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Abstract

This article reviews the Lightest Supersymmetric Particle (LSP) as a dark matter candi-
date. The existence of WIMP dark matter is motivated and its properties are detailed. An
introduction to supersymmetry and the MSSM are given, including a derivation of the super-
Poincaré algebra and the superfield formalism. Arguments for the LSP as a WIMP and the
Neutralino as the LSP are presented. The Neutralino is derived from the electroweak breaking
of the MSSM. An overview of direct, indirect and collider detection methods are given, as well
as current experimental progress.

1 Introduction

Our current best phenomenological models of cosmology, together with our latest experimental
results, tell us, with good precision, that 95 percent of the energy in the universe is in need of
new physics. Of this unexplained energy, twenty-two percent is believed to be invisible matter
similar in composition to that found in the Standard Model of particle physics, but necessarily
exclusive to it. This invisible matter is more commonly known as dark matter. In this article we
introduce an extension to the Standard Model that attempts to include dark matter. This extension
is namely the introduction of a new space-time symmetry, supersymmetry, that transforms bosons
into fermions and vice versa. Supersymmetry has strong theoretical motivations but has to date
never been detected. By enforcing this new symmetry along with a number of physical assumptions,
a candidate particle for dark-matter enters into the theory.

Including this introduction, this article is split into five main sections. In the next, or second,
section we present the evidence for dark matter and calculate what properties a dark matter particle
must have if it were in thermal equilibrium at the beginning of the radiation era. This leads
directly to the definition of a Weakly Interacting Massive Particle (WIMP). In the third section we
introduce supersymmetry, beginning from a derivation of the super-Poincaré algebra, developing
the superfield formalism in some detail and giving an overview of how a supersymmetric model is
built. In the fourth section the Minimal Supersymmetric Standard Model is introduced, and the
Lightest Supersymmetric Particle (LSP) is argued to be stable and hence a valid WIMP candidate.
The Neutralino is then put forward as the LSP and shown to be derived from the electroweak
breaking of the MSSM. In the fifth, or last, section we give an overview of direct, indirect and
collider detection methods and also present the current experimental progress in this field.
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2 Dark Matter

2.1 Evidence

The original motive for postulating the existence of dark matter came from observations of spiral
galaxy rotation curves [1]. From our understanding of Newtonian physics, we expect the rotational
velocity of an object in a galaxy to be dependent on its radius from the centre

vc(r) =

√
G
M(r)

r
. (1)

If the object is outside the main mass distribution of the galaxy r > rM , then this distribution is
essentially constant, and the rotational velocity goes as

vc(r)
∣∣∣
r>rM

∝ 1√
r
. (2)

However, when we observe the rotational velocities of objects on the outskirts of spiral galaxies we
find these to be roughly constant

vc(r)
∣∣∣
r>rM

≈ const. (3)

See figure 1 for an example of the observed versus expected Newtonian rotational velocities in the
NGC 6503 spiral galaxy.

To explain this anomaly, a spherical dark matter halo is postulated with a density

ρhalo(r) ∝
1

r2
. (4)

This then gives a mass distribution M ′(r) outside the original bulk mass distribution of the galaxy
M(r) with the property that

M ′(r)
∣∣∣
r>rM

=

∫
ρDMdV

∣∣∣
r>rM

∝ r. (5)

Hence the rotational velocity outside the original mass distribution of the galaxy is constant as
observed. From figure 1 it is clear that if there is a dark matter halo, more than 90 percent of
the galaxies mass must be dark. From sky observations we know the luminous energy density is
Ωlum ∼ 0.011. Therefore we conclude that ΩDM & 0.1.

More precise values for the dark matter energy density come from our models of structure forma-
tion, the era during which galaxies and stars began to form. Currently the leading model postulates
that once the universe has cooled enough, non-baryonic dark matter clumps under the force of grav-
ity while baryonic matter remains too strongly coupled to electrons via the Coulomb interaction to
feel gravity. Later, when the baryonic matter has decoupled, it falls into the gravitational potential
wells already formed by the dark matter. For the dark matter to successfully form these wells it
must in general be cold (non-relativistic) during the era of structure formation. The most popular
model of cold dark matter is ΛCDM, also known as the concordance model[21]. Using the latest
CMB data from the WMAP experiment[22], the ΛCDM model gives (h = 0.72)

Ωb = 4.6± 0.1%,

ΩDM = 22± 2%.

1The energy density of a particular quantity X is defined as ΩX = ρX/ρcrit where ρcrit = 3H2/8πG is the critical
density. The critical density corresponds to the universe having no spatial curvature.
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Figure 1: Rotation curve for the spiral galaxy NGC 6503 (From K.G Begeman et al.[11])

2.2 Properties

2.2.1 Thermal Freeze Out

We now consider how a postulated cold dark matter particle χ could give rise to the dark matter
energy densities that we perceive to exist today. The assumption is made that the particle was in
thermal equilibrium at the beginning of the radiation era. There also exist non-thermal explanations
of how these relic densities can arise, such as from phase transitions, but these are not discussed
here. This section closely follows Kolb and Turner[12], but digresses to make a rough estimate of
the relic density freeze out.

In the beginning the particle χ is assumed to be in thermal equilibrium, with equal rates of
creation and annihilation into lighter particles l: χ+ χ̄↔ l+ l̄. As the universe expands and cools,
the particle density nχ can be solved for by using the Boltzmann equation

dnχ
dt

+ 3Hnχ = −〈σAv〉[n2
χ − (nEQ

χ )2], (6)

where 〈σAv〉 is the velocity averaged annihilation cross section of χ (refer to appendix B for a
derivation and explanation of this form of the Boltzmann equation). Clearly in the absence of
interactions the density is inversely proportional to the comoving volume

nχ
∣∣
���〈σAv〉

∝ a−3, (7)

as we would expect. This suggests it may be more convenient to express our density as a comoving
quantity. Using the property that the entropy per comoving volume is conserved, S = sa3 = const,
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we define the comoving density as

Nχ :=
nχ
s

(8)

⇒ Nχ

∣∣
���〈σAv〉

= const. (9)

We also use the fact that temperature scales as t ∝ 1/T 2 during the radiation era, to define a new
time coordinate

τ :=
m

T
∝ m

√
t (10)

In terms of these new coordinates the Boltzmann equation (120) becomes

τ

NEQ
χ

dNχ

dτ
= −ΓA

H

[(
Nχ

NEQ
χ

)2

− 1

]
, (11)

where ΓA := nEQ
χ 〈σAv〉 is the annihilation rate. Qualitatively we see that when ΓA/H drops below

< O(1) it implies ∆N/N < O(1) i.e. annihilation freezes out meaning the comoving number
density freezes in. We will therefore denote the time when freeze out occurs by τf , and define it as
Γ(τf ) ' H(τf ).

