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Abstract

This paper discusses the Kerr solution to the Einstein equations
and its physical interpretation as a rotating black hole. We first dis-
cuss the singularities of the Kerr solution, and the interpretation of
the associated parameters contained therein. Particle trajectories in
the equatorial plane around a Kerr black hole are discussed by means
of an effective potential, leading to a discussion of the fascinating Pen-
rose process and the various limits of energy extraction from a black
hole. Closely related is the phenomenon of super-radiance, a pro-
cess of wave-amplification by a rotating black hole, which is discussed
subsequently. Finally the appendix gives a short discussion on the
uniqueness of the Kerr solution.
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1 Introduction

It is reasonable to expect that most black holes in nature are to a good ap-
proximation described by the Kerr metric. This metric presents the unique
[7, 6] axisymmetric solution to Einstein’s equations in the vacuum, contain-
ing the Schwarzschild solution. Black holes in nature are expected to form
primarily due to stellar collapse. Since virtually all stars have angular mo-
mentum - the dipole which stars cannot rid themselves of through gravita-
tional radiation - one expects that the stationary endstate of gravitational
collapse of a sufficiently massive star would be a so-called Kerr black hole.
This paper will discuss this vacuum solution of Einsteins equations in some
detail, following a more or less standard path of discussing the solution and
its caveats, and then moving on to the ’special effects’ this solution has in
store. Firstly the metric and its singularities, both coordinate- and curvature-
, will be discussed. Then a region of considerable interest outside the outer
event horizon, the ergosphere, will be examined, followed by a discussion of
radial particle trajectories around a rotating black hole, the Penrose process
and, closely related, superradiance. The related topic of black hole formation
will not be covered here, for this we would like to refer the interested reader
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to the paper by Michiel Bouwhuis, [1]. Throughout this paper we will use
geometric units; c = 1, G = 1, unless explicitly stated otherwise.

2 The Kerr-Newman Metric

Relatively shortly after Schwarzschild’s discovery, his solution was extended
so as to be a solution of the coupled Einstein-Maxwell equations, giving the
Reissner-Nordström solution, in 1916. The solution for a merely axisymmet-
ric stationary spacetime was not found till 1963, when it was discovered more
or less by accident by R.P. Kerr [3]. Analogously to how Schwarzschild was
extended to incorporate electric and magnetic charge, the Kerr-metric can
be extended to the so called Kerr-Newman metric, which in Boyer-Lindquist
coordinates reads

ds2 =− (∆− a2 sin2 θ)

Σ
dt2 − 2a sin2 θ

(r2 + a2 −∆)

Σ
dtdφ

+

(
(r2 + a2)2 −∆a2 sin2 θ

Σ

)
sin2 θdφ2 +

Σ

∆
dr2 + Σdθ2,

where

Σ = r2 + a2 cos2 θ

∆ = r2 − 2Mr + a2 + e2

e2 = Q2 + P 2.

The coordinates t, r, θ, and φ have the familiar interpretation of spherical co-
ordinates in Minkowski space in the limit of M, e, a→ 0. The interpretation
of Q, P , a, and M merit a bit more discussion.

As it turns out this metric describes a rotating charged black hole, pre-
senting a three1 parameter solution to the Einstein-Maxwell equations with
the vector potential (one form) given by,

A =
Qr(dt− a sin2 θdφ)− P cos θ[adt− (r2 + a2)dφ]

Σ
.

The interpretation of e is none other than in electrodynamics (extended
to include magnetic monopole charges), exept that now one is dealing with a

1Depending on your point of view one could reasonably argue it is a four parameter
solution, however it is not commonly denoted as such in the literature.
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curved background. Regardless the story remains the same; as can be verified
by explicit calculation for any two-sphere in the asymptotic region,

1

2

∫
S2

dSµνF
µν = 4πe.

So we see that e represents the combined electric and magnetic (monopole)
charges of the black hole, denoted Q and P respectively in the above. The
other two parameters M and a, represent the Schwarzschild mass and the
angular momentum per unit mass respectively, as will be shown below. To
show this in a generic and elegant fashion, we need the fact that this metric
posesses the following two Killing vector fields which will be denoted k and
m,

kµ =

(
∂

∂t

)µ
and mν =

(
∂

∂φ

)ν
.

The fact that these are Killing vector fields is clear by inspection of the
metric.

2.1 Komar integrals

As indicated above there are three parameters in the Kerr-Newman family.
The task is now to determine what their meaning is. To do so, it serves
well to introduce so-called Komar-integrals, which represent (time-)conserved
charges associated to conserved currents coming from Killing vector fields a
spacetime posesses. This is done as follows: to each Killing vector field (ξ)
associate the following integral (dSµν is the area element on the boundary of
the spacelike hypersurface),

Qξ(V ) =
c

16π

∮
∂V

dSµν∇µξν =
c

8π

∫
V

dSµ∇ν∇µξν , (2.1)

which can alternatively be written as,

Qξ (V ) =

∫
dSµJ

µ(ξ),

for,

Jµ(ξ) = c

(
T µνξ

ν − 1

2
Tξµ

)
.

