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1 Introduction

1 Introduction

As much as physics has advanced in the 20th century and the beginning of the
current one, reaching astounding accuracy when comparing modern theories to
experimental results, we can still not account for what seems to be 75% of the
energy budget of the universe (see figure 1), and hence its somewhat mystic name
Dark Energy. If we consider for a moment the remaining 25%, about 80% of that
is dark matter of which we also do not know very much yet. Actually, since the
remaining 20% of that remaining energy is baryonic matter, of which a complete
baryogenesis theory is yet to be developed, we are pretty much left with 5× 10−5 of
the energy budget, radiation, which is well understood. Since photons are neutral,
it does not have an anti-partner, and thus no asymmetry must be explained.

The above knowledge of the division of energy between the various compo-
nents of the universe has been obtained by fairly recent experiments. Specifi-
cally, the dark energy density follows from recent Type Ia Supernovae and CMBR
Anisotropies observations, which show that the universe is flat (or very close to be-
ing flat) and accelerating. This, of course, requires some fundamental assumptions
about the universe in which we live in:

1 It obeys Einstein’s theory of General Relativity

2 It is homogeneous and isotropic on cosmological scale

These findings, it will be shown later, imply this vast amount of unexplained en-

Figure 1: Energy budget of the current universe
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1.1 Brief review of General Relativity

ergy. The simplest and so far most successful explanation of dark energy is the
Cosmological Constant. This is a term that can be added to Einstein’s equations,
in their most general form, and which manages to account for this energy and it’s
properties, up to the error bars of current measurements. Unfortunately, there are
some fundamental problems with this constant which will be discussed later on.

After a brief review of Einstein’s theory applied to cosmology, this paper will
describe in detail the method and results of the aforementioned experiments; fol-
lowed by a discussion on vacuum energy, a possible explanation for this energy; and
lastly a short review of Quintessence, an alternative to the cosmological constant

1.1 Brief review of General Relativity

According to Einstein’s theory of general relativity, the universe is a four dimen-
sional manifold upon which a metric gµν(x) is defined (for a full introduction to GR
see [1]). This metric is used to measure distances on the manifold, ds2 = gµν(x)xµxν .
This manifold, in the general case, is curved. The curvature is characterized by Rie-
mann’s tensor, Rρ

µσν , from which by contraction of the first and third indices we can
derive Ricci’s tensor, Rµν . Further contraction of the two remaining indices gives
rise to Ricci’s scalar R.

Having defined this manifold, we are ready to describe the dynamics of this sys-
tem. First, we must allow some matter to live on this manifold. To this end, we can
postulate some Lagrangian density describing some theory of matter. For this La-
grangian density to be compatible with General Relativity, the action derived from
it must be invariant to general coordinate transformations. This can be achieved
by replacing the normal four dimensional measure with an invariant one:

d4x→ d4x
√
−g (1)

where g = detg(x). An action would now take the form:

Stheory =

∫
d4x
√
−gLtheory (2)

Varying this action by the various fields which make up the Lagrangian would
yield the normal equations of motion of these fields. In this case, the added

√
−g

term does not make a difference since it does not depend on the fields. But the
metric is in itself a dynamic field, and varying the action with respect to the metric
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1.2 The Cosmological Constant

gives rise to the matter energy momentum tensor which will shortly become part
of Einstein’s equations:

Tµν = − 2√
−g

δ

δgµν(x)
Stheory (3)

Having described the matter in our theory using Lagrangian formalism, we
seek a Lagrangian description of the curvature of the manifold. The Ricci scalar
is the only independent scalar which is constructed from the metric, and has a
maximum of second order derivatives of the metric. Hilbert suggested this to be
the Lagrangian describing curvature. Putting this into an action and varying it
gives:

1√
−g

δ

δgµν(x)
SHilbert =

1√
−g

δ

δgµν(x)

∫
d4x′
√
−g 1

16πG
R =

1

16πG

(
Rµν −

1

2
Rgµν

)
(4)

Finally, summing up the Hilbert Lagrangian and the Lagrangian describing
matter, and varying it with respect to the metric, gives Einstein’s equations:

Rµν −
1

2
Rgµν = 8πGTµν (5)

Einstein’s equations determine the interaction between matter described by the
fields in Tµν and the metric which describes the curvature of the manifold. Matter
curves space-time, and curvature of space-time causes matter to evolve.

