)

so the kinetic term decomposes into two independent parts, whereas the mass term
mixes the two chiralities. This concept is very important in the Standard Model.

In the Standard Model, the different chiralities play very different roles. In 1958, a
rather ingenious experiment by Goldhaber, Grodzins and Sunyar had measured neu-
trino spins∗ and observed only left-handed neutrinos. Since no right-handed neutri-
nos were required to explain any phenomena at the time the right-handed neutrinos
νR were, in the 1970s, not included in the Standard Model by choice. By the decom-
position above, neutrinos automatically become massless, which also did not seem to
contradict experiment.

2.2 Gauging and gauge bosons

So far we have only considered fermions with no interactions, except for the mixing
between different chiralities. (Almost) all bosons in the SM arise as gauge bosons.
They arise from local symmetries of the Lagrangian. Let us recall how this works.

Consider the Dirac Lagrangian (2.6). It is clear that under a global phase trans-
formation ψ(x) → eiqξψ(x), with ξ some real number, this Lagrangian is unchanged
(because ψ(x) → e−iqξψ(x)). However, since the phase of φ is not measurable, we
would like to have the freedom to choose the phase of ψ at every point in spacetime
separately. Therefore we with to impose invariance of the Lagrangian under a local
transformation ψ(x) → eiqξ(x)ψ(x). It can be easily checked that now,

∂µψ(x) → ∂µ

(
eiqξ(x)ψ(x)

)
= eiqξ(x) (∂µψ(x) + iq(∂µξ(x))ψ(x)) . (2.10)

To restore invariance, we introduce a covariant derivative ∇µ with the property that
∇µψ(x) → eiqξ(x)∇µψ(x). The name covariant derivative has a rigorous meaning in
differential geometry, we will ignore this point for now and will state only that the
Lagrangian does become invariant when we replace the derivative ∂µ by the covariant
version ∇µ defined by

∇µψ = (∂µ − iqAµ(x))ψ(x) (2.11)

as long as the new field Aµ transforms as Aµ → Aµ + ∂µξ. The new field Aµ is called
a gauge field. After the above replacement, the Lagrangian (2.6) reads

L → ψ(i/∂ −m)ψ + qAµψγ
µψ

→ ψ(i /∇−m)ψ − 1
4FµνF

µν .
(2.12)

In the last term of the first line, we automatically get an interaction of the fermions
with the gauge field. If we define Fµν

def= ∂µAν − ∂νAµ, we can add another invariant

∗For the original paper see [6], a very accessible explanation is given in [7]
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term − 1
4FµνF

µν , which turns out to be the kinetic term for Aµ when deriving the
field equations for the gauge field; therefore we have also included this term on the
second line.

The idea from the above paragraphs can be generalised. Let G be some finitely gen-
erated Lie-group (called the gauge group) with generators g1, . . . , gN . An n-dimensional
representation φ of this group assigns to each generator gi an invertible n× n matrix
gφ

i such that the image of the Lie bracket [gi, gj ] under φ coincides with the matrix
commutator [gφ

i , g
φ
j ] = gφ

i g
φ
j − gφ

j g
φ
i . In a given representation φ, we can express the

elements of the group as n× n matrices through

g(x) = exp

[
N∑

i=1

qαi(x)g
φ
i

]
, (2.13)

where αi is some set of real (or complex) smooth functions on spacetime and the
exponent of a matrix is defined as usual by its power series. The constant q is called
the charge of the field under the action of G. (If q ≡ 0 then the field does not
change under the action of G and we say it is uncharged). Usually, the generators
and commutation relations of the Lie algebra are themselves defined by matrices
g
(fund)
i , which we call the fundamental representation of G. Suppose we have some

theory with a Lagrangian L which depends on a set of fields φi (i = 1, . . . , N). We
may require that L be invariant under transformations from G, that is: for any U ∈ G
the Lagrangian does not change under

φ(x) → Uφ(x) or, in matrix notation, φi →
N∑

j=1

Uijφj . (2.14)

To achieve this, we must again replace any derivatives ∂µ in the Lagrangian by co-

variant ones ∇µ, which act on the fields by ∇µψ
def= ∂µψ −Wµψ, with the gauge field

Wµ = W i
µgi transforming as

Wµ → UWµU
−1 + (∂µU)U−1. (2.15)

We can also add to the Lagrangian a kinetic term for Wµ:

−1
4
GµνG

µν , (2.16)

where
Gµν = ∂µWν − ∂νWµ − [Wµ,Wν ], (2.17)

or, in some representation φ,

Gi
µνg

φ
i = (∂µWν(x)i)gφ

i − (∂νWµ(x)i)gφ
i −Wµ(x)iWν(x)j

(
gφ

i g
φ
j − gφ

j g
φ
i

)
. (2.18)

When imposing such a symmetry on the Lagrangian (2.6),

−ψi(/∂ +m)ψi → − 1
4GµνG

µν − ψi

(
/∂ +m− gγµWµ

)
ψi. (2.19)

For a one, two, three or n (> 3) dimensional representation φ of G, we say the the
fields ψ1, . . . , ψn transform as a singlet, doublet, triplet or n-tuplet respectively, under
φ.

From the discussion above it should be clear that for every generator gi of the gauge
group G, a gauge field W i

µ appears. These fields have one group index i and a space-
time vector index µ, meaning they correspond to spin-1 bosons, carrying interactions
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from one spacetime point to another. In the first case discussed in this section, we had
G = U(1) (the group of 1× 1 unitary matrices) which has just one generator, Y . The
associated charge q is the electric charge, the gauge field Aµ is the electromagnetic
vector potential and the corresponding force mediating spin-1 particle is the photon.

The gauge group of the Standard Model is the group product

GSM = SU(3)c ⊗ SU(2)IW
⊗ U(1)Y . (2.20)

We will focus on the last two factors. The subscripts will be explained below.
The SU(2) group is the weak isospin group. Its fundamental representation is two-

dimensional, the generators t(fund)
i are one half times the Pauli matrices:

t
(fund)
1 =

1
2

(
0 1
1 0

)
, t

(fund)
2 =

1
2

(
0 −i
i 0

)
, t

(fund)
3 =

1
2

(
1 0
0 −1

)
. (2.21)

The left handed fermions transform as doublets

Ψi
e,L =

(
νi
L

`iL

)
, Ψi

q,L =
(
ui

L

di
L

)
(2.22)

under this representation, that is they have weak isospin charge IW = 1
2 . In the

above expression, i = 1, 2, 3 labels the three generations, νi, `i, ui and di denote the
corresponding neutrino, lepton and quarks, respectively. The right-handed fermions
are singlets under SU(2), in other words, their weak isospin charge is IW = 0 and
they do not transform under SU(2) transformations). They are denoted ψi

e,R, ψi
u,R

and ψi
d,R for the right-handed electron (muon, tau), right-handed up (charm, top)

quark and right-handed down (strange, bottom) quarks, respectively. Recall that in
the minimal standard model, there are no right-handed neutrinos.

The U(1)Y group is not the U(1) group from electromagnetism, the corresponding
charge is not electric charge q but hypercharge Y . Each doublet or singlet has its own
hypercharge, which in general is twice the (in the case of a doublet, average) electric
charge.

The action then reads

Lf =
3∑

i=1

i
[
Ψi

e,L
/∂Ψi

e,LΨi
q,L

/∂Ψi
q,Lψ

i
e,R

/∂ψi
e,Rψ

i
u,R

/∂ψi
u,Rψ

i
d,R

/∂ψi
d,R

]
. (2.23)

If we replace the partial derivative by a covariant one, we must introduce four gauge
fields: three fields W 1,2,3

µ for the SU(2)IW
group, and one field Bµ for U(1)Y . The

covariant derivative looks like

∇µ = ∂µ − ig
3∑

a=1

W a
µ t

φ
a − i

g′

2
BµY. (2.24)

The SU(2) generators tφa in representation φ will take their form according to the
fermion representation they work on. For example, for left handed fermions they are
the matrices from equation (2.21), while for right-handed fermions they are zero.
Similarly, the representation of Y is in general proportional to an identity matrix,
with the propoprtionality constant determined by the hypercharge of the fermion on
which the derivative acts. The gauge fields from the SU(3)c color group, which we
are neglecting at the moment, are the eight gluon fields Gµ. In the literature one
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CHAPTER 2. THE STANDARD MODEL

usually encounters the charged and neutral W bosons W±, W 0, the neutral Z boson,
and the photon A. They are related to these gauge fields by

W 1
µ =

1√
2

(
W−

µ +W+
µ

)
, W 2

µ =
1√
2i

(
W−

µ −W+
µ

)
,

W 3
µ = cos(θW )Zµ + sin(θW )Aµ, Bµ = cos(θW )Aµ − sin(θW )Zµ,

(2.25)

where the weak mixing angle θW is defined by tan(θW ) = g′/g.
Implementing the covariant derivative produces in addition to the terms in (2.23)

with the replacement ∂ → ∇, the following interaction terms [8]:

Lf,gauge = −
(
g√
2
jµ
c W

+
µ + h.c.