Equality of the two formulae is clear upon using the identity∇ν∇µξ
ν = Rµνξ

ν

for a Killing vector field ξ. This current is in fact conserved since,
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∇µJ
µ = c

(
T µν∇µξν −

1

2
T∇µξ

µ

)
︸ ︷︷ ︸−

c

2
ξµ∂µT

0 by Killing’s equation

=
c

2
ξµ∂µR by Einstein’s equations

= 0 for ξ is a Killing vector field.

Hence we are dealing with bona fide conserved quantities, which in certain
limits may be given familiar meanings, as we shall do now.

By explicit calculation of the relevant Christoffel symbols and evaluating
the corresponding integral one finds that the Komar-charge associated with
the Killing vector field k, is M(+ e2

r
), as expected. A multipole expansion in

M gives M the role of the Newtonian gravitational mass at first order, hence
it can be viewed as the mass of the black hole.

To give an interpretation of the conserved charged associated to m, let us
consider a t = constant hypersurface V , and work in Cartesian coordinates
in the asymptotic region. There, since dSµm

µ = 0, we obtain (for c = 1)

Qm (V ) ≈ ε3jk

∫
V

d3xxjT k0.

This expression is none other than what one would call the third component
of angular momentum in ordinary Minkowski space, and so it not unreason-
able to agree that the Komar integral, (2.1), for the Killing vector field m and
c = 1 gives a conserved charge that we would like to call angular momentum.
Evaluating this integral explicitly for the Kerr-solution2 gives

J :=
1

16π

∮
S2

dSµν∇µmν =
1

16π

∮
S2

dSµνg
µαΓναβm

β

=
1

16π

∮
S2

dSµνg
µαΓνα3

=

∫ 2π

0

∫ π

0

dθdφ{

−
4aM (a4 − 3r2a2 + (a2 − r2) cos(2θ)a2 − 6r4)

(
(cos(2θ)a2 + a2 + 2r2)

2
sin2(θ)

)3/2

(cos(2θ)a2 + a2 + 2r2)5 }

=aM.

2The following expression is less insightfull in the case e 6= 0.
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Figure 1: Ellipsoidal coordinates in the (r, θ) plane [2]

Thus we see that we can interpret the parameter a in the Kerr-Newman
metric as angular momentum per unit mass.

2.2 Singularities of the Kerr Metric

From this point on we will consider the Kerr-metric (e = 0) since most of the
interesting phenomena persist, while keeping things more concise. The Kerr
metric has both curvature and coordinate singularities, where analogously
to the Schwarzschild case, the coordinate singularities play an interesting
physical role as well.

As it turns out, the singularity at Σ = 0, i.e. r = 0 and θ = π
2
, is a

curvature singularity. This might seem a bit odd at first glance, but the
coordinates r, θ, and φ are not the familiar spherical coordinates, and hence
the interpretation of this singularity is changed.

Setting M to zero in the Kerr metric, gives regular Minkowski space,
exept in ellipsoidal coordinates, illustrated in the figure below (fig.1).

The nature of this singularity becomes more apparent when working in
Kerr-Schild coordinates, which are defined by,

x+ iy = (r + ia) sin θ exp [i

∫
(dφ+

a

∆
dr)]

z = r cos θ

t̃ =

∫ (
dt+

r2 + a2

∆
dr

)
− r.

Expressed in these coordinates the metric becomes
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Figure 2: Confocal ellipsoids and the disc at r = 0 [6]

ds2 =− dt̃2 + dx2 + dy2 + dz2

+
2Mr3

r4 + a2z2

[
r(xdx+ ydy)− a(xdy − ydx)

r2 + a2
+
zdz

r
+ dt̃

]2

.

This makes manifest the Minkowski nature of the spacetime for M = 0. In
terms of these coordinates, the surfaces of constant t̃ and r become confocal
ellipsoids, which for r = 0 degenerate into the disc z = 0, x2 + y2 ≤ a2, as is
illustrated in fig.2.

In these coordinates, θ = π
2

corresponds to the edge of this disc. So we see
that the singularity at r = 0 and θ = π

2
lies on the boundary of this disc; a

Kerr black hole has a ring singularity. We mention here in passing that when
M2 < a2 this singularity is a naked one, and hence the cosmic censorship
hypothesis would indicate that this case does not correspond to a physically
relevant solution of the Einstein equations; sligthly more details on cosmic
censorship will follow in the appendix in the short discussion of uniqueness
theorems and cosmic censorship. From this point on then, we shall implicitly
assume that M2 > a2, unless explicitly stated otherwise 3.