1.2 The Cosmological Constant

Actually, (5) is not the most general form we can achieve. A constant can be added
to either the Hilbert Lagrangian or to the matter Lagrangian (conventionally with
a factor 1

8πG
). This constant, Λ, has been christened the Cosmological Constant,

and appears as an additive constant in the modified Einstein’s equations:

Rµν −
1

2
Rgµν + Λgµν = 8πGTµν (6)

In this form of writing, it is as if the cosmological constant is an additional term
in the Einstein tensor (Gµν = Rµν − 1

2
Rgµν). It can be interpreted as an additional
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1.3 Friedmann’s Equations and an Accelerating Universe

constant of nature which afflicts the universe with an intrinsic curvature, since
the Minkowski metric is not a solution to Einstein’s equations in vacuum for a
non-zero cosmological constant. An alternative interpretation would be to move
this constant to the other side of the equation:

Rµν −
1

2
Rgµν = 8πGTµν − Λgµν (7)

In this form, the cosmological constant becomes part of the energy-momentum
tensor, and must be explained by the matter theory. It is interesting to note that in
flat space physics, a constant added to a Lagrangian has no physical effects since it
does not appear in the equations of motion. In curved space, because of the factor√
−g appearing in front of the Lagrangian, it does appear in Einstein’s equations

and contributes to the interaction between matter and space-time.

1.3 Friedmann’s Equations and an Accelerating Universe

The common cosmological model assumes a homogeneous and isotropic universe.
Under these assumptions, the form of the metric is highly constrained, and reduces
to only one free function of the coordinate t.

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2θdφ2)

]
(8)

a(t) is called the scale factor of the universe and characterizes its size (and hence
its evolution). k is the curvature of the universe. Its possible values are -1,0 or
1, corresponding to an open, flat or closed universe, respectively. This form of the
metric is called the Robertson-Walker metric.

In addition, the energy-momentum tensor, when forced to be homogeneous and
isotropic in its rest frame, takes the much simplified form of a perfect fluid:

T µν = diag(−ρ, p, p, p) (9)

When inserted into Einstein’s equations, one gets two independent equations,
these are Friedmann’s equations:

5



1.4 A brief history of the cosmological constant

H2 ≡
(
ȧ

a

)2

=
8πG

3
ρ+

Λ

3
− k

a2
(10)

ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
(11)

In addition, conservation of the energy momentum tensor yields a third equa-
tion which turns out to be dependent on the two Friedmann equations:

ρ̇+ 3
ȧ

a
(ρ̇+ p) = 0 (12)

A quick glance at (11) shows us that in order to have an accelerating universe,
we must either have a non-zero cosmological constant or some other form of a per-
fect fluid with negative pressure obeying p < −1

3
ρ. We can choose to treat the

cosmological constant as a perfect fluid with TΛ
µν = −ρΛgµν , in this case we get that

its pressure is p = −ρ. Any one of these forms of matter is known as Dark Energy.

As a final note on the Friedmann equations, by dividing by H2 the first equation
can be rewritten as:

1 = Ωi + ΩΛ + Ωk

Ωi =
8πG

3H2
ρi, ΩΛ =

Λ

3H2
, Ωk =

−k
a2H2

Ωk is the energy density of k divided by the critical density ρcritical = 3H2

8πG
, the

energy density at which the universe is flat. Given a specific curvature k of the
universe, this equation becomes a constraint on the sum of energy densities of the
various matter components of the universe.

1.4 A brief history of the cosmological constant

To end this introduction we give a brief review of the history of the cosmological
constant [2]. Einstein was the first to postulate the existence of such a constant.
At his times, it was believed (and fitted observations at the time) that the universe
was static and positively curved. Since his original equations did not allow such a
universe, he added the cosmological constant and forced it to have the right value
to make the right hand side of (11) vanish. The right hand side of (10) could then
be brought to vanish by a proper choice of the scale factor.
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1.4 A brief history of the cosmological constant

In 1929 Hubble formulated the Hubble law and showed that it fits the redshift
data collected up until then. His law stated that the speed at which galaxies re-
treat from us is proportional to their distance from us. Assuming the Copernican
principle, this pointed at an expanding universe. Einstein then was happy to drop
the cosmological constant, a constant he was uncomfortable with in the first place.

