Large Scale Structure Formation

Misha Veldhoen

January 7, 2009

Outline

- Introduction
- 2 Hamiltonian Formalism
- 3 Electrodynamics
- Inflation
- Geometrodynamics
- **6** Correlation Functions
- Questions

What is Structure Formation?

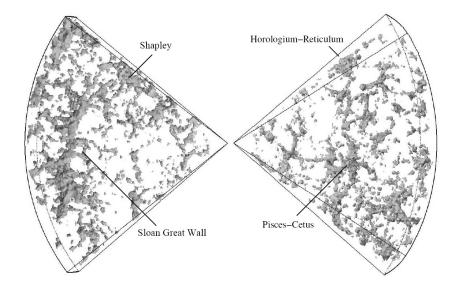
- Where do large structures in our universe come from?
- Quantum perturbations in an inflationary era.
- Initial conditions/ Today's observation

Intuitively: gravitational instability: overdense regions tend to grow.

$$\ddot{\delta} + [Pressure - Gravity] \delta = 0 \tag{1}$$

Typical overdensity: 1 in 10⁵.

2dF Galaxy Survey



What do we want to calculate? Part 1

How do (quantum) perturbations grow during inflation?

Obtain a classical field theory (GR + Inflation)

$$\mathcal{L}_{G} = \frac{1}{2}\sqrt{-g}\left[R - \partial_{\mu}\phi\partial^{\mu}\phi - 2V(\phi)\right] \qquad \qquad M_{PI}^{-2} = 1 \quad (2)$$

- Fixing the Gauge by going to ADM Formalism (splitting space and time).
- Put restrictions on the metric (scalar mode).

What are we going to calculate? Part 2

- Find (perturbative) solutions, (up to second order).
- Different fourier modes $\delta(k, t)$
- Quantize the solutions.
- Calculate the powerspectrum.
 Powerspectrum:

$$<\delta(\vec{k})\delta(\vec{k}')>=(2\pi)^3P(\vec{k})\delta(\vec{k}-\vec{k}')$$
 (3)

- Hamiltonian formalism is closely related to ADM formalism
- Hamiltonian formalism naturally seperates physical/ unphysical degrees of freedom
- ADM formalism gives an intuitive interpretation.

Hamiltonian Formalism for a Field Theory 1

- 1) Split the Lorentzian manifold $\mathcal M$ into space and time, $\mathbb R \times S$.
 - $t \in \mathbb{R}$ is the time-parameter
 - Timelike vectorfield t^{α} flow of time

$$t^{\alpha}\nabla_{\alpha}t=1\tag{4}$$

• Spacelike submanifold $\Sigma_t \subset \mathcal{M}$, with a metric h_{ij} .

$$h_{ij}v^iv^j\geq 0 \qquad \forall v\in T_p\Sigma$$
 (5)

Hamiltonian Formalism for a Field Theory 2

- Σ_0 and Σ_t connected by t^{α} picture
- Timelike unit-vectorfield n^{α} , normal to Σ

$$g_{\mu\nu}n^{\mu}n^{\nu}=-1 \tag{6}$$

$$g_{\mu\nu}n^{\mu}v^{\nu}=0 \qquad \forall v\in T_{\rho}\Sigma \qquad (7)$$

• Decomposition of any vectorfield $v \in T_p \mathcal{M}$

$$v^{\alpha} = \underbrace{-(g_{\mu\nu}v^{\mu}n^{\nu})n^{\alpha}}_{\parallel} + \underbrace{(v^{\alpha} + (g_{\mu\nu}v^{\mu}n^{\nu})n^{\alpha})}_{\perp}$$
(8)

Hamiltonian Formalism for a Field Theory 3

- 2) Define a configuration space of (tensor) fields q, instantaneously describing the configuration of the field ψ .
- 3) Define corresponding momenta for the fields π .
- 4) Specify the functional $H[q, \pi]$ on Σ_t , called the Hamiltonian.

$$H = \int_{\Sigma_t} \mathcal{H} \tag{9}$$

Canonical Momentum:

$$\pi_k = \frac{\partial \mathcal{L}}{\partial \dot{q}_k} \tag{10}$$

Hamiltonian Density:

$$\mathcal{H}(q,\pi) = \sum_{i} \pi_{i} \dot{q}_{i} - \mathcal{L}$$
 (11)