)
− g

cos θW
jµ
nZµ − ejµ

emAµ. (2.26)

In this expression we have defined the charged and neutral vector current

jµ
c =

3∑
i=1

[νi,Lγ
µei,L + ui,Lγ

µdi,L] ;

jµ
n =

∑
f=νi,ei,ui,di

∑
σ=L,R

fσ(t3 − sin2(θW)Q)fσ;
(2.27)

respectively. Of course the nomenclature “charged” and “neutral” is related to the
charge of the corresponding vector bosons, W± and Z0. The neutral current contains
the generator t3 as well as the electric charge Q = Iz + 1

2Y , while jµ
em ∼ eiγ

µei is the
standard electromagnetic current from QED.

2.3 Discrete symmetries and CP violation

Apart from the continuous symmetries discussed in the previous section, there are
also discrete symmetries which are of importance in the Standard Model. Two of
them are spacetime symmetries, acting on the spacetime labels, namely∗: parity P
((x0, ~x) → (x0,−~x)) and time reversal T ((x0, ~x) → (−x0, ~x)). The third one is
charge conjugation C, which transforms a particle into its anti-particle. It acts by
Cφ = φ∗, CWµ = −(W ∗)µ (note that (W±)∗ = W∓). The charge conjugate ψc of a
fermionic field ψ is defined by

ψc def= Cγ0ψ∗, (2.28)

where C is the charge conjugation matrix, satisfying

(γµ)T = −C−1γµC, C† = C−1 and CT = −C. (2.29)

In the Dirac representation of the gamma-matrices, we can take C = γ2γ0 and C
takes the block form

C =
(

0 −σ2

−σ2 0

)
, ψc = −γ2ψ∗. (2.30)

Using that (σ2)T = −σ2, (σ2)∗ = −σ2 and (σ2)−1 = σ2, it is straightforward to verify
that C satisfies the properties in equation (2.29).
∗Note that in our notation C, P and T we do not discern between the operations themselves and the

symmetry of the theory. For example: T is violated means that the Lagrangian is not invariant under
application of T . Some authors prefer to make this distinction, and will write something like “T is
violated, meaning T̂L 6= L” instead.
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Majorana spinors are now defined as those fermions which are their own anti-
particle:

ψ = ψc, ψ =
(
φ
χ

)
=⇒ χ = −σ2φ

∗, (2.31)

we have thus precisely recovered equation (2.3) for the Majorana condition.
Using the anticommutation properties of γ5 def= iγ0γ1γ2γ3 we can show that apply-

ing projection operators 1
2 (1± γ5) to the charge conjugate,

PLψ
c
L = 0, PRψ

c
L = ψc

L, PLψ
c
R = ψc

R, PRψ
c
R = 0; (2.32)

that is, charge conjugation inverts the chirality. In other words yet, the anti-particle
of a left-handed fermion is right-handed and vice versa.

For Majorana fermions, we can decompose both the fermion ψ and its anti-fermion
ψc in left-handed and right-handed fields, then the Majorana condition gives

ψ = ψL + ψR = ψc
L + ψc

R. (2.33)

Acting with the left-handed (right-handed) projection operator we find that ψL,R =
ψc

R,L. Therefore, we can write ψ = ψL + ψc
L and the mass term reads (up to constant

prefactors)

mDirac

(
ψRψL + ψLψR

)
→ mMajorana

(
ψc

LψL + ψLψ
c
L

)
. (2.34)

The Standard Model violates not only C and P symmetry separately, also the combi-
nation CP is not preserved [9]. However, the famous CPT -theorem states that CPT
is a symmetry of the standard model∗. Thus, if CP is violated in the Standard Model,
it immediately follows that T – time reversal symmetry – is also violated.

2.4 The Higgs mechanism

Experimentally it has been measured [11] that the vector bosons W±
µ and Zµ are

rather massive, while the photon Aµ is of course massless. The first attempt to de-
scribe this in the Standard Model might be to insert a term like

1
2
m2

ZZµZ
µ +

1
2
m2

W (W+
µ (W−)µ +W−

µ (W+)µ). (2.35)

Apart from introducing new parameters into the Lagrangian by hand though, such
a term breaks gauge invariance and renormalisability. It turns out that there is a
very elegant way to make gauge bosons and fermions massive, which is the Higgs
mechanism.

We add to the Standard Model a new (complex) scalar field Φ =
(
φ1 φ2

)T
, with

Lagrangian

LΦ = −(∂µΦ†)(∂µΦ)− V (Φ), where V (Φ) = µ2(Φ†Φ) + λ(Φ†Φ)2, (2.36)

which is the most general globally SU(2)⊗U(1) invariant renormalisable Lagrangian
one can write down. In order to bound the energy spectrum from below, we must
have λ > 0; however µ2 may be either positive or negative. We now choose µ2 < 0.
The Lagrangian has a SU(2)⊗ U(1) symmetry, which we make into a local one:

LΦ → −(∇µΦ†)(∇µΦ)−µ2(Φ†Φ)−λ(Φ†Φ)2− 1
2

Tr(GµνG
µν)− 1

4
Tr(FµνF

µν), (2.37)

∗For a “deaxiomatised” treatment of the CPT theorem see [10], which also contains references to the
original proofs of Pauli-Lüders and Jost.

Neutrino oscillations 9



CHAPTER 2. THE STANDARD MODEL

where 
∇µ = ∂µ − igW i

µt
(fund)
a − i

g′

2
BµY,

Gµν = ∂µWν − ∂νWµ − ig[Wµ,Wν ],
Fµν = ∂µBν − ∂νBµ.

(2.38)

As such a scalar doublet can be parametrised (in analogy to writing a complex number
z as reiφ) as

Φ(x) = U(x)
(

0
ρ(x)/

√
2

)
, (2.39)

where U(x) is an SU(2) matrix; we can fix the SU(2) gauge by demanding that
U(x) ≡ I2 (the 2 × 2 identity matrix) everywhere. Because we chose µ2 < 0, the

minimum of the potential is not at ρ(x) = 0, but at ρ(x) = v
def=
√
−µ2/λ, which is

called the vacuum expectation value (vev). If we expand Φ around its minimum Φ0 we
can write ρ(x) = v + h(x), where h(x) is the Higgs field. Working out the covariant
derivative, the Lagrangian reads

LΦ = − 1
2 (∂µh)2 − 1

2 (2v2λ)h2 +O(h3, h4)

− 1
8

g2v2

cos2(θW )
ZµZ

µ − 1
4g

2v2W+
µ (W−)µ +O(hWW,hZZ, h2W 2, h2Z2).

(2.40)

In the first line, we see the kinetic term and the mass term for the Higgs field (mh =
2v2λ) plus its interactions with itself. On the second line, we notice that the non-zero
vev provides the mass for the Z and W bosons, whereas the photon stays massless.

Now instead of inserting the fermion masses “by hand” into the theory, we only
consider the fermionic Lagrangian iψ/∂ψ (cf. equation (2.23)) without the mass term
and we see how the fermions couple to the Higgs field h(x). From symmetry con-
siderations (any term in the Lagrangian must be an SU(2)IW

singlet with zero total
hypercharge) we can write down the most general term:

LYukawa =
3∑

i,j=1

[
f ij
u Ψi

q,LΦ̃ψj
u,R + f ij

d Ψi
q,LΦψj

d,R + f ij
e Ψi

e,LΦψj
e,R + h.c.

]
, (2.41)

where Φ̃ def= iσ2Φ serves to pick out the right component from the doublet. The
fermions couple to the the Higgs doublet through so-called Yukawa coupling. After
the symmetry has been spontaneously broken (that is, Φ has acquired a non-zero vev
v), we can again expand in v + h(x) and the Lagrangian reads

LYukawa =
3∑

i,j=1

[
ψ̃i

u,Lm
ij
u ψ

j
u,R + ψi

d,Lm
ij
d ψ

j
d,R + ψi

e,Lm
ij
e ψ

j
e,R + h.c.

]
, (2.42)

or, in the less cumbersome notation of equation (2.22),

LYukawa =
3∑

i,j=1

[
ui

Lm
ij
u u

j
R + di

Lm
ij
d d

j
R + `iLm

ij
` `

j
R + h.c.

]
. (2.43)

The matrices mij
α

def= 1√
2
vf ij

α are mass matrices. Unfortunately, in this formulation the
mass matrices are not necessarily (and in general, will not be) diagonal which does

10 Mischa Spelt
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not allow us to define the mass of the left-handed up-quark field, for instance. On
the other hand, the up quark field is decoupled from, say, the strange quark field; the
fields occuring in the above expression are therefore called flavour eigenstates. We
can define new mass matrices

m′
α = (Sα,L)† ·mα · Sα,R (2.44)

for α = u, d, e, where where Sα,χ are unitary matrices for both chiralities χ = L,R. It
turns out that these matrices can be chosen, such that the new mass matrices m′

α are
diagonal. If we then also define

ψ′
i
α,χ

def= Sα,χ · ψα,χ, where α = u, d, e and χ = L,R (2.45)

meaning

`′
i
L =

3∑
j=1

Sij
`,L`

j
L, u′

i
L =

3∑
j=1

Sij
u,Lu

j
L, d′

i
R =

3∑
j=1

Sij
d,Ru

j
R, etc. (2.46)

we get “proper” mass terms, which only couple left-handed and right-handed compo-
nents of the same fields:

LYukawa =
3∑

i,j=1

[
u′iLm

′ij
u u

′j
R + d′iLm

′ij
d d

′j
R + `′iLm

′ij
` `

′j
R + h.c.