More precisely, we consider a simple analytic solution to the Boltzmann equation by making
some key assumptions. Most crucially, we assume that 〈σAv〉 has no temperature dependence i.e.
we set 〈σAv〉 constant. In the radiation era H(τ) = H(m)τ−2, so we can rewrite (11) as

dNχ

dτ
= −λτ−2(N2

χ −NEQ
χ

2
), (12)

where

λ =
〈σAv〉s
H(mχ)

= 0.264 g∗S g
−1/2
∗ mPlmχ〈σAv〉, (13)

NEQ
χ = 0.145 g−1

∗S g τ
3
2 e−τ . (14)

By denoting the departure from equilibrium by ∆ := Nχ − NEQ
χ , we may again rewrite the

Boltzmann equation[12] as

∆′ :=
d∆

dτ
= −

dNEQ
χ

dτ
− λτ−2∆(2NEQ

χ + ∆). (15)

At early times τ � τf , the comoving density stays close to equilibrium and we may take ∆ and
∆′ to be small. At late times τ � τf , after freeze out, the comoving density has far departed from
equilibrium such that ∆ ' Nχ � NEQ

χ . To a good approximation we set NEQ
χ

′
and NEQ

χ to zero.
Equation (15) then becomes

∆′ ' −λτ−2∆2, (16)

which may be integrated from τf to τ = ∞ to give the comoving density today as

Nχ0 ≈ ∆∞ '
τf
λ
. (17)
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It remains to solve for τf . An approximate solution can be found by solving the freeze out criterion
Γ(τf ) ' H(τf ) for τf . This yields τf ≈ 20/mχ.

Substituting into (17) the freeze out time τf , as well as values for the Planck mass mPl, the
entropy density today s0 and the relativistic degrees of freedom g∗, we find

Nχ0 ≈
10−9[pb · c][GeV]

mχ〈σAv〉
. (18)

Therefore the comoving number density is inversely proportional to the annihilation cross section.
Figure 2 illustrates how a greater cross section gives a lower freeze out relic density.

Figure 2: Freeze out of the comoving number density (From Kolb and Turner[12])

It is now possible to compute the energy density of the particle χ today as

Ωχh
2 =

mχ

ρc
(nχ) (19)

=
mχ

ρc
(s0Nχ0) (20)

≈ 0.1pb · c
〈σAv〉

(21)

where ρc is the critical density. We see that the energy density is independent of the mass of the
potential cold dark matter candidate, depending only on the velocity averaged annihilation cross
section. Setting Ωχ = ΩDM ≈ 0.2 and solving for 〈σAv〉 gives

〈σAv〉 ∼ 1pb · c ' α2

(MW )2
, (22)
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where α is a typical coupling constant (∼ 10−2) and MW is the mass of the weak gauge boson. That
is, the cross section is of the order of weak scale interactions. We conclude that for a cold dark
matter particle to give the correct thermal relic energy density, it must be weakly interacting.

2.2.2 WIMPs

In the previous section we found that a cold dark matter particle should be weakly interacting
to give the correct thermal relic density. We will call such particles Weakly Interacting Massive
Particles (WIMPs). WIMPs are colour neutral due to their non-baryonic nature. They must be
electrically neutral (or interact very weakly) to classify as being dark. Lastly, they must be stable
or have a very long lifetime (close to the age of the universe) to survive as a thermal relic.

There are many possible WIMP candidates in the literature. Once popular were the light
neutrino and the heavy fourth generation neutrino. The former, however, is too hot to explain
structure formation and the latter has been ruled out by direct detection experiments, as well as
having no inherent reason for being stable. Still popular WIMP candidates include the lightest
supersymmetric particle (LSP), the lightest Kaluza-Klein modes from extra dimensional theories
and stable fermions from little Higgs models. Here we only discuss the LSP as a WIMP candidate,
beginning with a detailed introduction to supersymmetry.

3 Supersymmetry

3.1 Motivation

Supersymmetry (SUSY) is a postulated new symmetry of spacetime that has yet to be verified, or
falsified, by experiment. The characteristic property of supersymmetry is that it transforms bosonic
states into fermionic states and vice versa. That is, given a supersymmetric generator Q, we have

Q|Boson〉 = |Fermion〉 and Q|Fermion〉 = |Boson〉.

Adding this new symmetry to our existing spacetime symmetries involves extending the Poincaré
Algebra. This is discussed in detail in the following section. As we shall see, extending the Standard
Model of particle physics with supersymmetry has many useful consequences.

The Standard Model suffers from what is known as the naturalness (or fine-tuning) problem.
Specifically, that the scalar masses of the theory (namely the Higgs boson mass) pick up their
largest one-loop corrections to the tree level mass from the top quark loop, which is quadratically
divergent. This means that the two biggest contributions to the Higgs boson mass

m2
H = m2

tree −
λ2
t

8π2
ΛUV

2 + . . . ∼ (200GeV)2 (23)

are the positive tree level mass and a negative term dependent on the ultraviolet cut-off ΛUV squared,
where the minus sign is due to the closed fermion loop. The ultraviolet cut-off is effectively the point
at which the Standard Model breaks and we expect new physics to occur, therefore this value is
ideally very large (close to the Planck scale for example). This is thus the naturalness problem: two
very large contributions must be precisely tuned such that their difference gives the much smaller
expected Higgs mass. Supersymmetry solves this problem by providing a bosonic superpartner to
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the top quark, the scalar top, that will have an identical but positive one-loop contribution to the
Higgs mass, thereby exactly cancelling the quadratically divergent terms. The two cancelling loops
are shown in figure 3. Not given in equation (23) are the logarithmically divergent corrections to
the Higgs boson mass. These corrections are generally not cancelled by supersymmetry, but can be
omitted from the fine tuning discussion as they are proportional to

m2
H ln

ΛUV

mH

, (24)

and are thus of the same order as the tree level mass.

Figure 3: One loop contributions to the Higgs mass from the top quark (left) and its superpartner
the scalar top quark (right)

Certain supersymmetric extensions to the Standard Model, particularly the Minimal Super-
symmetric Standard Model (MSSM) to be introduced in section 4, have the property that their
gauge coupling constants unify at some energy scale. For the MSSM the energy scale where the the
evolutions of the gauge coupling constants meet up is 1016 GeV, as shown in figure 4. This scale
is often referred to as the Grand Unified Theory (GUT) scale, believed by some to be the energy
at which a larger GUT internal symmetry group breaks into the Standard Model symmetry group
SU(3)C × SU(2)L × U(1)Y . That supersymmetry gives a progression from the Standard Model to
GUTs is another motivation for its existence.

However, the most interesting motivation for supersymmetry in the context of this report is that
the MSSM, together with a symmetry that insures baryon and lepton numbers are conserved, has
the property that its lightest superpartner is stable and only weakly interacting i.e. it has all the
properties of a WIMP (see section 2.2.2). Supersymmetry thus provides a compelling dark matter
candidate, whose derivation is the main focus of the rest of this section.

3.2 Super-Poincaré Algebra

3.2.1 The Poincaré Lie Algebra

The Poincaré group consists of all spacetime transformations, namely; translations, rotations and
boosts. Translations are generated by the energy-momentum operators Pµ, rotations by the angular
momentum operators Ji and boosts by the operators Ki. The generators Ji and Ki together give all
proper orthochronous Lorentz tansformations, thereby forming a subgroup of the Poincaré group
(the Lorentz group) and obeying the sub-algebra

[Ji, Jj] = iεijkJk, [Ki, Kj] = iεijkKk, [Ki, Kj] = −iεijkJk. (25)

Often the rotation and boost generators are combined into an antisymmetric second rank tensor
Mµν , where Mij = εijkJk and M0i = −Mi0 = −Ki. The commutation relations of the Poincaré
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Figure 4: Evolution of SU(3)C×SU(2)L×U(1)Y gauge couplings for SM (solid) and MSSM (dashed)
(From Braz[14]

generators are then written as

[Pµ, Pν ] = 0, (26)

[Mµν , Pλ] = i(ηνλPµ − ηµλPν), (27)

[Mµν ,Mρσ] = −i(ηµρMνσ − ηµσMνρ − ηνρMµσ + ηνσMµρ), (28)

forming a Lie algebra kown as the Poincaré algebra, with all the generators satsifying the Jacobi
identity.