Gauge Degrees of Freedom/ Singular Systems

Non invertible Hessian matrix:

$$H_{kl} \equiv \frac{\partial \pi_k}{\partial \dot{q}^l} = \frac{\partial^2 \mathcal{L}}{\partial \dot{q}^k \partial \dot{q}^l} \tag{12}$$

Hamiltonian for singular systems:

$$H = H_{can} + \sum_{n} \chi_{n} \phi_{n} \tag{13}$$

 Lagrangian multipliers follow from the projection of the field along the normal vector.

$$\phi_n = \frac{\delta H}{\delta \chi_n} \tag{14}$$

Dynamical Equations of Motion/ Fixing the Gauge

Dynamical equations follow from derriving w.r.t. physical variables:

$$\dot{q} \equiv \frac{\delta H}{\delta \pi} \tag{15}$$

$$\dot{\pi} \equiv -\frac{\delta H}{\delta q} \tag{16}$$

• Choosing a gauge is equivalent to choosing a value for χ_n .

Maxwell Field Equations

Ordinary Maxwell field equations (c = 1):

Constraint Equations (2):

$$\vec{\nabla} \cdot \vec{E} = 0 \qquad \qquad \vec{\nabla} \cdot \vec{B} = 0 \tag{17}$$

Dynamical Equations (2):

$$\vec{\nabla} \times \vec{E} = \partial_t \vec{B} \qquad \qquad \vec{\nabla} \times \vec{B} = \partial_t \vec{E} \qquad (18)$$

EM Lagrangian

• EM Lagrangian:

$$\mathcal{L}_{EM} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} = -\frac{1}{4} \left(\partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} \right) \left(\partial^{\mu} A^{\nu} - \partial^{\nu} A^{\mu} \right) \tag{19}$$

• A^{μ} describes the system instantaneously (q).

$$n^{\alpha} = (1, 0, 0, 0) \tag{20}$$

$$\eta_{\mu\nu} = diag(-1, 1, 1, 1)$$
(21)

Decomposing A^μ:

$$A^{\alpha} = \underbrace{-(\eta_{\mu\nu}A^{\mu}n^{\nu})n^{\alpha}}_{\perp} + \underbrace{(A^{\alpha} + (\eta_{\mu\nu}A^{\mu}n^{\nu})n^{\alpha})}_{\parallel}$$
$$= (V, \vec{A})$$
(22)

New Variables/ Cannonical Momenta

• The Lagrangian in the projected variables:

$$\mathcal{L}_{EM} = \frac{1}{2} \left(\dot{\vec{A}} + \vec{\nabla} V \right)^2 - \frac{1}{2} \left(\vec{\nabla} \times \vec{A} \right)^2 = \frac{1}{2} \vec{E}^2 - \frac{1}{2} \vec{B}^2 \quad (23)$$

Unphysical variable (normal projection):

$$\pi_{V} = \frac{\partial \mathcal{L}}{\partial \dot{V}} = 0 \tag{24}$$

Physical Variable (projection on the plane):

$$\pi_{\vec{A}} = \frac{\partial \mathcal{L}}{\partial \vec{A}} = \dot{\vec{A}} + \vec{\nabla} V \equiv -\vec{E}$$
 (25)

EM Hamiltionian/ Equations of Motion

• EM Hamiltonian:

$$\mathcal{H}_{EM} = \vec{\pi} \cdot \dot{\vec{A}} - \mathcal{L}_{EM} = -\vec{E} \cdot \left(-\vec{E} - \vec{\nabla} V \right) - \frac{1}{2} \vec{E}^2 + \frac{1}{2} \vec{B}^2$$

$$= \frac{1}{2} \vec{\pi} \cdot \vec{\pi} + \frac{1}{2} \vec{B} \cdot \vec{B} - \vec{\pi} \cdot \vec{\nabla} V$$

$$= \frac{1}{2} \vec{\pi} \cdot \vec{\pi} + \frac{1}{2} \vec{B} \cdot \vec{B} + V (\vec{\nabla} \cdot \vec{\pi}) - \vec{\nabla} \cdot (V \vec{\pi})$$
(26)