3The case M2 = a2, an extremal Kerr black hole, is just the limiting case of what we
will consider, additionally it is unstable and would thus in a realistic situation quickly
change to become of the nonextremal form. It is perhaps interesting to mention that in
the case of an extremal Kerr black hole in fact all the mass of the black hole arises due to
its angular momentum; inspection of (3.16) and below shows this explicitly, so untill then
just keep this in mind.
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The coordinate singularities of the Kerr-metric in Boyer-Lindquist coor-
dinates occur at θ = 0 and at ∆ = 0. The coordinate singularity at ∆ = 0,
can be made evident upon writing ∆ as

∆ = (r − r+)(r − r−),

where

r± = M ±
√
M2 − a2,

making evident the singularities at r = r±. Removing these singularities can
be done by a change of coordinates to Kerr coordinates4,

dv = dt+
(r2 − a2)

∆
dr

dχ = dφ+
a

∆
dr,

giving the Kerr solution in Kerr coordinates,

ds2 =− (∆− a2 sin2 θ)

Σ
dv2 + 2dvdr − 2a sin2 θ(r2 + a2 −∆)

Σ
dvdχ

− 2a sin2 θdχdr +
(r2 + a)2 −∆a2 sin2 θ

Σ
sin2 θdχ2 + Σdθ2,

which is clearly nonsingular when ∆ equals zero. While these points are thus
not interesting as a singularity, something physically interesting does happen
at these points. Completely analogous to the Schwarzschild solution which
has a coordinate singularity at r = 2M , which turns out to be a surface of
considerable physical interest as it is the event horizon of the black hole, the
surfaces r = r± turn out to be event horizons of a Kerr black hole as well.
These will henceforth be referred to as the inner and outer event horizon,
corresponding to r = r− and r = r+ respectively. Note that this goes over
smoothly into the Schwarzschild case when a approaches zero; r− then goes
to zero, and r+ approaches 2M as it should.

Inside the outer event horizon, but outside the inner, the r coordinate
becomes spacelike in such a way that an observer has to move in the direction
of decreasing r, just like in the Schwarzschild case, as is clear by inspection of
the metric. As soon as this observer passes the inner event horizon however,
r becomes spacelike again, and the observer is no longer required to move
towards the singularity.

4These are the analogue of ingoing Eddington-Finkelstein coordinates for the
Schwarzschild solution
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Figure 3: The ergosphere around a Kerr black hole [6]

3 The ergosphere

The ergosphere is a region of considerable physical interest, which starts just
outside the outer event horizon of the rotating black hole. Within this region
the Killing vector field k ( ∂

∂t
) becomes spacelike, which is a very different

situation from the Schwarzschild case, where this only happens inside the
event horizon. Of course this means another direction must have become
timelike, and so as it turns out, inside the ergosphere any observer has to
move with a certain minimum (nonzero) coordinate angular velocity.

One way of defining the ergosphere is the region for which the Killing
vector field k is spacelike. That is, if an observer inside the ergosphere would
like to follow an orbit of k, it would have to move faster than light; an
observer inside the ergosphere cannot remain stationary, eventhough she/he
finds himself outside of the event horizon. Since

k2 = gtt = −∆− a2 sin2 θ

Σ
= −

(
1− 2Mr

r2 + a2 cos2 θ

)
,

this yields the ergosphere as the region illustrated in figure 3,

r+ ≤ r ≤M +
√
M2 − a2 cos2 θ.

Now let us look at this nonstationarity in a bit more detail. We could
already guess, since the observer is still outside the event horizon, and given
the symmetry of the solution, that the nonstationarity can in some sense only
involve the φ direction. But let us make this a bit more explicit by considering
the following inequality for massive observers (i.e. for the tangent vectors uα

for any timelike curve)[8],
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gµνu
µuν < 0. (3.1)

It is easy to convince oneself that all terms on the left-hand side of equation
(3.1) are manifestly positive exept the term 2gtφu

tuφ = 2gtφ(dt/dτ)(dφ/dτ).
It is also quickly verified that ∇µt is (still) past directed timelike in the
ergosphere, and thus that dt/dτ = uκ∇κt > 0 in the ergosphere. So we find
that in the ergosphere, since gtφ < 0 there, we must have

dφ/dτ > 0,

for any and all timelike curves in the ergosphere; observers in the ergosphere
are forced to rotate in the direction of the black hole. This can be viewed as
an extreme case of the Lense-Thirring (or frame-dragging) effect, providing a
dramatic example of how some aspects of Mach’s principle are incorporated
in general relativity5.

To give a more quantitative result, consider an observer moving along a
constant r,θ worldline with a uniform angular velocity. Such an observer will
see an unchanging space-time geometry and is thus a stationary observer.
The angular velocity of such an observer, measured asymptotically, is

Ω =
dφ

dt
=
uφ

ut
.

We also know that the four-velocity of a stationary observer is proportional
to a Killing vector field, giving rise to an expression which could have almost
been postulated without further motivation

u = ut
(
∂

∂t
+ Ω

∂

∂φ

)
=

k + Ωm

‖k + Ωm‖
.

Of course we should insist that this four velocity is timelike;

gtt + 2Ωgtφ + Ω2gφφ > 0.