The Lorentz group generators may also be rewritten as Ai = 1
2
(Ji + iKi) and Bi = 1

2
(Ji − iKi),

in which case the algebra decomposes into two sub-algebras

[Ai, Aj] = iεijkAk, [Bi, Bj] = iεijkBk, [Ai, Bj] = 0, (29)

with each isomorphic to the Lie group SU(2). We can therefore find representations of the Lorentz
group by taking those of the product group SU(2)× SU(2). The Casimir operators2 of this group
are A2 and B2, and have as their (angular momentum) eigenvalues j(j+1) and j′(j′+1) respectively.
A representation of the Lorentz group can thus be labelled as (j, j′). A Lorentz scalar transforms as
the representation (0, 0) and a four-vector as (1

2
, 1

2
). The representations (1

2
, 0) ≡ ψL and (0, 1

2
) ≡ χR

are equivalent to two component Weyl spinors, which transform independently under the action of

2Operators that commute with every generator
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the group SL(2, C)[7];

ψL → exp(iσ · (θ − iφ))ψL = MψL, (30)

χR → exp(iσ · (θ + iφ))χR = NχR, (31)

for M,N ∈ SL(2, C), (32)

where θ and φ are the rotation and boost parameters of J and K respectively. The four-component
Dirac spinor transforms as the direct sum of these two representations (1

2
, 0) ⊕ (0, 1

2
) and may be

written as

ψD =

(
ψL
χR

)
. (33)

Similarly, by noting that the spinor −iσ2ψ
∗
L transforms as (0, 1

2
), a four-component Majorana spinor

satisfying the condition ψ = ψc = Cψ̄T (see appendix A.1) is written as

ψM =

(
ψL

−iσ2ψ
∗
L

)
. (34)

It is therefore clear that a Weyl spinor may be written as a four-component Majorana spinor (and
vice versa), as we will use in the next section.

3.2.2 Extension to a Graded Lie Algebra

A no-go theorem by Coleman and Mandula[10] states that the most general Lie algebra for sym-
metries of an S-matrix (for a local relativistic quantum field theory in 4D spacetime) can only have
as generators those of the Poincaré group along with a finite number of Lorentz scalar generators
belonging to the Lie algebra of a compact Lie group (for example the generators of the standard
model internal symmetry group SU(3)c×SU(2)L×U(1)Y ). This restriction on the spacetime gen-
erators can however be relaxed if the Lie algebra of the symmetries is generalized to a graded Lie
algebra.

A graded Lie algebra consists of commuting even generators X and anti-commuting odd gener-
ators Q, satisfying

{Q,Q′} = X, [X,X ′] = X”, [Q,X] = Q′. (35)

The even generators X are therefore those of the original Poincaré algebra, namely Pµ and Mµν ,
which satisfy the (even) commutation relations given in (28). To find valid odd generators we con-
sider irreducible representations of the Lorentz group, (j, j′), with spin j + j′. Such representations
may be written with spinor components as linear combinations of Qα1...α2j ;β̇1...β̇2j′ , where the undot-

ted and dotted spinor indices denote transformation as left and right Weyl spinors, respectively.
Consider the anti-commutator of a Q with its hermitian conjugate Q†

{Qα1...α2j ;β̇1...β̇2j′ , Q
†
γ̇1...γ̇2j ;δ1...δ2j′}. (36)

By choosing all the spinor indices equal α = β̇ = γ = δ̇ = 1 (to simplify the Glebsch Gordon
coefficients), the resulting components of the commutator become

{Q
1 . . . 1︸ ︷︷ ︸

2j

;1̇ . . . 1̇︸ ︷︷ ︸
2j′

, Q†

1̇ . . . 1̇︸ ︷︷ ︸
2j

;1 . . . 1︸ ︷︷ ︸
2j′

} = X
1 . . . 1︸ ︷︷ ︸
2(j+j′)

;1̇ . . . 1̇︸ ︷︷ ︸
2(j+j′)

(37)
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and therefore transform as a (j + j′, j + j′) representation. Because Q and Q† are anti-commuting
(odd) generators, their spin j+ j′ must be half integer. Therefore the spin of the resulting 2(j+ j′)
representation must be integer, and we can conclude that it belongs to the commuting (even)
generators X.

From the no-go theorem we know that the only valid non-scalar generators of the even Lie
algebra are those of the Poincaré group, such that

{Q,Q†} = P +M, (38)

where indices and prefactors have been suppressed for simplicity. Pµ as a four vector transforms
as the representation (1

2
, 1

2
) and Mµν as an anti-symmetric second rank tensor transforms as a

combination of (1, 0) and (0, 1).
Considering first only the odd generators Q that commute with translations

[Q,Pµ] = 0, (39)

we find that

[P, {Q,Q†}] = [P, P ] + [P,M ], (40)

⇒ [P,M ] = 0 (41)

in contradiction with (27), from which we conclude that equation (38) can not have M dependence.
Hence the only valid candidate for (j + j′, j + j′) is (1

2
, 1

2
) representing the energy-momentum

generator of the Poincaré group. This implies Q must be a Weyl spinor, and we may associate

Qα ≡ (
1

2
, 0), Q†

α̇ ≡ (0, 1
2
). (42)

With a suitable choice of normalization, we arrive at the anti-commutation relation

{Qα, (Qβ)
†} = Pαβ̇ = σµ

αβ̇
Pµ (43)

where σi are the standard Pauli matrices and σ0 = −12×2 and Pµ the energy-momentum four vector
of the Poincaré group.

The possibility of having odd generators Q that do not commute with translations is considered
in the original paper of Haag et al.[8], which concludes that there are in general no such new
generators.

In four-component spinor notation, the supersymmetry extension to the Poincaré algebra, known
as the super-Poincaré algebra, is given by

[Pµ, Qa] = 0, (44)

[Mµν , Qa] = −(
1

2
σµν)abQb, (45)

{Qa, Q̄b} = 2(γµ)abPµ. (46)

Using the property that the charge is a Majorana spinor satisfying the condition Q = Qc = CQ̄T ,
the following (anti-)commutators also follow

[Pµ, Q̄a] = 0, (47)

[Mµν , Q̄a] = Q̄b(
1

2
σµν)ba, (48)

{Qa, Qb} = −2(γµC)abPµ, (49)

{Q̄a, Q̄b} = 2(C−1γµ)abPµ. (50)
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From relation (44) we see that P 2 is a Casimir of the algebra. This means that a state ψ and
its superpartner state Qψ must have the same mass

Q(P 2ψ) = Q(m2
ψψ) ⇒ P 2(Qψ) = m2

ψ(Qψ). (51)

The W 2 Casimir of the original Poincaré algebra constructed from the Pauli-Lubanski four-vector
Wµ = 1

2
εµνρσP

νMρσ is no longer a Casimir of the super-Poincaré algebra, as is evident from (45).
This means that a state and its superpartner state will have different spin.