]
. (2.47)

The primed fields are called the mass eigenstates.
The complete SM Lagrangian is then the sum of the Lagrangians in equations (2.26),

(2.40) and (2.47). We have ensured diagonal mass matrices, at the expense of flavour
mixing: in the former two expressions, terms like

Ψu,Lγ
µΨd,L = Ψ′i

u,Lγ
µ
[
(Su,L)†Sd,L

]ij
Ψ′j

d,L (2.48)

appear, leading to flavour changing interactions

u
u

u
fF

gVuaD
d

a

(2.49)

where a = d, s or b. The quark mixing matrix

V ij def=
[
(Su,L)†Sd,L

]ij
=

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 (2.50)

is known as the Cabbibo-Kobayashi-Maskawa (CKM) matrix. The latter two received
the 2008 Nobel prize in physics “for the discovery of the origin of the broken symme-
try which predicts the existence of at least three families of quarks in nature” [12].
As an n× n matrix, it has in principle n2 complex entries which means it has 2n2 real
degrees of freedom. However the unitarity condition

∑
j V

ijV jk = 1 imposes n2 real
constraints. From the previous discussion it is clear that the quark fields ui and di

are invariant under a global rephasing (ψ → eiδψ), and for n generations we have 2n
of these. By simultaneously rephasing all of them nothing changes, so one of these

Neutrino oscillations 11



CHAPTER 2. THE STANDARD MODEL

is trivial (e.g. we can always make u1 real by simultaneously rotating all the quark
fields), so we can apply 2n− 1 phase transformations to get rid of complex phases in
the CKM matrix. Of the remaining n2− (2n− 1) = (n− 1)2 real parameters, there are
1
2n(n − 1) Euler angles which describe a rotation between the flavours, analogously
to an ordinary O(n) matrix, the last (n−1)2− 1

2n(n−1) = 1
2 (n−1)(n−2) parameters

are phases which cannot be removed and can lead to CP violation.
Applying the general counting argument to the Standard Model case n = 3, we see

that we need three real angles θ1, θ2, θ3 and a complex phase δ to parametrise the
CKM matrix. It is commonly written as

V ij =

 c1 −s1c3 −s1s3
s1c2 c1c2s3 − s2s3e

iδ c1c2s3 + s2c3e
iδ

s1s2 c1s2c3 + c2s3e
iδ c1s2s3 − c2c3e

iδ

 , (2.51)

where ci and si are cos(θi) and sin(θi) respectively. These parameters have been
measured to agree with the Standard Model predictions very well [13].

To show how the complex factor eiδ can lead to CP-violation, we look back at equa-
tion (2.48) and consider a typical flavour-changing interaction

u
u

ui
L

fF
gVijD
d

dj
L

+ h.c. ∝ Vijui
Lγ

µdj
LW

+
µ + V ∗

ijd
j
Lγ

µui
LW

−
µ

def= Γ (2.52)

Now intuitively, CP -conjugation means replacing all the particles by their respective
antiparticles (C) and then flipping their chirality (P ). However, nothing happens to
the coupling constants, which are just numbers. Hence, the CP conjugated process
of the above interaction reads

Γ′ = Vijd
j
Lγ

µui
LW

−
µ + V ∗

iju
i
Lγ

µdj
LW

+
µ . (2.53)

The fermion fields have changed positions with respect to the numerical prefactors,
whence Γ = Γ′ only if Vij = V ∗

ij . If we take for example i = 2, j = 3 (charm –
strange), the relevant CKM matrix element is V23 = c1c2s3−s2s3eiδ which is obviously
potentially non-real.
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CHAPTER 3
EXTENDING THE STANDARD

MODEL: MASSIVE NEUTRINOS

In the last chapter we have seen that in the Standard
Model, neutrinos are assumed to be massless. However,
several experiments have provided definite evidence of
the existence of a neutrino mass. After an overview of
these experiments, we will describe the possibile exten-
sions of the Standard Model in which neutrinos become
massive and go deeper into some of them in particular,
namely the class of seesaw models.

3.1 Neutrino oscillations

3.1.1 Experiment

As explained in the previous chapter, at the time the Standard Model was constructed
there was no hard evidence for the existence of a neutrino mass and all observed
neutrinos were left-handed, so the Standard Model was constructed to have only
left-handed, massless neutrinos. However, the predictions as made by the minimal
Standard Model do not agree with experiment. As early (or late, considering the
previous and first experiment was 10 years earlier) as 1968 astrophysicists Davis and
Bahcall set up an experiment to measure the neutrino flux from the sun, the famous
Homestake experiment [14]. This experiment was based on ideas worked out by
Pontecorvo and Alvarez in the years 1946 – 1949 [15]. According to the Standard
Solar Model (SSM), neutrinos are produced in the fusion reaction

4p+ + 2e− → 4He + 2νe, (3.1)

inside the sun. Because neutrinos hardly interact with matter, they escape the core
and they can be measured by indicidental reactions that take place in a reactor on
earth. The Homestake project made use of the reaction

νe + 37Cl → 35Ar + e−, (3.2)
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by filling a tank with perchloroethylene solution and counting the number of argon
atoms. However, Davis only measured about 1/3 of the expected flux [16]. Later ex-
periments, which were also sensitive to muon and tau neutrinos, measured that the
total flux did indeed agree with Bahcalls prediction. After this experiment, which has
run for some five years, multiple experiments [17, 18, 19] have confirmed a “disap-
pearance” of electron neutrinos, compensated by other flavours so that the total flux
matches theoretical predictions.

A similar discrepancy occurred in measuring the number of neutrinos produced in
atmospheric decay. They originate from decaying pions in the atmosphere, which are
in turn reaction products of high energetic cosmic rays with nuclei in the atmosphere.
These pions decay according to π+ → µ+ + νµ and π− → µ− + νµ, after which the
muons decay by µ− → e− + νµ + νe and µ+ → e+ + νµ + νe. Therefore, a measure-
ment should show roughly twice as much νµ as νe. However, the observed ratio is only
about 65% of the expected value [20]. Here the breakthrough only occurred in 1998,
when the Super-Kamiokande collaboration [21] showed that there definitely is an
asymmetry between upwards (taking a long way through the earth) and downwards
(directly from the atmosphere) moving high-energy neutrinos, which contradicts an
assumption that nothing happens to the neutrinos between their creation in the at-
mosphere and detection.

For a more complete overview of neutrino (mostly oscillation) experiments see
[22, § 4], [23], [24], [25] and the rather extensive review [26] (more or less in
chronological order). Also a very recent overview is given in [27].

3.1.2 Theory of three-flavour neutrino mixing

The best (and, as it seems [21], only) explanation for the observed flavour conver-
sions is provided by neutrino oscillations. To explain this, we refer back to the dis-
cussion in section 2.4 on mass and flavour eigenstates. The flavour changing of for
example quarks, is well established. When neutrinos are no longer considered to be
massless, something similar happens: the mass eigenstates νi (i = 1, 2, 3) differ from
the flavour eigenstates να (α = e, µ, τ) (note that ~x-dependence is implied and we are
suppressing all other quantum numbers such as helicity and spin, which we assume
fixed). Each flavour eigenstate is a superposition of mass eigenstates, but the precise
composition of mass states is dynamic, because the propagation frequency depends
on the mass. Experimentally only the neutrino flavour is measured, whence the am-
plitude to measure, say, an electron neutrino, depends on time. The mass and flavour
fields are related through a 3 × 3 unitary matrix (similar to the CKM matrix from
section 2.4):

να =
3∑

i=1

Uαiνi. (3.3)

The matrix U is called the PMNS matrix — after Pontecorvo, Maki, Nakagawa and
Sakata — or sometimes by a slight abuse of language the neutrino mixing matrix. It
can be parametrised in many different ways, one of the most customary is

U =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13

eiφ1 0 0
0 eiφ2 0
0 0 1

 ,

(3.4a)
where cij and sij denote cos(θij) and sin(θij) respectively. There are three mixing
angles θ12, θ13 and θ23, in the literature also denoted by θsun, θatm and θCHOOZ for
reasons that will be explained later in section 3.3. There are three phase angles δ,
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φ1 and φ2. The Dirac phase δ is connected to CP -violation, as we will show at the
end of this section. The Majorana phases φi (i = 1, 2) are connected to the question
whether neutrinos are Dirac or Majorana particles; as only experiment can decide this
we shall address this subject in section 3.3.2. The first factor is similar in form to the
CKM matrix parametrisation (2.51), though it can also be expressed as a product of
three rotation matrices (the second one of which is complex) [28]:1 0 0

0 c23 s23
0 −s23 c23

 c13 0 s13e
−iδ

0 1 0
−s13eiδ 0 c13

 c12 s12 0
−s12 c12 0

0 0 1

 . (3.4b)

Suppose now that at time t = 0 and position x = 0 a neutrino is created with flavour
α. Our next goal is to derive the probability P (να → νβ) of measuring a neutrino of
flavour β at time t and distance x from the creation point, where we assume that
the neutrino propagates essentially in one dimension. We will assume that the state
describing a neutrino with flavour α is given by∗

|να〉 =
3∑

i=1

U∗
αi |νi〉 , (3.5)

where U is the same PMNS matrix. In fact, this corresponds to the approximation in
which neutrinos are ultra-relativistic, that is, m � E. Using a loose upper-bound of
m . 1 eV for the neutrino mass, and considering that all current and (near) future
neutrino oscillation experiments are sensitive only to neutrino energies of E � keV
or even several MeV, this approximation is definitely justified.