As usual let us look at the idealized limiting case where the left-hand side
vanishes. This happens for

5Before having fully developed the theory of general relativity, Einstein already found
(an example of) the Lense-Thirring effect, with which he was so satisfied he wrote the
following in a letter to Mach expressing this: ”it... turns out that inertia originates in a
kind of interaction between bodies, quite in the sense of your considerations on Newton’s
pail experiment... If one rotates [a heavy shell of matter] relative to the fixed stars about
an axis going through its center, a Coriolis force arises in the interior of the shell; that
is, the plane of a Foucault pendulum is dragged around (with a practically unmeasurably
small angular velocity).”[9]
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Ω =
−gtφ ±

√
g2
tφ − gttgφφ

gφφ
.

Now let ω = −gtφ/gφφ, which will of course turn out to have an interesting
interpretation. Then we have6

Ωmin = ω −
√
ω2 − gtt/gφφ

Ωmax = ω +
√
ω2 − gtt/gφφ,

with

ω =
a(r2 + a2 −∆)

(r2 + a2)2 −∆a2 sin2 θ
.

The interpretation of ω is that it is the angular velocity for stationary ob-
servers that are nonrotating with respect to local freely falling test particles,
that have been dropped in radially from infinity. These observers are known
as Bardeen or locally nonrotating observers[5]7. To see this, note that the
angular momentum (J := pµm

µ) of such test particles vanishes, and so for
these observers uνm

ν = 0, i.e. (k + Ωm)µm
µ = 0, which is none other than

the requirement Ω = ω.
Finally, note that Ωmin = 0 if and only if gtt = 0, i.e. when k changes its

nature from timelike to spacelike, exactly at the boundary of the ergosphere,
as of course it should be. An observer can thus only be static (with respect
to the ”fixed stars”) outside the static limit, r = r+. At the static limit only
lightlike observers can be static.

3.1 Particle trajectories

While solving the full geodesic equations can be extremely complicated, we
can analyze the radial trajectories of test particles around a Kerr black hole
with relative ease. This analysis is completely analogous to the way one finds
an effective radial potential for a Schwarzschild black hole, exept that this
potential has not two but three parameters. The analysis is based on the fact
that the two Killing vector fields that our metric posesses have two associated
quantities that are conserved under geodesic motion. The one encountered

6An equivalent, but more insightful definition of the ergosphere as the region for which
Ωmin > 0, can now be adopted as well.

7Yet they rotate.

11



just above is the angular momentum, J , associated with m, while the second
is the energy, E, associated with k

J := pµm
µ =

(
1− 2Mr

Σ

)
ṫ+

2Mar sin2 θ

Σ
φ̇, (3.2)

E := −pνkν = −2Mar sin2 θ

Σ
ṫ+

(r2 + a2)2 −∆a2 sin2 θ

Σ
sin2 θφ̇, (3.3)

where ẋµ = dxµ/dτ . Additionally we have the normalization of the four
velocity along geodesics

gαβu
αuβ = ε, (3.4)

where ε = −1, 0 for timelike and null geodesics respectively. We now use
equations (3.2) and (3.3) to eliminate ṫ and φ̇ for E and J , which can then be
substituted into equation (3.4). For simplicity we will from now on consider
motion in the equatorial plane of the black hole (θ = π/2) , this yields

1

2
ṙ2 + V (E, J, r) = 0 (3.5)

for the effective potential

V (E, J, r) = ε
M

r
+
J2

2r2
+

1

2
(−ε− E2)

(
1 +

a2

r2

)
− M

r3
(J − aE)2.

Thus the radial motion of a test particle with given energy and angular
momentum is now reduced to a problem of nonrelativistic motion in one
dimension. Several radial plots of this effective potential for various values
of energy and angular momentum are given in the appendix in figure 6.

As an application of this effective potential consider the last stable cir-
cular orbit around a Kerr black hole. To find the location of this orbit, we
find the location of the stable and unstable circular orbit, those being the
simultaneous solutions to V = 0 and dV/dr = 0 . Since for the rest of this
paper the massive case is the most relevant, we shall take ε = −1 in the
following. The maximum and minimum of the effective potential occur at

r =
(1− E2) a2 + J2 −

√
(J2 − a2 (E2 − 1))2 − 12(J − aE)2M2

2M
, (3.6)

and
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r =
(1− E2) a2 + J2 +

√
(J2 − a2 (E2 − 1))2 − 12(J − aE)2M2

2M
,

corresponding to an unstable and a stable circular orbit respectively. Like in
the Schwarzschild case, the stable circular orbit moves away with increasing
J , while the unstable circular orbit asymptotically approaches r = 3M . The
last stable circular orbit then occurs when the stable and unstable circular
orbit coincide, i.e. when the discriminant of the square root in equation
(3.6) vanishes. This condition, being the root of a fourth order polynomial
has in principle four solutions, but we are interested in the one that gives the
smallest radius. This then gives the last stable circular orbit at

r = −
√

3aE + 3M −
√

3 (E2 − 1) a2 − 6
√

3EMa+ 9M2 := rlsco,

where E is still to be determined from the condition V = 0. This again has
four possible solutions, where two turn out to be complex, and one gives rise
to negative energies. This leaves us with one physical solution for E which
is still a function of a. This function will not be presented here because it is
not very insightful due to its length. It attains its minimal value in the limit
a→M , where we find E = 1/

√
3.