Constraint Equations:

$$\frac{\delta H_{\text{EM}}}{\delta V} = \vec{\nabla} \cdot \vec{E} \tag{27}$$

Dynamical Equations

$$\dot{\vec{A}} = \frac{\delta H_{EM}}{\delta \vec{\pi}} = \vec{\pi} - \vec{\nabla} V = -\vec{E} - \vec{\nabla} V \tag{28}$$

$$\dot{\vec{\pi}} = -\dot{\vec{E}} = -\frac{\delta H_{EM}}{\delta \vec{A}} = -\vec{\nabla} \times (\vec{\nabla} \times \vec{A})$$
 (29)

Fixing the Gauge

• The Gauge invariance of the theory is:

$$\vec{A} \rightarrow \vec{A} + \vec{\nabla}\lambda$$
 $V \rightarrow V - \frac{\partial \lambda}{\partial t}$ (30)

 Fixing the Gauge is done by fixing the Lagrangian multiplier!

What is Inflation?

Consider perturbations in an expanding background.

$$ds^{2} = -dt^{2} + a^{2}(t) dx_{i} dx^{i}$$
 (31)

The condition for an accelerated inflation is:

$$\frac{\partial^2 a}{\partial t^2} > 0 \tag{32}$$

Second Friedman equation:

$$\frac{\ddot{a}}{a} = -\frac{4\pi G_N}{3c^2} \left(\rho + 3\rho\right) + \frac{\Lambda}{3} \tag{33}$$

Condition becomes:

$$p < -\frac{\rho}{3} \tag{34}$$

Scalar Field Inflation 1

Action for a time dependent Scalar field:

$$S = -\frac{1}{2} \int d^4x a(t)^3 \left[g^{tt} (\partial_t \phi) (\partial_t \phi) + 2V(\phi) \right]$$
 (35)

$$\delta_{\phi} S = -\frac{1}{2} \int d^4 x a(t)^3 \left[-2(\partial_t \phi)(\partial_t \delta \phi) + 2 \frac{\partial V}{\partial \phi} \delta \phi \right]$$
 (36)

$$\delta_{\phi} S = -\int d^4 x a(t)^3 \left[\partial_t^2 \phi + 3 \frac{\dot{a}(t)}{a(t)} \partial_t \phi + \frac{\partial V}{\partial \phi} \right] \delta \phi$$
 (37)

$$0 = \ddot{\phi} + 3H\dot{\phi} + \frac{\partial V(\phi)}{\partial \phi} \tag{38}$$

Scalar Field Inflation 2

Energy and Pressure:

$$\rho = \frac{1}{2}\dot{\phi}^2 + V(\phi) \qquad p = \frac{1}{2}\dot{\phi}^2 - V(\phi)$$
 (39)

First Friedmann equation:

$$H^{2} = \frac{1}{3M_{Pl}^{2}}(\rho) = \frac{1}{3M_{Pl}^{2}} \left(\frac{1}{2}\dot{\phi}^{2} + V(\phi)\right)$$
(40)

Slow Roll parameters, satisfied for slow roll approximation:

$$H^2 \simeq rac{V}{3M_{pl}^2} \qquad 3H\dot{\phi} \simeq V'$$
 (41)

$$\epsilon \equiv \frac{M_{Pl}^2}{2} \left(\frac{V'}{V}\right)^2 \qquad \eta \equiv \frac{M_{Pl}^2 V''}{V} \tag{42}$$

Einstein Field Equations

• The Vacuum Einstein Field Equations read:

$$G_{\mu\nu} = R_{\mu\nu} - Rg_{\mu\nu} = 0 \tag{43}$$

- Hard to extract physics from it.
- Field variable is $g_{\mu\nu}$, 10 equations, 6 dynamical, 4 constraints, space-time splitting makes this easy to see.
- Reparameterising $(g_{\mu\nu}) \Rightarrow (^{(3)}h_{ij}, \mathcal{N}_i, \mathcal{N})$

ADM Formalism/ How to split the Metric

Spacetime interval:

$$ds^2 = g_{\mu\nu} dx^{\mu} dx^{\nu} \tag{44}$$

In the new variables

$$ds^{2} = -\mathcal{N}^{2}dt^{2} + h_{ij}\left(dx^{i} + \mathcal{N}^{i}dt\right)\left(dx^{j} + \mathcal{N}^{j}dt\right)$$
(45)

Metric:

$$g_{\mu\nu} = \begin{bmatrix} -\mathcal{N}^2 + \mathcal{N}^k \mathcal{N}_k & \mathcal{N}_j \\ \mathcal{N}_i & h_{ij} \end{bmatrix}$$
(46)