Since from basic quantum mechanics

P (να → νβ) = |〈να | νβ(t, x)〉|2 , (3.6)

where |να〉 ≡ |να(t = x = 0)〉, we have reduced our problem to calculating the time-
evoluted state |νβ(t, x)〉. As is usually done in the literature, we consider a mass
eigenstate |νk(t, x)〉 with a well-defined momentum pk and energy Ek which we can
write as [2, § 8.1]

|νk(t, x)〉 = e−iEkt+ipkx |νk〉 . (3.7)

The ket |νk〉 denotes the initial state; it is clear that this is a solution to both the
Schrödinger evolution equation (the time dependence of the stationary states is sim-
ply given by |νk(p, t)〉 = e−iEt |νk(p, 0)〉) and the momentum eigenvalue equation
p̂ |νk(t, x)〉 = pk |νk(t, x)〉 (the neutrinos are emitted as plane waves |νk(x, 0)〉 =
eipx |νk〉) [29]. Writing the flavour eigenstate as a superposition of mass states, we
find

|να(t, x)〉 =
3∑

k=1

U∗
αke

−iEkt+ipkx |νk〉 . (3.8)

We can re-express this in terms of flavour states by inverting equation (3.5):

|να(t, x)〉 =
3∑

k=1

U∗
αke

−iEkt+ipkx

∑
β

Uβk |νβ〉

 , (3.9)

∗Usually it is assumed that the neutrinos are produced through a process like A → B + `+ + να, where
` is a lepton and α indicates the flavour, and detected through να + A → B + `−α . Then we can
write |να〉 =

∑3
k=1 Aα,k

∣∣νk, `+, B
〉

with Aα,k some amplitude. In [23, § 3] it is shown, that if the
dependence of the neutrino interaction rate is insensitive to (differences of) the neutrino masses, then
Aα,k reduces to the PMNS-matrix U , up to some irrelevant phase factor. A similar argument holds for
the detection process. Therefore, the flavour neutrino state of the production process and the detection
process are both given by (3.5).

Neutrino oscillations 15



CHAPTER 3. EXTENDING THE STANDARD MODEL: MASSIVE NEUTRINOS

where β runs over the flavours (e, µ, τ). The probability we are interested in now
follows by orthogonality of the flavour states (〈να | νβ〉 = δαβ):

P (να → νβ ; t, x) =

∣∣∣∣∣
3∑

k=1

U∗
αke

−iEkt+ipkxUβk

∣∣∣∣∣
2

. (3.10)

Because we assume that the neutrinos are ultra-relativistic, we can expand the ex-
pression for the energy to the first contribution in the masses:

Ek =
√
p2

k +m2
k ' pk +

m2
k

2pk
+O(m4

k). (3.11)

Since energy must be conserved in the neutrino creation process, and the neutrinos
must satisfy E2

k = p2
k +m2

k it easily follows from dimensional considerations that we
can write

Ek ' E + ξ
m2

k

2E
, pk ' E − (1− ξ)

m2
k

2E
, (3.12)

for some dimensionless parameter ξ. The numerical value of ξ depends on the details
of the production process, for example: if the neutrino is created by pion decay π+ →
µ+ + νµ, then ξ = (1 +m2

µ/m
2
π)/2 ≈ 0.8. To simplify the calculations, we can assume

that that all mass states carry the same momentum, pk ' E/c, such that we can
write Ek ' E + m2

k

2E . This assumption is called the equal momentum assumption and
corresponds to ξ = 1. A similar way of proceeding, is to assume that all mass states
have the same energy E1 = E2 = · · · = E, corresponding to ξ = 0. We will keep the
parameter ξ unspecified for now. First we calculate

Ei − Ej = ξ
∆m2

ij

2E
, pi − pj = −(1− ξ)

∆m2
ij

2E
, (3.13)

where we have introduced ∆m2
ij

def= m2
i − m2

j . Now it is possible to expand the
modulus in equation (3.10):

P (να → νβ) =
3∑

i=1

3∑
j=1

U∗
αiUαjUβiU

∗
βje

−i(Ei−Ej)t+i(pi−pj)x

=
3∑

i=1

|Uαi|2|Uβi|2 + 2 Re
∑
i>j

U∗
αiUβiUαjU

∗
βje

−iξ∆m2
ijt/2E−i(1−ξ)∆m2

ijx/2E .

(3.14)

The last line follows from splitting the terms with i = j and using that z+ z∗ = 2Re z
for z ∈ C. Note that there is still a dependence on the propagation time t, which
is usually unknown in an experiment. Because the neutrinos are ultra-relativistic we
can assume that they travel at the speed of light, which means that we will only
measure it at points on (or negligibly close to) the light-cone, t = x = L, where L is
the distance between the creation and the detection point∗. Then the dependence of

∗ The approximation t = x = L is actually a physical statement about a particle, whereas we are de-
scribing the neutrino as a plane wave. Of course a non-simplified derivation would have to describe
the neutrino as a wave packet (superposition of such plane waves). For a rigorous derivation, imple-
menting a proper time averaging of the relevant matrix density element and assuming the propagation
velocity v to be the speed of light, see [30]. The same author has also shown in [31,32] that the effects
of possible deviations from v = c = 1 are negligible.
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the probability amplitude on the parameter ξ cancels from equation (3.14), and we
obtain the literature expression

P (να → νβ) =
3∑

i=1

|Uαi|2|Uβi|2 + 2 Re
∑
i>j

U∗
αiUβiUαjU

∗
βje

−i∆m2
ijL/2E . (3.15)

A crucial observation is that the only mass dependence is through the mass differ-
ence ∆m2

ij and not the mi separately. The only other quantities entering the expres-
sion are the elements of the PMNS matrix and the experiment-dependent neutrino
energy E and propagation distance L. Secondly, the probability amplitude for a neu-
trino created with flavour α to be detected with flavour β can be split into a constant
part which only depends on the PMNS matrix entries, and some oscillating term. In
cases where the oscillating term is not known well enough, the oscillations can be
averaged out and only the constant first term can be measured.

We are now also in a position to understand why the Dirac phase δ in the PMNS ma-
trix gives rise to CP -violating processes. In order to make this discussion completely
explicit, let us consider the probability amplitude of P def= P (νe → νµ) of an electron
flavour-neutrino going into a muon flavour-neutrino, and compare it to the proba-
bility P def= P (νe → νµ) of the charge conjugated process. As we have indicated in
section 2.3, such probabilities are invariant under CPT -symmetry, so instead of look-
ing at the charge-parity conjugated process we can also consider the time reversed
process: P = P (νµ → νe). In principle, we can now work out ∆P = P − P from
equation (3.15). If CP is conserved, then ∆P should vanish. After some extremely
ugly although straightforward algebra, we find this expression to be equal to

∆P = 16 cos θ12 sin θ12 cos θ23 sin θ23 cos2 θ13 sin(δ)×

sin
(

∆m2
12L

4E

)
sin
(

∆m2
13L

4E

)
sin
(

∆m2
23L

4E

)
. (3.16)

Due to the prominent sin(δ) term, this expression will vanish if and only if δ = 0
or δ = π. The other two non-removable phases φi (i = 1, 2) are absent in this
expression, because they can be factored out in a diagonal (hence commuting) matrix,
cf. equation (3.4a). Therefore the values of φ1, φ2 cannot be determined by any
oscillatory experiment, as such an experiment necessarily measures the amplitudes
from equation (3.15) which do not depend on these phases.

3.1.3 Two-flavour limit

To gain some intuition on the neutrino oscillation probabilities derived above, let us
study the two-dimensional case in some detail. In this case, only one angle θ suffices
to parametrise the mixing matrix,

U =
(

cos θ sin θ
− sin θ cos θ

)
; (3.17)

any phases can be absorbed in redefinitions of the fields (this implies that in the two-
flavour case, no CP -violation can take place). To find all the probability amplitudes,
it suffices to calculate only one of them, for example, P (νe → νe). The rest then
follows, because P (νe → νµ) = 1 − P (νe → νe) (by complementarity: we only have
two flavours), P (νµ → νe) = P (νe → νµ) (by the CPT -theorem and the fact that two-
flavour oscillations do not break CP -invariance, because of the absense of complex
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phases) and finally, P (νµ → νµ) (again, this follows from complementarity). The
calculation can be easily done by hand, starting from the previous result (3.15):

P (νe → νµ) = |Ue1|2|Uµ1|2 + |Ue2|2|Uµ2|2 + 2 Re
(
Ue1Uµ1Ue2Uµ2e

−i∆m2L/2E
)

= 2 sin2 θ cos2 θ + 2 Re
(
− sin2 θ cos2 θe−i∆m2L/2E

)
= 2 sin2 θ cos2 θ

(
1− cos

(
∆m2L/2E

))
=

1
2

sin2(2θ)× 2 sin2

(
1
2
∆m2L/2E

)
= sin2(2θ) sin2

(
∆m2L

4E

)
,

(3.18)

with ∆m2 = |m2
e − m2

µ|. On the last line the geometric identities 4 cos2 θ sin2 θ =
sin2(2θ) and 1− cos(2x) = 2 sin2(x) have been used.