Along the years, the cosmological constant was brought back into play several
times to accommodate new observations. The last of these times was after the re-
cent discovery that our universe is accelerating. The following chapter will describe
the two experiments leading to this phenomenal conclusion.
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2 Experimental Evidence

2 Experimental Evidence

Recent observations of Type Ia Supernovoae and of the CMBR radiation strongly
support a picture of a flat universe with a fair amount of Dark Energy causing
it to accelerate. At the same time, these observations clearly leave out the possi-
bility of a matter dominated universe as was previously believed to be the case.
In this section we discuss the method used to extract this information from these
observations.

2.1 Luminosity distance and angular-diameter distance

First we must introduce two useful quantities, luminosity distance and angular-
diameter distance (see for example [3]). The luminosity distance can be best un-
derstood if we first consider a static flat universe. We then define the luminosity
distance dL by (see also figure 2(a)):

F =
S

4πd2
L

(13)

where S is the total energy per unit time emitted by some source of radiation, and
L is the flux (energy per unit time per unit area) of energy received by a detector at
a distance dL. Now we can generalize this definition to an arbitrary universe (pos-
sibly non-flat) with a scale factor a(t). Recall that the scale factor of the universe at
a certain time in history can be related to the redshift of radiation emitted at that
time and received today by:

z =
a(0)

a(t)
− 1 (14)

(a) luminosity distance (b) angular-diameter distance

Figure 2
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2.2 Type Ia Supernovae

where usually we set a(0) = 1. If we then use the definition (13) in the general case,
then dL is not equal to the comoving distance r anymore as it would in the above
static case. We must take two factors into account: i. the photons are redshifted
(for an expanding universe), and so the energy detected is scaled down by a factor
a(0)
a(t)

, ii. the rate of received photons is scaled down by the same factor compared to
the rate of emitted photons because physical distances change with time. In total
we get that:

dL =
r

a(z)
= r(1 + z) (15)

where r is the comoving coordinate first appearing in (8). Its intuitive meaning is
that if we could freeze the universe at a moment t and stretch a ruler between two
points, the distance would be a(t)r.

The luminosity distance is used for measuring distances between us and point
objects in the sky. If, on the other hand, we measure the distance to an object with
a finite measurable size, it is common to use the angular-diameter distance. In
figure 2(b) we see an object of absolute length l, which is the quantity we would
like to calculate. When observed, this object has an angular opening of θ. In static
and flat space, these two quantities are related to the distance dA of that object
from us by:

θ =
l

dA
(16)

Again we generalize this relation to the general case. In this case, we would
just have to re-scale the comoving coordinate r by the scale factor of the universe
at the time light emitted from the far object reaches us today:

dA = r × a(t) =
r

1 + z
(17)

where again we took a(0) = 1.

2.2 Type Ia Supernovae

In the end of the 90’s, two separate teams were collecting observations of distant
Type Ia Supernovae (see [4], [5], [3] for reviews) . The Supernova Cosmology
Project published its results first in 1997 [6], and the High-Z Supernova Team
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2.2 Type Ia Supernovae

collaboration in 1998 [7]. These observations showed with high confidence that the
universe was in fact accelerating, i.e. contains a dark energy component.

Type Ia Supernovae provide a good standard candle for measuring distances.
These occur when a white dwarf, supported mostly by electron degeneracy pres-
sure, accretes matter (e.g. from an explosion of a partner star) and passes the
Chandrasekhar limit. At this stage the gravitational force becomes too large and
the star begins to collapse rapidly. Within seconds a large part of the matter in the
star undergoes fusion, and the star explodes from the burst of energy released. Be-
cause of the standard explosion mechanism, these explosions have a typical light
curve and can be rather easily identified and used as standard candles.

A large number of nearby supernovae lying in galaxies of known distance have
been measured in the past and have been found to have an almost constant bright-
ness. This is true up to about 40%. It has been found [8] that the decay time and
the peak intensity are correlated, and this correlation can be used to reduce the
40% uncertainty to 15% (and potentially introduce a systematic error to the data).
It has been more recently found [9, 10] that if the measurements are taken in the
infrared region, this uncertainty is reduced to 15% intrinsically. It is then assumed
that far away supernovae have the same brightness, and thus the absolute lumi-
nosity S from (13) is known, and the flux F is measured, hence dL is known for
every supernova event.

