
Problem set 12 for Cosmology (ns-tp430m)

Problems are due at Thu May 15. In total 14 points plus 2 bonus points

23. Nucleation of bubbles at a first order phase transition: Thin wall approximation.
(10 points + 2∗ bonus points)

Phase transitions in the early Universe are thermally induced, which means that one can infer a phase
transition dynamics from the appropriate thermal effective potential. As regards the electroweak phase
transition, the following form of the thermal effective potential can be used as a reasonably good approxi-
mation for the dynamics at a first order electroweak phase transition (in this exercise we set c = 1, kB = 1
and ~ = 1),

VT (φ) =
1

2
m2
Tφ

2 − ETφ3 +
λT
4
φ4 , m2

T = 2D(T 2 − T 2
0 ) , (1)

where φ is a real scalar field, which can be thought of as a thermaly induced Higgs field expectation
value, and m2

T , E and λT the effective parameters of the potential, which are functions of the Higgs mass,
quartic coupling, and gauge and Yukawa couplings of the Minimal Standard Model, and of course of the
temperature T .

At very high temperatures, T � Tc, where Tc denotes the critical temperature, the potential has one
minimum at φ = 0.

(a) (2 points)

When m2
T > 0 and E > 0, the effective potential (1) may have two minima. Show that a second

minimum starts developing at the temperature T1 given by,

T 2
1 =

T 2
0

1− 9E2/(8λT1D)
, (2)

and that the field value at this minimum is

φ1 =
3ET1

2λT1
. (3)

(b) (2 points)

Show that the critical temperature, Tc (at which there are two degenerate minima) is given by the
following relation,

T 2
c =

T 2
0

1− E2/(λTcD)
, , (4)

and that the corresponding field values are,

φ = 0 , φc =
2ETc
λTc

. (5)

(c) (2 points)

Show that at the temperature T = T0, the minimum at the origin disappears. Show that at this
temperature the field value of the second minimum is given by

φ0 =
3ET0

λT0
. (6)

When a second minimum is formed and becomes lower than the minimum at the origin, it is energetically
favourable that the Universe be in the broken phase with φ > 0. At high temperatures, the tunneling rate
per unit volume into the broken (“true vacuum”) phase is of the order,

P ∼ T 4e−S3/T (7)
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where S3 is the three dimensional instanton action (the critical bubble action),

S3 = 4π

∫
r2dr

[1

2

(dφ
dr

)2
+ VT (φ)

]
. (8)

If a bubble of the true vacuum begins nucleating at a temperature, which is just slightly below the
critical temperature, the difference between the free energy (effective action) of the two minima, ∆V
(chosen by convention to be positive) is much smaller that the size of the energy barrier between them,
then the radius of the bubble r is much larger than the thickness of the bubble wall δr (defined as the
region over which φ = φ(r) changes significantly).

(d) (2 points)

In this thin wall approximation one can show that (8) can be approximated by,

S3 ≈ −
4π

3
r3∆V + 4πr2S1 , (9)

where

S1 '
∫
dφ
√

2VT (φ) ' σ (10)

and σ denotes the surface tension. In deriving (9) and (10) we assumed the equipartition of gradient
and potential energy, (1/2)(dφ/dr)2 ' VT (φ) on the boundary of the bubble.

(e) (2 points)

Calculate the radius of the critical bubble by finding the extremum of the action (9), and show that
it equals,

rc =
2S1

∆V
. (11)

Show that the critical action (9) is then,

S3c '
16π

3

S3
1

(∆V )2
, (12)

which is a maximum of the action. This is because critical bubbles are unstable, which means that,
once they form, critical bubbles either expand or contract.

The bubbles begin nucleating when the probability for bubble nucleation per unit time becomes of the
order of the expansion rate of the Universe H.

One can then show that the fraction of the Universe filled with bubbles at a time t is given by,

f = 1− e−∆ , (13)

where

∆(t) =

∫ t

0
dt′

4π

3
v3
b (t− t′)3P , (14)

vb is the (radial) velocity of the bubble expansion, and P = P(t′) denotes the tunneling rate per unit
volume (7). This rate becomes significant only below the critical temperature Tc, such that t = 0 in (14)
can be chosen as T (0) = Tc. In general, P is a complicated function of t′ that can be read off from Eq. (7),
which is somtimes approximated by a step function P(t′) = P0 θ(t

′). A better approximation for f = f(T )
is obtained by expanding the action S3 in (7) around T = Tc.

(f) (2∗ bonus points) Construct an argument for the correctness of the expressions (13–14). (You do not
need to calculate f = f(T ).)
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24. Particle density. (4 points)
What is the relation between the density of particles (minus antiparticles)

Nb,f ≡ (Np −Np̄)b,f (15)

and the chemical potential for (a) bosons and (b) fermions, where Np denotes the number density of
particles and Np̄ is the number density of antiparticles.

Assume that the phase space densities of bosons nb and fermions nf are of the form,

nb± =
1

eβ(cp∓µb) − 1
, nf± =

1

eβ(cp∓µf ) + 1
(16)

where β = 1/(kBT ), T denotes the temperature and kB the Štefan-Boltzmann constant, p = ‖~p ‖ the
momentum of particles (we are working in the super-relativistic limit in which E = cp and ±µf,b denotes
the chemical potential for particles (the + sign) and antiparticles (the − sign), respectively. Express your
answer in terms of the temperature kBT , chemical potentials µb,f , and the Riemann zeta-function, defined
as, ζ(z) =

∑∞
n=1(1/nz).

Hint: Assume that the chemical potentials are small, and then Taylor-expand to linear order in µb,f .
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