The result we then find is

P (νe → νe) = AA∗ = 1− sin2(2θ) sin2

(
∆m2L

4E

)
,

P (νe → νµ) = 1− P (νe → νe).
(3.19)

Apart from looking much simpler than the three-flavour expression (3.15), this ex-
pression has some historical value. Although the existence of the tau neutrino was
suspected soon after the detection of the tau lepton in 1976, the first definite obser-
vation of ντ was not announced until 2000 by FermiLab [33]. Therefore, only two
types of neutrinos have long been known and as such, the two flavour model has
been the effective model of the theory in the three flavour case even before the more
general three-flavour mixing was discovered. In fact it is still a good approximation
for experiments in which one type of mixing is dominant, such as solar experiments
(in which νe ↔ ντ hardly occurs because of the small mixing angle θ13, see table 3.1
on page 28).

The probabilities for the two-flavour case have been plotted in figure 3.1. In the
case of maximal mixing (θ = 45◦, solid black curve) we indeed observe that, if the
neutrino starts out in the electron flavour eigenstate, some time (equivalently, dis-
tance) later, we have a 100% probability to detect it in the muon eigenstate, etc. For
smaller mixing angles, the probability to find the original flavour will still hit 100%
from time to time, however the mixing is clearly non-maximal (there is no definite
chance of measuring another flavour).

3.1.4 Three neutrino mixing in matter

The theory presented in the previous section was derived for neutrinos propagating
in a vacuum. Already in 1978 it was pointed out by Wolfenstein, that due to forward
scattering of neutrinos off leptons, flavour changing effects – if present – could be en-
hanced or even only possible in matter. In the presence of such effects, even massless
neutrinos could experience such an enhancement of the flavour changing probability.
In 1984, Smirnov and Mikheev noticed, that for specific oscillation paramters and
matter properties, a resonance could occur in which a small vacuum mixing angle
becomes effectively very large in matter. This resonance effect has been named the
MSW effect after these three people. Bethe [34] has shown in 1990 that these matter
effects are mainly responsible for the discrepancy between Davis’ result and Bahcalls
prediction in the Homestake experiment.
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L

1

P

Figure 3.1: The probabilities P (νe → νe) (top curve) and P (νe → νµ) (bottom curve)
for a neutrino that starts out in the electron neutrino eigenstate, for mix-
ing angles θ = 45◦ (solid black curve), θ = 30◦ (dash-dotted blue curve)
and the expected limiting behaviour for θ = 10◦, θ = 5◦ and θ = 0 in the
darkest to lightest green dotted curves, respectively.

We attempt to point out the important steps only, a detailed calculation is given
in [22, § 3.2].

As discussed section 2.2 on fermion-gauge interactions in the Standard Model, we
explained the occurrence of so-called charged current interactions, in which a charged
(W -)boson is exchanged, and neutral current interactions, where the exchanged boson
is neutral (Z-boson). The interactions are shown in the diagrams of figure 3.2. Due
to the electric charge conservation law, charged-current interactions are only possible
when the neutrinos are of electron flavour. For simplicity, we will again consider a
neutrino flavour state with a well-defined momentum

|να(p)〉 =
3∑

k=1

U∗
α,k |νk(p)〉 , (3.20)

a rigorous treatment requires a wave-packet description, as in [35]. We are making
the same assumptions as in the previous section, in particular we assume the PMNS-
matrix U is the matrix describing the mixing of flavour states. We write for the Hamil-
tonianH = H0 +HI, whereH0 andHI are the free (vacuum) Hamiltonian which was
implicit in the previous section, and a part containing the scattering, respectively. Of
course, massive neutrino states with a well-defined momentum are eigenstates of the
non-interacting part, H0 |νk(p, t)〉 = Ek |νk(p, t)〉 where E2

k = p2 + m2
k. The interac-

tions are felt by the flavour states though, HI |να(p)〉 = Vα |να(p)〉. The potential can
be written as Vα = Vcδαe + Vn, with Vc =

√
2GFNe the charged-current interaction

potential (which is only felt by the electron flavours) and Vn = −(1/
√

2)GFNn the
neutral-current interaction potential. Here, GF is the Fermi constant andNe,n denotes
the electron and neutron number densities of the medium. We do not wish to go into
the details of this potential, they are given in [36]. Rather we just point out the sim-
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Figure 3.2: Feynman diagrams of the coherent forward elastic scattering processes
that generate the charged current potential Vc through W exchange and
the neutral current potential Vn through Z exchange; taken from [22].

ple form and the fact that the neutral current interaction has equal influence on all
three flavours. Finally we mention that for anti-neutrinos all signs are reversed. The
quantum-mechanical states |να(p)〉 satisfy the Schrödinger equation, so if the state is
initially purely α-flavoured,

i
d
dt
|να(p, t)〉 = H |να(p, t)〉 , where |να(p, 0)〉 = |να(p)〉 . (3.21)

As in the previous section, we consider

ψαβ(p, t) def= 〈νβ(p) | να(p, t)〉 , (3.22)

with the initial condition ψαβ(p, 0) = δαβ . If we close the Schrödinger equation above
on the left by an initial state ket, we can use the identities

|να(p, t)〉 =
∑

k

Uαk |νk(p, t)〉 , |νk(p, t)〉 =
∑
α

U∗
αk |να(p, t)〉 (3.23)

to derive a differential equation for the amplitude ψαβ . From the calculation

〈να |H | νβ(p, t)〉 = 〈να|H0

(∑
k

Uβk |νk(p, t)〉

)
+ 〈να |HI | νβ(p, t)〉

=
∑

k

〈να|UβkEk

(∑
ρ

U∗
ρk |νρ(p, t)〉

)
+ 〈να |Vβ | νβ(p, t)〉

=
∑

ρ

〈
να

∣∣∣∣∣ ∑
k

UβkEkU
∗
ρk + Vβδβρ

∣∣∣∣∣ νρ(p, t)

〉 (3.24)

we thus find

i
d
dt
ψαβ(p, t) =

∑
ρ

(∑
k

UβkEkU
∗
ρk + δβρVβ

)
ψαρ(p, t). (3.25)

Applying the ultra-relativistic approximation (t = x) we find that P (να → νβ) =
|ψαβ(x)|2, where ψαβ(x) satisfies

i
d
dx
ψαβ(x) =

∑
ρ

(∑
k

Uβk
∆m2

k1

2E
U∗

ρk + δβeδρeVc

)
ψαρ(x). (3.26)
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In the last step, we have redefined

ψαβ(x) → ψαβ(x) exp
[
−i
(
p+

m2
1

2E

)
x− i

∫ x

0

Vn(x′) dx′
]

(3.27)

to absorb a common phase factor. Since we are interested in the probability am-
plitudes |ψαβ |2 only, the neutral-current interactions are therefore irrelevant for this
theory.

Finally, we can rewrite the evolution equation to a matrix vector equation for
Ψα(x) = (ψαe(x), ψαµ(x), ψατ (x)):

i
d
dx

Ψα(x) =
1

2E
(U∆U† +A)Ψα, (3.28)

where

∆ = diag(0,∆m2
21,∆m

2
31), A = diag(2

√
2GFNe = 2EVc, 0, 0). (3.29)

The solution, from a basic theory of differential equations, can be formally written as

Ψα(x) = exp
[
− i

2E
(U∆U† +A)x

]
, (3.30)

where the exponent of a matrixM is defined through its power series, eM =
∑
Mn/n!.

For the rest of this section, we will only consider the two-dimensional case. This is
a good approximation in special cases, for example when the vacuum mixing angle
is small or the mass differences are well separated. In the three flavour case, cal-
culations become less tractable, the theory is treated (partially analytically and then
applied numerically to solar neutrino mixing) by Kuo and Pantaleone [37].

In our two-flavour approximation, the evolution equation can be written as

i
dΨ
dx

=
1

4E
M2Ψ, (3.31)

where the vector Ψ = (ψee, ψeµ) contains all the independent transition probabilities
and

M =
(
−∆m2 cos(2θ) + 4EVc ∆m2 sin(2θ)

∆m2 sin(2θ) ∆m2 cos(2θ)

)
, (3.32)

contains a vacuum oscillation term and a term from the forward electron flavour
scattering. This can be readily seen by writing it as

M = U

(
−∆m2 0

0 ∆m2

)
U† + 2E

(√
2GFNe 0

0 −
√

2GFNe

)
. (3.33)

where we have subtracted a multiple Vc =
√

2GFNe of the identity matrix to make
the interaction part look more symmetric. Upon diagonalising M , we get the effective
mass of the neutrinos in matter,

(∆m2
m)2 = (∆m2 cos(2θ)− a)2 + (∆m2 sin(2θ))2, (3.34)

with a = 2
√

2EGFNe/∆m2 depends only on ∆m2 and properties of the material. The
matrix used to diagonalise M has precisely the same form as the 2 × 2 PMNS matrix
U , but with a different angle:(

cos θm sin θm
− sin θm cos θm

)
, where sin2(2θm) =

sin2(2θ)
(cos(2θ)− a)2 + sin2(2θ)

. (3.35)
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From this expression it is immediately clear, that if the vacuum mixing angle θ is
very small, there is a resonance for a = cos(2θ). Tracing back the definitions, this
corresponds to an electron number density Ñe = ∆m2 cos(2θ)

2
√

2EGF
.