The binding energy per unit rest mass, of the last stable circular orbit is
then

EB = 1− E = 1− 1/
√

3 ≈ 0.42. (3.7)

Now we should not forget that a (realistic) particle orbiting in this geom-
etry will emit gravitational radiation. Because of this the motion will deviate
slightly from geodesic motion, but the above should still provide a good esti-
mate. A particle initially in a circular orbit with r �M (hence with E ≈ 1)
should slowly spiral in towards the black hole as it loses energy by emitting
gravitational radiation, as it comes to the radius of last stable orbit, rlsco.
From this point onward the orbit will really become unstable and the particle
should now rapidly move past the outer event horizon. So during the time
in which the particle spirals inward towards r = rlsco, according to equation
(3.7) about 42% of the original mass-energy of the particle will be radiated
away. This is to be compared to about 6% in the Schwarzschild case. In
both cases we see that, even though the emission of gravitational radiation
is typically weak, in astrophysically reasonable processes large amounts of
energy can be converted to graviational radiation.
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Figure 4: The decay of a particle in the Penrose process [6]

3.2 The Penrose Process

The Penrose process is a means of extracting energy from a rotating black
hole; a very interesting consequence of the presence of an ergosphere. While
the technical difficulties associated with it may still prevent an actual appli-
cation in the foreseeable future, the principle remains remarkably elegant.

Suppose we have a particle that decays into two others, one of which falls
into the black hole while the other escapes to infinity, illustrated in figure
4. For a decay in the ergosphere of a rotating black hole, it is possible to
arrange this in such a way that the energy of the escaped particle is larger
than the energy of the original particle before decay, thus providing a means
of extracting energy from the black hole. Denoting the energy of the original
particle by E, the energy of particle that falls in by E1 and that of the
escaping one by E2, we would normally have E2 < E since E1 > 0 normally.
In the case where the decay is in the ergosphere however, it is possible to
have E1 < 0 because k is spacelike there, and so we find that we may be able
to attain E2 > E in this process, thus providing a means of extracting energy
from a black hole. In the following exact analysis we will closely follow the
discussion in [4].

3.3 Energy efficiency of the individual Penrose process

We will now analyse the constraints that arise from the conditions of conser-
vation of momentum at the decay, that the particle has to reach the point of
decay, denoted r0, that one of the resulting particles has to fall in towards
the black hole with negative energy and finally that the other has to escape
to infinity. We would expect this process to depend on the distribution of the

14



parent particle’s momentum over the decay products, especially in relation
to their rest-mass, and so this will be our starting point.

Of course we have conservation of momentum,

pµ = pµ1 + pµ2 , (3.8)

which is in this case most usefully recast in the following three relations

Ẽ = µ1Ẽ1 + µ2Ẽ2 (3.9)

J̃ = µ1J̃1 + µ2J̃2 (3.10)

˜̇r = µ1
˜̇r1 + µ2

˜̇r2. (3.11)

In the above we have introduced the rest-mass of the particles, µi, (i = 1, 2),
where we have set the rest-mass of the parent particle, µ, equal to one, as we
expect the ratios of the masses, not the individual masses, to be the relevant
parameters in this problem. This is then also the reason for introducing Ẽ,
J̃ , and ˜̇r; these all have the rest-mass factored out compared to before, e.g.
µẼ = E.

It turns out that for high efficiency of the process, which is what we are
of course really interested in, it serves well to choose ˜̇r1 = 0 at the point of
split, which makes immediate intuitive sense. Now we can proceed with the
analysis with the help of the effective potential, V , introduced in the previous
section. With ˜̇r1 = 0, we have ˜̇r = µ2

˜̇r2. Solving this in terms of the effective
potential for both particles we find the following expression for the energy of
the original particle

Ẽ =

(
RẼ2

1 − 4aẼ2
1 J̃

2
1 − (r − 2)J̃2

1

)
µ2

1 + r∆(1− µ2
2)

2µ1

(
RẼ2

1 − 2aJ̃1

) , (3.12)

where

R = (r(r2 + a2) + 2a2).

The fact that the original particle came in from infinity means E = Ẽ ≥ 1,
which in turn means we can reduce equation (3.12) to the inequality,

µ2
1

(
RẼ2

1 − 4aẼ2
1 J̃

2
1 − (r − 2)J̃2

1

)
+ r∆(1− µ2

2)− 2µ1(RẼ1 − 2aJ̃1) ≥ 0.

This inequality can be analysed in the (µ1, µ2) -plane where the bound-
ary is given by the equality sign above. This boundary turns out to be a
hyperbola given by
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µ1 =
(RẼ1 − 2aJ̃1)±

√
(RẼ1 − 2aJ̃1)2 − r∆(1− µ2

2)(RẼ2
1 − 4aẼ1J̃1 − (r − 2)J̃2

1 )

RẼ2
1 − 4aẼ1J̃1 − (r − 2)J̃2

1

.

