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Abstract

Using the ADM formalism, and scalar field inflation, an equation of motion will be
derived for perturbations in the gravitational potential. Using slow-roll approximation
the power-spectrum of these perturbations will be calculated for both late and early
times.
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Chapter 1

Introduction

The topic of this writeup is Large Scale Structure Formation. By large scale structures
we basically mean huge clusters of galaxies. To give you an idea of how large these
structures really are, I present you a picture, which was compiled from the data of
the 2dF galaxy survey. The most prominent structure of this picture is of course The
Sloan Great Wall. The Sloan Great Wall is the largest structure known to us these
days, and it consists of many, many galaxies. To put this in perspective: the Sloan
Great Wall measures 1.37 billion light years in length, while our galaxy is a mere 100
thousand light years in diameter. Now of course several interesting questions arise, for
example: How did these large scale structures come to be? and Can we explain the
peculiar shapes of these structures?. This writeup will focus on the first question, we
will develop a model which describes the growth of structure during an inflationary
epoch. The second question however, provides a nice way to check weather our model
actually makes sense. Can our model predict what we see? A beautiful way to show
this is to do numerical simulations. We won’t go into the details of this, but it’s hard
to resist showing you some pictures which were made by these sort of simulations. As
we can see simulations indeed give rise to wall like structures.

Now let us turn to the central point of this writeup. It is believed that the large
scale structures we see come from quantum perturbations, which rapidly grew during
an inflationary epoch. To describe these perturbations we will need to use General
Relativity, combined with some form of matter which is responsible for the inflation.
We will choose this form of matter to be described by a scalar field. The smoothest way
to describe a combination of field theories is of course using the action principle. Let
us write down the well known Hilbert Einstein Lagrangian, combined with the inflaton
scalar field:

LG =
1
2
√
−g [R− ∂µφ∂µφ− 2V (φ)] , (1.1)

where we’ve set the Planck mass (Mpl) to one for convenience.
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In principle General Relativity dictates the evolution of the metric tensor gµν . This
metric tensor however contains 10 different variables, from which the physical mean-
ing is not clear a priori. Using the ADM-formalism (after Arnowitt, Deser and Misner),
we will give meaning to these 10 variables, and get rid of the ones which do not interest
us.
Once we’ve thrown away the variables that we’re not interested in, we can obtain a dif-
ferential equation from the Lagrangian, describing the evolution of the perturbations.
Since we’re dealing with perturbations, we will expand our differential equation only
up to second order. A big advantage of this, is that in a second order theory, the dif-
ferent Fourier modes δ(k, t) don’t couple, so we can describe the evolution of every
Fourier mode independently.
Now as I mentioned earlier, we’d like to say things about quantum perturbations, there-
fore we need to quantize our classical theory. Luckily our differential equation up to
second order will be very similar to a Harmonic oscillator, so we will quantize it in
the usual way, using creation and annihilation operators. This will provide us with a
natural way to calculate the amplitude of each mode as a function of time:

< δ(%k)δ(%k′) >= (2π)3P (%k, t)δ(%k − %k′), (1.2)

where the function P (%k, t) is called the power spectrum of the mode. This is basically
what we would like to obtain. Now the theory can provide us with a power spectrum at
the end of inflation (initial data). This initial data can then be used as an input for the
classical theory, which can then for instance be simulated.

In this writeup we will calculate the power spectrum of perturbations in the gravita-
tional potential. We will specifically work out the solutions for late and early times.
One very important question regarding this power spectrum is weather it is scale in-
variant. A scale invariant spectrum goes as k−3. As we will see, inflation will predict
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a spectrum which deviates just slightly from scale invariance. We will express the
deviation from scale invariance in terms of the slow roll parameter ε.
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Chapter 2

Inflation

The first ingredient of the theory we’re about to develop is inflation. In this chapter I
will quickly review what inflation is, and how we can construct a scalar theory which
drives inflation.

The metric for a flat universe, with a possibility for an homogeneous expansion is
given by:

ds2 = −dt2 + a2 (t) dxidxi, (2.1)

where a(t) is called the scale factor. In an era of accelerated expansion we must have:

∂2a

∂t2
> 0. (2.2)

We will assume that the stress-energy tensor takes the form of a perfect fluid (Tµν =
diag(ρ, p, p, p)). In this case, the equations which describe the evolution of the ex-
pansion coefficient, can be derived from the Einstein equation, and they are called the
Friedman equations.

H2 ≡ ȧ2

a2
=

8πGN

3c2
ρ +

Λ
3

, (2.3)

ä

a
= −4πGN

3c2
(ρ + 3p) +

Λ
3

. (2.4)

This means that the condition for accelerated expansion (2.2) translates into:

p < −ρ

3
. (2.5)

We thus need some form of matter with a negative pressure. The most natural way to
obtain this is through a (scalar)field theory.
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2.1 Scalar fields in an expanding background
For our purposes, we only consider the simplest inflationary field theory, namely the
scalar field theory. A scalar field action is given by:

S = −1
2

∫
d4x
√
−g [gµν(∂µφ)(∂νφ) + 2V (φ)] . (2.6)

Now suppose φ is only a function of time, then the action reduces to:

S = −1
2

∫
d4xa(t)3

[
gtt(∂tφ)(∂tφ) + 2V (φ)

]
. (2.7)

Noting that gtt = −1 and varying with respect to φ we find:

δφS = −1
2

∫
d4xa(t)3

[
−2(∂tφ)(∂tδφ) + 2

∂V

∂φ
δφ

]
. (2.8)

Partially integrating the first term gives:

δφS = −
∫

d4xa(t)3
[
∂2

t φ + 3
ȧ(t)
a(t)

∂tφ +
∂V

∂φ

]
δφ, (2.9)

and the equation of motion thus becomes:

0 = φ̈ + 3Hφ̇ +
∂V (φ)

∂φ
, (2.10)

where H is the Hubble parameter, defined as: H ≡ ȧ
a . This equation of motion will be

used in later derivations.

The energy and pressure of a scalar field theory can be found from the energy-momentum
tensor. They’re given by:

ρ =
1
2
φ̇2 + V (φ), (2.11)

p =
1
2
φ̇2 − V (φ). (2.12)

It is thus possible to obtain a scalar field theory with negative pressure if the potential
energy is bigger than the fields kinetic energy. If we now assume the cosmological
constant to be zero, then the first Friedman equation in terms of the scalar field is given
by:

H2 =
8πGN

3c2

(
1
2
φ̇2 + V (φ)

)
=

1
3M2

Pl

(
1
2
φ̇2 + V (φ)

)
, (2.13)

where the parameter MPl ≡ c√
8πGN

is called the reduced Planck mass.



2.2. SLOW ROLL PARAMETERS 11

2.2 Slow Roll Parameters
Most inflationary models are so called slow roll models, a name which is inspired by
the condition that the zeroth order of the field should vary slowly. In practice this
means that φ̈ in (2.10) and φ̇2 in (2.13) are negligible in comparison to the other terms
in the equation. For later convenience we now define two parameters, called slow roll
parameters, which are much smaller than one if the slow-roll condition is satisfied.