If the electron density of the matter is constant, then dθm/dx = 0. In this case it
can be shown [22, § 3.2] that the effective massive neutrinos evolve independently
and the transition probabilities are given by

P (νe → νµ) = sin2(2θm) sin2

(
∆m2

mx

4E

)
(3.36)

(recall that this transition probability fixes all others). Note that this has exactly the
same structure as the vacuum probability amplitude (3.19) where the parameters
∆m2 and θ have been replaced by their effective values in matter. For small propa-
gation distances this is a good approximation, for example the density of the earth
is approximately constant over a distance of 1 – 2 kilometers, which is the typical
depth under the earth surface of an oscillation experiment. However, if the density is
not constant, a numerical simulation must be performed. This is the case in the sun,
for example, or when calculating neutrino fluxes at night, when the neutrinos ap-
proach from the other side of the earth and have to travel through 2Rearth ≈ 12 500
kilometers of matter with strongly varying density. One way of computing results
is approximating the density profile by patches of constant matter density and then
patching solutions for Ψ together at the boundaries in a smooth way. This is usu-
ally done for the earth density profile. For propagation in the sun, one can use the
approximation

Ne(R) = Ne(0) exp(−R/R0), (3.37)

where Ne(0) = 245NA/cm3 and R0 = R�/10.54 for the electron density as a func-
tion of radial distance; for 0.1 . R/R� . 0.9 this is a rather accurate description
of the actual Standard Solar Model density profile [22, § 3.2, Fig. 3]. Using such
an approximation of the electron number density profile of the sun and a numerical
approximation of the electron density of the earth it is then possible to derive various
allowed combinations of ∆m2 and the vacuum mixing angle. This allows us to calcu-
late the corrections to the vacuum oscillations rather well and at the same time put
some restrictions on our theoretical parameters based on the available data.

As a final remark, note that in the three flavour case the only occurrence of the
Majorana phases φ1, φ2 is again in the PMNS matrix U . This enters only in the
combination U∆U†, hence in matter – just as in vacuum – these phases drop out. Not
even a matter theory will give us a handle on measuring these elusive paramters, and
we will definitely have to resort to non-oscillatory experiments to find them.

3.2 Adding neutrino mass terms to the Standard Model

For ease of notation and to exhibit the important ideas of this section more clearly, let
us first neglect flavour and suppose that there is only one neutrino field ν of which
neither left-handed nor right-handed chiral projection νL,R = PL,Rν vanishes a priori.
We have seen in section 2.4 that mass terms can be generated by a Yukawa coupling
of fields to the Higgs doublet Φ, leading to Dirac mass terms of the form

mD (νRνL + νLνR) , (3.38)

which couple left and right handed fields, as remarked below equation (2.9). The
mass mD is given by mD = 1

2yv, where y is a Yukawa coupling constant and v is
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the vacuum expectation value (vev) of the Higgs field after electroweak symmetry
breaking.

As we have shown in section 2.3, in the case of a Majorana fermion when ψ = ψc,
this mass term reduces to

M
(
ψc

LψL + ψLψ
c
L

)
. (3.39)

In general, if we assume that the left-handed and right-handed chiral components
are independent, we can add also a Majorana mass term for both of them, which —
together with the Dirac term above — yields

Lν = mD (νRνL + νLνR) +ML

(
νc
LνL + νLν

c
L

)
+MR

(
νc
RνR + νRν

c
R

)
. (3.40)

We can write this in matrix form as

Lν ∝
(
νc
L νR

)(ML mD

mD MR

)(
νL
νc
R

)
+ h.c. (3.41)

or more compactly as

Lν ∝ N c
LMNL + h.c. where M def=

(
ML mD

mD MR

)
, NL

def=
(
νL
νc
R

)
. (3.42)

The proportionality factor consists of minus signs and factors of 1
2 which must be

added to avoid overcounting when deriving the Euler-Lagrange equations, which we
are not concerned with here. The doublet NL has a left-handed index, because it only
contains left-handed fields. In analogy with equation (2.45) we can write each of its
components as a combination of left-handed mass eigenstates νi

L (for i = 1, 2) as

νL =
2∑

i=1

U1,iνi
L, νc

R =
2∑

i=1

U2,iνi
L, that is, NL = UnL (3.43)

for some unitary mixing matrix U and with nL denoting the doublet of mass eigen-
states. The matrix U is fixed by requiring that U tMU is a diagonal matrix, the diago-
nal elements m1 and m2 are then the masses of the mass eigenstates. After diagonal-
isation, the Lagrangian then reads

Lν ∝
2∑

i=1

mi(νc
L)iνi

L + h.c., (3.44)

which only contains Majorana mass terms for the massive states.

3.2.1 The see-saw mechanism

It is very interesting to consider the case ML = 0, |mD| � MR. We will first explore
this limit and only try to justify it afterwards. Upon diagonalizing the mass matrix in
equation (3.42) for mL = 0, we find entries equal to the eigenvalues

m1,2 =
MR ±

√
4m2

D +M2
R

2
' MR ±MR(1 + 2m2

D/M
2
R

2
(3.45)

where ' indicates that the approximation |mD| � MR has been used. Since the
diagonal elements give the masses mi of the neutrino mass states νi

L, we see that

m1 ' −
m2

D

MR
, m2 'MR +

�
�
�m2
D

MR
. (3.46)
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The structure of this relations is somewhat similar to a seesaw: the heavier the right-
handed mass state, the lighter the other one is. Therefore this construction is referred
to as the seesaw mechanism. ThoughMR can in principle take any value, let us assume
that it is large. BecausemD was generated by the neutrino fields coupling to the Higgs
field in precisely the same way as the other fermionic fields, one would naively expect
mD to be of the same order of magnitude as, for example, the electron mass. Then
by our assumption on the Majorana mass MR, one of the mass states will become
very heavy while the mass of the other one will become very small compared to the
electron mass.

If we assume that ML ≈ 0 is not precisely zero, but very small compared to the
other masses, the eigenvalues of the matrix are

m1,2 =
ML +MR ±

√
4m2

D + (ML −MR)2

2

' 1
2

(
ML +MR ± (ML −MR)

[
1 + 2

m2
D

(ML −MR)2

])
(3.47)

which leads to the masses

m1 = ML +
m2

D

ML −MR
'ML −

m2
D

MR
, m2 = MR −

m2
D

ML −MR
'MR (3.48)

for the massive neutrino states, upon diagonalisation. Indeed this approaches equa-
tion (3.46) as ML → 0. We call this limiting case type I seesaw; we see, however,
that also for small but non-zero left handed Majorana mass the seesaw effect occurs,
where one mass is proportional to MR (assumed to be large) and the other one in-
versely proportional. When MR is in fact so large, that the ML term dominates m2,
one speaks of type II seesaw.

Given that we can somehow justify the assumptions made above, this model there-
fore seems to offer a good explanation for the fact that the neutrino masses are so
tiny compared to the other fermion masses. We shall now attempt to at least make
these assumptions plausible.

A non-zero Majorana mass ML for the left-handed chiralities is prohibited by the
gauge symmetries of the Standard Model. Recall that the left-handed fields eL and
νL together form a weak isospin (SU(2)IW

) doublet. However, it is clear that a term
like (3.39) is not invariant under SU(2) rotations. In particular, one can check that
the term νc

LνL has a weak isospin eigenvalue of 1 (it is an SU(2) triplet), whereas
the lepton doublet has an eigenvalue of 1/2. Therefore, to produce a SU(2) singlet
mass term it would have to be coupled to a Higgs triplet, which does not exist in the
minimal Standard Model∗. Since the right-handed neutrino field νR is a singlet under
the Standard Model gauge group, there is no problem in adding a Majorana mass for
this field.

Within the Standard Model, little can be said about the other assumption, |mD| �
MR. As stated above, MR is in principle just a parameter of the model, which can
take any value. However, it is perfectly reasonable to expect that there is some more
symmetric theory, which breaks down to the Standard Model at “low” energy scales.
Such a theory is called a Grand Unification Theory (GUT), the energy scale MGUT at
which its symmetry group GGUT ⊃ GSM breaks to the Standard Model gauge group
GSM is generally expected to be of order 1014 GeV or higher. Standard GUT gauge
∗Extensions of the Standard Model are possible, for example by a Higgs singlet (see [38]) or triplet

(see [39]) scalar or by adding fields in the fermionic sector, which lead to the possibility of Majorana
masses for left-handed neutrinos.
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groups include products like SU(3)c ⊗ SU(2)L ⊗ SU(2)R ⊗ U(1) or “easy” groups
such as SO(10) or E8. It seems natural to expect, since we do not observe right-
handed neutrinos in our low-energy experiment, that the right-handed neutrino mass
is generated by some high-scale process such that MR 'MGUT. Such a theory could
contain operators that are non-renormalisable in the Standard Model, such as [40]

L5d
def=
∑
α,β

gαβ

MGUT

(
(Ψα

e,L)cΦ̃
)(

Φ̃†Ψβ
e,L

)
, (3.49)

where the sum in α and β runs over all flavours. After the Higgs fields Φ develops its
non-zero vev, this leads to a Majorana mass

mL =
gv2

MGUT
, (3.50)

in the one-flavour case. For sufficiently high energy scales MGUT, this is small even in
comparison to mD ∝ Y v, with Y some Yukawa coupling of the order of the electron
coupling (Y ' Ye ≈ 0.5 MeV/v).

