
Problem set 11 for Cosmology (ns-tp430m)

Problems are due at Thu May 8. In total 14 points plus 2 bonus points

21. Baryon-to-photon ratio. (4 points)
According to the Planck satellite measurement, the baryon-to-photon ratio today is,

ηb ≡
nb

nγ
= 6.4± 0.1× 10−10 , (1)

where nb denotes the baryon density, and nγ is the photon density.

(a) (2 points)

What is the baryon-to-entropy ratio nb/s today? Here s denotes the entropy density. Recall that the
effective number of degrees of freedom today is, g∗(T0) ' 3.36 (T0 ' 2.73 K), g∗S(T0) ' 3.91 (the
difference is due to a lower temperature of the neutrino fluid today, Tν ' 1.96 K), while above the
electroweak transition, g∗(T � Tew) ' 106.75 (kBTew ∼ 100 GeV).

(b) (2 points)

What is nb/s and ηb = nb/nγ at temperatures above the neutrino decoupling temperature, 100 MeV�
kBT � 1 MeV, where the only additional relativistic particles are electrons and positrons? Assume
that baryons are generated at a temperature much above 100 MeV/kB.

22. Thermal effective potential. (10 points + 2∗ bonus points)
Thermal effects may cause phase transitions in the early Universe (Kirzhnits, Linde, 1972), most notable

being the electroweak (phase) transition and the strong phase transition. While the full account of phase
transition dynamics usually requires a nonperturbative treatment, some of the important features of the
transition are captured by the effective potential calculated by truncating the effective action at a certain
order in the loop expansion (an expansion in powers of ~). In this problem we set ~ = 1 and c = 1.

A simple thermal effective potential is the one-loop approximation to the effective action of a (self-
interacting) real scalar field φ, whose tree-level Lagrangian reads,

L0 =
1

2
ηµν(∂µφ)(∂νφ)− V (φ) ηµν = diag(1,−1,−1,−1) , (2)

where the potential reads,

V (φ) = V̄0 +
1

2
m2

0φ
2 +

λ

4!
φ4 , (3)

and the tree-level action is S0[φ] =
∫
d4xL0.

When m2
0 ≥ 0, the field expectation value, 〈φ〉 = 0. When treated in a tree-level approximation, the

field is in its symmetric minimum, 〈φ〉 = 0. When, on the other hand, m2
0 = (d2V/dφ)2(φ = 0) < 0, the

Z2-symmetry φ → −φ is spontaneously broken by the vacuum, such that the scalar vacuum corresponds
to one of the two minima, φ = ±µ, µ2 = −6m2

0/λ. In this case it is convenient to consider the action for a
shifted scalar field,

φ = φ0 + ϕ , φ2
0 = −6m2

0

λ
> 0 , (4)

such that the quadratic part of the shifted action in an adiabatically expanding universe (the scale factor
can be chosen a = 1) reads,∫

d4xL0 =

∫
d4x

∫
d4y

1

2
ϕ(x)D(x; y;φ0)ϕ(y) , (5)

D(x; y;φ0) = −
√
−g(�x+m2)δ4(x−y) , m2 = m2(φ0) = m2

0+
λ

2
φ2

0 =−2m2
0 , �x = ∂2

x ,
√
−g = 1 .
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Figure 1: The one-loop Feynman diagram contributing at one-loop order (~) to the effective action of a real scalar
theory.

To calculate the one-loop thermal contribution to the effective action, whose Feynman graph represen-
tation is shown in figure 1, observe that the scalar thermal Feynman (time ordered) propagator is defined
as,

i∆F (x−x′) =
Tr[e−βĤT (φ̂(x)φ̂(x′))]

Tr[e−βĤ ]
, (6)

where T denotes time ordering,

T (φ̂(x)φ̂(x′)) = θ(t− t′)φ̂(x)φ̂(x′) + θ(t′ − t)(φ̂(x′)φ̂(x)) (7)

Ĥ =

∫
d3x
[1

2
(π̂φ)2 +

1

2
(∇φ̂)2 + V (φ̂)

]
, π̂φ =

dφ̂

dt
(8)

is the Hamiltonian operator, and β = 1/(kBT ).

