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What is Structure Formation?

@ Where do large structures in our universe come from?
@ Quantum perturbations in an inflationary era.
@ Initial conditions/ Today’s observation

Intuitively: gravitational instability: overdense regions tend to

grow. )
0 + [Pressure — Gravity]§ = 0 (1)

Typical overdensity: 1 in 105.
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What do we want to calculate? Part 1

How do (quantum) perturbations grow during inflation?
@ Obtain a classical field theory (GR + Inflation)

1
L= 5V=Gg[R~0.00"6—2V(9)] Mpf =1 (2)

@ Fixing the Gauge by going to ADM Formalism (splitting
space and time).

@ Put restrictions on the metric (scalar mode).



Introduction
[e]e]e] ]

What are we going to calculate? Part 2

@ Find (perturbative) solutions, (up to second order).
@ Different fourier modes d(k, t)
@ Quantize the solutions.

@ Calculate the powerspectrum.
Powerspectrum:

< 6(k)o(K') >= (2r)3P(k)s(k — K') 3)

@ Hamiltonian formalism is closely related to ADM formalism

@ Hamiltonian formalism naturally seperates physical/
unphysical degrees of freedom

@ ADM formalism gives an intuitive interpretation.
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Hamiltonian Formalism for a Field Theory 1

1) Split the Lorentzian manifold M into space and time,
R x S.

@ t € R is the time-parameter
@ Timelike vectorfield t¢ flow of time

Vot = 1 (4)

@ Spacelike submanifold > C M, with a metric hj.

hjvivi >0 Yv € ToX (5)
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Hamiltonian Formalism for a Field Theory 2

@ Y, and X; connected by t* picture
@ Timelike unit-vectorfield n®, normal to

gun'n’ = -1 (6)
guw'v’ =0 Vv e TpX (7)

@ Decomposition of any vectorfield v € To,M
v = —(gu v"n")n* + (v* + (g v*n")n%) (8)

I L
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Hamiltonian Formalism for a Field Theory 3

2) Define a configurationspace of (tensor) fields g,
instantaneously describing the configuration of the field ).

3) Define corresponding momenta for the fields .
4) Specify the functional H [q, 7] on ¥, called the

Hamiltonian.
H = H (9)
P
Canonical Momentum:
oL
Tk 95 (10)

Hamiltonian Density:

Q>7T) ZWIQI - (11)
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Gauge Degrees of Freedom/ Singular Systems

Non invertible Hessian matrix:

Ok 0L
ki 8q/ 8qk8q’ ( )
Hamiltonian for singular systems:

H = Hean + Z Xn®n (13)
n

@ Lagrangian multipliers follow from the projection of the field
along the normal vector.

oH
¢n =

=5 (14)
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Dynamical Equations of Motion/ Fixing the Gauge

@ Dynamical equations follow from derriving w.r.t. physical

variables:
. OH

~ om

_OH
oq

@ Choosing a gauge is equivalent to choosing a value for x.

(15)

(16)
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Maxwell Field Equations

Ordinary Maxwell field equations (c = 1):
@ Constraint Equations (2):

V-E=0

<l
uu]]
Il
o
=
-

@ Dynamical Equations (2):

V x E=0,B V x B=6E (18)
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EM Lagrangian

@ EM Lagrangian:

Ley = —%FWF‘“’ = —% (0,A, — 0,A,) (0MAY — OV AY)

19
@ A" describes the system instantaneously (q). 1o
n*=(1,0,0,0) (20)
nw = diag(—1,1,1,1) (21)
@ Decomposing A*:
A* = (A n")n® + (A" + (nu A*n")n%)
L [
=(V,4) (22)
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New Variables/ Cannonical Momenta

@ The Lagrangian in the projected variables:
1 > hd 2 1 hd -2 2 o 1 —’2 —’2
Lew=5 (A+vv) -3 (v ><A) = ;B2 3B (29)
@ Unphysical variable (normal projection):

oL
=0 24
T™=or (24)

@ Physical Variable (projection on the plane):

;= &C Z\ vV

- -E (25)
oA
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EM Hamiltionian/ Equations of Motion

