
Classical field theory (NS-364B) – Hand in problems, set 4

Tue June 11 2013, 13:15-17:00 BBG065

To be handed in at the latest at the exercise class of June 25.

Problem 1: A real scalar field and its Green’s and two

point functions (12 points)

Consider a real massless scalar field φ, whose action is given by,

S[φ] =

∫

d4x
(1

2
(∂µφ)(∂νφ)ηµν − jφφ

)

, (1)

where jφ is some scalar source current. The canonical momentum of φ is π = ∂tφ, and the
canonical Poisson bracket and the corresponding the canonical quantization rule is hence,

{φ(~x, t), π(~x′, t)} = δ3(~x − ~x ′) =⇒ [φ̂(~x, t), π̂(~x′, t)] = ı~δ3(~x − ~x ′) , (2)

where by a hat we denote operators. Since the source current in the action (1) couples linearly
to the field, the corresponding Green functions that should be used to solve the quantum
equations for the field are identical to those of a classical scalar field.
This exercise is to some extent inspired by section 2.7 of Birrell & Davies, “Quantum Fields
in Curved Space” (Cambridge University Press). From now on we shall set ~ = 1.

(A) (1 point)

Show that, when quantised, the scalar field obeys the following equation of motion,

− ∂2φ̂(x) = ĵφ , (3)

where ∂2 = ηµν∂µ∂ν is the d’Alembertian operator, and ĵφ is a quantised current.

(B) (2 points)

If the current ĵφ does not depend on φ̂, then the problem becomes linear and can be
solved by the method of Green’s functions. Show that the general solution in this case
can be written as,

φ̂(x) = φ̂0r(x) +

∫

d4x′Gr(x; x′)ĵφ(x
′) , (4)

= φ̂0a(x) +

∫

d4x′Ga(x; x′)ĵφ(x
′) , (5)

where Gr and Ga denote the retarded and advanced Green functions, respectively, and
φ̂0r(x) and φ̂0a(x) are (in principle different) homogeneous free solutions that obey wave
equations, −∂2φ̂0r(x) = 0 = −∂2φ̂0a(x). φ̂0r(x) and φ̂0a(x) are determined by the
homogeneous wave amplitudes existing on an intial (tin) and final spatial surface (tfin),
respectively. At the lecture we have constructed explicitly the retarded Green function
Gr, and shown that

Gr(x; x′) = −
θ(t − t′)

2π
δ(∆x2) , ∆x2 = c2(t − t′)2 − ‖~x − ~x′‖2 ≡ c2∆t2 − r2 . (6)
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By making use of the same method (going to momentum space, and making a judicious
choice of the contour of integration over k0 which was shown at the lecture), construct
Ga, and show that it can be written as,

Ga(x; x′) =
θ(t′ − t)

2π
δ(∆x2) . (7)

Pay, in particular, attention to making the correct choice of the integration contour in
the complex k0-plane. Explain what physical consideration motivated your choice of the
integration contour that lead to Ga, and explain further how is the integration contour
related to the epsilon prescription of the poles in the complex k0-plane.

(C) (4 points)

The positive and negative frequency Wightman functions are defined as homogeneous
solutions of the wave equation,

− ∂2
xG

±(x; x′) = 0 = −∂2
x′G

±(x; x′) , (8)

whereby (in the vacuum) G+(x; x′) is determined by the contribution by integrating

counterclockwise around the positive frequency pole k0 = ω = c‖~k ‖, and G−(x; x′)
picks up the contribution by integrating clockwise around the negative frequency pole
k0 = −ω = −c‖~k ‖. Calculate G± in position space by performing suitable 4-momentum
integrations and show that

G+(x; x′) =
−ı

4π2

1

∆x2
+

, G−(x; x′) =
−ı

4π2

1

∆x2
−

(9)

where ı2 = −1 and

∆x2
+ = (ct − ct′ − ıǫ)2 − ‖~x − ~x ′ ‖2 , ∆x2

−
= (ct − ct′ + ıǫ)2 − ‖~x − ~x ′ ‖2 . (10)

Explain the origin of the infinitesimal parameter ǫ > 0 in Eq. (10).