3.3 Superfields

3.3.1 Superfield Formalism

In the previous section it was found that a supersymmetry transformation on a field alters its spin.
It would thus be useful to combine fields with different spin (bosonic and fermionic), which trans-
form into one another under supersymmetry, into one all encompassing superfield. This superfield
would then conveniently transform non-trivially into itself under supersymmetry transformations.
However, we cannot simply add bosonic and fermionic fields together as they differ in their com-
mutation and Lorentz transformation properties. To be able to add a fermionic field ψ to scalar
(bosonic) fields, we need to contract the spinor into a scalar. We introduce a Majorana spinor θ
whose components θ1, θ2, θ3 and θ4 are anti-commuting Grassmann numbers, satisfying

{θa, θb} = 0 (52)

By requiring that
{θa, ψb} = 0 (53)

we can construct scalar terms for a spinor ψ, such as θ̄ψ. These scalar contractions behave identically
to ordinary bosonic scalar fields S and hence expressions such as θ̄ψ + S are now possible. For a
more detailed discussion see [6][5].

Superfields are thus defined to exist in an extension of ordinary four-dimensional spacetime
known as superspace, which is labeled by the spacetime coordinates xµ and the four spinor coor-
dinates θa. Because of the anti-commuting nature of the θ components, it is possible to expand a
superfield into a finite number of linearly independent θ-terms. A convenient basis for this expansion
is given by Baer et al.[5]

Φ̂(x, θ) = S − i
√

2θ̄γ5ψ −
i

2
(θ̄γ5θ)M+

1

2
(θ̄θ)N +

1

2
(θ̄γ5γµθ)V

µ

+ i(θ̄γ5θ)[θ̄(λ+
1√
2
��∂ψ)]− 1

4
(θ̄γ5θ)

2[D − 1

2
2S]

(54)

giving 8 fermionic and 8 bosonic complex component fields {ψa, λb} and {S,M,N , V µ,D} respec-
tively. We will refer to this basis as the canonical basis. Certain operations, such as the product of
two superfields or a symmetry transformation, may give a superfield with different θ terms but it
will always be possible to rewrite these in the canonical basis.
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3.3.2 SUSY Transformations

Now that we have a general superfield we consider how it transforms under an infinitismal global
supersymmetry transformation. In order to construct a unitary transformation operator we re-
quire a scalar operator. The supersymmetry generator Q however is a Majorana spinor, therefore
the infinitesimal transformation parameter α is chosen to also be a Majorana spinor, so that the
contraction ᾱQ gives a scalar. The transformation is then given by

Φ̂′ = eiᾱQΦ̂e−iᾱQ = Φ̂ + i[ᾱQ, Φ̂] (55)

Recall that the spacetime generator Pµ generates infinitismal spacetime translations

δaφ = aµ[iPµ, φ] = aµ∂µφ, (56)

such that it may be represented by a differential operator Pµ ≡ −i∂µ in spacetime. Similarly, we can
expect Q to be represented by a differential operator in superspace. To derive this representation,
first observe that Q as a spinorial operator will change the Lorentz transformation properties of the
superfield by either removing or adding a θ, so that

[Qm, Φ̂(x, θ)] =

(
Mmn

∂

∂θ̄
+Nmnθ

)
Φ̂(x, θ) (57)

where the matrices Mmn and Nmn must still be determined. Next consider two successive SUSY
transformations

[[ᾱ1Q, ᾱ2Q], Φ̂] = [ᾱ1Q, [ᾱ2Q, Φ̂]]− [ᾱ2Q, [ᾱ1Q, Φ̂]]. (58)

The right hand side is found to reduce to an expression involving the unknown matrices, whereas
the left hand side contains the commutation relation

{Q,Q} = −2γµCPµ ≡ 2iγµC∂µ, (59)

and therefore contributes a spacetime derivative of the superfield. The equation is solved by setting
M = 1 and N = i��∂, thereby giving the supersymmetric transformation of the superfield

δαΦ̂ = i[ᾱQ, Φ̂] = (−ᾱ ∂

∂θ̄
− iᾱ��∂θ)Φ̂. (60)

By rewriting the transformed superfield δαΦ̂ in the canonical basis, the components are found
to transform supersymmetrically as

δS = i
√

2ᾱγ5ψ (61)

δψ = −αM√
2
− i

γ5αN√
2
− i

γµαV
µ

√
2

− γ5��∂Sα√
2

(62)

δM = ᾱ(λ+ i
√

2��∂ψ) (63)

δN = iᾱγ5(λ+ i
√

2��∂ψ) (64)

δV µ = −iᾱγµλ+
√

2ᾱ∂µψ (65)

δλ = −iγ5αD −
1

2
[��∂, γµ]V

µα (66)

δD = ᾱ∂µ(γ
µγ5λ) (67)
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3.3.3 Irreducible Representations of SUSY

Irreducible representations (irreps) of the superfield formulated above are the smallest possible
collections of component fields that transform only into themselves. This effectively allows us to
set the component fields not in this collection permanently to zero as they will not be regenerated
by a supersymmetry transformation. Here we present the irreps of global supersymmetry that are
needed to construct the MSSM.

We construct our first irrep by observing that the component fields λ and D transform into one
another up to the term [��∂, γµ]V

µ in the λ transformation. As this term is anti-symmetric, we may
take Vµ = ∂µζ to set it to zero, and subsequently also set λ = D = 0. The remaining components
can be further reduced into two distinct irreps. One of these is obtained by setting V µ = i∂µS,
ψR = 0 and M = −iN =: F . The components Ŝ := {S, ψL,F} are then collectively known as the
chiral scalar superfield and transform as

δS = −i
√

2ᾱψL (68)

δψL = −
√

2FαLs+
√

2��∂SαR (69)

δF = i
√

2ᾱ∂µ(γ
µψL) (70)

The other irrep is obtained by setting V µ = −i∂µS, ψL = 0 and M = iN =: iF and is known as
the anti-chiral scalar superfield. Conjugating a chiral scalar superfield gives an anti-chiral scalar
superfield

Ŝ† =

(
S + i

√
2θ̄ψL + iθ̄θLF +

i

2
(θ̄γ5γµθ)∂

µS − 1√
2
(θ̄γ5θ) · θ̄��∂ψL +

1

8
(θ̄γ5θ)

22S
)†

= S† − i
√

2θ̄ψR − iθ̄θRF † − i

2
(θ̄γ5γµθ)∂

µS† − 1√
2
(θ̄γ5θ) · θ̄��∂ψR +

1

8
(θ̄γ5θ)

22S†. (71)

The product of two chiral scalar superfields gives another scalar superfield, whereas the product of
a chiral scalar superfield with an anti-chiral scalar superfield returns a general superfield

ŜŜ ′ = Ŝ ′′, ŜŜ ′† = Φ̂. (72)

By setting F µν := ∂µV ν − ∂νV µ we find that

δF µν = −iᾱ[γν∂µ − γµ∂ν ]λ (73)

δλ = −iγ5αD +
1

4
[γν, γµ]F

µνα (74)

δD = ᾱ��∂γ5λ. (75)

However, we cannot in general set the component fields S, ψ, M and N to zero, as they will be
regenerated by supersymmetry transformations. In order to successfully form an irrep from these
components we require the presence of gauge transformations for the superfields. These gauge
transformations are dependent on a real superfield for which the components S, ψ, M and N can
be set to zero by a suitable gauge choice. This gives the irrep V̂ := {V µ, λ,D} known as the real
vector superfield.
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3.3.4 Building a SUSY Lagrangian

The Lagrangian of a supersymmetric theory can be formulated as a density in spacetime or su-
perspace with the action integral following suite. Here we develop the former formulation as an
ordinary spacetime density. We assume our supersymmetric theory has provided us with a collec-
tion of irreps, in our case chiral scalar superfields Ŝi and real vector superfields V̂j where i and j
denote the number of each such superfields present respectively. The Lagrangian will then be made
up of component fields (to remove the θ dependence) of combinations of these irrep superfields. In
what follows, only examples of how this is done for chiral scalar superfields are given, for a full
discussion including gauge superfields please refer to Baer et al.[5].