• $\mathcal N$ and $\vec{\mathcal N}$ will be the nonphysical parameters, and appear as Largrangian multipliers. (like V)

Decomposition of t^{α} **/ Shift Vector/ Lapse Function**

• Decomposition of t^{α} is non-trivial:

$$t^{\alpha} = \underbrace{-(g_{\mu\nu}t^{\mu}n^{\nu})n^{\alpha}}_{\perp} + \underbrace{(t^{\alpha} + (g_{\mu\nu}t^{\mu}n^{\nu})n^{\alpha})}_{\parallel}$$
(47)

Lapse Function

$$\mathcal{N} = -(g_{\mu\nu}t^{\mu}n^{\nu})n^{\alpha} \tag{48}$$

Shift Vector

$$\vec{\mathcal{N}} = (t^{\alpha} + (g_{\mu\nu}t^{\mu}n^{\nu})n^{\alpha}) \tag{49}$$

Rewriting the Lagrangian

Lagrangian:

$$\mathcal{L}_{G} = \frac{1}{2}\sqrt{-g}\left[R - \partial_{\mu}\phi\partial^{\mu}\phi - 2V(\phi)\right] \qquad \qquad M_{Pl}^{-2} = 1$$
(50)

What do we need to do?

- Rewrite the Ricci scalar, in terms of the Ricci scalar of the sub-manifold Σ and the way it's embedded in \mathcal{M} .
- Rewrite the determinant of g in terms of the determinant of h and the lapse function.

Covariant Derivative/ Intrinsic/ Extrinsic Curvature

Covariant Derivative:

$$\nabla_{\boldsymbol{u}}\boldsymbol{v}^{\mu} = \underbrace{-g_{\alpha\beta}(\nabla_{\boldsymbol{u}}\boldsymbol{v}^{\alpha},\boldsymbol{n}^{\beta})\boldsymbol{n}^{\mu}}_{\perp} + \underbrace{(\nabla_{\boldsymbol{u}}\boldsymbol{v}^{\mu} + g_{\alpha\beta}(\nabla_{\boldsymbol{u}}\boldsymbol{v}^{\alpha},\boldsymbol{n}^{\beta})\boldsymbol{n}^{\mu})}_{\parallel}$$
(51)

 $u, v \in Vect(\Sigma)$

• Extrinsic Curvature \Rightarrow Variation of tensor field. n^{α} normal to Σ_t

$$\nabla_{\boldsymbol{u}} \boldsymbol{v} = K(\boldsymbol{u}, \boldsymbol{v}) \boldsymbol{n} + ^{3} \nabla_{\boldsymbol{u}} \boldsymbol{v} \tag{52}$$

- Intrinsic Curvature \Rightarrow Riemann tensor \Rightarrow $[\nabla_{\alpha}, \nabla_{\beta}]$
- Intrinsic Curvature of Σ and \mathcal{M} are related through the Extrinsic curvature!

Extrinsic curvature

• Extrinsic curvature was not what we expected:

$$-g_{\alpha\beta}(\nabla_{\boldsymbol{u}}\boldsymbol{v}^{\alpha},\boldsymbol{n}^{\beta})\boldsymbol{n}^{\mu} = (K_{ij}\boldsymbol{u}^{i}\boldsymbol{v}^{j})\boldsymbol{n}^{\mu} = K(\boldsymbol{u},\boldsymbol{v})\boldsymbol{n}^{\mu}$$
 (53)

Metric compatebility:

$$0 = \nabla_{\mathbf{u}}(g_{\alpha\beta}\mathbf{n}^{\alpha}\mathbf{v}^{\beta}) = g_{\alpha\beta}(\nabla_{\mathbf{u}}\mathbf{v}^{\alpha}, \mathbf{n}^{\beta}) + g_{\alpha\beta}(\mathbf{v}^{\alpha}, \nabla_{\mathbf{u}}\mathbf{n}^{\beta})$$
(54)

• Intuitive picture of Extrinsic Curvature:

$$K(u,v) = g_{\alpha\beta}(v^{\alpha}, \nabla_{\mathbf{u}} n^{\beta}) \tag{55}$$

Intrinsic Curvature

- Take a point $p \in \Sigma$, local coordinates (x^0, x^1, x^2, x^3)
- $x^0 = t$, $\partial_0 = \partial_t$ and $\partial_1, \partial_2, \partial_3$ are tangent to Σ at p.
- Riemann tensor:

$$R^{\alpha}_{ijk} = R(\partial_i, \partial_j) \partial_k dx^{\alpha} = \left[\nabla_i, \nabla_j \right] \partial_k dx^{\alpha}$$
 (56)