In conclusion, from the viewpoint of a higher energy unifying theory, the assump-
tions for the seesaw mechanism can be more or less justified. The question whether
the flavour neutrinos are indeed Majorana particles or not will be addressed in sec-
tion 3.3.2, due to the experimental nature of this issue.

3.2.2 Three flavours

Let us now generalise the simplification in the preceding section to the actual case of
three flavours. Recall that in the Standard Model fermion-gauge interactions (2.26)
there are three left-handed neutrinos (corresponding to the three lepton types e, µ
and τ) which take part in the weak charged and neutral current interactions, to wit:

∑
α=e,µ,τ

να
L

dg Wg
eα
Le

 and
∑

α=e,µ,τ

να
L

dg Zg
να
Le

 (3.51)

(with ei
L denoting the left-handed leptons), respectively. Note that there is no flavour

changing. The charge of the W boson depends on the direction of the charge flow,
which has been omitted in the diagrams above. Because these neutrinos interact
(although only weakly, by which they are hard to detect) they are also called active
neutrinos. It has been experimentally verified that the electron, mu and tau neutri-
nos are the only active “light” neutrinos (that is, with mass less than approximately
46 GeV) [41]. The right-handed neutrino fields do not interact, and are therefore
also called sterile neutrinos. Precisely because of this sterility, we have no experi-
mental bounds on their number, but we will assume that there are only three, νi

R.
We can again write down Majorana masses for the left- and right-handed chiralities
separately, and a Dirac mass which couples the both:

Lν = νRM
DνL −

1
2
νc
LM

LνL −
1
2
νc
RM

RνR + h.c. (3.52)

where the factors − 1
2 were again added to avoid overcounting when applying the

Euler-Lagrange formalism. The masses are no longer scalar numbers, but 3 × 3 ma-
trices. The explicit form of the Lagrangian is

Lν =
∑
α

3∑
i=1

νi
RM

D
iαν

α
L −

1
2

∑
α,β

(νc
L)αML

αβν
β
L −

1
2

3∑
i,j=1

(νc
R)iMR

ijν
j
R + h.c. (3.53)
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where Greek indices such α, β run over the left-handed neutrino flavours e, µ, τ and
roman indices i, j run over the massive states 1, 2, 3.

Analogous to the one-flavour case, we can define a “doublet”

NL =
(
νL
νc
R

)
where νL =

νe
L

νµ
L

ντ
L

 , and νc
R =

(ν1
R)c

(ν2
R)c

(ν3
R)c

 . (3.54)

Then we can write the Lagrangian as

Lν =
1
2
N c

LMNL with M =
(
ML (MD)t

MD MR

)
(3.55)

the 6 × 6 mass matrix. When we diagonalise this we find 6 mass eigenstates νp and
the mass terms in the previous Lagrangian reduce to

Lν = −1
2

6∑
p=1

mpνc
pνp + h.c., (3.56)

whence we see that the mass states are pure Majorana particles. The six mass states
are mixed by some mixing matrix V , such that

να
L =

6∑
p=1

Vαpνp, (νi
R)c =

6∑
p=1

Vikνp, (3.57)

from which we conclude first of all that the mass states are left-handed and secondly,
that this description in no way prohibits oscillations between active and sterile neu-
trinos.

If we again assume that ML = 0, using a similar plausibility argument as before
(based on the SM gauge group and the absence of Higgs singlets or triplets) and that
the eigenvalues of MR are much larger than those of MD, we can (block) diagonalise
M :

M →
(
Mlight 0

0 Mheavy

)
where Mlight ' −(MD)t(MR)−1MD, Mheavy 'MR

(3.58)
up to order (MR)−1MD. This provides a separation between the heavy (sterile) and
light (active) sectors, where we can neglect the former at low-energy scales (E �
Mheavy 'MGUT, where MGUT is again some unifying energy scale at which the right
handed neutrino masses are generated). We can then write for the active neutrinos

να
L =

3∑
p=1

Uαpνk, (3.59)

because three of the mass eigenstates do not contribute after the diagonalisation.
The matrix U is the unitary matrix that diagonalises Mlight and is precisely the PMNS-
matrix from equations (3.4).

3.3 Experimental evidence

However beautiful a physical theory, it is useless if it cannot be related to experiments,
does not agree with the outcomes of such experiments, and cannot eventually make
predictions before experiments are actually done. Let us inventarise which parame-
ters are present in our theory and what experiments have told us (or might be able to
tell us in the future).
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3.3.1 Oscillation experiments

The important physical parameters which definitely would have to be determined to
complete our theory are the neutrino masses m1, m2 and m3 and the mixing angles
θαβ (θ12 = θeµ, θ13 = θeτ and θ23 = θµτ ). Oscillation experiments might in principle
be able to give us the latter, as the oscillation amplitudes (3.15) depend on them
through the entries of the PMNS matrix. However, as we have already remarked,
oscillation experiments do not allow for the determination of absolute mass scales,
just mass differences, ∆m2

ij = m2
j −m2

i . In fact there are only two independent mass
differences; one convention is to use ∆m2

12 and ∆m2
23, such that

∆m2
13 = m2

3 −m2
1 = m2

3 −m2
2 +m2

2 −m2
1 = ∆m2

12 + ∆m2
23,

∆m2
21 = −∆m2

12,

etc.

(3.60)

Obviously, taking ∆m2
12 and ∆m2

13 as independent is an equally valid choice. Other
conventions do exist however, in which different mass squared differences and a la-
belling of the massive states are chosen which are more convenient for the purposes
of a specific paper∗. Most oscillation experiments are focused on a specific oscillation
between two neutrino flavours and therefore measure θ def= θij and ∆m2 def= ∆m2

ij

for some specific i and j. The oscillation experiments can be crudely divided into two
categories, which are characterised by the source - detector distance L and the typical
neutrino energy E. Looking back at equation (3.15), or the effective two-dimensional
theory (3.19), we see that the oscillation probability depends on ∆m2L/(4E). For the
oscillations to be measurable this quantity cannot be too small and must be greater
than order 0.1 – 1 [22]. Therefore, the parameters L and E also give a bound on the
mass difference ∆m2 to which the experiment is sensitive. We then discern short
baseline (SBL) and long baseline (LBL) experiments (some authors also speak of
very long baseline (VBL) or even more categories). For short baseline experiments,
L/E . 1 eV−2 yielding a mass sensitivity of ∆m2 & 0.1 eV2. Such experiments use for
example nuclear reactors or muon accelerators as their source of neutrinos, whence
the source – detector distance is relatively short. Long baseline (LBL) typically rely
on atmospheric decays and the solar fusion processes as neutrino sources. For atmo-
spheric experiments, L ∼ 1 – 1000 km with a sensitivity of ∆m2 ∼ 10−2 – 10−3 eV−2.
Solar neutrino experiments, for which L ∼ 108 km, can go as far as ∆m2 & 10−12 eV2.

Rather recently, several global fits have been published, combining the data of many
oscillation experiments. The data from this publications agree rather well. As an
example, we quote the results from Fogli [42] in table 3.1, for a more complete
overview see [27, § 7] and the references therein.

Insufficient data are currently available to determine the mixing angle θ13, or,
equivalently, |Ue,3|. The lower bound given in the tabel is a formal one (correspond-
ing to the trivial requirement sin2(θ13) ≥ 0); the current experimental upper limit is
sin2(2θ13) < 0.17 and comes from the CHOOZ reactor experiment [43]. Currently
preparations are taking place for the experiment, scheduled to begin in 2009, to mea-
sure up to sin2(θ13) > 0.03 and to provide either a value or a new (much lower)
upper limit [44]. Whereas the ‘first neutrino event’ is expected by summer 2009, the
full sensitivity of sin2(θ13) ∼ 0.03 will only be reached after approximately 5 years of
operation (see figure 1b from [44]).

∗When discussing mass hierarchies below, different sources will set up things such that in both hierarchies
m1 < m2 < m3, or that changing from one hierarchy to the other amounts to changing the sign of
one of the mass differences squared [42].
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sin2 θ13 = 0.9+2.3
−0.9 × 10−2

∆m2
12 = 7.92+0.09

−0.09 × 10−5 eV2

sin2 θ12 = 0.314+0.18
−0.15

∆m2
23 = 2.4+0.21

−0.26 × 10−3 eV2

sin2 θ23 = 0.44+0.41
−0.22

(3.61)

Table 3.1: Current standings in determination of the parameters in the PMNS matrix
(taken from [42])

An other important missing piece of information is the precise mass hierarchy. From
the experimental data in table 3.1 it is clear that |∆m2

12| � |∆m2
23| and therefore

|∆m2
13| ∼ |∆m23|2. By convention, we label the two mass states with the smallest

mass-difference squared ν1 and ν2, such that m1 < m2. That is, by a relabelling
we can always get ∆m2

12 > 0; however, the sign of ∆m2
23 has physical importance. If

∆m2
23 > 0 then m1 . m2 � m3 and the lightest two neutrinos are almost degenerate,

whereas for ∆m2
23 < 0 the masses are ordered according to m3 � m1 . m2, as

indicated in figure 3.3. The first case is called normal hierarchy because it has the
same structure as the mass hierarchy of the leptons, while the other is called inverted
hierarchy.