We would now like to use this data to calculate the parameters characterizing
our universe. We assume that the universe is dominated by two types of energy,
non-relativistic matter characterized by the density ρM and a cosmological constant
Λ (see (13)). While other models of dark energy can be used, in this description we
will suffice with a cosmological constant. Using the two Friedmann equations (13)
and (11), we can calculate the evolution of the scale factor a(t) for this model. We
then follow the path of a photon emitted from the supernova and detected on earth
today by following a null geodesic, ds2 = 0. We integrate along the geodesic from
emission time t to current time t0, both along the time coordinate and along the
comoving coordinate:

∫ t0

t

dt′

a(t′)
=

∫ r

0

dr

(1− kr2)1/2
(18)

The right hand side is a straightforward integral depending on the assumed
curvature of the universe. The left hand side depends on the model used. The result
is a function r(z), z being the observed redshift. Using our model, the theoretical
luminosity distance is:
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2.2 Type Ia Supernovae

dL = r(1 + z) = H−1
0

[
z +

1

2

(
1 + ΩDE −

1

2
ΩM

)
z2

]
+O(z3) (19)

where the right hand side was expanded in powers of z. Currently, supernovae
are observed with z above 1 and thus the exact right hand expression must be
used. This is done numerically. This function can be fitted to the data to obtain
the optimal values for the cosmological constant and the matter density. Figure
3 shows such a fit for 42 supernova events [6] with z < 1. The y-axis is plotted
in terms of the apparent magnitude m, a quantity proportional to the log of the
angular-diameter distance, defined by:

Figure 3: a model of a universe dominated by matter and cosmological constant fitted to
the Supernova Cosmology Project data
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2.2 Type Ia Supernovae

m−M = 5 log10

(
dL
Mpc

)
+ 25 (20)

where M is related to the absolute luminosity S in a logarithmic fashion. In this
figure, different models of a flat universe (ΩM + ΩΛ) are plotted. Figure 4, in turn,
shows the preferred values of ΩM and ΩΛ. We see that a flat universe with a zero
cosmological constant is ruled out with over 99% confidence. Actually it is fairly
safe to assume a non-zero cosmological constant. The data also allows a flat uni-
verse, in this case the universe is dominated by the cosmological constant by a
factor between 1 and 3. These are quite extraordinary results.

Before turning our attention to the CMBR result, which will prove to strengthen
this results and place further constrains, we will note a few drawbacks of these

Figure 4: range of values for cosmological constant density and matter density with confi-
dence level contours
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2.3 CMBR Anisotropies

measurements. First, as explained above, the supernova are standard candles
only up to about 15%. This uncertainty is taken into account in the Supernova
Cosmology Project data. Above that, all supernova used to calibrate the standard
candle are nearby supernovae, hence ”old” supernovae that occurred at a rather
aged universe. It is possible that there are evolution effects (mostly related to
metallic composition affecting brightness), and that younger supernovae observed
at higher redshifts will have different light curves, thus biasing our results. Cur-
rently there is no evidence to support this possibility, and it has been argued that
if such evolution effects exist, we should statistically see such younger supernovae
also in nearby galaxies.

One more drawback is possible obscuration by dust. Photons traveling through
long distances could be absorbed by dust particles on the way. This has been seen
to cause dimming and reddening of the incoming signals. Reddening is caused by
preferred absorption of the blue light. This effect could lead us to mistake the
reddening for redshift. This possibility has been disproved by recent observations
of supernovae at a distance of about z = 2. According to our model of matter and
cosmological constant, at z ' 1 the matter and cosmological constant are equally
abundant. We would then expect, according to the model, that at earlier times,
there will be a change in the curve. This change has been observed, and would not
have occurred if the reddening would have been caused by dust. So at this point,
these two effects are believed to be unimportant.

2.3 CMBR Anisotropies

The Cosmological Microwave Background Radiation is a remnant of the far history.
After inflation the universe was a thick fluid of ionized matter and radiation, thick
enough to have radiation be at thermal equilibrium with matter. As the universe
expanded and cooled down, at a calculated value of z = 1089, the electrons and pro-
tons recombined and the radiation decoupled from the matter. We believe this story
to be true because the radiation observed in the sky, almost perfectly isotropic, has
the most perfect black body radiation spectrum ever observed (or produced).