Gauss-Codazzi equations follow from taking the commutator:

$$R(\partial_i, \partial_j)\partial_k = ({}^3\nabla_i K_{jk} - {}^3\nabla_j K_{ik})n + ({}^3R^m_{ijk} + K_{jk}K_i^m - K_{ik}K_j^m)\partial_m$$
(57)

 Codazzi equation follows from taking an innerproduct with dx^m:

$$R^{m}_{ijk} = {}^{3}R^{m}_{ijk} + K_{jk}K_{i}^{m} - K_{ik}K_{j}^{m}$$
 (58)

The Lagrangian

Lagrangian:

$$\mathcal{L}_G = \frac{1}{2}\sqrt{-g}\left[R - \dot{\phi}^2 - 2V(\phi)\right]$$
 $M_{Pl}^{-2} = 1$ (59)

$$\sqrt{-g} = \mathcal{N}\sqrt{h} \tag{60}$$

Contracting the Codazzi equation:

$$R = {}^{3}R + K_{ij}K^{ij} - K^{2}$$
 (61)

• Action becomes:

$$S = \frac{1}{2} \int d^4x \sqrt{h} \mathcal{N} \left[{}^3R + K_{ij}K^{ij} - K^2 + \mathcal{N}^{-2}\dot{\phi}^2 - 2V(\phi) \right]$$
(62)

Constraints/ Dynamical EOM's

$$S=rac{1}{2}\int d^4x \sqrt{h} \mathcal{N}\left[{}^3R+K_{ij}K^{ij}-K^2+\mathcal{N}^{-2}\dot{\phi}^2-2V(\phi)
ight]$$

Where:

Introduction

$$K_{ij} = \frac{1}{2} \mathcal{N}^{-1} \left[\dot{h}_{ij} - {}^{3} \nabla_{i} \mathcal{N}_{j} - {}^{3} \nabla_{j} \mathcal{N}_{i} \right]$$
 (63)

• \mathcal{N} and \mathcal{N}_i are indeed unphysical and correspond to constraints:

$$\pi_{\mathcal{N}} = \frac{\delta \mathcal{L}}{\delta \dot{\mathcal{N}}} = 0 \Rightarrow \frac{\delta \mathcal{L}}{\delta \mathcal{N}} = {}^{3}R + K_{ij}K^{ij} - K^{2} - \mathcal{N}^{-1}\dot{\phi}^{2} - 2V(\phi) = 0$$

$$\pi_{\mathcal{N}_{i}} = \frac{\delta \mathcal{L}}{\delta \dot{\mathcal{N}}_{i}} = 0 \Rightarrow \nabla_{i}\left[K_{j}^{i} = \delta_{j}^{i}E\right] = 0$$
(64)

Canonical Momentum/ Hamiltonian Density

$$S=rac{1}{2}\int d^4x \sqrt{h} \mathcal{N}\left[{}^3R+K_{ij}K^{ij}-K^2+\mathcal{N}^{-2}\dot{\phi}^2-2V(\phi)
ight]$$

Where:

$$K_{ij} = \frac{1}{2} \mathcal{N}^{-1} \left[\dot{h}_{ij} - {}^{3} \nabla_{i} \mathcal{N}_{j} - {}^{3} \nabla_{j} \mathcal{N}_{i} \right]$$
 (66)

Canonical momentum to h_{ij}:

$$\pi^{ij} = \frac{\partial \mathcal{L}}{\partial \dot{h}_{ij}} = \sqrt{h}(K^{ij} - Kh^{ij})$$
 (67)

Hamiltonian Density (Quantum Gravity):

$$\mathcal{H}_G = \pi^{ij} \dot{h}_{ij} - \mathcal{L}_G \tag{68}$$

Fixing the Gauge/ Solving Constraints

• Fixing the Gauge, modes decouple in second order:

$$h_{ij} = a^2 \left[(1 + 2\zeta)\delta_{ij} + \gamma_{ij} \right] \qquad \partial_i \gamma_{ij} = 0 \qquad \gamma_{ii} = 0 \quad (69)$$