Recall from (72) that only the product of two scalar chiral superfields gives back a scalar chiral
superfield. A mixture of scalar chiral and anti-scalar chiral superfields will give a general superfield.
From (67) and (70) we see that none of the component fields are invariant under a supersymmetry
transformation, which means it will be impossible to build a Lagrangian invariant under supersym-
metry (at least by the method prescribed above). Fortunately, it is not the Lagrangian density but
rather the action that must be invariant under supersymmetry transformations for supersymmetry
to be realized as a symmetry of nature. Therefore component fields transforming as total derivatives
are valid candidates from which to build a Lagrangian:

δS =

∫
d4x δL = 0 ⇒ δL = 0 or ∂µ(. . .). (76)

For a general superfield Φ̂, the only component field transforming as a total derivative is the D
field: δD = ��∂(. . .). Therefore for some function of superfields f(Φ̂i), the D field component (i.e.
the coefficient of the −1

4
(θ̄γ5θ)

2 term) is a valid candidate for the Lagrangian (granted it is also
renormalizable)

f
∣∣∣
D-term

∈ L. (77)

An an example, consider the Kähler potential K(Ŝ, Ŝ†) = Ŝ†Ŝ, which after some calculation, yields
the kinetic terms of the component fields for the chiral scalar superfield

Ŝ†Ŝ
∣∣∣
D-term

= ∂µS†∂µS +
i

2
ψ̄��∂ψ + F †F ∈ L (78)

Note that the F field here has no derivative terms, which means it is an auxillary field with algebraic
equations of motion (giving constraints on the system).

For a chiral scalar superfield Ŝ, the only component field transforming as a total derivative is
the F field: δF = ��∂(. . . ). We define a function made up of only chiral scalar superfields (to insure
the F component yields a total derivative) as the superpotential Ŵ (Ŝ), such that

Ŵ
∣∣∣
F-term

∈ L (79)

The master supersymmetric Lagrangian of a theory with chiral scalar superfields Ŝi and real
vector superfields V̂α, obtained by including all possible renormalizable contributions from these
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superfields, is

L =
∑
i

(DµSi)†(DµSi) +
i

2

∑
i

ψ̄i��Dψi +
∑
α

[
i

2
λ̄α(��Dλ)α −

1

4
FµναF

µν
α

]
−
√

2
∑
i,α

(
S†i gαtαλ̄αψLi + h.c.

)

− 1

2

∑
α

[∑
i

S†i gαtαSi + ξα

]2

−
∑
i

∣∣∣∣∣∂Ŵ∂Ŝi
∣∣∣∣∣
2

Ŝ=S

− 1

2

∑
i,j

ψ̄i

( ∂2Ŵ

∂Ŝi∂Ŝj

)
Ŝ=S

PL +

(
∂2Ŵ

∂Ŝi∂Ŝj

)†

Ŝ=S

PR

ψj.

(80)

Notice that the F and D fields have been substituted by their algebraic equations of motion. The
only remaining freedom any supersymmetric theory of this type has after specifying the irreps is a
choice for the superpotential Ŵ . The term in the second line gives interactions between a particle,
its superpartner and a gauge fermion.

4 The Minimal Supersymmetric Standard Model

4.1 The MSSM

With the master supersymmetric Lagrangian template given in (80) it is straightforward to construct
a supersymmetric extension to the Standard Model. We keep the same internal symmetry group
SU(3)c×SU(2)L×U(1)Y , and promote each Standard Model gauge field to a real vector superfield:

Bµ → B̂ 3 (Bµ, λ0,DB);

WAµ → ŴA 3 (WAµ, λA,DWA), A = 1, 2, 3;

gAµ → ĝA 3 (GAµ, g̃A,DgA), A = 1, . . . , 8. (81)

Every fermion field in the Standard Model is likewise promoted to a chiral scalar superfield(
νiL
eiL

)
→
(
ν̂i
êi

)
≡ L̂i,

(
uiL
diL

)
→
(
ûi
d̂i

)
≡ Q̂i,

(eiR)c → Êc
i , (uiR)c → Û c

i ,

(diR)c → D̂c
i , (82)

where ê 3 (ẽL, ψeL,Fe) etc.
The Higgs potential must enter via the superpotential Ŵ (Ŝ), as this is the only freedom we have

for adding new terms into the Lagrangian. Therefore the Higgs fields are promoted to be chiral
scalar superfields

φ =

(
φ+

φ0

)
→ Ĥu =

(
ĥ+
u

ĥ0
u

)
. (83)
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If we let Ĥu have hypercharge Y = 1 so that it may couple to up-type quarks in the superpotential,
then we also need a Higgs field with hypercharge Y = −1 to couple to the down-type quarks. In
the Standard Model this was achieved simply by taking the conjugate of the Higgs field, but now
taking the conjugate would give us an anti-chiral scalar field, which is not allowed to enter in the
superpotential. We are thus forced to introduce a second Higgs doublet superfield with hypercharge
Y = −1:

Ĥd =

(
ĥ−d
ĥ0
d

)
(84)

The minimal superpotential of the Minimal Supersymmetric Standard Model (MSSM) is then

Ŵ = µĤuĤd + fuε Q̂︸︷︷︸
1
3

Ĥu︸︷︷︸
1

Û︸︷︷︸
− 4

3

+fd Q̂︸︷︷︸
1
3

Ĥd︸︷︷︸
−1

D̂︸︷︷︸
2
3

+feL̂ĤdÊ (85)

with hypercharge conservation indicated. The f matrices here are analagous to the Yukawa coupling
matrices from the Standard Model. A list of all the MSSM particle fields before electroweak breaking
is given in table 1.

SM Particles Superpartners
Fermions Scalar Fermions

Quarks u c t Squarks ũ c̃ t̃

d s b d̃ s̃ b̃
Leptons e µ τ Sleptons ẽ µ̃ τ̃

νe νµ ντ ν̃e ν̃µ ν̃τ
Gauge Bosons Gauginos

Photon Aµ Photino sin θwλ3 + cos θwλ0

W,Z Bosons W±
µ W-ino 1√

2
(λ1 ∓ iλ2)

Zµ Z-ino − cos θwλ3 + sin θwλ0

Gluon gAµ Gluino g̃A
Higgs Bosons Higgsinos

h+
u h0

u h−d h0
d h̃+

u h̃0
u h̃−d h̃0

d

Table 1: The particle fields of the MSSM before electroweak breaking.