In 1992, NASA’s Cosmic Background Explorer (COBE satellite) was first to
observe deviations from perfect isotropy. More recent observation have been col-
lected (and still being collected) by NASA’s Wilkinson Microwave Anisotropy Probe
(WMAP) satellite [11], [12]. These are shown in figure 5. The graph shows the
amplitude of the l-th order Legendre function, when expanding the map of the sky
(a sphere) in spherical harmonics and averaging out the angle φ. This, then, gives
us a measure of the size of structures in the sky, where structures of angular size θ
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2.3 CMBR Anisotropies

are related to the l-th moment by θ ∼ π
l
. Peaks at moment l point at the abundance

of large structures with an angular opening of θ.

We will now try to better understand the origin of these deviations (see [3], [5],
[13]), and thus the structures which appear to have a typical size corresponding
to l ∼ 220 and higher harmonics (as seen from the resonances of the plot in figure
5). It is believed that inflation, by an exponential expansion of quantum fluctua-
tions, induced perturbations in the post-inflation fluid of matter and radiation that
are linear in the wave vector k. This means that if we Fourier transform the spa-
tial density of that fluid, we will see that all Fourier components have the same
amplitude. We will treat this state as our initial state.

Perturbations in the energy density of this fluid mean that some parts are
denser than others. These denser areas can be viewed as potential wells attract-
ing the matter around them. This attractive force has a tendency to make denser
areas yet denser. As a result, the pressure in these areas increases and opposes
the gravitational force. The compression and decompression of denser areas prop-
agates through the fluid in the form of sound waves with a speed of sound equal
approximately to:

cs =

√
dP

dρ
≈ c[3(1 + 3Ωb/4ΩR)]−1/2 (21)

Since the fluid is composed of non relativistic pressureless baryonic matter and
relativistic photons with an equation of state P = 1

3
ρ, most of the contribution to

Figure 5: WMAP observations of the CMBR anisotropies
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2.3 CMBR Anisotropies

Figure 6: an illustration of how an observer on earth would see the first fundamental
mode (picture courtesy of [13])

the speed of sound is attributed to the photons.

As argued above, inflation excited all modes (wavelengths) in the density per-
turbation, these modes oscillate with time. For simplicity, let us first consider the
case of a static fluid. The period of oscillation is related to the speed of sound and
the wave length by T = λ

cs
. Those modes with a period satisfying T = 2(tdec − tinfl)n

(”dec” for decoupling and ”infl” for end of inflation), for n being any positive integer,
will be at a maximum of oscillation at the time of recombination. Let us consider
the fundamental mode corresponding to n = 1. Assuming tinfl = 0, the period of
this mode is T = 2tdec, and the wavelength is λdec = 2tdeccs. Half the wavelength of
this mode is the farthest information could have traveled in the period of time tdec.
This is called the sound horizon. Below we will calculate the more realistic sound
horizon.

The CMBR anisotropies we observe in the sky today are a frozen image of that
time. The first peak (lowest l) observed in the spectrum, corresponds to the largest
structure in the sky, which in turn corresponds to this fundamental mode (see
figure 6). Since we know the time of decoupling, we know the size of this structure.

Recall now the angular-diameter distance defined in (16):

dA =
rs
θs

(22)

rs is the sound horizon in the realistic (dynamic universe) case, and can be calcu-
lated by propagating an acoustic wave through the fluid from the end of inflation
until recombination. The integral over time can be replaced by an integral over
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2.3 CMBR Anisotropies

the redshift by solving Friedmann’s equations for the fluid. The integral will then
also depend on the densities of the constituents of the fluid. Assuming a matter
dominated universe, the sound horizon is:

rs(zdec,Ωi) ≈
∫ tdec

0

csdt ≈
c/
√

3

H0

√
ΩM

∫ ∞
zdec

(1 + z)−5/2dz (23)

θs is what we observe, and thus what we would like to predict theoretically. To
accomplish that, we are only left with calculating the angular-diameter distance.
To do that, we first recall its relation to the comoving coordinate (17). The distance
in terms of the comoving coordinate can be calculated by following a path of a pho-
ton, similarly to what was done in the case of the supernova, only now integrating
from zdec until today z = 0. The angular-diameter distance (denoted as dsls in figure
6) is then:

dA =
rA

1 + zdec
≈ cΩ−mM

H0

(24)

where m = 1 for a model with a zero cosmological constant, and m ≈ 0.4 for a flat
universe obeying ΩM + ΩΛ = 1. We can now calculate the angular size of the object
using (22), or rather calculate the moment l of the fundamental corresponding to
this angle:

Figure 7: data points are from first results of MAXIMA and BOOMERANG experiments,
curves correspond to various models.
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2.3 CMBR Anisotropies

lpeak ≈
π

θs
≈ dA

rs
∝ Ω

−1/2
M if ΩΛ = 0

∝ Ω0.1
M if Ωk = 0 (25)

We see that if the universe is flat, the moment l is roughly constant, while for
a universe with zero cosmological constant there is a strong dependence on the
matter density.

A slightly more exact calculation would give us the actual value of l and that in
the case of a flat universe l is indeed constant:

lpeak ≈ 220Ω
−1/2
M for ΩDE = 0

≈ 220 for Ωk = 0. (26)

(a) (b)

(c) (d) (e)

Figure 8: WMAP 5-year results [12], except for 8(a) which is WMAP 3-year results [11]
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2.3 CMBR Anisotropies

Figure 7 shows us a comparison of different models to primary data collected
by MAXIMA and BOOMERANG data. We see how the first peak, corresponding
to the fundamental mode, moves to the left as the matter density increases for the
case of a zero cosmological constant universe. The case of a flat universe gives the
best fit. We have seen that in this case, the peak location will be the same for all
models as long as the sum of densities is 1.

This was an example of how information about the content of the universe can
be extracted from the measurements of the CMBR anisotropies. We saw that the
CMBR mostly constrains the universe to be flat. WMAP provides us with higher
quality results. Figures 8 show us constraints on the parameter space for different
combinations of parameters. Each figure contains the constraints based on WMAP
only results and a combination of WMAP with other experiments: Type Ia Super-
nova, Hubble Space Telescope and Baryon Acoustic Oscillations. In figure 8(a) we
see that the WMAP favors a flat universe, and together with the Superonova re-
sults we also get a good constraint on the densities of the cosmological constant
(around 0.7) and matter (around 0.3). Figures 8(c), 8(d), 8(e) allow the equation
of state of dark energy (P = wρ) to differ from that of the cosmological constant
(w = −1). Wee see that in all cases, w is constrained to be very close to -1. Fig-
ure 8(e) also constrains the derivative of w in the current universe. We see that
a zero derivative, which would then agree with a cosmological constant, fits the
constraints.

18



3 Vacuum Energy

3 Vacuum Energy

We have seen that the cosmological constant is consistent with experimental evi-
dence. Although being a simple and elegant solution to the problem of dark energy,
a few conceptual problems tag along with it. The main one being the question of its
origin. We have seen that this constant can be absorbed in the energy-momentum
tensor of Einstein’s equations, and if this tensor is taken to describe a perfect fluid
as in (9), then its equation of state will be:

pΛ = wΛρΛ = −ρΛ (27)

Experiments show that the cosmological constant energy density is positive,
implying a type of energy with negative pressure. Let us examine what this means.
Consider the equation for the relative geodesic acceleration:

∇ · g = −4πG(ρ+ 3p) (28)

This equation measures the gravitational attraction between two test particles
traveling along two nearby geodesics in the presence of matter with density ρ and
pressure p. We see that if the pressure becomes less than −1

3
ρ, i.e. dark energy, the

sign of the right hand side of (28) changes. Dark energy is thus a type of energy
with repulsive gravity. (28) is a Poisson equation (if g is conservative field), and
a positive sign on the right hand side is analogous to the electrostatic case of two
identically charged particles.

Since we try to derive the energy-momentum tensor from some field theory, a
constant term in a theory’s Lagrangian can be attributed to the contribution of the
vacuum energy [4]. Let us consider a few simple cases. If we take a classical scalar
field Lagrangian:

L =
1

2
gµν∂µφ∂νφ− V (φ) (29)

The energy density derived from this Lagrangian, under the assumption of a
homogeneous and isotropic universe, is:

ρ(φ(t)) =
1

2
φ̇2 + V (φ) (30)
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3.1 The Smallness Problem

The minimum value of this potential can be identified with the cosmological
constant:

ρΛ = Λ/(8πG) = Vmin (31)

In a quantum field theory, a constant contribution can be extracted from the
zero point energy 1