ε ≡ MPl
2

2

(
V ′

V

)2

∼
(

φ̇

2H2

)2

, (2.14)

η ≡ MPl
2V ′′

V
∼ − φ̈

Hφ̇
+ ε. (2.15)

That these relations are satisfied for slow-roll approximation is easily seen by substitu-
tion. They are however not sufficient conditions for slow-roll, since they only restrict
the form of the potential. These slow-roll parameters will be used later, in the expres-
sion for the deviation of the spectrum from scale invariance.
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Chapter 3

Hamiltonian Formalism

The second ingredient for our theory is of course general relativity. As stated before,
general relativity can be seen as a field theory describing the dynamics of the metric
tensor field. In principle this metric tensor has 10 degrees of freedom, since its a
symmetric 4x4 tensor. In a vacuum the Einstein equation reads:

Gµν = Rµν −Rgµν = 0. (3.1)

Although this is a beautiful equation from an aesthetics point of view, it’s not a very
transparent equation from the physics point of view. That is, you cannot easily see what
the 10 different components mean and how they talk to each other. It’s also not easy to
see weather the 10 degrees of freedom are dynamical (describing the dynamics phys-
ical quantities), or so called gauge degrees of freedom, corresponding to constraints
of the system. The precise meaning of these words will become clear in this chapter.
The most elegant way to split dynamical from gauge degrees of freedom is to rewrite a
Lagrangian formalism to a Hamiltonian formalism. This is what we’re going to do in
this chapter. First I’ll describe how one generally sets up a Hamiltonian formalism for a
field theory. Then, as an intermezzo, I’ll show you how one applies this to electromag-
netism. Finally we’ll write a Hamiltonian formalism for general relativity. Upon doing
this we’ll note that writing a Hamiltonian formalism for general relativity is basically a
carbon copy of writing a Hamiltonian formalism for electromagnetism, just a bit more
involved.

3.1 Hamiltonian formalism for a field theory
In order to obtain a Hamiltonian formulation of a field theory, one needs to break up
space-time into space and time. Intuitively this means that we define a ‘time’-parameter
t, and we slice up space-time in space-like slices of equal time. These slices of equal
time are from now on referred to as Σt. For the moment let us assume that space-time
is not curved, and in this case the breakup is trivial. Note that one can define a time-like
vector field tα with the relation:

tα∇αt = 1, (3.2)

13



14 CHAPTER 3. HAMILTONIAN FORMALISM

and the fact that tα is time-like means that:

gαβtαtβ < 0. (3.3)

As we see in figure 1, we can think of tα as the flow direction of time in space-time,
and it connects the subsequent spaceslices Σt and Σt+dt.

The next step in writing a Hamiltonian formulation is to define the configuration space.
This means that one needs to specify what variables (in this case fields) completely
describe the system at a certain instant of time. Let us refer to these configuration space
variables as q for the moment. The third step is to obtain the momenta corresponding to
the configuration space variables. Let us refer to these momenta as π. Finally one needs
to find a functional H [q, π] on Σt, which is called the Hamiltonian of the system.
Usually the Hamiltonian is written as an integral over the Hamiltonian density,

H =
∫

Σt

H, (3.4)

where H is a local function of q and π, and their spatial derivatives up to finite order.
In case one already has a Lagrangian density L of the field theory, the momentum π is
taken to be the canonical momentum, which is defined as:

πk =
∂L
∂q̇k

, (3.5)

where the index k is just a possible vector index. The (cannonical) Hamiltonian density
then defined as:

H (q, π) =
∑

i

πiq̇i − L. (3.6)

3.1.1 Constraint equations
In physics we have a lot of theories which actually posses more variables than degrees
of freedom. With this I mean that the theory has more variables than there are needed
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to completely specify the system (more than the dimension of the actual phase space if
you like). One could say that several degrees of freedom are truly physical degrees of
freedom describing the dynamics of the system, while others are unphysical degrees
of freedom, more commonly known as gauge degrees of freedom, if they’re related
to a gauge transformation . A valid question at this point would be: ‘Why don’t we
just write down a theory without these gauge degrees of freedom?’ The answer to this
question is given by aesthetics. Usually the gauge degrees of freedom don’t decouple
nicely from the physical degrees of freedom. This means that the equations of motion
for the physical degrees of freedom will contain terms proportional to gauge degrees
of freedom. Trying to make them decouple is a messy business, and the equations look
much nicer if one includes the gauge degrees of freedom.

A consequence of having a theory with too many degrees of freedom is that the
phase space we’re working in is too big, and that the actual phase space is a subspace
embedded in this oversized phase space. To define the subspace one needs one con-
straint for every gauge degree of freedom.

A nice feature of the Hamiltonian formalism is that it’s easy to discover gauge
degrees of freedom, and their corresponding constraint equations. The important thing
to note is that it is not always possible to make a bijection from q̇ to π through (3.5).
A more formal way to put this is to say that the so called Hessian matrix, which is
defined as:

Hkl ≡
∂πk

∂q̇l
=

∂2L
∂q̇k∂q̇l

, (3.7)

is not invertible. In this case there exists a relation between the different momenta, and
thus not all momenta need to be known to completely specify the system.

Systems which posses such a relation between the different momenta are called
singular systems. This relation is exactly a constraint equation on the phase space. In
general the number of constraints is equal to the number of zero eigenvalues of the Hes-
sian matrix. Now as I said, going to a Hamiltonian formalism will reveal constraints,
this is because for singular systems the Hamiltonian will contain terms of the form:

∑

n

χnφn, (3.8)

where φn is an irreducible set of constraints and χn are Lagrangian multipliers for
the constraints. We can thus find the constraints by derriving the Hamiltonian to this
Lagrangian multiplier,

φn =
δH

δχn
. (3.9)

3.1.2 Dynamical equations
In the previous subsection we saw that relations between the different momenta corre-
sponded to constraint equations and that these constraints reduce the size of the phase
space, since we need less variables to completely specify the system. The reduced set
of variables needed to specify the system will however have linearly independent and
nontrivial equations of motion. These variables represent physical degrees of freedom,
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and their equations of motion are dynamical. They are obtained by:

q̇ ≡ δH

δπ
, (3.10)

π̇ ≡ −δH

δq
. (3.11)

Well that’s enough talking about abstracts, let us now see how this procedure applies
to electrodynamics in the next section!

3.2 Electrodynamics

3.2.1 Maxwell’s Equations
Let me start by reminding you of Maxwell’s equations in absence of any sources:

%∇ · %E = 0 %∇ · %B = 0 (3.12)

%∇× %E = −∂t
%B %∇× %B = ∂t

%E. (3.13)

Now one thing you can immediately see from these equations is that the first pair (3.12)
put a restriction on what type of functions can represent an electric or magnetic field.
These are thus constraint equations. The second pair of equations (3.13) contain a
time derivative, and thus tell us how the fields evolve in time. These are therefore
dynamical equations.