4.1.1 R-Parity

Unlike the Standard Model, the MSSM does not naturally conserve baryon or lepton numbers. This
is easily illustrated by the following superpotential term

e.g Ŵ
�L

= εL̂eĤu

which is gauge invariant and renormalizable but violates lepton number. To insure that the de-
liberate absence of these baryon and lepton violating terms in the MSSM superpotential is well
motivated, a new symmetry named R-parity is often introduced. R-parity is defined as

R = (−1)3(B−L)+2s, (86)
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where B and L are the baryon and lepton numbers respectively and s is the particles spin. Con-
servation of R-parity implies conservation of baryon and lepton numbers. It turns out that all
superpartners have odd R-parity whereas the Standard Model particles and the Higgs doublets
have even R parity. The MSSM with R-parity therefore requires all superpartners to occur in pairs.
This leads to an interesting implication for cosmology: the lightest superpartner cannot decay and
is therefore stable. If we can further show that this particle is also weakly interacting, we have a
WIMP candidate.

4.1.2 Breaking of the MSSM

From relation (44) it is clear that particles and their superpartners must have the same mass.
However, we do not observe particles such as scalar electrons in nature, we in fact do not observe
any of the superpartners. Therefore, if supersymmetry truely is a symmetry of nature, it must
be broken. How it must be broken is not known: it could be broken spontaneously (like the
electroweak symmetry), explicitly, dynamically, etc. Breaking of supersymmetry will in general add
additional non-supersymmetric breaking terms to the supersymmetric Lagrangian. Some of these
breaking terms could re-introduce the quadratic divergences that supersymmetry so vitally helped
eliminate, this is known as hard breaking. To protect the scalar masses of the theory, which was
one of the primary motivations for extending the Standard Model with supersymmetry, we assume
that supersymmetry is broken softly, i.e. that the breaking terms do not re-introduce quadratic
divergences. Due to our ignorance of how supersymmetry is broken, we must add all possible soft
breaking terms to our MSSM Lagrangian:

Lsoft =
[
L̃†im

2
LijL̃j + . . .+m2

Hu
|Hu|2 + . . .

]
− 1

2

[
M1λ̄0λ0 + . . .

]
+
[
(ae)ijεabL̃iHdẽ

†
Rj + . . .

]
+
[
(ce)ijεabL̃iH

∗
d ẽ

†
Rj + . . .

]
+ [bHuHd + h.c]

(87)

The terms on the first line are the mass terms for the scalar fields in the theory. The terms in
the square brackets on the second line are the mass terms of the gauginos. The a and c matrices
describe trilinear scalar interactions and the terms in the last square brackets give the mixing of the
scalar Higgs fields. The total number of free parameters of the MSSM including the soft breaking
terms is 178.

A model with such a large parameter space is clearly quite unmanageable and has almost no
predictive power. To make the MSSM a more reasonable theory to work with in practice, a series of
phenomenological assumption are made to simplify the parameter space. These assumptions include
removing sources of CP violation and flavour mixing and considering only the heaviest family of
Standard Model particles. For a detailed discussion of these assumptions and SUSY breaking in
general please refer to Baer et al.[5]. A model of this type usually has between 5−10 free parameters
and is often referred to as the Constrained MSSM (CMSSM).

Besides from the CMSSM, another popular supersymmetric extension to the Standard Model
with only four free parameters is minimal supergravity (mSUGRA). This model has local rather
than global supersymmetry, and devolves its small set of parameters from the GUT scale via the
renormalization group equations to fix parameters at the electroweak breaking scale.
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4.2 The Lightest Supersymmetric Particle

4.2.1 LSP Candidates

As discussed in section 4.1.1, the lightest supersymmetric particle (LSP) in the MSSM with R-
parity will be stable. We combine arguments given by Ellis et al.[15] and experimental results to
determine which particle is most likely the LSP, in a similar fashion to Jungman et al.[2].

If the LSP were a charged gaugino or slepton it would be expected to have a moderate relic
density[16] and subsequently be expected to mix with ordinary matter due to its charge. Such
particles have been ruled out by searches for anomalously heavy terrestrial protons[16].

If the LSP were a gluino or squark it would be expected to form hadrons, for which charged
hadrons would show up in heavy protons searches. It may be possible however for them to form
only evasive neutral hadrons. In most GUT models involving supersymmetry, however, it is found
that gluinos are heavier than neutralinos and squarks heavier than sleptons.

If the LSP was a sneutrino it would be a good WIMP candidate as it would have weak scale
interactions and importantly not interact electromagneticly. However, most of the parameter space
where the sneutrino is the LSP has been ruled out by direct-detection experiments.

In terms of supersymmetric particles of the MSSM this leaves only the Neutralino (which we
will derive shortly) as both the LSP and a good WIMP candidate.

Beyond the MSSM, other possible LSP candidates are the gravitino and axino. The gravitino
arises from theories with local supersymmetry and the axino in models such as the MSSM extended
with the Peccei-Quinn mechanism to solve the strong CP problem. The reader is referred to the
brief review of Steffen[3] for a summary of how these particles would behave if they were the LSP.

4.2.2 The Neutralino

Recall from the master lagrangian (80) that the first term on the second line gave a trilinear inter-
action between a particle, its superpartner and a gaugino. When the MSSM undergoes electroweak
breaking, similar to that of the Standard Model, the trilinear terms involving a Higgs scalar and
its superpartner higgsino will be reduced to bilinear terms as the Higgs scalar becomes a constant
vacuum expectation value:

L 3 −
√

2gS†i gtAλ̄AψLi
��EW→ 3 g 〈h0

u〉︸︷︷︸
vu

λ̄3h̃
0
u + . . . . (88)

These bilinear terms mix the higgsino and gaugino states. The true physical particles of the higgsino
and gaugino states after electroweak breaking will then be the eigenstates of the total mass matrix.

As the name neutralino suggests, we are interested in the mass matrix of the neutral higgsino
and gaugino fermion states. Besides from the mixing terms of the electroweak breaking, mass term
contributions also come from the Higgs superfield mixing in the superpotential Ŵ 3 µĤuĤd and
from the soft breaking gaugino mass terms

Lsoft 3 −
1

2
M1λ̄0λ0 −

1

2
M2λ̄3λ3. (89)
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All mass term contributions of the neutral fermions may thus be written as

−1

2

(
¯̃
h0
u

¯̃
h0
d λ̄3 λ̄0

)
0 µ −gvu√

2

g′vu√
2

µ 0 gvd√
2

−g′vd√
2

−gvu√
2

gvd√
2

M2 0
g′vu√

2
−g′vd√

2
0 M1



h̃0
u

h̃0
d

λ3

λ0

 . (90)

The mass matrix can be diagonalized by a unitary matrixMD = V †MneutralV , giving the neutralino
eigenstates 

χ1

χ2

χ3

χ4

 = V †


h̃0
u

h̃0
d

λ3 ≡ W̃ 3

λ0 ≡ B̃

 . (91)

We call the lightest neutralino eigenstate the neutralino and denote it by χ0 (i.e. the index i for
which χi is the lightest is replaced by 0). The neutralino may be written as a linear combination of
higgsinos and gauginos

χ0 = V ∗
10h̃

0
u + V ∗

20h̃
0
d + V ∗

30W̃
3 + V ∗

40B̃. (92)

It is common to define a quantity such as the gaugino fraction fg := |V30|2 + |V40|2 to measure if
the neutralino is primarily gaugino fg > 0.5 or higgsino < 0.5.