2
~ωk each mode k of the field contributes. The following summa-

tion over all modes would give us the total energy contribution of the zero point
energies:

ρvac =
1

2
~
∫ UV cutoff

IRcutoff

d3k
(2π)3

ωk ⇒ ρvac = ~
k4
cutoff

16π2
(32)

A UV-cutoff is necessary to prevent the integral from blowing up, and hints at
the fact that our theory can only be trusted up to certain energies above which we
would need a new theory (e.g. GUT). An IR-cutoff is necessary because the low
energy (or large distance) modes are affected by the dynamics of the scale factor
of the universe and are thus not constant. In simple models, it can be shown that
these modes do not contribute significantly to the above sum. It is not generally
known, though, what consequences the dynamics of the universe have on these
modes. We see then that the vacuum energy is proportional to the fourth power of
the cutoff momentum.

3.1 The Smallness Problem

We now reach the problem of the vacuum energy interpretation of the cosmological
constant. If, for example, we choose to trust our quantum theory up to the energy
corresponding to the reduced Planck mass MPl = (8πG)−1/2 ≈ 1018GeV , normally
believed to be the point where a quantum gravity theory becomes significant, then
vacuum energy takes the value:

ρ(Pl)
vac ≈ 10109J/m3 (33)

Compare this value to the measured value of the cosmological constant energy
density:

ρ
(obs)
Λ ≈ 10−11J/m3 (34)
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There is a 120 orders of magnitude discrepancy! To reduce our cut-off suffi-
ciently, we would have to assume that our theories are trustworthy only up to an
energy of 10−12GeV . This is an unreasonably low value, considering that parti-
cle accelerators today work at energies of hundreds of GeV. This is known as the
Smallness problem of the cosmological constant. Supersymmetry is one possible
theory that could resolve this problem. Fermions have a negative contribution to
the total vacuum energy. In non-supersymmetric theories it is unreasonable that
the fermions would exactly cancel the contributions of the bosons to give this small
number. In supersymmetry, every particle has a supersymmetric partner which
cancel each other. A breaking of this symmetry could theoretically explain the
small number. So far, though, no such symmetry has been found in nature.

3.2 The Casimir Effect

In classical physics and in quantum field theories in flat space it is known that the
vacuum energy does not have physical meaning since the it drops out of the equa-
tions of motion. It has been commented by many authors, though, that the vac-
uum energy does indeed exist as has been experimentally observed in the Casimir
Effect. Sean Carroll says in [4], ”...And the vacuum fluctuations themselves are
very real, as evidenced by the Casimir effect.” Steven Weinberg in turns says in
[14], ”Perhaps surprisingly, it was a long time before particle physicists began se-
riously to worry about (quantum zero-point fluctuation contributions in Λ) despite
the demonstration in the Casimir effect of the reality of zero-point energies”.

R.L. Jaffe argues in [15] that the Casimir Effect is not a proof of the reality of
vacuum energy fluctuations. The Casimir Effect is a force calculated and observed
between two parallel conducting plates in vacuum (see figure 9). The vacuum en-
ergy is summed over all space with the presence of the plates (which place bound-
ary conditions on the wave functions). The derivative of this energy with respect to
the distance between the plates is non-zero and gives an attractive force between
the plates:

Fc
A

= − ~cπ2

240a4
(35)

Jaffe argues that Casimir’s derivation, as described above, assumes that the
plates are ideal conductors and the boundary conditions are such that the waves
vanish on the edge of the plates. This is equivalent to taking the electromagnetic
coupling constant to infinity, and that is why the coupling constant does not appear
in the expression of the force. A more careful calculation shows that the force does
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depend on the coupling constant and thus cannot be a result of only vacuum fluctu-
ations which are a result of the free particle Lagrangian. In his paper, Jaffe shows
how this same result can be reached by summing over only Feynman diagrams
which are non-vacuum (have external legs). The above force is indeed reached
when taking the limit e→∞.

3.3 The Coincidence Problem

One last remark on a conceptual problem with the cosmological constant, or in this
case, a conceptual problem with dark energy. This is known as the Coincidence
Problem. We have seen that the current cosmological model describes an evolving
universe where matter energy scales as a−3 and dark energy, if taken to be a cosmo-
logical constant, is constant. It seems, then, that currently ΩM ≈ ΩDE. Considering
the very different time dependence of both densities, it is quite surprising that we
live in this epoch where they are almost equal. A complete theory of dark energy
should address this question as well.