(a) (4 points)

By making use of the definition (6), show that the scalar propagator (6) obeys the boundary condition
(~ = 1),

i∆F (z0 = 0, ~z) = i∆F̄ (z0 = −iβ, ~z), where z = x− y , (9)

where i∆F̄ is the anti-time ordered propagator. In this imaginary time formalism the scalar Feynman
propagator obeys the equation of motion,

−
√
−g(�x+m2)i∆F (x−x′) = iδ4(x−x′) . (10)

Show that the Feynman propagator i∆F (x−x′), which obeys the boundary condition (9), is given in
the imaginary (Matsubara) formalism by (see e.g. Le Bellac, Thermal Field Theory (1996)),

i∆F (x−x′)→ i∆E(x−x′) = kBT

∞∑
n=−∞

∫
d3k

(2π)3
e−[2πnkBT (t−t′)−i(~x−~x ′)·~k]i∆̃E(k) , (11)

and

i∆̃E(k) =
i

ω2
n − ω2(k)

, ω(k) =

√
~k2 +m2 , (12)

where ωn = 2πinkBT (n = 0,±1,±2, ..) denote the imaginary Matsubara frequencies and i∆E is the
Euclidean (Matsubara) propagator.

Alternatively, one can use the real time formalism, to obtain (you do not need to show this),

i∆F (x−x′) =

∫
d4k

(2π)4
e−ik·(x−x

′)i∆̃F (k) , (13)
with

i∆̃F (k) =
i

k2 −m2 + iε
+ 2πnBE(ω)δ(k2 −m2) , nBE(ω) =

1

eβω(k) − 1
, (14)

where ε > 0 is an infinitesimal parameter used to move the propagator poles away from the real axis
(needed for the k0-integration prescription for the Feynman propagator).

The one-loop contribution to the effective potential for a real scalar field shown in figure 1 reads (up
to a constant),

VT1(φ) = − i
2

∫
k

ln [D̃(k;φ0)] (15)

where
D̃ = k2 −m2 , m2 = m2

0 +
λ

2
φ2

0 (16)

denotes the inverse propagator (5) in momentum space,
∫
k = ikBT

∑∞
n=−∞

∫
[d3k/(2π)3], k2 = ω2

n−~k2

in the imaginary time formalism, and
∫
k =

∫
[d4k/(2π)4], k2 = k2

0 − ~k2 in the real time formalism.
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(b) (4 points)

Show that the one-loop thermal contribution (15) to the effective potential can be written as,

VT1(φ) =
kBT

2

∞∑
n=−∞

∫
d3k

(2π)3
ln [− (2πnkBT )2 − ω2] (17)

where ω2 = ~k2 +m2. By making use of the following sum,

∞∑
n=1

y

y2 + n2
= − 1

2y
+
π

2
coth(πy) , (18)

show that the sum over n in (17) can be evaluated, and the result can be written in the form,

VT1(φ) = ∆V0,vac + ∆VT1

∆VT1 =
(kBT )4

2π2

∫ ∞
0

dxx2 ln
[
1− exp

(
− (x2 +m2/(kBT )2)1/2

)]
, (19)

where

∆V0,vac =

∫
d3k

(2π)3

ω

2
(20)

The divergent contribution, ∆V0,vac, is due to the zero temperature vacuum fluctuations. This
contribution is usually combined with V̄0 in Eq. (3) to a finite constant potential term, V0 = V̄0 +
∆V0,vac, and we do not consider it further.

The remaining contribution ∆VT1 in (19) is finite, and it is solely due to thermal excitations.

(c) (2 points + 2* bonus points)

Show that, in the high temperature limit,

kBT � m, (21)

∆VT1 can be expanded in a Taylor series to yield,

∆VT1 = −π
2

90
(kBT )4 +

1

24
m2(kBT )2 − 1

12π
m3kBT −

1

64π2
m4
[

ln
( m2

(kBT )2

)
− c0

]
+ O(m6/(kBT )2) , (22)

where c0 = (3/2) + 2 ln(4π) − 2γE ' 5.4076, γE ≡ −ψ(1) = 0.577215.. denotes the Euler constant,
and ψ(z) = d[ln Γ(z)]/dz is the di-gamma function. Note the negative cubic term,

−BTkBTφ3
0 ' −

1

12π
m3kBT ' −

1

12π

(λ
2

)3/2
kBTφ

3
0 , (23)

m2 ≈ (λ/2)φ2
0, which can thermally induce a first order phase transition. When the same calculation

is repeated for fermions, one finds no cubic term (23), implying that, when treated in the high-
temperature approximation, fermions cannot induce a first order transition. This is because the cubic
term arises due to the infrared singularity in the Bose-Einstein distribution, nBE = 1/(eβω − 1) →
kBT/ω when E → 0, which is absent in the Fermi-Dirac distribution.

Strictly speaking, in Eq. (22) we calculated the one-loop thermal correction to the free energy (per
unit volume), ∆V1T ≡ F/V = ρ− Ts = −P, where we used the following relation for the entropy density,
s = (P + ρ)/T , such that ∆V1T is also equal to minus the pressure.
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