A common relation from GUTs can be used to relate the gaugino masses M1 = 5
3
M2 tan2 θw,

thereby leaving only two parameters µ and M2 on which the neutralino mass and gaugino fraction
depend (assuming the Higgs VEVs and MSSM coupling constants are fixed). Figure 5 gives a
contour plot of these quantities with respect to the free parameters µ and M2. It is clear that for a
large mass (∼ 3 TeV) the gaugino fraction is arbitrary, whereas for lower masses it is quite sensitive
to the parameters µ and M2.

4.2.3 Neutralino Interactions

The neutralino is a linear combination of the third wino W̃ 3, the bino B̃ and the neutral higgsinos
h̃0
u and h̃0

d. From the master supersymmetric lagrangian given in equation (80), we see that the
gaugino components (the wino and bino, denoted here by λ) couple electroweakly to matter (chiral)
superfield pairs through the term

−
√

2gS†i gtAλ̄AψLi ∈ L. (93)

Therefore quark-neutralino scattering is possible via the exchange of a scalar quark. By setting
the chiral superfield pairs to be the Higgs superfield, the higgsino nature of the neutralino gives an
interaction between a pair of neutralinos and a scalar Higgs field. The higgsino components can
also couple to fermion-scalar fermion pairs via the Yukawa couplings present in the term

−1

2

∑
i,j

ψ̄i

(
∂2Ŵ

∂Ŝi∂Ŝj

)
Ŝ=S

PLψj + h.c. ∈ L (94)

Finally, the term
i

2

∑
i

ψ̄i��Dψi ∈ L (95)
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Figure 5: Contour plot of the neutralino mass (in GeV) and the gaugino fraction for parameters µ
and M2. Broken curves are mχ (GeV), solid curves fg (From G. Jungman et al.[2])

gives couplings between a pair of neutralinos and electroweak gauge bosons. These interaction
vertices are summarized in figure 6. It is important to note that the neutralino does not couple
strongly (no vertex carries a factor of gS), so that our classification of the neutralino as a WIMP
is still justified. Whether the neutralino has a weak enough annihilation cross section to give the
correct relic density is dependent on which parameters we choose. Fortunately, regions of the MSSM
parameter space where this is the case exist and also coincide with phenomenologically constrained
MSSM models.

5 WIMP Detection

5.1 Direct Detection

If there is a spherical dark matter halo centered around our galaxy, our solar system should be
moving directly through it, and consequencently, we would expect a flux of dark matter particles
passing through the earth’s surface of about 100 − 1000cm−2s−1[2]. Direct detection of WIMPs
refers to observing the recoil of a nuclei after WIMP-nucleus scattering. Unfortunately the weakly
interacting nature of WIMPs mean such events occur very infrequently. Nonetheless, the odds are
increased by building large sensitive detectors and waiting long periods of time, and over the past
twenty years there have been at least a dozen such detectors running at any given time [17].
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Figure 6: Summary of the possible neutralino interaction vertices. The neutralino χ interacts with
fermions-scalar fermions (left), neutral gauge bosons (middle) and neutral Higgs scalar fields before
electroweak breaking (right). Dependence on the various coupling constants are also shown (note
the absence of strong interactions gS).

The qualitative event rate is

R ≈ nχσscatt.〈v〉
mN

kg−1/day (96)

where n = ρ0/mχ is the WIMP number density, σ is the elastic-scattering cross section, 〈v〉 the
average speed of the WIMP relative to the target andmN the mass of the nucleus. For the derivation
of a more accurate event rate that takes into account the velocity distribution, the cross sections
dependence on this distribution and the detectors threshold energy, please refer to Jungman et
al.[2]. A typical WIMP with a mass mχ ≈ 20 − 400 GeV and velocity v ≈ 270kms−1 hitting a
typical nucleus with mass mN ≈ 1 − 200 GeV will deposit an energy in the range of 1 − 100 keV
at a rate of 10−4 − 1 events per kg per day. In comparison, a cosmic ray with energies in the
keV-MeV range occur at a rate > 100 events per kg per day. Therefore cosmic rays give huge event
backgrounds for WIMP direct detection, and force WIMP detectors deep underground where they
are more shielded.

The two leading direct detection experiments in operation today are the CDMS-II detector,
located in an old iron mine in Minnesota, and the XENON detector in Gran Sasso, Italy. These
detectors use different methods to detect nuclear recoil. The CDMS-II detector uses an array of
germanium and silicon crystals as its target. One side of these crystals measures ionization as
the crystal band structure is disrupted by an interaction, while the other side detects thermal
phonons (vibrations in the crystal) produced by an interaction using superconducting transition
edge sensors. These two different detection methods for one event allow for good discrimination
from background. The XENON detector used a tank of liquid xenon as its target. The xenon is
placed in a vertical electric field with arrays of photomultiplier tubes positioned above and below
to detect the scintillation produced from scattering events. Discrimination from background is
achieved by taking the ratio of direct scintillation with scintillation occuring in the xenon gas layer
at the top of the tank, as this ratio is different for nucleus and electron events[18]. The advantage
the XENON method has over that of CDMS-II is that it is more straightforward to scale up the
target size.

No direct detection experiment has yet to detect a WIMP signal. This places strong upper
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Figure 7: Spin-independent cross section 90% CL upper limits versus WIMP mass [13]

limits on the nucleur scattering cross section of such a particle. Figure 7 gives 90% confidence
level upper limits of the spin-independent cross sections versus the WIMP mass found by the
CDMS-II and XENON experiments[13]. Also shown in the figure are the parameter spaces of two
constrained MSSM models. This illustrates how direct detection experiments can be employed to
cut down the vast parameter space of the MSSM, bringing us closer to answering the question of
how supersymmetry may be realized in nature.

5.2 Indirect Detection

Due to the massive nature of WIMP dark matter, there should be regions in our universe where it
becomes gravitationally trapped, such as in the centre of stars, galaxies etc. In these dense trapped
regions we would expect annihilation to still occur, even though it has in general long frozen out
elsewhere in the universe. Products from this WIMP annihilation would then form all sorts of
energetic cosmic rays which should be detectable to us on earth. Detection of these cosmic rays
and their decay products is classed as indirect WIMP detection.

One important source for the indirect detection of WIMPs is the sun. A WIMP particle passing
through the sun scatters off a nucleus such that its resulting velocity is less than the escape velocity
of the sun, and it becomes trapped. It subsequently continues scattering, eventually drifting to
the centre of the sun due to the gravitational attraction. At the centre it meets other WIMP
particles, and if the WIMP is its own anti particle (such as the Neutralino, which is a Majorana
spinor) it annihilates. The key product particle resulting from this annihilation is an energetic
neutrino with Eν ∼ 1

3
mχ � Esolar−ν . Thus detection of a highly energetic neutrino would be

suggestive evidence of WIMP dark matter. There are currently a number of neutrino detectors
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under construction; including IceCube, ANTARES and Km3net; that hope to detect such energetic
dark matter neutrinos.