In this case the separation between dynamical constraint equations is already clear
from the start. This is why electrodynamics provides an excellent example to illustrate
that this separation also becomes manifest upon rewriting the EM Lagrangian to a
Hamiltonian.

Let’s get started! Let us assume we’re just working in flat Minkowski space.
Naively we take the field Aµ, evaluated on a flat slice Σt, to completely specify the
system. The Lagrangian for electrodynamics is well known:

LEM = −1
4
FµνFµν = −1

4
(∂µAν − ∂νAµ) (∂µAν − ∂νAµ) . (3.14)

It will prove to be very useful write the field variable Aµ in terms of it’s projection
on the plane Σt and perpendicular to it. For this reason let us define a time-like vector
field nα, which is normal to the surface Σt everywhere and has unit length. Since we’re
working in Minkowski space the choice is easy:

nα = (1, 0, 0, 0). (3.15)

Using this vector field we can rewrite Aµ as follows:

Aα = −(ηµνAµnν)nα

︸ ︷︷ ︸
⊥

+(Aα + (ηµνAµnν)nα)
︸ ︷︷ ︸

‖

≡ (V, %A). (3.16)
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It’s not hard to show that the Lagrangian density can be rewritten in terms of these
projected variables as follows:

LEM =
1
2

(
%̇A + %∇V

)2

− 1
2

(
%∇× %A

)2
. (3.17)

The proof follows if one writes the indices explicitly:

LEM =
1
2

(∂0Ai + ∂iA0)
2 − 1

2
(
εijk∂jAk

)

=
1
2

(
∂0Ai∂

0Ai + ∂0Ai∂
iA0 + ∂iA0∂

0Ai + ∂iA0∂
iA0 − εijkεilm∂jAk∂lAm

)

=
1
2

(
∂0Ai∂

0Ai + ∂0Ai∂
iA0 + ∂iA0∂

0Ai + ∂iA0∂
iA0 − ∂iAj∂iAj + ∂iAj∂jAi

)

=
1
2

(∂µAν∂νAµ − ∂µAν∂µAν) = −1
4

(2∂µAν∂µAν − 2∂µAν∂νAµ)

= −1
4
FµνFµν ,

where we’ve used the identity:

εijkεilm = δl
jδ

m
k − δm

j δl
k. (3.18)

Note in passing that yet another way to write the Lagrangian density of the electromag-
netic field is:

LEM =
1
2

(
%E2 − %B2

)
, (3.19)

where we’ve used the following relation between the fields %E, %B and the potentials V
and %A:

%E ≡ %̇A + %∇V, (3.20)
%B ≡ %∇× %A. (3.21)

The momenta conjugate to %A and V are:

%πA =
∂L

∂ %̇A
= %̇A + %∇V ≡ − %E, (3.22)

πV =
∂L
∂V̇

= 0. (3.23)

Let us pause here for a second, since this is an important result. The canonical mo-
mentum of the off-plane projection of Aµ (V ) vanishes, this means that this is a non-
dynamical variable. When we define our Hamiltonian density, we will therefore choose
%A as our vector field describing the system instead of Aµ. In this case the Hamiltonian
density becomes:

HEM = %π · %̇A− LEM (3.24)

= − %E ·
(
− %E − %∇V

)
− 1

2
%E2 +

1
2

%B2

=
1
2
%π · %π +

1
2

%B · %B − %π · %∇V

=
1
2
%π · %π +

1
2

%B · %B + V %∇ · %π − %∇ · (V %π) . (3.25)
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The last term in (3.25) is a total divergence, and we will therefore discard it. More
importantly, the third term is of the form (3.8). We thus see that the non-dynamical
variable V found in (3.23) acts as a Lagrangian multiplier, and that it’s equation of
motion is one of Maxwell’s constraint equations! The equations of motion for the
dynamical variables however, (3.10) and (3.11), provide us with two equations which
are equivalent to Maxwell’s dynamical equations.

%̇A =
δHEM

δ%π
= −%π − %∇V = − %E − %∇V, (3.26)

%̇π = − %̇E = −δHEM

δ %A
= −%∇×

(
%∇× %A

)
. (3.27)

So what about Maxwell’s second constraint equation? It turns out that this one simply
follows from the way %B is defined in terms of %A. It follows from taking the divergence
of (3.21). So why didn’t it show up with a Lagrangian multiplier in the Hamiltonian?
Well the truth is, that there is much more to the story of constraint equations that that
I’ve told you. In classical dynamics there are different classes of constraints, each
discovered in seperate ways. The story I’ve told you is about discovering a certain
class of constraints, called first class constraints. These constraints will appear in the
Hamiltonian density as I described. As it turns out, all constraints of general relativity
are of first class, while this is not true for electrodynamics.

3.2.2 Fixing the Gauge

The fact that electrodynamics has two constraint equations and two dynamical ones,
suggests that there are only two physical degrees of freedom. This means that we
should be able to choose 2 out of 4 degrees of freedom in Aµ as we like, since they
don’t contribute to the dynamics of the system anyway.

As we can see the dynamical equations (3.26) and (3.27) are left invariant by the
following transformations:

%A→ %A + %∇κ(%x), V → V − ∂λ(t)
∂t

. (3.28)

So indeed, we’re free to choose two out of four degrees of freedom freely by choosing
two arbitrary functions λ(t) and κ(%x), without changing the dynamical equations of
motion!

3.3 Geometrodynamics
Now that we’ve completed our discussion about electrodynamics, let’s turn to gen-
eral relativity. Because writing a Hamiltonian formalism for general relativity bears
such a close resemblance to doing it for electrodynamics, this procedure was called
Geometrodynamics by John Wheeler.
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3.3.1 ADM Formalism
Just like we did in electrodynamics, we would like to slice up space-time. This time
however, space-time is curved. Without using to much fancy mathematical jargon I’d
like to make this clear by drawing figure 2:

We will again call the space-like slices Σt. Because our space-time is now curved,
we expect Σt also to have a nontrivial metric. Let’s call it hij . Note the use of Latin
indices here, this is because the metric on the space slice is 3D.

A space time interval is defined as:

ds2 = gµνdxµdxν . (3.29)

Now we would like to rewrite this in terms of the 3D metric hij . Let’s choose coor-
dinates in such a way that the spatial basis-vectors ∂i are in the tangent space of the
hyper surface Σt. We can then say that distances on the hyper surface are given by:

dl2 = hijdxidxj . (3.30)

If we now want to rewrite a general space time interval in terms of hij , we need to ac-
count for the fact that the metric of subsequent slices Σt and Σt+dt generally changes.
We need to compensate for the fact that the vector tα, which represents ‘the flow of
time’, is in general not perpendicular to the hyper surfaces. We can decompose this
flow-of-time vector in a part perpendicular and a part normal to Σ:

dtα = (Ndt,N idt). (3.31)

The functionN is called lapse function, while the 3D vectorN i is called shift vector.
I will be more formal on how to decompose vectors into parts normal and perpendicular
to Σ later on, but for now having an intuitive notion of it suffices. Namely, as depicted
in figure 3, we can now just use the Pythagorean theorem to calculate ds2:

ds2 = −(distance⊥Σ)2 + (distance‖Σ)2, (3.32)
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that is:
ds2 = −N 2dt2 + hij

(
dxi +N idt

) (
dxj +N jdt

)
. (3.33)

Now by comparison of (3.30) and (3.33), we can easily see that:

gµν =
[
−N 2 +N kNk Nj

Ni hij

]
. (3.34)

By the defining relation of the inverse metric

gαβgβκ = δκ
α, (3.35)

we can see that the inverse metric is then given by:

gµν =

[
− 1

N 2
N j

N 2

N i

N 2 hij − N iN j

N 2

]
. (3.36)

Rewriting the metric in this particular form is also referred to as ADM formalism.