Solving the constraints and expanding upto second order:

$$S = \frac{1}{2} \int d^4x \, a \, e^{\zeta} (1 + \frac{\dot{\zeta}}{H}) \left[-4\partial^2 \zeta - 2(\partial \zeta)^2 - 2 V a^2 e^{2\zeta} \right]$$

$$+ a^3 e^{3\zeta} \frac{1}{1 + \frac{\dot{\zeta}}{H}} \left[-6(H + \dot{\zeta})^2 + \dot{\phi}^2 \right]$$
 (70)

Using background EOM's:

$$S = \frac{1}{2} \int d^4x \frac{\dot{\phi}}{H^2} \left[a^3 \dot{\zeta}^2 - a (\partial \zeta)^2 \right]$$
 (71)

Equation of motion

- Free Field Theory
- Fourier Expansion:

$$\zeta(t,x) = \int \frac{d^3k}{(2\pi)^3} \zeta_k(t) e^{i\vec{k}\cdot\vec{x}}$$
 (72)

Equation of Motion:

$$\frac{\delta L}{\delta \zeta} = -\frac{d\left(a^3 \frac{\dot{\phi}}{H^2} \dot{\zeta}_k\right)}{dt} - a \frac{\dot{\phi}}{H^2} k^2 \zeta_k = 0 \tag{73}$$

Quantization:

$$\hat{\zeta}_{\vec{k}}(t) = \zeta_k^{cl}(t)\hat{a}_{\vec{k}}^{\dagger} + \zeta_k^{cl*}(t)\hat{a}_{-\vec{k}}$$
 (74)

Solving the EOM

$$\frac{\delta L}{\delta \zeta} = -\frac{d\left(a^3 \frac{\dot{\phi}}{H^2} \dot{\zeta}_k\right)}{dt} - a \frac{\dot{\phi}}{H^2} k^2 \zeta_k = 0$$

- Early Times ⇒ Large k ⇒ WKB approximation.
- Late Times \Rightarrow Small k \Rightarrow Solutions go to a constant.
- Example in de Sitter space (conformal time):

$$S = \frac{1}{2} \int \frac{1}{\eta^2 H^2} \left[(\partial_{\eta} f)^2 - (\partial f)^2 \right]$$
 (75)

• Normalized Solution, $\eta \in (-\infty, 0)$.

$$f_k^{cl} = \frac{H}{\sqrt{2k^3}} (1 - ik\eta) e^{ik\eta} \tag{76}$$

The Correlation Function

$$f_k^{cl} = \frac{H}{\sqrt{2k^3}}(1 - ik\eta)e^{ik\eta}$$

Correlation Function:

$$<0|\hat{f}_{\vec{k}}(\eta)\hat{f}_{\vec{k'}}(\eta)|0> = (2\pi)^{3}\delta^{3}(\vec{k}+\vec{k'})|f_{\vec{k}}^{cl}(\eta)|^{2}$$

$$= (2\pi)^{3}\delta^{3}(\vec{k}+\vec{k'})\frac{H^{2}}{2k^{3}}(1+k^{2}\eta^{2})$$

$$\sim (2\pi)^{3}\delta^{3}(\vec{k}+\vec{k'})\frac{H^{2}}{2k^{3}}$$
(77)

In Slow Roll Inflation

 We can approximate the solution in inflation, near horizon crossing by the de Sitter solution. We let:

$$f = \frac{\dot{\phi}}{H} \zeta \tag{78}$$

Substitution in the previously obtained solution:

$$<0|\zeta_{\vec{k}}(t)\zeta_{\vec{k}'}(t)|0>\sim \frac{1}{2k^3}\frac{H_*^4}{\phi_*^2}$$
 (79)

(Deviation from) Scale Invariance

- Spectrum is nearly scale invariant ($P \sim k^{-3}$).
- Deviation from scale invariance is measured by n_s:

$$<0|\zeta_{\vec{k}}(t)\zeta_{\vec{k}'}(t)|0>\sim \frac{1}{2k^3}\frac{H_*^4}{\phi_*^2}\sim k^{-3+n_s}$$
 (80)

- At horizon crossing we have: $aH \sim k$ so ln(k) = ln(a) + ln(H).
- Calculation on the board leads to the deviation of scale invariance in slow roll parameters:

$$n_{s} = 2(\eta - 3\epsilon) \tag{81}$$

Questions?

Questions?