(3.13)
However by squaring the momentum conservation, equation (3.8), we also
have

µ2
1 + µ2

2 < 1. (3.14)

The first inequality above means that µ1 is greater than the larger root, or
less than the smaller root given in equation (3.13), combining this with the
constraint (3.14), and the fact that µ1 and µ2 have to be greater than zero
gives the allowed region for the parameters thus far. Now we have ensured
that the original particle makes it to the point of decay, and that one of
the decay products falls into the black hole with negative energy; it remains
to make sure that the other particle bounces back from the black hole, and
escapes to infinity, i.e.

µ2Ẽ2 < V2 forr0 > r > r+

µ2Ẽ2 > V2 forr > r0.

Unfortunately the further analysis can no longer be done analytically, but
numerical computations have been done that show that for 0 ≤ µ2 < 1, for
small values of µ2 the particle will not escape to infinity, while for µ2 close to
the hyperbolic boundary the particle always escapes. The key point is that
there exists some critical value, call it µ2c, giving a nonempty region µ2 > µ2c

for which the particle escapes to infinity [4]. Now that we have shown it is in
fact possible to arrange the particle trajectories in such a way as to extract
energy from the black hole, let us see what the maximum efficiency of this
process is.

Taking E = Ẽ = 1, the four velocity of the original particle at the point
of split comes out as

u = f(1, 0, 0,Ω), (3.15)

where

f = −(gtt + gtφΩ)−1

Ω =
−gtφ(1 + gtt) +

√
−(gttgφφ − g2

tφ)(1 + gtt)

gtφ + gφφ
.
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Here Ω is the asymptotic angular velocity of the incident particle, and f is
there for normalization. The angular velocities of particles 1 and 2 after the
split, are as always constrained, since Ω− < Ωi < Ω+. Now it turns out the
maximal output will be gained when letting Ω1 → Ω− and Ω2 → Ω+, in line
with an intuitive picture of ”pushing off” of the black hole.

Using momentum conservation once more, eq.(3.8), we find

µ2Ẽ2 =

(
Ω− Ω−

Ω+ − Ω−

)(
gtt + gtφΩ+

gtt + gtφΩ

)
.

Defining then the efficiency, η of the process as expected (gain in energy per
input of energy), we find that since Ẽ = 1

η =
µ2Ẽ2 − Ẽ

Ẽ
= µ2Ẽ2 − 1.

Now in the limit where the split point tends to r+
8

µ2Ẽ2 =

√
1 + gtt + 1

2
.

Then looking at the case of an extreme Kerr black hole (a2 = M2), we have
at r = r+

gtt = 1,

which then gives as the maximal efficiency of the process

η =

√
2− 1

2
≈ 0.207.

In fact it turns out that having a charged black hole reduces this efficiency
for a Penrose process with uncharged particles, but also that this efficiency
has no limit when the particles are charged [4]; this means that a particle
can come out with many times the energy the original particle had, not just
20.7% more. Regardless, we have found that in the case of a non-charged
extremal Kerr black hole, the Penrose process allows for a particle to escape
with roughly 20.7% more energy than the original came in with. However,
this does not answer the question of how much energy can maximally be
extracted from the black hole itself; this will be answered now.

8For details see [4]
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3.4 The maximum energy extracted from a Kerr black
hole

The energy that is extracted from a Kerr black hole by means of the Penrose
process can of course only come from one place: the black hole itself. Thus
we expect there to be a limit to this extraction. It turns out that in line
with the intuitive picture from above, it is in fact the angular momentum of
the black hole that decreases, and that the limit of energy extraction lies at
the point where the angular momentum of the black hole is zero. Now let us
make this explicit.

Let us consider, at the event horizon, the Killing vector field

ξ+ = k + ΩHm.

Since ξ+ is future-directed null and p is future-directed timelike or null on
the horizon, we have

−pµξµ+ ≥ 0.

Hence, denoting the particles angular momentum by L, we find

E − ΩHL ≥ 0.

Now we want to, and can have, E < 0, which thus means L < 0. Thus by
having this particle fall into the black hole, we end up with a black hole with
mass M + δM , and angular momentum J + δJ , where δM = E and δJ = L.
So now we explicitly see that upon extracting energy from a black hole by
means of the Penrose process, we in fact reduce its angular momentum.
The relation δJ ≤ δM/ΩH can quite easily be seen to be equivalent to the
following perhaps more insightful inequality

δ(M2 +
√
M4 − J2) ≥ 0. (3.16)

This turns out to be directly proportional to the surface area of the event
horizon of the black hole, and thus we have found a special case of the second
law of black hole thermodynamics (a fascinating subject which this paper will
not go into), the fact that the surface area of a black hole cannot decrease
in any classical process.

We can use this area to define the irreducible mass, Mirr, by

M2
irr =

A

16π
.
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(The constant of proportionality relating (3.16) to A is 8π.) Then we have
that the maximum amount of energy that can be extracted from a black hole
before slowing its rotation to zero is

M −Mirr = M − 1√
2

(
M2 +

√
M4 − J2

)(1/2)

. (3.17)

Not unexpectedly, relatively speaking the maximum amount of energy
can be extracted from an extreme Kerr black hole, where we find

M −Mirr = M(1− 1√
2

). (3.18)

In that case we can extract approximately 29% ((1 − 1/
√

2)) of the total
energy. As a perhaps interesting sidenote to put this in perspective: for an
extreme Kerr black hole of solar mass, this would be enough energy to power
the earth for roughly 1026 years at current consumption rates!