3.3.2 Projection of Vectors
Now that we’ve established an intuitive picture of slicing up space-time, it’s time to
become a bit more formal. First of all I’d like to introduce some nomenclature. The 4D
Lorentzian manifold representing space-time we will call M. The space-like slices Σ
are sub-manifolds of M, that is:

Σt ⊂M. (3.37)

The fact that Σ is space-like means that all vectors in its tangent space have positive
length, except for the null vector, which has zero length:

hijv
ivj ≥ 0, ∀v ∈ TpΣ. (3.38)
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In the previous subsection we projected the vector tα into a part normal to Σ, and a
part perpendicular to it. To be able to do this we introduce a time-like unit vector field
nα as follows:

gµνnµnν = −1, (3.39)

gµνnµvν = 0, ∀v ∈ TpΣ. (3.40)

Using this definition we can project any vector in the tangent space of M as follows:

vα = −(gµνvµnν)nα

︸ ︷︷ ︸
⊥

+(vα + (gµνvµnν)nα)
︸ ︷︷ ︸

‖

. (3.41)

Now we’re able to give a formal definition of the lapse function and the shift vector as
follows:

tα = −(gµνtµnν)nα

︸ ︷︷ ︸
⊥

+(tα + (gµνtµnν)nα)
︸ ︷︷ ︸

‖

≡ (N , %N ). (3.42)

3.3.3 Curvature
Let me remind you of the Lagrangian we’re working with, it’s a combination of the
Hilbert-Einstein Lagrangian combined with the Lagrangian of a scalar matter field re-
sponsible for inflation:

LG =
1
2
√
−g [R− ∂µφ∂µφ− 2V (φ)] , M−2

Pl = 1. (3.43)

Now in the end we would like to rewrite this Lagrangian in terms of our new variables
(hij ,N ,Nk). To be able to rewrite the Ricci scalar, we need to say something about
curvature. Remember that the Ricci scalar is nothing more than the contracted Riemann
tensor:

R = Rαβ
αβ , (3.44)

and that the Riemann tensor is a measure for the intrinsic curvature of the space, in
the sense that it measures how much a vector changes when it’s transported around an
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infinitesimal loop, as we see in figure 4. The Riemann tensor is therefore defined as the
commutator of two covariant derivatives:

Rα
µνβ∂α = [∇µ,∇ν ] ∂β , (3.45)

where the indices µ and ν can now be thought of as defining ‘the direction’ of the loop.
The covariant derivative is defined as:

∇µων = ∂µων + Γα
µνωα, (3.46)

Where Γα
µν is called the Christoffel connection, and it compensates for the fact that

basis vectors are slightly tilted if one compares two nearby points in space-time. A
shorter way to write (3.46) is:

ων;µ = ων,µ + Γα
µνωα. (3.47)

Applying (3.47) on a basis vector gives us the precise definition of the Christoffel
symbol:

∂µ;ν = Γα
νµ∂α. (3.48)

Plugging (3.47) in (3.45) yields an alternative way to write the Riemann tensor:

Rα
µνβ = Γα

νβ,µ − Γα
µβ,ν + Γκ

νβΓα
µκ − Γκ

µβΓα
νκ. (3.49)

What we would like to do now is to relate the intrinsic curvature of the 4D metric gµν

to the intrinsic curvature of the 3D metric of the slices hij . It is however obvious that
the intrinsic curvature of the space slices contains less information than the intrinsic
curvature of the whole space-time. The part of information which is missing is exactly
captured in the way how the space slices Σ are embedded in the space-time manifold
M. That is to say the extrinsic curvature of Σ in M. As we can see in figure 5, the
extrinsic curvature tells us how the vector field nα changes if one compares two nearby
space-time points.

Intuitively we thus expect that we can express the 4D Riemann tensor in terms of the
3D Riemann tensor and the extrinsic curvature of Σ.

Projecting the covariant derivative

Let us project the 4D covariant derivative using (3.41).

uκ∇κvµ = ∇uvµ = −gαβ(∇uvα)nβnµ

︸ ︷︷ ︸
⊥

+(∇uvµ + gαβ(∇uvα)nβnµ)
︸ ︷︷ ︸

‖

. (3.50)
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for u ∈ TpΣ and v ∈ TpM. Note that the second term term of (3.50) is the part of the
covariant derivative, which ‘stays’ on the surface Σ, and we will therefore identify this
term with the 3D covariant derivative:

3∇uvµ ≡ ∇uvµ + gαβ(∇uvα)nβnµ, (3.51)

where the superscript 3 preceding the covariant derivative indicates that it’s with respect
to the 3D metric. The first part of (3.50) is exactly the part of the covariant derivative
which doesn’t stay on Σ, and we will therefore identify it with the extrinsic curvature:

Kiju
ivj ≡ −gαβ(∇uvα)nβ . (3.52)

Note that this notion of extrinsic curvature is slightly different from the intuitive idea
we gave in the figure 5. We can show that this definition of the extrinsic curvature is ac-
tually the same as in the figure 5 because of metric compatibility. Metric compatibility
means that:

∇ugµν = 0. (3.53)

Using this, in combination with the definition of nα (3.40) we have:

0 = ∇u(gαβnαvβ) = gαβ(∇uvα, nβ) + gαβ(vα,∇unβ). (3.54)

So we can define extrinsic curvature equally well as:

Kiju
ivj ≡ gαβ(∇unα)vβ , (3.55)

and thus we see that (3.52) is equivalent to our intuitive idea of extrinsic curvature. To
summarize, we have found the following relation:

∇uv = (Kiju
ivj)n + 3∇uv. (3.56)

Gauss-Codazzi equations

Let us now try to express the 4D Riemann tensor in terms of the 3D Riemann tensor
and the extrinsic curvature tensor by plugging (3.56) in the definition of the Riemann
tensor (3.45). For this we first consider a special case of (3.56). Suppose that u = ∂i

and v = ∂j , then by equation (3.48) we have that:

∇i∂j = Kijn + 3Γm
ij ∂m. (3.57)

Furthermore, if we set u = ∂i and v = dxm in (3.55), and multiply it with ∂m on the
right, then we find:

Ki
m∂m = ∇in. (3.58)

Now we have all the tools to calculate the first term in (3.45). Let us work in a basis
(n, ∂i), such that we can write Latin indices on the tensors which are defined on the 4D
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manifold M, since they coincide with the spatial part of the Greek indices.