Another detectable product of WIMP annihilation that we expect to observe are cosmic gamma
rays. From 1991 to 1996 the EGRET detector on the NASA CGRO satellite measured gamma
ray point sources with energies 30 MeV to 30 GeV. Figure 8 gives the third EGRET catalog
consisting of 271 point sources, of which 170 were unidentified [19]. Some authors believe these
signals are evidence of WIMP annihilation, however this analysis contradicts the limits placed by
direct detection experiments [20].

Figure 8: Third EGRET catalog with 271 found point sources (From the CGRO Science Support
Center[19])

5.3 Colliders

WIMPs are weakly interacting, and so by their very nature, they are difficult to detect directly at
colliders. To detect a massive weakly interacting particle such as a WIMP, collider experiments
search for missing transverse energy and spin that would arise if one of these particles were created
during a collision process and escaped undetected. Most hope for the detection of a WIMP in this
way currently lies with CERN’s Large Hadron Collider (LHC), which will probe nature at energies
an order of magnitude higher than today’s current limits. The LHC is scheduled to come back
online in 2009. Although the LHC could confirm the existence of supersymmetry, we may have to
wait for the next generation of colliders such as the International Linear Collider (ILC) to identify
the LSP as the Neutralino or perhaps a gravitino, axino etc. [3].

6 Conclusion

We have seen that supersymmetry is a welcome extension to the Standard Model. It solves the
fine-tuning problem of the Higgs mass, gives in-roads to buildings GUTs, and, most importantly
for the realm of cosmology, it delivers a WIMP candidate. For the MSSM to deliver a WIMP
candidate, we must assume R-parity symmetry both exists and is conserved, so that we have a
stable particle: the LSP. Because the MSSM is broken in an unknown way, it has a large parameter
space, meaning that the LSP could be many different things depending on which parameters are
chosen. Fortunately, in most phenomenologically viable parameter spaces the LSP remains the
same particle, the Neutralino, which interacts weakly. Therefore the Neutralino is a strong WIMP
candidate. However, these parameter spaces remain large, severely limiting the predictive power of
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this model for experiments. Conversely, experiments are currently used to narrow down the MSSM
parameter space. Direct detection experiments for example have put strong upper limits on the
possible scattering cross sections of a WIMP for its likely mass range. The strongest evidence for the
existence of supersymmetric dark matter in the near future would be the discovery of supersymmetry
at the LHC together with positive results from direct detection experiments.

A Notation and Conventions

Minkowski metric signature is ηµν = diag(1,−1,−1,−1), giving the four momentum relation

p2 = E2 − |p|2 = m2 (97)

The fourier expansions of canonically quantized complex and spinor fields respectively are

φ(x) =
∑
s

∫
d3k

(2π)3

1

2Ek

(ake
−ik·x + b†ke

ik·x) (98)

and

ψ(x) =
∑
s

∫
d3k

(2π)3

1

2Ek

(ak,su(k)se
−ik·x + b†k,sv(k)se

ik·x) (99)

where the field operators obey

[ak, a
†
p]± = (2π)32Ekδ

(3)(k− p) (100)

A.1 Spinor Algebra

Four component Dirac spinor notation is used, as in Baer et al.[5]. Gamma matrices are chosen in
the chiral representation

γ0 =

(
0 1
1 0

)
γi =

(
0 σi

−σi 0

)
γ5 =

(
−1 0
0 1

)
(101)

{γµ, γν} = 2ηµν , σµν :=
i

2
[γµ, γν ] (102)

{γ5, γ
µ} = 0 , (γµ)† = γ0γµγ0 (103)

Left and right chiral projectors are defined as

PL =
1− γ5

2
, PR =

1 + γ5

2
(104)

The generic lagrangian term for a massive fermion is written as

L = ψ̄(i��∂ −m)ψ = 0 (105)
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where the conjugate spinor is defined as
ψ̄ = ψ†γ0 (106)

Plane-wave solutions to the Dirac equation of motion are

ψ = u(p)e−ip·x , ψ = v(p)eip·x (107)

for p0 > 0, with the momentum space spinors satisfying

(�p−m)u(p) = 0 , (�p+m)v(p) = 0 (108)∑
s

u(p)as ū(p)
b
s = (�p+m)ab ,

∑
s

v(p)as v̄(p)
b
s = (�p−m)ab (109)

Parity is defined as taking ak → a−k and bk → −b−k. By defining the variables p̃ = (p0,−p)
and x̃ = (x0,−x) and using the spinor relations u(p) = γ0u(p̃) and v(p) = −γ0v(p̃), parity acts on
a Dirac fermion as

ψ(x) → γ0ψ(x̃) , ψ̄(x) → ψ̄(x̃)γ0 (110)

Charge conjugation is defined as taking ak → ack = bk and bk → bck = ak. Using the spinor
relations u(p) = −iγ2v(p)∗ and v(p) = −iγ2u(p)∗, charge conjugation acts on a Dirac fermion as

ψ → ψc = Cψ̄T for C = −iγ2γ0 (111)

where we can also rewrite the spinor relations as u = Cv̄T and v = CūT . The charge conjugation
matrix C satisfies

CγTµC
−1 = −γµ , CT = C−1 = −C (112)

and
[C, γ5] = 0 (113)

A Majorana fermion is a Dirac fermion that satisfies ψ = ψc. In the chiral representation this
implies that the right chiral component of the Majorana fermion is completely determined by the
left chiral component

ψR = PRψ
c =

1 + γ5

2
Cψ̄T = Cγ0ψ∗L (114)

B The Boltzmann Equation for Thermal Relics

We begin with the Boltzmann equation

L[f ] :=
d

dt
f = Coll[f ], (115)

for the distribution function f(x,p, t), where L is the Liouville equation and Coll the collision
functional which describes interactions. The distribution function fχ gives the average density of
particle species χ on phase space, and hence the particle number density of this species is given as

nχ(x, t) = g

∫
d3p

(2π~)3
fχ(x,p, t), (116)
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where g is the number of internal degrees of freedom. Assuming an expanding universe, the physical
momentum scales with the scale factor as p ∝ a−1 and we find

1

a3

d

dt
(a3nχ) +5 · (uχnχ) =

∫
d3p

(2π~)3
Coll[fχ], (117)

where uχ denotes the fluid velocity and can be taken to be zero in a homogeneous expanding
universe. Taking Coll to describe annihilation and creation of a particle species χ into a lighter
particle l

χ+ χ̄ 
 l + l̄, (118)

we may write
1

a3

d

dt
(a3nχ) = −〈σAv〉n2

χ − ψ, (119)

where 〈σAv〉 is the thermally averaged total annihilation cross section of χ with v the relative
velocity. Therefore 〈σAv〉n2

χ denotes the rate of annhilations of the particle species χ and likewise
ψ is a place holder for the rate of creation. As we expect the Coll functional to be zero when the
annihilation and creation rates are equal (when the particle is in equilibrium), we write

d

dt
nχ + 3Hnχ = −〈σAv〉(n2

χ − (neqχ )2), (120)

where neqχ denotes the equilibrium number density of χ, and the left hand side has been expanded
to reveal the Hubble rate H = ȧa−1.
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