3.5 Super-radiance

Analogous to how the Penrose process allows for a particle to come out
of a black hole with more energy than its ”parent particle” had, certain
wavemodes that enter and leave the ergosphere of a black hole are amplified
by doing so; this process is known as superradiance. For simplicity this will
be demonstrated for a scalar field, with stress-energy tensor

Tµν = ∂µΦ∂νΦ−
1

2
gµν(∂Φ)2.

By covariant conservation of the stress-energy tensor (∇µT
µ
ν = 0) it follows

that (here k is once again the usual Killing vector field, ∂/∂t)

∇µ (T µνk
ν) = T µν∇µkν = 0,

so that we can consider the following conserved current,

jµ = −T µνkν = −∂µΦkν∂
νΦ +

1

2
kµ(∂Φ)2,

as the energy flux vector associated with Φ. Now what we want to do is look
at a region of spacetime, with part of its boundary on the event horizon as
illustrated in figure 5, and see what conservation of this current implies.

Assuming that ∂Φ = 0 at spatial infinity (i0), using conservation of the
current defined above we find
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Figure 5: The region of spacetime under consideration [6]

0 =

∫
S

d4x
√
−g∇µj

µ =

∫
∂S

dSµj
µ

=

∫
Σ2

dSµj
µ −

∫
Σ1

dSµj
µ −

∫
N
dSµj

µ

= E2 − E1 −
∫
N
dSµj

µ,

where Ei stands for the energy of Φ on the spacelike hypersurface Σi.
Thus the energy flux through the horizon is given by

∆E = E1 − E2 = −
∫
N
dSµj

µ

= −
∫
N
dAdvξµj

µ,

with v the Kerr coordinate defined earlier.
The energy flux per unit time (power) is then

P = −
∫
dAξµj

µ =

∫
dA (ξµ∂µΦ) (kµ∇µΦ)

=

∫
dA

(
∂

∂v
Φ + ΩH

∂

∂χ
Φ

)(
∂Φ

∂v

)
,
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where this used the fact that ξµk
µ = 0 on the horizon. This follows from a

more general lemma for Killing vector fields on Killing horizons, however in
this case it is also easily verified to be explicitly true.

Then considering a simple wavemode of frequency ω

Φ = Φ0 cos (ωv − νχ), ν ∈ Z (angular quantum number),

it is easily found that the time average lost power across the horizon is given
by

P =
1

2
Φ2

0Aω(ω − νΩH),

with A being the area of the horizon.
Now the crucial point is that while P is positive for most values of ω, it

is in fact negative for values of ω in the range

0 < ω < νΩH .

This means that a wave mode with parameters falling within this inequality is
in fact amplified by the black hole. Note that in connection with the Penrose
process this wavemode has to have a nonzero angular quantum number, as
it has to take away angular momentum from the black hole.

This process is in fact quite similar to stimulated emission in atomic
physics, which suggests it might be possible to have spontaneous emission,
and in fact it can be shown to occur in the quantum theory, which implies
any black hole with an ergoregion cannot be stable quantum mechanically [6].
Furthermore this calculation neglected the backreaction of the scalar field on
the metric. Upon incorporating this, the metric remains stationary only if
∂Φ/∂v = 0, but then jµ = 0 and the black hole energy remains the same[6].
So stationarity is strictly speaking incompatible with super-radiance, which
is in a way to be expected.

This phenomenon of super-radiance is of course not limited to a scalar
field, and can for example be extended to incorporate electromagnetic waves;
for some more details on how the picture changes slightly in that case see
e.g. Wald [8].

4 Conclusion

This paper has attempted to provide a relatively selfcontained account of the
Kerr solution to the Einstein equations, and its interesting features. Amongst
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the aspects mentioned were the singularities of the Kerr-solution and how
they can be removed; by coordinate transformations, or interpreted; as a
ring singularity in this case. Furthermore this paper discussed what the Kerr-
solution in fact represents, and how the parameters in the solution are to be
interpreted. Also the event horizons and the ergosphere were investigated,
as they are interesting regions of this spacetime which give rise to a rich
structure. This structure became manifest in discussing particle trajectories
around a rotating black hole, and how this extra structure of two event
horizons and an ergosphere, which is not present in the case of a familiar
Schwarzschild black hole, leads to interesting phenomena of extracting energy
from a black hole: the Penrose process and super-radiance. The appendix
gives a short discussion of the still open problems of the exact physical nature
of these singular (black hole) solutions of the Einstein equations, and the fact
that, analogous to Birkhoff’s theorem for the Schwarzschild case, the Kerr
solution is in fact the unique axi-symmetric solution.

Of course many of the features discussed here could be discussed in much
greater detail; we hope that this has presented a useful overview. The refer-
ences should provide more details on most aspects where so desired.