∇i∇j∂k = ∇i(Kkjn + 3Γm
jk∂m)

= Kjk,in + Kjk∇in + 3Γm
jk,i∂m + 3Γm

jk∇i∂m

= Kjk,in + KjkKi
m∂m + 3Γm

jk,i∂m + 3Γm
jk(Kimn + 3Γl

im∂l)

= (Kjk,i + 3Γm
jkKim)n + KjkKi

m∂m + (3Γm
jk,i + 3Γm

jk
3Γl

im)∂m,

(3.59)

and thus the Riemann tensor becomes:

Rα
ijk∂α = ∇i∇j∂k −∇j∇i∂k

= (Kjk,i −Kik,j + 3Γm
jkKim − 3Γm

ikKjm)n +
(KjkKi

m −KikKj
m)∂m +

(3Γm
jk,i − 3Γm

ik,j + 3Γl
jk

3Γm
il − 3Γl

ik
3Γm

jl )∂m.

(3.60)

Note that the first line is just:

(3∇iKjk − 3∇jKik)n, (3.61)

and comparing with (3.49), we see that the last term is:

3R
m

ijk∂m, (3.62)

and thus we arrive at the Gauss-Codazzi equations:

Rα
ijk∂α = (3∇iKjk − 3∇jKik)n + (3Rm

ijk + KjkKi
m −KikKj

m)∂m. (3.63)

For our purposes however we’re only interested in the second term, the Codazzi equa-
tion. We obtain it by taking an inner product of (3.63) and dxm:

Rm
ijk = 3R

m
ijk + KjkKi

m −KikKj
m. (3.64)

Now performing the proper contractions, one finds:

R = Rab
ab = 3R

ab
ab + KabKab − (Ka

b)2

= 3R + KabKab − (TrK)2, (3.65)

where 3R is the Ricci scalar of the hypersurface Σ.

Extrinsic curvature in terms of hij ,N ,Ni

We have expressed the 4D Ricci scalar in terms of the 3D Ricci scalar plus some terms
proportional to the extrinsic curvature. Beforehand we said that we would like to ex-
press the Lagrangian (3.43) in terms of (hij ,N ,Ni), and not in terms of the extrinsic
curvature. We will therefore rewrite the extrinsic curvature in a proper way.
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Using (3.55), and plugging in u = ∂i and v = ∂j , we find that:

Kik = ni;k. (3.66)

Now the vector nα should have length -1, and thus it’s given by:

nα = (−N , 0, 0, 0). (3.67)

Calculating the covariant derivative we thus obtain:

Kik = −NΓ0
ik

= −1
2
g0λ(∂igλk + ∂kgλi − ∂λgik)

= −1
2
g00(∂ig0k + ∂kg0i − ∂0gik) +

1
2
g0j(∂igjk − ∂kgji − ∂jgik)

=
1

2N (∂iNk + ∂kNi − ∂thik) +
Nl

N hlp
3Γp

ik

=
1

2N (3∇iNk + 3∇kNi − ḣik),

(3.68)

where we’ve used (3.34) and (3.36).

Rewriting
√
−g

Now there is only one thing left to do still. In the Lagrangian (3.43) also a term
√
−g

appears. We still need to rewrite this in terms of (hij ,N ,Ni). Basically we just need
to take the determinant of (3.34). Note that since gµν is a symmetric tensor, so will be
hij . Let’s say hij is this:

hij =




a b c
b d e
c e f



 , (3.69)

and its determinant is:

det h = adf − a2e− b2f + bce + cbe− c2d. (3.70)

The determinant of g becomes:

det g = −N 2 det h +N kNk deth

−N1 det




N1 b c
N2 d e
N3 e f



 +N2 det




N1 a c
N2 b e
N3 c f



−N3 det




N1 a b
N2 b d
N3 c e



 . (3.71)
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Note that the spatial indices can be raised and lowered by the metric hij and therefore
the last four terms of (3.71) can be written as:

N k




Nk deth− h1k det




N1 b c
N2 d e
N3 e f



 + h2k det




N1 a c
N2 b e
N3 c f



− h3k det




N1 a b
N2 b d
N3 c e





︸ ︷︷ ︸
(∗)




.

(3.72)
We can work this out for the different values of k ∈ {1, 2, 3} for instance, in case k = 1
the term (*) becomes:

− a
[
N1

(
df − e2

)
−N2 (bf − ce) +N3 (be− cd)

]

+ b
[
N1 (bf − ce)−N2

(
af − c2

)
+N3 (ae− bc)

]

− c
[
N1 (be− cd)−N2 (ae− bc) +N3

(
ad− b2

)]

=N1

[
−adf + ae2 + b2f − bce− bce + c2d

]

=N1 deth.

This means the contribution of the k = 1 term in (3.72) vanishes. Similarly one can
show that also for k = 2 and k = 3 the contribution vanishes. Plugging this result into
(3.71), we thus find: √

−g =
√
N 2h = N

√
h. (3.73)

3.3.4 Rewriting the Lagrangian
We’ve done all the calculations needed for rewriting the Lagrangian (3.43), so let’s do
it, using (3.65) and (3.73) we find:

LG =
1
2
√
−g [R− ∂µφ∂µφ− 2V (φ)]

=
1
2
√

hN
[
3R + KijK

ij −K2 +N−2φ̇2 − 2V (φ)
]
, (3.74)

where we assumed φ = phi(t). For the sake of compactness we won’t plug in (3.68)
yet, but let’s keep in mind that Kij contains a term proportional to ḣij . We see that
this reparameterized Lagrangian has a very important feature, namely that it doesn’t
contain time derivatives to the lapse function and the shift vector. This is very nice,
since we’ve therefore proven that they are non-dynamical variables, and thus that their
equations of motion should correspond to constraint equations, just like in the case
of Electrodynamics. We will see that N and Ni act has Lagrangian multipliers in
Hamiltonian formalism.