Figure 9: Casimir Effect - force between two parallel plates in vacuum
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4 Quintessence

We have so far seen the cosmological constant as a possible description of dark
energy. We have seen, though, that any form of energy with an equation of state
p = wρ obeying w < −1

3
, could explain an accelerating universe. In fact, the w

could depend on time in the general case. People have suggested many alternative
theories to the cosmological constant until this day. As an example, we will look at
the simplest one known as Quintessence [16]. In quintessence we assume a scalar
field obeying the following Lagrangian:

Lquin =
1

2
∂µφ∂

µφ− V (φ) (36)

By varying the action with respect to the metric to get the energy-momentum
tensor, and assuming a homogeneous and isotropic universe, we get the following
energy density and pressure of the scalar field:

ρq(t) =
1

2
φ̇2 + V

pq(t) =
1

2
φ̇2 − V (37)

Taking the ratio of these two quantities we can get the coefficient of the equation
of state w:

wq =
1− (2V/φ̇2)

1 + (2V/φ̇2)
(38)

We immediately notice that if the field obeys φ̇2 � V , then the scalar field
reduces to the behavior of a cosmological constant to meet observations. In [17],
T. Padmanabhan showed that in fact given any functional evolution of the scale
factor a(t), a potential can be produced that will reproduce the required behavior
of the universe.

If we take the case of a flat universe with an energy contribution from only the
the scalar field, we get the following potential and field:
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V (t) =
3H2

8πG

[
1 +

Ḣ

3H2

]

φ(t) =

∫
dt

[
− Ḣ

3πG

]1/2

(39)

where H = ȧ
a
. So, if we are interested in a power law expanding universe, a(t) =

a0t
n, solving the above equation for V (t) would give the required potential:

V (φ) = V0exp

(
−
√

2

n

√
8πGφ

)
(40)

If we would like an exponentially expanding universe, a(t) ∝ exp(αtf ), f =
β/4 + β, 0 < f < 1, α > 0, as a cosmological constant dominated universe will
behave, the required potential is:

V (φ) ∝ (
√

8πGφ)−β
(

1− β2

6

1

8πGφ2

)
(41)

So we see that quintessence has very little predictive power since every evolu-
tion of a(t) can be modeled with an appropriate V (φ), and these potentials do not
follow from a symmetry of nature as for example we derive the potentials in QED
or QCD.

Another problem with this theory is that it is not unique. There are other La-
grangians that could produce the same equation of state as quintessence. One such

Figure 10: constraints on the possible variation of the dark energy density with redshift
[16]
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well known Lagrangian is the Tachyonic Lagrangian, which is a field generaliza-
tion of a relativistic particle:

Ltach = −V (φ)[1− ∂µφ∂µφ]1/2 (42)

An additional problem is that although quintessence exhibits the flexibility to
fit a theory to the observed data, it does not solve the need to explain a cosmological
constant, since the potential can have an added term. We are then still left with
the task of explaining why this constant must vanish or take on a specific value.

Lastly, there is no current justification for having a time dependent equation
of state. Figure 10 shows us constraints on variations of the dark energy density
up to z = 2. We see there is yet no reason to believe that the dark energy is time
dependent, yet this is not excluded.
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5 Conclusion

We have seen that two large observational experiments performed in the 90s, Type
Ia Supernova and CMBR anisotropies (supported by more recent observations of
large scale structure growth) , when combined, strongly favor a (nearly) flat and
accelerating universe. These observations point at the existence of a yet unknown
form of energy known as Dark Energy, with an odd character of being gravitation-
ally repulsive.

The simplest explanation for these observations so far is a cosmological con-
stant, a tool that has been brought into play a few times in the past in order to
resolve misalignments between theory and experiment. So far, the cosmological
constant fits all experimental evidence, but these experiments do not rule out other
more complicated solutions. Problems with the cosmological constant are mainly
conceptual ones, leading to a difficulty in identifying the cosmological constant with
vacuum energy for example.

To resolve these conceptual problems and to try to offer deeper understanding,
answers are sought in supersymmetric theories, string theories or dark gravity
theories attempting to modify Einstein’s General Relativity theory and to remove
the need for dark energy.
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