Hewm :i%A—QW:—E(—E—ﬁw——gﬁwﬁz

2 2
1, . 1= = _ =
= §7r-7r+§B B-7-VV
1 125 o -
= 57? 7?+§B B+V(V.-7)-V.(V7) (26)
@ Constraint Equations:
SHey = =
=V. 27
s5v —VE (27)
@ Dynamical Equations
AoOHem _ = Gy_ _E_Sv (28)
o
foE- MM G (VxA) (o)
5A
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Fixing the Gauge

@ The Gauge invariance of the theory is:

S 1))
A— A+ VA V—-V-— af (30)
@ Fixing the Gauge is done by fixing the Lagrangian
multiplier!
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What is Inflation?

Consider perturbations in an expanding background.
ds® = —dt? + & (t) dx;dx’ (31)

The condition for an accelerated inflation is:

0?a
v >0 (32)
Second Friedman equation:
a 47TGN A
2= g (P3Pt 3 (33)
Condition becomes:
p<-2 (34)
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Scalar Field Inflation 1

Action for a time dependent Scalar field:

S= - [ dxalt? [g"O)00) +2V(e)] (39

5¢sz—1 / d*xa(t)® [ (at¢)(at5¢)+2g;5¢] (36)

a(t) 6\/]
()8t¢+ 9 6 (37)

0= ¢+3H¢+8gff) (38)

555 = - /d4xa {a$¢+3
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Scalar Field Inflation 2

Energy and Pressure:

1. 1.
p= 5472 + V(9) p= §¢2 - V(9) (39)
First Friedmann equation:
e_ 1 oy 1 (1
= oz 0= g < 1 v<¢)) (40)

Slow Roll parameters, satisfied for slow roll approximation:

v

H? ~ —
3M§,

3H) ~ V' (41)

€

(42)

Mp/? v 2 _ Mp/ V"
2 \Vv ="y
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Einstein Field Equations

@ The Vacuum Einstein Field Equations read:
G, =R.—Rg. =0 (43)

@ Hard to extract physics from it.

@ Field variable is g,,,, 10 equations, 6 dynamical, 4
constraints, space-time splitting makes this easy to see.

@ Reparameterising (g,.) = (P hy, N, N)



Geometrodynamics
0O@e00000000

ADM Formalism/ How to split the Metric

@ Spacetime interval:
ds? = g, dx*dx” (44)
@ In the new variables
ds? = ~N2a? + hy (o + ') (dx/ + NTat)  (45)
@ Metric:

“NZ 4 NRNG N,}

@ N and NV will be the nonphysical parameters, and appear
as Largrangian multipliers. (like V)
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Decomposition of {*/ Shift Vector/ Lapse Function

@ Decomposition of t* is non-trivial:

t* = _(g;wt“ny)na + (ta + (gm/t,unu)na) (47)

~~

1
@ Lapse Function
N = —(gut*n’)n® (48)

@ Shift Vector
N = (t% + (gut'n”)n>) (49)
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Rewriting the Lagrangian

@ Lagrangian:

1
Lo=5V=g[R~ 000" —2V(¢)] Mg =1
(50)
What do we need to do?

@ Rewrite the Ricci scalar, in terms of the Ricci scalar of the
sub-manifold * and the way it's embedded in M.

@ Rewrite the determinant of g in terms of the determinant of
h and the lapse function.
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Covariant Derivative/ Intrinsic/ Extrinsic Curvature

@ Covariant Derivative:

Vv = —Gop(Vuv®, %) + (VuV" + gos(Vuv®, n’) ")

1 l

(51)
u,v € Vect(x)
@ Extrinsic Curvature =- Variation of tensor field. n® normal
to ¥;
Vv = K(u,v)n+3 Vv (52)
@ Intrinsic Curvature = Riemann tensor = [V, Vg]

@ Intrinsic Curvature of ¥ and M are related through the
Extrinsic curvature!
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Extrinsic curvature

@ Extrinsic curvature was not what we expected:
—~Gap(Vuv®, )0 = (Kju'VI)n* = K(u,v)n*  (53)
@ Metric compatebility:
0 = Vu(Gapn™v?) = gup(Vuv®, n°) + gus(v®, Vun®) (54)
@ Intuitive picture of Extrinsic Curvature:

K(U,v) = gas(v®, Vun®) (55)
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Intrinsic Curvature

@ Take a point p € ¥, local coordinates (x°, x', x2, x%)
@ x0 =10y =0 and 91,05, 05 are tangent to X at p.
@ Riemann tensor:

R = RO )0k = [Vi, V)] decke™  (56)

@ Gauss-Codazzi equations follow from taking the
commutator:

R(9;, 0})0k = (*ViKy—2VKi)n+ (] R™ jic+ K K™ — Kik Ki'™) Om
(57)
@ Codazzi equation follows from taking an innerproduct with
ax™:
R™k =2 Rk + KixKi™ — KixK;™ (58)
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The Lagrangian

@ Lagrangian:

Lo= 3/ G[R- &~ 2v(o)] M2 =1 (59)

v—g=Nvh (60)
@ Contracting the Codazzi equation:

R=%R+KjK! - K? (61)
@ Action becomes:

S = ;/d“)(\/ﬁ/\/' [3R+ Kinij_KZ_’_N*Zd)Z_ZV((ﬁ)}
(62)
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Constraints/ Dynamical EOM’s

S— ;/d‘*xﬁj\/’ [3R+ KiK" — K2 + N 7242 — 2V(¢)}
Where:

1 .
K,'/' = é./\/_1 [h/j -3 VjM -3 V]./\/’,} (63)

@ N and N are indeed unphysical and correspond to
constraints:

5L 5L 4 o 1n
S =3 Ry KK K2 _2V(4) =
™= S 0= = +Kj N1 (¢) =0
(64)

_ 9L _ ki — sig] —
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Canonical Momentum/ Hamiltonian Density

S_ ;/d“xxfh/\/ [3R+ KiKT — K2 + N2¢2 — 2V(¢)}
Where:
1 .
Kj= 5N [hy =2 Vij =2 V] (66)

@ Canonical momentum to hj:

i 0L _ Vh(K" — Khf) (67)
ohy

@ Hamiltonian Density (Quantum Gravity):

He =7"hj— Lg (68)
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Fixing the Gauge/ Solving Constraints

@ Fixing the Gauge, modes decouple in second order:
hj=a[(1+20)d+~] 9ny=0 =0 (69
@ Solving the constraints and expanding upto second order:
/ dix ae(1 ) [—acP¢ —2(007 - 2vePe]
1 : :
+ ™ |-6(H+ ()P + | (70)
1+4

@ Using background EOM’s:

-5 [dxg [#E-aocr] @
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Equation of motion

@ Free Field Theory
@ Fourier Expansion:

W d(#E)
E:_T_amk@_ (73)

@ Quantization:

Gt = GR(Dal + ¢ (ha_g (74)
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Solving the EOM

@ Early Times = Large k = WKB approximation.
@ Late Times = Small k = Solutions go to a constant.
@ Example in de Sitter space (conformal time):

S= 2/772/_,2 [(anf) — (9f) (75)
@ Normalized Solution, n € (—o0,0).

fe! — ikn)e™* (76)

A
- V2k3
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The Correlation Function

o= (1~ ke

V2k3
@ Correlation Function:

< 0lf()F, ()]0 > = (2m)353(k + K')|£%(n) 2
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In Slow Roll Inflation

@ We can approximate the solution in inflation, near horizon
crossing by the de Sitter solution. We let:

_®
f= o (78)
@ Substitution in the previously obtained solution:
1 H
<O (N¢a (D0 >~ 555 (79)

2K3 ¢%
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(Deviation from) Scale Invariance

@ Spectrum is nearly scale invariant (P ~ k—3).

@ Deviation from scale invariance is measured by ng:
1 H
2K3 g2 ™
@ At horizon crossing we have: aH ~ Kk so

In(k) = In(a) + In(H).

@ Calculation on the board leads to the deviation of scale
invariance in slow roll parameters:

< 0|¢x(1)Cz (8]0 >~ k=3t (80)

ns = 2(n — 3e¢) (81)
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