5 Appendix

5.1 Cosmic censorship and uniqueness theorems

The cosmic censorship hypothesis lies at the basis of nearly all of the work
on the collapse of stellar bodies and black holes. However reasonable it
may seem, a concrete proof has been very elusive thus far, and without it
hardly any conclusions can be drawn on non spherically symmetric black hole
solutions and how they could be physically attained.

The approaches towards, and formulations of cosmic censorship are var-
ied; it is a complicated issue to find an exact statement of the cosmic cen-
sorship hypothesis, which then still leads to the problem of verifying or con-
tradicting such an exact statement. Geroch and Horowitz in [7] divide the
problem of formulating ’the’ cosmic censorship hypothesis into four different
approaches: the causal, the asymptotic, the stability, and the evolutionary
approach, where each has its specific merits. This is not the place for ex-
tensive complicated discussions of this nature, so let us be pragmatic and
give an hint of an intuitive picture of the hypothesis and say what cosmic
censorship is most likely (certain) to say about the case at hand: Kerr black
holes.

In the case of Kerr black holes cosmic censorship would basically state
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that the kind of (naked) singularities that the a2 > M2 Kerr solutions would
present us with, are unphysical9. The problem of exactly what type of naked
singularities one would like to exclude is hard, but clearly excluding all naked
singularities is hopeless, some are ’worse’ than others; Hawking and Israel
give some examples in their book, [7] p. 271. One quite intuitive picture,
related to the case at hand, of why one might believe some form of cosmic
censorship might be true, is the following.

Suppose that we have a spacetime which has a non-singular slice (phys-
ically: a time at which the spacetime is nonsingular), and that we would
attempt to cause this spacetime to be nakedly singular to the future of this
slice. This could be done for example by allowing a spherically symmetric
cloud of negative-mass dust to collapse, which would form a negative-mass
Schwarzschild solution at later times; or by letting a cloud of positive-mass
dust with large angular momentum relative to its mass to collapse, which
could give a Kerr solution with a2 > M2. However, the point is that in
either of these cases the collapse has a tendency not to occur at all; in the
first case because the gravitational effects of the negative mass are repulsive,
and in the second case because the effective centrifugal effects are repulsive.

So while the Schwarzschild with m < 0 and Kerr with a2 > M2 solutions
are nakedly singular spacetimes, there does not seem to be a viable physical
mechanism which could lead to the creation of the objects represented by
these spacetimes, within an otherwise non-singular spacetime[7, 2].

The analysis of collapse of non-spherically symmetric bodies towards a
black hole is based on the cosmic censorship hypothesis; without it, it turns
out to be impossible to conclude that such collapse will lead to a black hole.
The cosmic censorship hypothesis is also assumed in further work, including
the proof that the Kerr-solution is in fact the unique axisymmetric vacuum
spacetime described by the asymptotic parameters M and J . This statement
is known as the Carter-Robinson (or Robinson) theorem [6]:

Theorem 5.1. (Carter-Robinson Theorem) If (M ,g) is an asymptotically-
flat stationary and axi-symmetric vacuum spacetime that is non-singular on
and outside an event horizon, then (M ,g) is a member of the two-parameter
Kerr family. The parameters are the mass M and angular momentum J .

For the exact conditions (and/or direct references to the original work)
on the spacetime and some of the logical structure of the arguments we refer
the reader to [7], from p. 359 onwards. This theorem thus contains the

9”Spacetimes which, [in some sense which will not be made precise here], have the
property that certain observers can detect that their spacetime is singular (i.e. can directly
percieve the singular character) are said to be nakedly singular.” [7]
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more well known Birkhoff’s theorem, which states that Schwarzschild is the
unique stationary, spherically symmetric (hence actually static) solution to
the Einstein equations. In short we see that in the axi-symmetric case (or in a
more pragmatic sense, approximately axi-symmetric astrophysical cases) we
have a unique solution, which should therefore provide a good, and unique,
approximation to approximately axi-symmetric black holes in our physical
universe. Hence this provides us with a concrete unambiguous theoretical
model to lie at the basis of searches for astrophyical black holes.

Note that such a proof has not been found in the Kerr-Newman case;
there the strongest result that is available at present is a specific no-hair
theorem, which states that such a solution can be uniquely described by the
three external parameters (M , J , and e), and thus that under a continuous
variation of these parameters, the continuous variation of the solution re-
mains a solution. However, a proof that the known solution (Kerr-Newman)
is unique has not been found thus far.

5.2 Effective potentials around a Kerr black hole

Fig.(6) below is an illustration of the effective potential as first presented in
section 3.1. These potentials allow for simple analysis of the radial motion
of particles in the equatorial plane, reducing that problem to a problem in
one-dimensional dynamics. The potentials can thus be read and analyzed as
is familiar from Newtonian dynamics, although the potential itself is clearly
not the Newtionian one. The potential depends on the two conserved charges
E and J , the energy and angular momentum of the particle respectively. The
plots cover a qualitatively representative range of these quantities and how
they affect the potential.
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Figure 6: The effective potential in the equatorial plane for M = a = 1 and
various energies and angular momenta, as labelled.
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