Note that the oscillation probabilities all depend on the squared sine of the mass
differences squared and therefore do not depend on the sign of ∆m2

ij . The problem
of mass hierarchy can therefore not be resolved by oscillation experiments. The KA-
TRIN experiment [45], which is presently (February 2009) being built, is designed to
measure the neutrino mass directly through beta decay of tritium. It will attempt to
push the electron neutrino mass down to 0.2 eV, improving the current bound [46] by
one order of magnitude. The KATRIN experiment is expected to be fully operational
by 2012 and run for 5 years.

Finally we mention again that our experimental data do not depend on the Dirac
phase δ, and therefore we are unable to conclude how many, if any, CP violation takes
place in neutrino oscillations.

3.3.2 The phases

In the preceding paragraphs we have seen that the Standard Model allows for both
Majorana and Dirac mass terms to be added to its Lagrangian, although the Majorana
mass of the light-handed neutrinos is not allowed (or heavily surpressed, if we con-
sider the Standard Model as a low-energy effective theory). We have seen that for the
mass eigenstates, only Majorana terms are present. However, experimentally flavour
eigenstates are measured and the question is whether these are in reality Majorana or
Dirac particles. In the equation for the mixing matrix (3.4) we have seen that, apart
from the three mixing angles which describe the mixing between neutrinos of flavours
α and β, there are also three phases which cannot be absorbed in the definitions of
the fields. One of them is the Dirac phase δ which is related to the CP violation and
can therefore — in theory — be measured, as we have seen in section 3.1.2. The
other two phases φ1, φ2 are so-called Majorana phases. They are only present if the
flavour neutrinos are Majorana fermions, because the Majorana mass term is not in-
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Figure 3.3: Copied from [1, fig. 12], original caption: Cartoon of the two distinct
neutrino-mass hierarchies that fit all of the current neutrino data, for fixed
values of all mixing angles and mass-squared differences. The color coding
(shading) indicates the fraction |Uαi|2 of each distinct flavor να, α = e, µ, τ
contained in each mass eigenstate νi, i = 1, 2, 3. For example, |Ue2|2 is equal
to the fraction of the (m2)2 “bar” that is painted red (shading labeled as
‘νe’).

variant under phase transformations. They are non-physical if the Majorana term is
absent though, because the remaining terms of the Lagrangian are invariant under
phase rotations.

We have also shown in section 3.1.2, that neutrino oscillation experiments do not
allow us to determine the Majorana phases. Even if present, they are namely irrele-
vant for the measurable quantities in such experiments. Therefore a non-oscillatory
experiment is needed to decide between the Dirac and Majorana nature of neutrinos.
The currently most sought-for is the neutrinoless double beta decay. Ordinarily, beta
decay is given by the reaction

2n → 2p + 2e− + 2νe, (3.62)
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where the anti-neutrino is right-handed (as the anti-particle of a left-handed electron
neutrino). Hoewever, if the left-handed neutrinos are Majorana particles, then νe = νe
and the reaction can take place in two steps:

n → p + e− + νe

νe + n → p + e−

}
=⇒ 2n → 2p + 2e−, (3.63)

where the neutrino which is produced in the first step, is absorbed in the second step.
The Feynman diagram for this process is shown in figure 3.4. This is obviously only

n

n

p

p
W−

W−

νL

⊗

νL

eL

eL

Figure 3.4: Feynman diagram of neutrinoless double beta decay (taken from [28]).

allowed when the left-handed neutrinos are Majorana particles, such that the annihi-
lation at the crossed out vertex is possible; observation of this decay would provide
conclusive evidence for the Majorana nature of the left-handed neutrino. Currently,
the NEMO-3 and Cuoricino experiments are searching for this decay, while several
experiments are being planned, such as∗ CANDLES, CUORE, EXO, GERDA, Majorana,
MOON, SuperNEMO. So far the Heidelberg-Moscow experiment has claimed to have
observed the neutrinoless double beta decay [49,50], although this has not yet been
confermed independently by for example NEMO [51] or other experiments [52].

Moreover, since the amplitude for the neutrinoless beta decay process is P '
〈m〉 def= |

∑
k U

2
ekmk| this would give us an estimate on the Majorana mass. Unfor-

tunately P is quite small (〈m〉 is estimated to 0.39+0.17
−0.28 eV by Heidelberg-Moscow and

IGEX [49]) which means that it is very hard to detect this decay if it is allowed.

3.4 Other theories

Although among current theories, the seesaw theories appear to be the most promis-
ing and they definitely receive the most attention, other attempts have also been
(and are still being) made to provide an explanation for the structure of the neutrino
masses.

One way to approach the problem is “bottom-up”: one attempts to describe the
low-energy phenomenology and tries to fit the theoretical parameters to experimen-
tal results. It is possible, for example, to consider cases where the neutrino mass
matrix has a specific form because there are certain relations between its entries or
certain components vanish. Naturally, it is then required to justify the assumptions

∗List is by far non-exhaustive and in alphabetical order, for a more detailed overview see [47,48]
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which are made, and to show that the resulting theory does not directly contradict
any experimental results. The danger of such an approach is of course, that such a jus-
tification may not exist, or that an assumed equality is only an approximate equality
and that the theory – however interesting — must be discarded as non-physical.

The other approach is “top-down”, where an attempt is made to write down a con-
sistent high-energy theory from which a reasonable (that is, containing the Standard
Model and not contradicting any experiment) low-energy description follows as a
limit. Current results can then be explained by requiring that certain symmetries be
broken in that limit. Ideally a high-energy mechanism is uncovered, which creates the
right-handed neutrino masses and accounts for the smallness of the left-handed neu-
trino masses in a natural way. An example of this is the mass-dimension 5 operator
from equation (3.49), which is non-renormalisable in the Standard Model but does
become renormalisable in a more symmetric theory. In this context, unifying theories
with gauge groups like SU(5) or SU(10) and with or without supersymmetry may be
considered.

Seesaw is promising in this respect, as it seems to work quite well from the “bottom
up” point of view, while it also follows naturally in some “top down” theories. For a
more extensive review of promising results and possible research directions for both
approaches, we would like to refer the reader to [53] and the references therein.
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CHAPTER 4
CONCLUSION

Many papers are currently written on neutrino oscillations, ranging from complete
reviews of currently accepted ideas to wild speculations in an attempt to explain
existing data with a good theory. Many authors of the sources consulted in writing this
report, agree that these are exciting times, when we have recently made such good
progress while still so much is left unknown. We have touched upon the matter of
absolute mass scale, whether flavour neutrinos are Dirac or Majorana, whether there
is CP violation (and how much), what role neutrinos have played in the development
of our universe, and many smaller (but interesting) questions.

At this point we are sure (at least, as sure as one can be in physics) that the solar
and atmospheric neutrino problems are solved by neutrino oscillations. The theory
of neutrino oscillations is well-understood, however it is not quite clear how to in-
corporate it in the Standard Model. The most promising candidates seem to be the
see-saw theories, which at the same time explain the smallness of left-handed neu-
trino masses with respect to the fermions and the absence of right-handed neutrinos
in our “everyday” experience, while also hinting at some unifying theory (“GUT”). A
well-known example is the theory with gauge group SO(10), containing a 16-tuplet
that can precisely accommodate all fifteen Standard Model fermions plus one extra
fermion field, which would logically be the right-handed neutrino. Also many su-
persymmetric grand unification theories (SUSY GUTs) support the existence of right-
handed neutrinos and neutrino flavour oscillations which are both not possible in the
minimal Standard Model.

But also in unexpected parts of physics, neutrino physics may contribute. For exam-
ple, string theory is currently a (the?) serious candidate for a “theory of everything”
but it has the serious problem of requiring extra dimensions. It turns out that a see-
saw mechanism would work very well if these extra dimensions are small (∼ M−1

U

for some large mass scale MU ) while if these dimensions are large (millimeter scale)
current bounds on neutrino parameters could heavily restrict our theoretical possibil-
ities [53, § VII.D].

Moreover, since right-handed neutrinos are believed to have no interactions (except
through gravity) we know very little about them. Therefore it is interesting to theorise
about their role in nature, and see for example how they affect the matter content of
the universe, active neutrino mixing and structure formation. This has lead to the
proposal of sterile neutrinos as candidates for dark matter and as a source of the
matter – anti-matter symmetry through leptogenesis [54,55].

Although most of the extensions mentioned above are still very new and may seem
unlikely at first sight, history has taught us never to discard a new idea too soon.
There is a chance of falling in the trap of comparison: understanding for example
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quark physics very well, we are quickly inclined to project certain properties of quarks
onto neutrino physics, based on points of similarity. However, the amount of possibil-
ities is very large for us creative theoretic physicists, and it will require a great deal
of ingenuity to devise experiments by which we can test our wild (and not so wild)
guesses.

For the coming years, we can expect experimental determination of several param-
eters of the theory explained in this paper with ever improved precision, which will
hopefully shed some light on the properties of neutrino physics, and physics beyond
the Standard Model in general. Therefore, the reader must agree that the closing
words of C. Giunti and M. Laveder from their 2003 review on neutrinos [22] are
still very much applicable: “. . . we think that interesting years lie ahead in neutrino
physics research.”
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