(D) (2 points)

The Pauli-Jordan, or spectral, two point function can be defined as

GPJ ≡ ρ = G− − G+ . (11)

Show that

GPJ ≡ ρ = −
sign(t − t′)

2π
δ(∆x2 − ǫ2) , (12)

where ∆x2 is defined in (6) and sign(t− t′) = Θ(t− t′)−Θ(t′ − t) and Θ(t− t′) denotes
the Heaviside function. Show further that

Gr(x; x′) = θ(t − t′)GPJ(x; x′) , Ga(x; x′) = θ(t′ − t)GPJ(x; x′) . (13)

Hint: Make use of the Sokhotsky-Plemelj theorem,

1

x ∓ ıǫ
= P

1

x
± ıπδ(x) ,

where P denotes a princial value (when integrating) and ǫ > 0 is an infinitezimal pa-
rameter.
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(E) (2 points)

The Wightman functions of a quantum theory can be written as expectation values of
products of two field operators,

G+(x; x′) = −ı〈Ψ|φ̂(x)φ̂(x′)|Ψ〉 , G−(x; x′) = −ı〈Ψ|φ̂(x′)φ̂(x)|Ψ〉 , (14)

where |Ψ〉 is the vacuum ket state of the scalar field theory and φ̂(x) is the field operator
in Heisenberg picture.

Show that the definitions (14) are consistent with Eqs. (12–13) and the canonical com-
mutation relation (2), i.e. show that, when (14) is inserted into the equation of motion
for Gr,a, one gets

− ∂2
xGr,a(x; x′) = δ4(x − x′) = −∂2

x′Gr,a(x; x′) . (15)

This analysis shows that the Green function of a classical and quantum theory are related
by a simple relation,

[G(x; x′)]quantum = ~[G(x; x′)]classical . (16)

This can be easily seen on the example of the retarded Green function of the quantum
theory, which can be written as,

Gr(x; x′) = −ıθ(t − t′)〈Ψ|[φ̂(x), φ̂(x′)]|Ψ〉 .

Now, by acting with −∂2 on both sides of this equation and making use of (2) one
gets −∂2Gr(x; x′) = ~δ4(x − x′). The significance of ~ in (16) is profound. Namely, it
shows that Green functions of a quantum theory G → 0 when ~ → 0. The physical
interpretation is that vacuum Green functions provide a measure of quantum fluctuations
of the vacuum, which are present only when ~ 6= 0. Examples can be found in sec 3.3 of
Birrell & Davies, “Quantum Fields in Curved Space” (Cambridge University Press).

(F) (1 point)

Construct the Hadamard (or statistical) two-point function for the problem at hand,
which is defined by,

GH(x, x′) ≡ F (x, x′) =
1

2

(

ıG+(x; x′) + ıG−(x; x′)
)

. (17)

Notice that GH and GPJ are in fact the real and imaginary parts of the Wightman
functions, which are also related as (G+)∗ = −G−. While the spectral function contains
information about what are the available states in the system, the statistical two-point
function provides information on how these states are populated. For this Pauli blocking
principle and Bose enhancement play an important role, which say that each fermionic
state can be populated by at most one particle, while bosonic states can be populated
by arbitrary number of particles. But, how that exactly affects what are the physically
reasonable choices of these two point functions, is to be explained some other time.
For now we just comment that in this exercise you have constructed vacuum two-point
functions, for which all states are empty, i.e. they are occupied by zero real particles.
The vacuum two-point functions are non-vanishing due to virtual particle fluctuations,
which exist also in the vacuum. Under certain circumstances, these virtual vacuum
fluctuations can be detected.
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