3.3.5 GR Hamiltonian
For the sake of simplicity, let us consider just the rewritten Hilbert-Einstein Lagrangian:

LG =
1
2
√

hN
[
3R + KijK

ij −K2
]
. (3.75)
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The canonical momenta are given by:

πN =
∂LG

∂Ṅ
= 0, (3.76)

πNi =
∂LG

∂Ṅi

= 0, (3.77)

πab =
∂LG

∂ḣab

=
√

h(Kab −Khab), (3.78)

where we’ve made use of the (contracted version of) equation (3.68). Indeed we see
that the momenta corresponding to the lapse function and the shift vector vanish. The
Hamiltonian density thus becomes:

HG = πabḣab − LG

= −
√

hN 3R +
N√
h

[
πabπab −

1
2
π2

]
+ 2πab

3∇aN b

=
√

h

{
N

[
−3R +

πabπab

h
− π2

2h

]
− 2Nb

[
3∇a

(
πab

√
h

)]
+ 3∇a

(
2Nbπab

√
h

)}
,

(3.79)

where we’ve made use of (3.68) and (3.78), and with π we mean πa
a. Note that the last

term of (3.79) is a total divergence, so it’s only a boundary term, and we will discard it.
Note that N and Na indeed act as Lagrangian multipliers, and that the corresponding
constraint equations are:

−3R +
πabπab

h
− π2

2h
= 0, (3.80)

and
3∇a

(
πab

√
h

)
= 0. (3.81)

This brings us to the end of the discussion on the Hamiltonian formalism. We’ve
identified the constraint equations of general relativity, and therefore we’re now able to
solve these equations to get rid of the nonphysical degrees of freedom.
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Chapter 4

The Power spectrum

As was shown in the previous chapter, the 10 degrees of freedom of general relativ-
ity split up in 6 dynamical degrees of freedom and 4 gauge degrees of freedom. We
found four constraint equations (3.80), (3.81) corresponding to the gauge degrees of
freedom. The remaining 6 degrees of freedom are written as a symmetric 3x3 tensor
called h(t)ij , which is the metric of a space slice Σt. We’re interested in how pertur-
bations of this metric hij behave. The power spectrum for these perturbations will be
calculated during inflation (ε << 1). As we will find out the solution simplifies when
we write down approximations for late and early times.

4.1 Decomposition theorem
Generally all 6 degrees of freedom of hij couple to one another, this means that the
equation of motion of every degree of freedom contains terms proportional to all the
other degrees of freedom. However, if one only writes the equations up to second order
there will be decoupling. This is sometimes referred to as decomposition theorem.
The proof of this theorem is, although very laborious, quite straightforward. It is done
for instance in Weinbergs book Cosmology (2008). Essentially it boils down to this:
One can decompose the perturbations of the metric hik in scalar perturbations, vector
perturbations and tensor perturbations.

δh = δS + δV + δT. (4.1)

Each of these types of perturbations have their own physical meaning. The tensor per-
turbations for instance correspond to gravitational waves, while the scalar perturbations
are interpreted as gravitational potentials. Because the equations of motion of the dif-
ferent types of perturbations don’t talk to each other, they can be treated separately.
That is to say, we can safely set every type of perturbation to zero without changing the
equation of motion of the others. Note that setting certain variables to zero is not the
same as fixing a gauge! I emphasize this point since in most of the literature out there
does call this gauge fixing.

29
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Anyway, for our purposes we’re only interested in the gravitational potential, and
thus we set all perturbations to zero except for the scalar mode:

hij = a(t)2(1 + 2ζ(t))δij , (4.2)

where a(t) is the expansion coefficient as defined in (2.1). Note that we’ve just removed
5 out of 6 dynamical degrees of freedom!

4.2 Calculating the Spectrum

4.2.1 Solving constraint equations
Now it’s time to also remove the four gauge degrees of freedom. If we include the
inflationary scalar field in the constraint equations, then they can be written as:

3∇i(Kij − hijK) = 0, (4.3)

and
3R− 2V −KijK

ij + K2 − φ̇2

N 2
= 0. (4.4)

Solving these constraint equations to first order and plugging them back in the action
corresponding to Lagrangian (3.74) gives us:

S =
1
2

∫
d4x a eζ(1 +

ζ̇

H
)
[
−4∂2ζ − 2(∂ζ)2 − 2V a2e2ζ

]

+ a3e3ζ 1

1 + ζ̇
H

[
−6(H + ζ̇)2 + φ̇2

]
. (4.5)

Now by taylor expanding and using the equations of motion for the scalar field (2.10),
this can be written up to second order as follows:

S =
1
2

∫
d4x

φ̇2

H2

[
a3 ζ̇2 − a (∂ζ)2

]
. (4.6)

4.2.2 Equation of Motion
Now we need to get the equation of motion from this action Using the slow roll ap-
proximation as stated in section 2.2, and the definition of ε (2.14) we find that:

φ̇2

H2
=

(
dV

dφ

)2 1
9H4

= M4
pl

(
V

dV

dφ

)2

= 2M2
plε. (4.7)

In conformal time (dt = adη) the action becomes:

S =
1
2

∫
d3x(adη)(2M2

plε)a
{

(ζ ′)2 − (%∂ζ)2
}

, (4.8)



4.2. CALCULATING THE SPECTRUM 31

where ′ means differentiation with respect to conformal time ∂η. We can now make the
following substitution:

ζ =
v√

2εaMpl
, (4.9)

and assuming that ε is constant:

ζ̇ =
1√

2εMpl

(
v′

a
− va′

a2

)
=

1√
2εMpla

(v′ − vHc) , (4.10)

where and Hc is the Hubble parameter defined through a derivative to conformal time.
After performing this substitution, the action becomes:

S =
1
2

∫
d3xdη

{
(v′ −Hcv)2 − (%∂v)2

}
(4.11)

=
1
2

∫
d3xdη

{
(v′)2 − 2Hcvv′ + Hc

2v2 − (%∂v)2
}

, (4.12)

then by noting that:
∫

dη {−2Hcvv′} = −
∫

dη

{
d

dη
(v2)Hc

}
= −

∫
dη

d

dη

{
v2Hc

}

︸ ︷︷ ︸
boundary term

+
∫

dηv2H ′
c,

(4.13)
the action can be written as:

S =
1
2

∫
d3xdη

{
(v′)2 − (%∂v)2 + (Hc

2 + H ′
c)v

2
}

, (4.14)

where we’ve discarded the boundary term. Varying this action with respect to v gives
us the equation of motion:

δS

δv
= 0⇒ −v′′ + %∂2v + (H2

c + H ′
c)v = 0. (4.15)

4.2.3 Solving the EOM in terms of ε

We assume we can write the scale factor as follows:

a(η) = a0η
β , (4.16)

and it thus follows that:
Hc ≡

a′

a
= βη−1. (4.17)

Now we’d like to write β in terms of the slow roll parameter ε. Using the fact that we
can write the slow roll parameter ε as follows:

ε = − Ḣ

H2
, (4.18)
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we can make the following calculation:

ε = − Ḣ

H2
=
−a2

H2
c

1
a

(
H ′

c

a
− Hca′

a2

)
= −H ′

c

H2
c

+ 1. (4.19)

Using (4.17) we can now relate β to ε as follows:

−H ′
c

H2
c

=
βη2

β2η2
= β−1 ⇒ β =

1
ε− 1

. (4.20)

The equation of motion for v, as given in (4.15) can now be written as follows:

−v′′ + %∂2v +
(

2− ε

η2(1− ε)2

)
v = 0. (4.21)

Since this differential equation is linear, the different modes don’t couple, and we can
write the equation for every k-mode seperately:

v′′k +
(

k2 − 2− ε

η2(1− ε)2

)
vk = 0. (4.22)

This differential equation is of the form:

d2y

dx2
+

2p + 1
x

dy

dx
+ (a2x2r−2 + β2x−2)y = 0, (4.23)

which is a transformed version of the Bessel differential equation given by Bowman
(1958). It’s solution is given by:

y = x−p
[
C1Jq/r

(a

r
xr

)
+ C2Yq/r

(a

r
xr

)]
, (4.24)

where q ≡
√

p2 − β2; C1, C2 are constants and Jn(x), Yn(x) are Bessel functions of
the first and second kind. The solution for (4.22) is found by setting:

p = −1
2
, r = 1, a = k, β = ±

√
ε− 2

1− ε
, q2 − 1

4
=

2− ε

(1− ε)2
. (4.25)

Furthermore for an expanding universe we have to choose x = −η. Upon doing so we
find:

vk(η) =
√
−η [αkJq(−kη) + βkYq(−kη)] . (4.26)

where αk and βk are constants. Now it’s convenient to rewrite (4.26) in terms of Hankel
functions of the first and second kind, which are defined as follows:

H(1)
n (z) ≡ Jn(z) + iYn(z), (4.27)

H(2)
n (z) ≡ Jn(z)− iYn(z). (4.28)

Since these functions are linearly independent, they form an equally good basis for the
solution of (4.22) as the Bessel functions. We thus write:

vk(η) =
√
−η

[
αkH(1)

q (−kη) + βkH(2)
q (−kη)

]
. (4.29)
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4.2.4 The Power Spectrum
The Power Spectrum of quantum perturbations is related to the two-point correlation
function as follows:

ξ(r) ≡< 0|ζ̂(%x, η)ζ̂(%y, η)|0 >≡
∫ ∞

0

dk

k
P (k, η)

sin (kr)
kr

. (4.30)

So first of all we need to quantize the solution that we found in the previous section.
The Lagrangian density corresponding to (4.14) is given by:

L =
1
2
(v′)2 − 1

2
(%∂v)2 + (Hc

2 + H ′
c)v

2. (4.31)

Using the definition of canonical momentum (3.5) we find:

πv ≡
∂L
∂v′

= v′, (4.32)

and therefore the the Hamiltonian becomes:

H =
∫
{πvv′ − L} (4.33)

=
∫

d3x

{
1
2
πv

2 +
1
2
(%∂v)2 − (H ′

c + Hc
2)v2

}
. (4.34)

Now we’re going to quantize this system using canonical quantization. As usual we
demand the following commutation relation:

[v̂(%x, η), π̂v(%y, η)] = i!δ3(%x− %y). (4.35)

As mentioned before, the different k-modes don’t couple, since the EOM is linear. It is
therefore useful to expand the operators v̂(%x, η) and π̂v(%x, η) in terms of creation and
annihilation operators â†k and âk:

v̂(%x, η) =
∫

d3k

(2π)3
[
ei*k·*xv(k, η)â(%k) + h.c.

]
, (4.36)

and

π̂v(%x, η) =
∫

d3k

(2π)3
[
ei*k·*xv′(k, η)â(%k) + h.c.

]
, (4.37)

where the h.c. stands for “hermitean conjugate”, and v(k, η) is a fourier coeficient,
determined by the classical solution. For the creation and annihilation operators we
demand the following commutation relation:

[
â(%k), â†(%k′)

]
= (2π)3δ3(%k − %k′) (4.38)

Now to make the commutators [v, πv] and
[
a, a†

]
consistent, we need to put a restric-

tion on the normalization of v(k, η). This can be seen as follows, we demand that:

i!δ3(%x− %y) =< 0| [v̂(%x, η), π̂v(%y, η)] |0 > . (4.39)
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Upon plugging in the expansions for v̂ and π̂v , we find:

=< 0|
∫

d3k1

(2π)3

∫
d3k2

(2π)3
ei(*k1·*x−*k2·*y)v(k1, η)v′∗(k2, η)

[
â(%k1), â†(%k2)

]

− e−i(*k1·*x−*k2·*y)v′(k1, η)v∗(k2, η)
[
â(%k2), â†(%k1)

]
|0 >,

where we’re using the fact that the part of the commutator where â(%k) acts first on the
vacuum vanishes. Plugging in the demanded commutation relations for â and â†, we
find:

=< 0|
∫

d3k1

(2π)3

∫
d3k2

(2π)3
ei(*k1·*x−*k2·*y)v(k1, η)v′∗(k2, η)(2π)3δ3(%k1 − %k2)

− e−i(*k1·*x−*k2·*y)v′(k1, η)v∗(k2, η)(2π)3δ3(%k1 − %k2)|0 >,

=< 0|
∫

d3k1

(2π)3
ei*k1·(*x−*y)v(k1, η)v′∗(k1, η)− e−i*k1·(*x−*y)v′(k1, η)v∗(k1, η)|0 >,

= δ3(%x− %y) < 0|
∫

d3k

(2π)3
W [v(k, η), v∗(k, η)] |0 > . (4.40)

Here W [a, b] is called the “Wronskian”. In case of two functions (there are also Wron-
skians for more than two) it’s defined as follows:

W [a, b] ≡ (ab′ − a′b) (4.41)

We see that we need:
W [v(k, η), v∗(k, η)] = i, (4.42)

for the commutators [v, πv] and
[
a, a†

]
to be consistent. Now we’re able to calculate

the spectrum. We change variables back, from v̂ to ζ̂, and obtain:

ξ(r) = < 0|ζ̂(%x, η)ζ̂(%y, η)|0 >=
1

2εM2
p a2

< 0|v̂(%x, η)v̂(%y, η)|0 >

=
1

2εM2
p a2

∫
d3kd3k′

(2π)6
< 0|

[
v(k, η)ei*k·*xâ(k) + h.c.

] [
v(k′, η)ei*k′·*yâ(k′) + h.c.

]
|0 >

=
1

2εM2
p a2

∫
d3kd3k′

(2π)6
< 0|

[
â(%k), â†(%k′)

]

︸ ︷︷ ︸
=(2π)3δ3(*k−*k′)

|0 > v(k, η)v∗(k′, η)ei(*k·*x−*k′·*y)

=
1

2εM2
p a2

∫
d3k

(2π)3
|v(k, η)|2ei*k·(*x−*y)

=
1

2εM2
p a2

∫ 2π

0
dφ

∫ π

0
dθ sin θ

∫ ∞

0

d|k|
(2π)3

|k|2|v(k, η)|2ei|k|r cos θ

=
2

2εM2
p a2

(2π)
(2π)3

∫ ∞

0
d|k||k|2|v(k, η)|2

∫ 1

−1
d(cos θ)ei|k|r cos θ

=
1

2εM2
p a2

1
(2π)2

∫ ∞

0
d|k||k|2|v(k, η)|2 sin (kr)

kr
(4.43)
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And we thus recognize the powerspectrum to be:

P (k, η) =
|k|3|v(k, η)|2

4π2a2M2
p ε

, (4.44)

in terms of the slow roll parameter, and the solution to the equation of motion. The
solution for the equation of motion was given in terms of Hankel functions of the
first and second kind. Now as it stands, equation (4.44) isn’t particularly illuminating,
since Hankel functions aren’t easy to work with. It is therefore usefull to consider
the asymptotic behaviour of the Hankel functions, meaning either it’s behaviour at late
times (|kη| << 1) or at early times (|kη| →∞ ). We’ll see that in both these limits we
can greatly simplify the solutions vk(η).

4.2.5 Early times
We are going to consider solutions for early times, or “subhubble limit” (|kη| → ∞).
In this limit the Bessel functions Jm(x) and Ym(x) have the following asymptotic
behavior:

Jm(x) ∼
√

2
πx

cos
(
x− mπ

2
− π

4

)
x >> |m2 − 1

4
|, (4.45)

Ym(x) ∼
√

2
πx

sin
(
x− mπ

2
− π

4

)
x >> 1. (4.46)

Using our knowledge of the asymptotic behaviour of the Bessel functions, we can write
the asymptotic behavior of the Hankel funtions as follows:

H(1),(2)
n (z) ∼

√
2
πz

exp
{
±i

(
z − nπ

2
− π

4

)}
. (4.47)

So, using (4.29), in early times the solution of (4.22) can be written as:

vk(η)→ αk√
2k

e−ikη +
βk√
2k

eikη (kη → ±∞), (4.48)

where by convention, the constants changed as follows: αk → (−π)−1/2αk, βk →
(−π)−1/2βk. We choose the constants to be as follows: αk = 1,βk = 0, which
corresponds to the Bench Davis vacuum. We thus find:

v(k, η) =
e−ikη

√
2k

, (4.49)

and accordingly, the power spectrum as defined in (4.44) now reduces to:

P (k, η) =
k2

8π2M2
p a2ε

. (4.50)
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4.2.6 Late times
Now we’re going to deal with the other limit, namely the “super hubble limit” (|kη| <<
1). We thus need to know how Hankel functions behave in this regime. First of all let
me introduce the Neumann function, which expresses the Bessel function of the second
kind in terms of the Bessel function of the first kind:

Yα(x) =
Jα cos (απ)− J−α

sin (απ)
. (4.51)

Using the Neumann function and relations (4.27) and (4.28), we can write the following
identity for the Hankel fuctions:

H(1)(2)
α (x) = Jα(x)± i

sin (απ)
[cos (απ)Jα(x)− J−α(x)] . (4.52)

The asymptotic behavior (|kη| << 1) of the Bessel function of the first kind we can
obtain from it’s Taylor expansion around x = 0:

Jα(x) =
∞∑

m=0

(−1)m

m!Γ(m + α + 1)

(x

2

)2m+α
, (4.53)

where Γ(x) is the Euler gramma function. If we now only take the first (leading order)
term into account, we can write for the Hankel functions:

H(1)(2)
α (z)→ (1± i cot(απ))

(z

2

)α
[

1
Γ(α + 1)

− . . .

]

∓ i

sin (απ)

(z

2

)−α
[

1
Γ(1− α)

− . . .

]
. (4.54)

So, what is the value of α? Well, if we look at (4.29) and (4.25), we see that we can
write it in terms of the slow roll parameter ε:

α = q =
3− ε

2(1− ε)
. (4.55)

We thus see that:
α ∈ [3/2,∞) for ε ∈ [0, 1)

α ∈ (−∞,−1/2) for ε ∈ (1,∞) (4.56)

Let us assume now that ε ≈ 0, which corresponds to in inflationary epoch, and that α is
thus positive. Because we’re also assuming that the argument of the Hankel function,
z = −kη, is very small, we can neglect the first term in (4.54). The approximation
then becomes:

H(1)(2)
α (−kη) ≈ ∓ i

sin (απ)

(
2
−kη

)α [
1

Γ(1− α)

]
, (4.57)

and thus:
H(1)

α = H(2)∗
α . (4.58)
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Now that we’ve found a workable expression for the Hankel function, we can plug it in
the solution (4.29), and calculate the corresponding |vk|2

|vk(η)|2 = −η
[
|αk|2|H(1)

q (−kη)|2 + |βk|2|H(2)
q (−kη)|2

]

+ η
[
αkβ∗kH(1)

q (−kη)H(2)∗
q (−kη) + α∗kβkH(1)∗

q (−kη)H(2)
q (−kη)

]
(4.59)

|vk(η)|2 = −η
[
|αk|2 + |βk|2 − α∗kβk − αkβ∗k

]
|H(1)

q (−kη)|2

= −η|αk − βk|2|H(1)
q (−kη)|2 (4.60)

The power spectrum becomes:

P (k, η) ≈ −|k|3η
4π2a2M2

p ε
|αk − βk|2

1
sin (απ)2

(
2
−kη

)2α [
1

Γ(1− α)2

]
(4.61)

This equation can be simplified using the Euler reflection formula:

Γ(1− α)Γ(α) =
π

sin (πα)
, (4.62)

and the relation:
η−1 = −aH(1− ε), (4.63)

which can be deduced from (4.17) and (4.20). We obtain:

P (k, η) ≈ |k|2|αk − βk|2

2π4a2M2
p ε

(
2Ha(1− ε)

k

)2α−1

Γ(α)2 (4.64)

We thus see that the k-dependance of the power spectrum goes like:

P ∼ k3−2α. (4.65)

Now it’s conventional to define a parameter ns as follows:

P ∼ kns−1. (4.66)

We’d like to know ns to first order in ε. Taylor expanding α(ε) as defined in (4.55), we
find that:

α(ε) ≈ 3
2

+ ε, (4.67)

so for ns we find:
ns = 1− 2ε. (4.68)

We’d also like to know how the power spectrum itself behaves to leading order in ε.
We expand terms of (4.64) separately:

(1− ε)2α−1 = 1− 2ε + O(ε2), (4.69)
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Γ(α) ≈ Γ
(

3
2

+ ε

)
≈ Γ

(
3
2

) [
1 + εψ

(
3
2

)]

=
1
2
√

π [1 + ε(2− 2 ln (2)− γE)] , (4.70)

where ψ is called the digamma function and γE is the Euler constant. Now the fact
that all these expansions have constant terms, shows that for small ε we have that:

P ∼ 1
ε

(4.71)



Chapter 5

Conclusion

As promised in the Introduction, I’ve showed you how to calculate the power spectrum
of perturbations of the gravitational potential during inflation in terms of the slow-roll
parameter ε. We calculated that for early times (|kη| → ∞) the power spectrum is
given by:

P (k, η) =
k2

8π2M2
p a2ε

. (5.1)

For late times we found:

P (k, η) ≈ |k|2|αk − βk|2

2π4a2M2
p ε

(
2Ha(1− ε)

k

)2α−1

Γ(α)2. (5.2)

After Taylor expanding for small ε, we found that to leading order it behaves as:

P ∼ 1
ε

(5.3)

. Also the deviation from scale invariance for late times was calculated:

ns = 1− 2ε. (5.4)

39
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